JP2011127878A - Hot water heat source machine - Google Patents

Hot water heat source machine Download PDF

Info

Publication number
JP2011127878A
JP2011127878A JP2009289434A JP2009289434A JP2011127878A JP 2011127878 A JP2011127878 A JP 2011127878A JP 2009289434 A JP2009289434 A JP 2009289434A JP 2009289434 A JP2009289434 A JP 2009289434A JP 2011127878 A JP2011127878 A JP 2011127878A
Authority
JP
Japan
Prior art keywords
low
refrigeration cycle
hot water
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289434A
Other languages
Japanese (ja)
Other versions
JP5393433B2 (en
Inventor
則幸 ▲高▼須
Noriyuki Takasu
Kiyoshi Watanabe
清 渡邉
Katsumi Katsu
勝美 勝
Aiichiro Kato
愛一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009289434A priority Critical patent/JP5393433B2/en
Publication of JP2011127878A publication Critical patent/JP2011127878A/en
Application granted granted Critical
Publication of JP5393433B2 publication Critical patent/JP5393433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water heat source machine capable of quickly performing a defrosting operation while saving energy, in the defrosting operation using a reversible refrigerating cycle of binary refrigerating cycle. <P>SOLUTION: This hot water heat source machine 50 includes a low order-side refrigerating cycle 1 as a reversible refrigerating cycle in which a low order-side refrigerant is circulated, and a high order-side refrigerating cycle 2 as a reversible refrigerating cycle in which a high order-side refrigerant is circulated, and performing a hot water heating operation, includes an evaporator refrigerant temperature detecting means 16 detecting a refrigerant temperature in the low order-side evaporator, and a control section 5 performing the defrosting operation by using the low order-side refrigerating cycle, when the refrigerant temperature detected by the evaporator refrigerant temperature detecting means becomes a first reference temperature or lower, and performing the defrosting operation by using the high order-side refrigerating cycle in addition to the defrosting operation by using the low order-side refrigerating cycle, when the refrigerant temperature detected by the evaporator refrigerant temperature detecting means is a second reference temperature or less even after the lapse of a prescribed time from the defrosting operation by using the low order-side refrigerating cycle. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、2元冷凍サイクルを用いて温水を加熱する温水熱源機であって、特に、蒸発器に付着した霜の溶融や付着の予防のために除霜運転を行う温水熱源機に関する。   The present invention relates to a hot water heat source apparatus that heats hot water using a two-way refrigeration cycle, and more particularly to a hot water heat source apparatus that performs a defrosting operation to prevent melting and adhesion of frost adhered to an evaporator.

従来、2元冷凍サイクルを用いて外気から採熱し、温水を加熱する温水熱源機が用いられている。このような温水熱源機では、外気に含まれる水分が温水加熱運転中の低元側蒸発器に付着する。付着した水分は、霜となって成長し、加熱能力の低下を招くため、低元側蒸発器に付着した霜を溶かす除霜運転が必要である。除霜方式には電気ヒーターを用いた方式や冷凍サイクルに四方弁を用い、冷媒回路を切り替え、冷凍サイクルを逆転させ、圧縮機から吐出される高温のガス冷媒を用いて除霜する可逆冷凍サイクル方式などがある。一般的には、比較的迅速に除霜運転が行える可逆冷凍サイクル方式が用いられている。   2. Description of the Related Art Conventionally, a hot water heat source device that heats hot water by collecting heat from outside air using a binary refrigeration cycle has been used. In such a warm water heat source machine, moisture contained in the outside air adheres to the low-side evaporator during the warm water heating operation. The adhering moisture grows as frost and causes a reduction in heating capacity, so a defrosting operation for melting the frost adhering to the low-source evaporator is necessary. Reversible refrigeration cycle that uses an electric heater for the defrosting method, uses a four-way valve in the refrigeration cycle, switches the refrigerant circuit, reverses the refrigeration cycle, and defrosts using high-temperature gas refrigerant discharged from the compressor There are methods. Generally, a reversible refrigeration cycle system that can perform a defrosting operation relatively quickly is used.

低元側冷媒回路の圧縮機の吐出側の配管と吸入側の配管を四方弁に接続すると共に、低元側冷媒回路の減圧装置に凝縮器側を順方向とする逆止弁を並列接続し、低元側冷媒回路の凝縮器と前記減圧装置の間にもう一つの減圧装置と前記減圧装置側を順方向とするもう一つの逆止弁の並列回路を接続することにより、低元側冷媒回路を可逆冷凍サイクルとすることで除霜運転を可能とする技術が、例えば特許文献1に開示されている。   The low-side refrigerant circuit compressor discharge side piping and suction-side piping are connected to the four-way valve, and the low-side refrigerant circuit decompression device is connected in parallel with a check valve with the condenser side in the forward direction. By connecting another decompression device and a parallel circuit of another check valve with the decompression device side in the forward direction between the condenser of the low origin refrigerant circuit and the decompression device, For example, Patent Literature 1 discloses a technique that enables a defrosting operation by setting a circuit to a reversible refrigeration cycle.

特開平7−234041号公報Japanese Patent Laid-Open No. 7-234041

上記従来の技術によれば、多元冷凍装置において低元側冷媒回路を可逆冷凍サイクルとし、高元側冷凍サイクルと低元側冷凍サイクルを接続するカスケードコンデンサに蓄えられた熱量を利用し、低元側蒸発器の除霜を行う。したがって、除霜に必要な熱量に対し、カスケードコンデンサに蓄えられた熱量が不足する場合は、十分な除霜が行えず、霜が残存してしまうという問題があった。また、カスケードコンデンサに蓄えられた熱量を利用した除霜運転では、除霜を完了するまでに時間を要するという課題があった。また、霜の残存の防止や、除霜時間の短縮化を図るために、カスケードコンデンサに十分な熱量を蓄えようとすれば、温水の加熱に必要とされる容量を超えたカスケードコンデンサを用意しなければならず、装置の大型化やコストの増大を招くという問題があった。   According to the above conventional technique, the low-source side refrigerant circuit in the multi-source refrigeration apparatus is a reversible refrigeration cycle, and the amount of heat stored in the cascade condenser that connects the high-source side refrigeration cycle and the low-source side refrigeration cycle is utilized. Defrost the side evaporator. Therefore, when the amount of heat stored in the cascade capacitor is insufficient with respect to the amount of heat necessary for defrosting, there is a problem that sufficient defrosting cannot be performed and frost remains. Moreover, in the defrost operation using the calorie | heat amount stored in the cascade capacitor, there existed a subject that it took time to complete defrost. In addition, in order to prevent the remaining frost and shorten the defrosting time, if you want to store a sufficient amount of heat in the cascade capacitor, prepare a cascade capacitor that exceeds the capacity required for heating hot water. Therefore, there is a problem that the apparatus is increased in size and cost.

本発明は、上記に鑑みてなされたものであって、2元冷凍サイクルの可逆冷凍サイクルを用いた除霜運転において、除霜運転を迅速かつ省エネルギーに行うことができる温水熱源機を得ることを目的とする。   The present invention has been made in view of the above, and in a defrosting operation using a reversible refrigeration cycle of a two-way refrigeration cycle, to obtain a hot water heat source machine capable of performing the defrosting operation quickly and with energy saving. Objective.

上述した課題を解決し、目的を達成するために、本発明は、低元側圧縮機と、低元側蒸発器と、低元側凝縮器と、低元側四方弁とが配管接続されて、低元側冷媒が循環する可逆冷凍サイクルとされた低元側冷凍サイクルと、高元側圧縮機、高元側蒸発器、高元側凝縮器、高元側四方弁が配管接続されて、高元側冷媒が循環する可逆冷凍サイクルとされた高元側冷凍サイクルとを備え、低元側冷媒と高元側冷媒との間で熱交換可能に低元側蒸発器と高元側凝縮器とを接続し、高元側凝縮器で高元側冷媒と温水との熱交換により温水を加熱する温水加熱運転を行う温水熱源機において、低元側蒸発器での冷媒温度を検知する蒸発器冷媒温度検知手段と、蒸発器冷媒温度検知手段で検知された冷媒温度が第1の基準温度以下となった場合に、低元側冷凍サイクルを用いた除霜運転を行わせ、低元側冷凍サイクルを用いた除霜運転から所定の時間を経過しても蒸発器冷媒温度検知手段で検知された冷媒温度が第2の基準温度以下である場合に、低元側冷凍サイクルを用いた除霜運転に加え、高元側冷凍サイクルを用いた除霜運転を行わせる制御部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention includes a low-side compressor, a low-side evaporator, a low-side condenser, and a low-side four-way valve that are connected by piping. The low-source side refrigeration cycle, which is a reversible refrigeration cycle in which the low-source side refrigerant circulates, and the high-source compressor, high-end evaporator, high-end condenser, and high-end four-way valve are connected by piping, A low-side evaporator and a high-side condenser are provided with a high-side refrigeration cycle that is a reversible refrigeration cycle through which the high-side refrigerant circulates, so that heat can be exchanged between the low-side refrigerant and the high-side refrigerant. In a hot water heat source machine that performs hot water heating operation in which hot water is heated by heat exchange between the high-side refrigerant and hot water in the high-side condenser, and detects the refrigerant temperature in the low-side evaporator When the refrigerant temperature detected by the refrigerant temperature detecting means and the evaporator refrigerant temperature detecting means falls below the first reference temperature, The refrigerant temperature detected by the evaporator refrigerant temperature detecting means is the second reference temperature even if a predetermined time has elapsed from the defrosting operation using the low-source side refrigeration cycle by performing the defrosting operation using the refrigeration cycle. And a control unit that performs a defrosting operation using the high-side refrigeration cycle in addition to the defrosting operation using the low-side refrigeration cycle.

本発明によれば、2元冷凍サイクルの可逆冷凍サイクルを用いた除霜運転において、除霜運転を迅速かつ省エネルギーに行うことが可能となる。   According to the present invention, in the defrosting operation using the reversible refrigeration cycle of the two-way refrigeration cycle, the defrosting operation can be performed quickly and with energy saving.

図1は、本発明の実施の形態1にかかる温水熱源機のシステム構成の概略を示すブロック図である。FIG. 1 is a block diagram showing an outline of a system configuration of a hot water heat source apparatus according to Embodiment 1 of the present invention. 図2は、温水熱源機における除霜運転の流れを説明するためのフローチャートである。FIG. 2 is a flowchart for explaining the flow of the defrosting operation in the hot water heat source apparatus. 図3は、本発明の実施の形態2に係る温水熱源機での除霜運転の流れを説明するためのフローチャートである。FIG. 3 is a flowchart for explaining the flow of the defrosting operation in the hot water heat source apparatus according to Embodiment 2 of the present invention. 図4は、本発明の実施の形態3に係る温水熱源機での除霜運転の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of the defrosting operation in the hot water heat source apparatus according to Embodiment 3 of the present invention.

以下に、本発明にかかる温水熱源機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a hot water heat source apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の実施の形態1にかかる温水熱源機のシステム構成の概略を示すブロック図である。温水熱源機50は、低元側冷凍サイクル1、高元側冷凍サイクル2、温水循環サイクル3、制御部5を備えて構成される。温水熱源機50は、温水循環サイクル3内を循環する温水の熱を利用して室内を暖房する放熱器4と組み合わせて使用される。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an outline of a system configuration of a hot water heat source apparatus according to Embodiment 1 of the present invention. The hot water heat source unit 50 includes a low-source side refrigeration cycle 1, a high-source side refrigeration cycle 2, a hot water circulation cycle 3, and a control unit 5. The hot water heat source unit 50 is used in combination with the radiator 4 that heats the room using the heat of the hot water circulating in the hot water circulation cycle 3.

低元側冷凍サイクル1は、圧縮機(低元側圧縮機)11、四方弁(低元側四方弁)12、凝縮器(低元側凝縮器)14、膨張弁(低元側膨張弁)15、蒸発器(低元側蒸発器)13を備え、これらが順次配管接続されて構成される。低元側冷凍サイクル1内には冷媒(低元側冷媒)が循環する。また、低元側冷凍サイクル1は、蒸発器13での冷媒温度を検知する蒸発器冷媒温度検知手段16、凝縮器14での冷媒温度を検知する凝縮器冷媒温度検知手段17が備えられる。なお、凝縮器14は、温水加熱運転時に内部を通過する冷媒を凝縮させ、蒸発器13は、温水加熱運転時に内部を通過する冷媒を蒸発させるものである。後述する除霜運転時には、冷媒の循環方向が反転されるため、凝縮器14で冷媒が蒸発し、蒸発器13で冷媒が凝縮する場合がある。すなわち、蒸発器13、凝縮器14は、温水加熱運転時の機能を示す名称であり、高元側冷凍サイクル2でも同様のものとする。   The low-source side refrigeration cycle 1 includes a compressor (low-source side compressor) 11, a four-way valve (low-source side four-way valve) 12, a condenser (low-source side condenser) 14, and an expansion valve (low-source side expansion valve). 15, an evaporator (low-source side evaporator) 13 is provided, and these are sequentially connected by piping. A refrigerant (low-source-side refrigerant) circulates in the low-source-side refrigeration cycle 1. Further, the low-source side refrigeration cycle 1 is provided with an evaporator refrigerant temperature detecting means 16 for detecting the refrigerant temperature in the evaporator 13 and a condenser refrigerant temperature detecting means 17 for detecting the refrigerant temperature in the condenser 14. The condenser 14 condenses the refrigerant passing through the interior during the hot water heating operation, and the evaporator 13 evaporates the refrigerant passing through the interior during the hot water heating operation. During the defrosting operation to be described later, the refrigerant circulation direction is reversed, so that the refrigerant may evaporate in the condenser 14 and the refrigerant may condense in the evaporator 13. That is, the evaporator 13 and the condenser 14 are names indicating functions during the hot water heating operation, and the same applies to the high-source side refrigeration cycle 2.

蒸発器冷媒温度検知手段16の設置位置は、入口温度が検知できる位置、蒸発温度が検知できる位置、出口温度が検知できる位置のいずれの位置でもよいが、一般的には、入口温度が検知できるように蒸発器13の入り口側に設置される。   The installation position of the evaporator refrigerant temperature detection means 16 may be any of a position where the inlet temperature can be detected, a position where the evaporation temperature can be detected, and a position where the outlet temperature can be detected. In general, the inlet temperature can be detected. Thus, it is installed at the entrance side of the evaporator 13.

また、凝縮器冷媒温度検知手段17の設置位置も、入口温度が検知できる位置、凝縮温度が検知できる位置、出口温度が検知できる位置のいずれの位置でもよい。一般的には、凝縮器14が2重管式熱交換器の場合は凝縮温度が検知できる位置に設置され、凝縮器14がプレート式熱交換器の場合は出口温度が検知できる位置に設置される。   The installation position of the condenser refrigerant temperature detection means 17 may be any of a position where the inlet temperature can be detected, a position where the condensation temperature can be detected, and a position where the outlet temperature can be detected. Generally, when the condenser 14 is a double-tube heat exchanger, it is installed at a position where the condensation temperature can be detected, and when the condenser 14 is a plate heat exchanger, it is installed at a position where the outlet temperature can be detected. The

本実施の形態1においては、蒸発器冷媒温度検知手段16は入口温度が検知できる位置に設置され、凝縮器冷媒温度検知手段17は出口温度が検知できる位置に設置される。なお、入口・出口の概念も、温水加熱運転時の冷媒の循環方向に基づいて定めるものとする。   In the first embodiment, the evaporator refrigerant temperature detecting means 16 is installed at a position where the inlet temperature can be detected, and the condenser refrigerant temperature detecting means 17 is installed at a position where the outlet temperature can be detected. The concept of the inlet / outlet is also determined based on the refrigerant circulation direction during the hot water heating operation.

高元側冷凍サイクル2は、圧縮機(高元側圧縮機)21、四方弁(高元側四方弁)22、凝縮器(高元側凝縮器)24、膨張弁(高元側膨張弁)25、蒸発器(高元側蒸発器)23を備え、それらが順次配管接続されて構成される。蒸発器23は、低元側冷凍サイクル1の凝縮器14と熱交換可能に接続されている。   The high-side refrigeration cycle 2 includes a compressor (high-side compressor) 21, a four-way valve (high-side four-way valve) 22, a condenser (high-side condenser) 24, and an expansion valve (high-side expansion valve). 25, and an evaporator (high-side evaporator) 23, which are sequentially connected by piping. The evaporator 23 is connected to the condenser 14 of the low-source side refrigeration cycle 1 so that heat exchange is possible.

温水循環サイクル3は、タンク33、温水循環手段31、温水熱交換器32を備え、それらが順次配管接続されて構成される。温水熱交換器32は、高元側冷凍サイクル2の凝縮器24と熱交換可能に接続されている。放熱器4は、温水循環サイクル3と配管接続されて、室内に配置される。放熱器4から室内に温水の温度が放熱されることで、室内が暖房される。   The hot water circulation cycle 3 includes a tank 33, a hot water circulation means 31, and a hot water heat exchanger 32, and these are sequentially connected by piping. The hot water heat exchanger 32 is connected to the condenser 24 of the high-side refrigeration cycle 2 so as to be able to exchange heat. The radiator 4 is pipe-connected to the hot water circulation cycle 3 and is disposed indoors. The temperature of the hot water is radiated from the radiator 4 into the room, thereby heating the room.

次に、暖房運転時(温水加熱運転時)の動作について説明する。低元側冷凍サイクル1では、圧縮機11によって、矢印Xに示す方向に冷媒が循環される。低元側冷凍サイクル1では、凝縮器14で熱を奪われ、凝縮、液化した冷媒が、膨張弁15で低温低圧の気液2相状態となり、蒸発器13で外気から採熱し、蒸発し、低温低圧のガス状態なり、圧縮機11で圧縮され、高温高圧のガス冷媒となり、再び凝縮器14で熱を奪われ、凝縮、液化するサイクルを繰り返す。   Next, the operation at the time of heating operation (at the time of hot water heating operation) will be described. In the low-source side refrigeration cycle 1, the refrigerant is circulated in the direction indicated by the arrow X by the compressor 11. In the low-side refrigeration cycle 1, the refrigerant that has been deprived of heat by the condenser 14 and condensed and liquefied becomes a low-temperature and low-pressure gas-liquid two-phase state by the expansion valve 15, and heat is collected from the outside air by the evaporator 13 and evaporated. A low-temperature and low-pressure gas state is obtained, the gas is compressed by the compressor 11 to become a high-temperature and high-pressure gas refrigerant, heat is again taken away by the condenser 14, and the cycle of condensation and liquefaction is repeated.

高元側冷凍サイクル2では、圧縮機21によって、矢印Pに示す方向に冷媒が循環される。高元側冷凍サイクル2においても低元側冷凍サイクル1と同様に、凝縮器24で熱を奪われ、凝縮、液化した冷媒は、膨張弁25で低温低圧の気液2相状態となり、蒸発器23で低元側冷凍サイクル1の冷媒から採熱し、蒸発し、低温低圧のガス状態なり、圧縮機21で圧縮され、高温高圧のガス冷媒となり、再び凝縮器24で熱を奪われ、凝縮、液化するサイクルを繰り返す。   In the high-source side refrigeration cycle 2, the refrigerant is circulated in the direction indicated by the arrow P by the compressor 21. In the high-source side refrigeration cycle 2, similarly to the low-source side refrigeration cycle 1, the refrigerant that has been deprived of heat by the condenser 24 and condensed and liquefied becomes a low-temperature low-pressure gas-liquid two-phase state by the expansion valve 25, and the evaporator 23, heat is collected from the refrigerant of the low-source side refrigeration cycle 1 and evaporated to become a low-temperature and low-pressure gas state, compressed by the compressor 21 to become a high-temperature and high-pressure gas refrigerant, again deprived of heat by the condenser 24, condensed, Repeat the liquefaction cycle.

温水循環サイクル3では、温水循環手段31によって、矢印Rに示す方向に温水が循環される。温水循環サイクル3においては、温水熱交換器32で高元側冷凍サイクル2の冷媒から採熱し、温水を加熱する。加熱された温水は温水循環手段31で放熱器4へ搬送され、放熱器4で放熱し、タンク33を経由して、再び温水熱交換器32に送られる。   In the hot water circulation cycle 3, the hot water is circulated in the direction indicated by the arrow R by the hot water circulation means 31. In the hot water circulation cycle 3, heat is collected from the refrigerant of the high-end refrigeration cycle 2 by the hot water heat exchanger 32 to heat the hot water. The heated warm water is conveyed to the radiator 4 by the warm water circulation means 31, dissipated by the radiator 4, and is sent to the warm water heat exchanger 32 again via the tank 33.

制御部5は、低元側冷凍サイクル1、高元側冷凍サイクル2、温水循環サイクル3と接続されている。なお、これらを接続するための配線の図示は省略している。制御部5は、圧縮機11,21の運転・停止を制御する。また、制御部5は、四方弁12,22の回路の切り替えを制御する。また、制御部5は、各冷媒温度検知手段16,17によって検知された冷媒温度を取得する。また、制御部5は、図示しない計時手段によって、低元側冷凍サイクル1、高元側冷凍サイクル2、温水循環サイクル3の運転時間を計時する。温水熱源機1における除霜運転の動作を後述するが、その中で、圧縮機11,21の運転・停止といった場合には、制御部5による制御によって行われているものとする。また、四方弁12,22の回路の切り替えといった場合にも、制御部5による制御によって行われているものとする。   The control unit 5 is connected to the low-source side refrigeration cycle 1, the high-source side refrigeration cycle 2, and the hot water circulation cycle 3. In addition, illustration of the wiring for connecting these is abbreviate | omitted. The control unit 5 controls the operation / stop of the compressors 11 and 21. The control unit 5 controls switching of the circuits of the four-way valves 12 and 22. Moreover, the control part 5 acquires the refrigerant | coolant temperature detected by each refrigerant | coolant temperature detection means 16 and 17. FIG. In addition, the control unit 5 measures the operation time of the low-source side refrigeration cycle 1, the high-source side refrigeration cycle 2, and the hot water circulation cycle 3 by a timing unit (not shown). The operation of the defrosting operation in the hot water heat source unit 1 will be described later. In this case, when the compressors 11 and 21 are operated and stopped, it is assumed that the operation is performed by control by the control unit 5. In addition, when switching the circuits of the four-way valves 12 and 22, it is assumed that the control is performed by the control unit 5.

次に除霜運転時の動作について説明する。図2は、温水熱源機における除霜運転の流れを説明するためのフローチャートである。温水熱源機50の運転開始操作が行われると(ステップS1)、前述の暖房運転が行われる(ステップS2)。そして、暖房運転の継続が所定の時間に達したか否かが制御部5によって判断され、所定の時間が経過していなければ(ステップS3,No)、ステップS2に戻って、所定時間が経過したか否かの判断が繰り返される。暖房運転の開始から所定の時間を経過していれば(ステップS3,Yes)、低元側冷凍サイクル1の蒸発器冷媒温度検知手段16で検知した蒸発器13での冷媒温度が第1の基準温度以下かの判断が制御部5によって行われる(ステップS4)。ここで、蒸発器13での冷媒温度が第1の基準温度を超えている場合には(ステップS4,No)、ステップS2に戻る。   Next, the operation during the defrosting operation will be described. FIG. 2 is a flowchart for explaining the flow of the defrosting operation in the hot water heat source apparatus. When the operation start operation of the hot water heat source device 50 is performed (step S1), the heating operation described above is performed (step S2). And it is judged by control part 5 whether continuation of heating operation reached predetermined time, and if predetermined time has not passed (Step S3, No), it will return to Step S2 and predetermined time will pass. The determination of whether or not has been made is repeated. If a predetermined time has elapsed since the start of the heating operation (step S3, Yes), the refrigerant temperature in the evaporator 13 detected by the evaporator refrigerant temperature detecting means 16 of the low-source side refrigeration cycle 1 is the first reference. The controller 5 determines whether the temperature is equal to or lower than the temperature (step S4). Here, when the refrigerant temperature in the evaporator 13 exceeds the first reference temperature (step S4, No), the process returns to step S2.

ここで、ステップS3の処理は、除霜運転の必要性を暖房運転の継続時間で判断するものである。所定の時間は、過去の除霜運転に要した時間に基づいて定められ、例えば30分から3時間程度の範囲で設定される。   Here, the process of step S3 judges the necessity of a defrost operation by the continuation time of heating operation. The predetermined time is determined based on the time required for the past defrosting operation, and is set in the range of, for example, about 30 minutes to 3 hours.

ステップS4において、蒸発器13での冷媒温度が第1の基準温度以下である場合は(ステップS4,Yes)、低元側冷凍サイクル1の圧縮機11と高元側冷凍サイクル2の圧縮機21の運転が停止される(ステップS5)。   In step S4, when the refrigerant temperature in the evaporator 13 is equal to or lower than the first reference temperature (step S4, Yes), the compressor 11 of the low-side refrigeration cycle 1 and the compressor 21 of the high-side refrigeration cycle 2 are used. Is stopped (step S5).

ここで、ステップS4の処理では、蒸発器13の入口での冷媒温度が第1の基準温度以下となった場合に除霜運転が必要と判断している。第1の基準温度は外気の温度や、湿度条件から設定され、例えば−3℃程度に設定される。ステップS3とステップS4の処理により、必要な場合のみ除霜運転を行い、不要な除霜運転による温水加熱能力の低下防止、除霜運転に伴うエネルギーロスの低減が可能となる。   Here, in the process of step S4, it is determined that the defrosting operation is necessary when the refrigerant temperature at the inlet of the evaporator 13 is equal to or lower than the first reference temperature. The first reference temperature is set from the outside air temperature and humidity conditions, and is set to about -3 ° C, for example. By the processing of Step S3 and Step S4, the defrosting operation is performed only when necessary, and it is possible to prevent the hot water heating capacity from being lowered by unnecessary defrosting operation and to reduce the energy loss accompanying the defrosting operation.

次に、低元側冷凍サイクル1の四方弁12の回路と高元側冷凍サイクル2の四方弁22の回路を、図1に実線で示す状態から、破線で示す状態に切り替える(ステップS6)。この切り替えにより、各冷凍サイクル1,2では、暖房運転時とは逆のサイクルとなる。すなわち、この状態で、圧縮機11を運転させれば、低元側冷凍サイクル1においては、矢印Yに示す方向に冷媒が循環するようになる。圧縮機11から吐出した冷媒は四方弁12、蒸発器13(除霜運転時には冷媒を凝縮させる)、膨張弁15、凝縮器14(除霜運転時には冷媒を蒸発させる)の順に冷媒が流れるサイクルとなる。   Next, the circuit of the four-way valve 12 of the low-source side refrigeration cycle 1 and the circuit of the four-way valve 22 of the high-source side refrigeration cycle 2 are switched from the state shown by the solid line in FIG. 1 to the state shown by the broken line (step S6). By this switching, each refrigeration cycle 1 and 2 becomes a cycle opposite to that during heating operation. That is, if the compressor 11 is operated in this state, the refrigerant circulates in the direction indicated by the arrow Y in the low-source side refrigeration cycle 1. The refrigerant discharged from the compressor 11 is a cycle in which the refrigerant flows in the order of the four-way valve 12, the evaporator 13 (condensates the refrigerant during the defrosting operation), the expansion valve 15, and the condenser 14 (evaporates the refrigerant during the defrosting operation). Become.

また、高元側冷凍サイクル2においても同様に、圧縮機21を運転させれば、矢印Qに示す方向に冷媒が循環するようになる。圧縮機21から吐出した冷媒は四方弁22、蒸発器23(除霜運転時は冷媒を凝縮させる)、膨張弁25、凝縮器24(除霜運転時は冷媒を蒸発させる)の順に冷媒が流れるサイクルとなる。   Similarly, in the high-side refrigeration cycle 2, when the compressor 21 is operated, the refrigerant circulates in the direction indicated by the arrow Q. The refrigerant discharged from the compressor 21 flows in the order of the four-way valve 22, the evaporator 23 (condensates the refrigerant during the defrosting operation), the expansion valve 25, and the condenser 24 (the refrigerant evaporates during the defrosting operation). It becomes a cycle.

次に、低元側冷凍サイクル1の圧縮機を運転させ(ステップS7)、低元側冷凍サイクル1を用いた除霜運転を行わせる。次に、低元側冷凍サイクル1の蒸発器冷媒温度検知手段16で検知した蒸発器13での冷媒温度が、第2の基準温度以下か否かの判断を行い、第2の基準温度以下であれば(ステップS8,Yes)、低元側冷凍サイクル1の凝縮器冷媒温度検知手段17で検出した凝縮器14での冷媒温度が第3の基準温度以上か否かの判断が行われる(ステップS10)。なお、ステップS8において、蒸発器13での冷媒温度が第2の基準温度を超えている場合は(ステップS8,No)、低元側冷凍サイクル1の圧縮機11が停止され、除霜運転が終了される(ステップS9)。   Next, the compressor of the low-source side refrigeration cycle 1 is operated (step S7), and the defrosting operation using the low-source-side refrigeration cycle 1 is performed. Next, it is determined whether or not the refrigerant temperature in the evaporator 13 detected by the evaporator refrigerant temperature detecting means 16 of the low-source side refrigeration cycle 1 is equal to or lower than the second reference temperature. If present (step S8, Yes), it is determined whether or not the refrigerant temperature in the condenser 14 detected by the condenser refrigerant temperature detecting means 17 of the low-source side refrigeration cycle 1 is equal to or higher than the third reference temperature (step). S10). In step S8, when the refrigerant temperature in the evaporator 13 exceeds the second reference temperature (No in step S8), the compressor 11 of the low-side refrigeration cycle 1 is stopped and the defrosting operation is performed. The process is terminated (step S9).

ここで、ステップS8の処理では、蒸発器13の入口での冷媒温度が第2の基準温度を超えた場合に、除霜処理完了と判断している。第2の基準温度は外気の温度、湿度条件から設定され、例えば5℃程度に設定される。蒸発器13に霜が残存している場合には、蒸発器で冷媒が冷却されるため、冷媒温度が第2の基準温度を超えにくくなる。このように、蒸発器13の入口での冷媒温度で除霜処理の完了を判定すれば、蒸発器13に霜が残存したままの状態で除霜運転が終了されてしまうことを防止することが可能となる。   Here, in the process of step S8, when the refrigerant temperature at the inlet of the evaporator 13 exceeds the second reference temperature, it is determined that the defrosting process is completed. The second reference temperature is set from the outside air temperature and humidity conditions, and is set to about 5 ° C., for example. When frost remains in the evaporator 13, the refrigerant is cooled by the evaporator, so that the refrigerant temperature is less likely to exceed the second reference temperature. In this way, if the completion of the defrosting process is determined based on the refrigerant temperature at the inlet of the evaporator 13, it is possible to prevent the defrosting operation from being terminated while the frost remains in the evaporator 13. It becomes possible.

ステップS10において、低元側冷凍サイクル1の凝縮器冷媒温度検知手段17で検出した凝縮器24での冷媒温度が第3の基準温度以上か否かの判断を行い、第3の基準温度以上である場合には(ステップS10,Yes)、ステップS11に進み、第3の基準温度未満である場合には(ステップS10,No)、ステップS12に進む。   In step S10, it is determined whether or not the refrigerant temperature in the condenser 24 detected by the condenser refrigerant temperature detection means 17 of the low-source side refrigeration cycle 1 is equal to or higher than the third reference temperature. If there is (Step S10, Yes), the process proceeds to Step S11. If the temperature is lower than the third reference temperature (Step S10, No), the process proceeds to Step S12.

ステップS10の処理では、低元側冷凍サイクル1のみの運転で除霜処理が可能かどうかを凝縮器14出口での冷媒温度で判断している。これは、凝縮器13出口での冷媒温度が所定の温度未満となった場合、低元側冷凍サイクル1のみの運転、すなわち、低元側冷凍サイクル1の凝縮器14と高元側冷凍サイクル2の蒸発器23を接続した熱交換器に蓄えられた熱量のみでは除霜処理困難、または時間を要すると判断する。第3の基準温度は例えば0℃程度に設定される。   In the process of step S10, it is determined from the refrigerant temperature at the outlet of the condenser 14 whether or not the defrosting process is possible only by the operation of the low-source side refrigeration cycle 1. This is because when the refrigerant temperature at the outlet of the condenser 13 becomes lower than a predetermined temperature, only the low-source side refrigeration cycle 1 is operated, that is, the condenser 14 and the high-source side refrigeration cycle 2 of the low-source side refrigeration cycle 1. It is determined that only the amount of heat stored in the heat exchanger connected with the evaporator 23 is difficult to defrost or requires time. The third reference temperature is set to about 0 ° C., for example.

ステップS11では、低元側冷凍サイクル1が除霜運転を開始してから所定の時間が経過したかの判断を行い、所定の時間を経過していれば(ステップS11,Yes)、ステップS12に進み、所定の時間を経過していなければ(ステップS11,No)、ステップS7に戻る。   In step S11, it is determined whether or not a predetermined time has elapsed since the low-source side refrigeration cycle 1 started the defrosting operation. If the predetermined time has elapsed (step S11, Yes), the process proceeds to step S12. If the predetermined time has not elapsed (step S11, No), the process returns to step S7.

ここで、ステップS11の処理では、低元側冷凍サイクル1のみの運転で除霜処理が可能かどうかを、除霜運転時間で判断している。すなわち、除霜運転時間が所定の時間以内に、蒸発器13入口での冷媒温度が第2の基準温度を超えてステップS9に進めない場合には、低元側冷凍サイクル1のみの運転では除霜処理困難であると判断する。所定の時間は、例えば5分程度に設定される。   Here, in the process of step S11, it is determined by the defrosting operation time whether or not the defrosting process is possible only by the operation of the low-source side refrigeration cycle 1. In other words, if the refrigerant temperature at the inlet of the evaporator 13 exceeds the second reference temperature and cannot proceed to step S9 within a predetermined time, the operation is performed only in the low-source side refrigeration cycle 1. Judged that frost treatment is difficult. The predetermined time is set to about 5 minutes, for example.

ステップS12では、高元側冷凍サイクル2を運転させ、ステップS13に進む。高元側冷凍サイクル2を運転させる際に、温水循環手段31を同時に運転させてもよい。温水循環手段31を運転させた場合は、温水循環サイクル3の熱も利用して除霜処理を行うことが可能となり、より迅速に除霜処理を完了させることができる。   In step S12, the high-side refrigeration cycle 2 is operated, and the process proceeds to step S13. When operating the high-source side refrigeration cycle 2, the hot water circulation means 31 may be operated simultaneously. When the hot water circulation means 31 is operated, the defrosting process can be performed using the heat of the hot water circulation cycle 3, and the defrosting process can be completed more quickly.

ステップS13では低元側冷凍サイクル1の蒸発器冷媒温度検知手段16で検知した冷媒温度が第4の基準温度以下か否かの判断を行い、第4の基準温度以下である場合は(ステップS13,Yes)、ステップS12に戻り、第4の基準温度を超えている場合は(ステップS13,No)、ステップS14に進み、除霜運転を終了させる。   In step S13, it is determined whether or not the refrigerant temperature detected by the evaporator refrigerant temperature detecting means 16 of the low-source side refrigeration cycle 1 is equal to or lower than the fourth reference temperature. If the refrigerant temperature is equal to or lower than the fourth reference temperature (step S13). , Yes), the process returns to step S12, and if the fourth reference temperature is exceeded (No at step S13), the process proceeds to step S14 and the defrosting operation is terminated.

ステップS10とステップS11での処理により、低元側冷凍サイクル1のみの運転では除霜処理困難な場合のみ、高元側冷凍サイクル2を運転させることが可能となる。その結果、高元側冷凍サイクル2の不要な運転によるエネルギーロスの低減と、高元側冷凍サイクル2の熱量を利用した確実、迅速な除霜処理の両立が可能となる。更に、高元側冷凍サイクル2の熱量を利用することにより、低元側冷凍サイクル1の凝縮器14と高元側冷凍サイクル2の蒸発器23を接続した熱交換器の容量を除霜処理のためだけに大きくする必要はない。   By the processing in step S10 and step S11, it is possible to operate the high-side refrigeration cycle 2 only when it is difficult to perform the defrosting process by operating only the low-side refrigeration cycle 1. As a result, it is possible to achieve both reduction of energy loss due to unnecessary operation of the high-source side refrigeration cycle 2 and reliable and quick defrosting processing using the heat amount of the high-source side refrigeration cycle 2. Furthermore, by utilizing the heat quantity of the high-side refrigeration cycle 2, the capacity of the heat exchanger connecting the condenser 14 of the low-side refrigeration cycle 1 and the evaporator 23 of the high-side refrigeration cycle 2 can be defrosted. It doesn't have to be large just for that.

ステップS13の処理では、ステップS8の処理と同様に、蒸発器13入口での冷媒温度が第4の基準温度を超えた場合に、除霜処理完了と判断している。第4の基準温度は外気の温度、湿度条件から設定され、例えば5℃程度に設定される。   In the process of step S13, as in the process of step S8, when the refrigerant temperature at the inlet of the evaporator 13 exceeds the fourth reference temperature, it is determined that the defrosting process is complete. The fourth reference temperature is set from the outside air temperature and humidity conditions, and is set to about 5 ° C., for example.

ステップS14では、低元側冷凍サイクル1の圧縮機11との高元側冷凍サイクル2の圧縮機21双方の運転を停止させる処理が行われ、その後ステップS15に進む。   In step S14, a process for stopping the operation of both the compressor 11 of the low-source side refrigeration cycle 1 and the compressor 21 of the high-source side refrigeration cycle 2 is performed, and then the process proceeds to step S15.

ステップS15では、低元側冷凍サイクル1の四方弁12の回路と高元側冷凍サイクル2の四方弁22の回路を、図1で示す破線の状態から実線の状態に切り替える。この切り替えにより、各冷凍サイクル1,2は除霜運転時とは逆のサイクルとなり、暖房運転時のサイクルに戻る。   In step S15, the circuit of the four-way valve 12 of the low-source side refrigeration cycle 1 and the circuit of the four-way valve 22 of the high-source side refrigeration cycle 2 are switched from the broken line state shown in FIG. By this switching, each refrigeration cycle 1 and 2 becomes a cycle opposite to that during the defrosting operation, and returns to the cycle during the heating operation.

次に、ステップS16では、低元側冷凍サイクル1の運転を開始し、ステップS17に進む。ステップS17では、低元側冷凍サイクル1の凝縮器冷媒温度検知手段17で検出した冷媒温度が第5の基準温度以下か否かの判断を行い、所定の温度以下である場合は(ステップS17,Yes)、ステップS18に進み、所定の温度を超える場合は(ステップS17,No)、ステップS19に進む。   Next, in step S16, the operation of the low-source side refrigeration cycle 1 is started, and the process proceeds to step S17. In step S17, it is determined whether or not the refrigerant temperature detected by the condenser refrigerant temperature detection means 17 of the low-source side refrigeration cycle 1 is equal to or lower than a fifth reference temperature. If the refrigerant temperature is equal to or lower than a predetermined temperature (step S17, Yes), the process proceeds to step S18, and if the predetermined temperature is exceeded (No in step S17), the process proceeds to step S19.

ステップ17の処理では、高元側冷凍サイクル2の運転開始条件を低元側冷凍サイクル1の凝縮器出口冷媒温度で判断している。除霜運転終了後、高元側冷凍サイクル2の蒸発器23において冷却され、液状態となった冷媒の圧縮機21への流入にすることによる圧縮機21の損傷を防止するため、冷媒が蒸発器23においてガス化可能となる温度まで、低元側冷凍サイクル1の単独の運転としている。所定の温度は例えば30℃程度が設定される。   In the processing of step 17, the operation start condition of the high-source side refrigeration cycle 2 is determined based on the condenser outlet refrigerant temperature of the low-source side refrigeration cycle 1. After the defrosting operation is completed, the refrigerant evaporates in order to prevent damage to the compressor 21 due to inflow of the refrigerant that has been cooled in the evaporator 23 of the high-source side refrigeration cycle 2 into a liquid state. The low-source side refrigeration cycle 1 is operated independently up to a temperature at which gasification is possible in the vessel 23. The predetermined temperature is set to about 30 ° C., for example.

ステップS18では、ステップS17で低元側冷凍サイクル1が運転を開始されてから所定の時間を経過したかの判断を行い、所定の時間を経過していれば(ステップS18,Yes)、ステップ19に進み、所定の時間を経過していなければ(ステップS18,No)、ステップ16に戻る。   In step S18, it is determined whether or not a predetermined time has elapsed since the operation of the low-source side refrigeration cycle 1 in step S17. If the predetermined time has elapsed (step S18, Yes), step 19 is performed. If the predetermined time has not elapsed (step S18, No), the process returns to step 16.

ステップS18の処理では、高元側冷凍サイクル2の運転開始条件を低元側冷凍サイクル1が単独で運転した時間で判断している。ステップ17の凝縮器出口冷媒温度による判定を満足していなくても、所定の時間低元側冷凍サイクル1を運転していれば、高元側冷凍サイクル2を運転させても問題ないと判断する。所定の時間は例えば5分程度に設定される。   In the process of step S18, the operation start condition of the high-source side refrigeration cycle 2 is determined by the time during which the low-source side refrigeration cycle 1 is operated alone. Even if the determination based on the condenser outlet refrigerant temperature in step 17 is not satisfied, if the low-source side refrigeration cycle 1 is operated for a predetermined time, it is determined that there is no problem even if the high-source side refrigeration cycle 2 is operated. . The predetermined time is set to about 5 minutes, for example.

ステップS17とステップS18での処理により、高元側冷凍サイクル2の圧縮機21への液冷媒の流入による損傷を防止するとともに、除霜運転終了後、迅速に暖房運転を開始させることが可能となる。ステップS19では、高元側冷凍サイクル2の運転を開始する処理を行い、除霜運転が完全に終了される。除霜運転の終了により、ステップS2に戻って、再度、暖房運転の継続時間等に基づいて除霜運転の要否が判断されることとなる。   By the processing in step S17 and step S18, it is possible to prevent damage due to the inflow of liquid refrigerant into the compressor 21 of the high-source side refrigeration cycle 2, and to quickly start the heating operation after the completion of the defrosting operation. Become. In step S19, the process which starts the driving | operation of the high refrigeration cycle 2 is performed, and a defrost operation is complete | finished completely. Upon completion of the defrosting operation, the process returns to step S2, and it is determined again whether or not the defrosting operation is necessary based on the duration of the heating operation.

以上説明したように、本発明によって、不要な除霜運転による温水加熱能力の低下防止、除霜運転に伴うエネルギーロスの低減、不完全な除霜処理の防止、迅速な除霜処理と暖房運転の開始、低元側冷凍サイクル1の凝縮器14と高元側冷凍サイクル2の蒸発器23の大容量化防止、高元側冷凍サイクル2の圧縮機21の損傷防止が可能となる。   As described above, according to the present invention, it is possible to prevent a decrease in hot water heating capacity due to unnecessary defrosting operation, to reduce energy loss accompanying defrosting operation, to prevent incomplete defrosting treatment, and to perform rapid defrosting treatment and heating operation. Thus, it is possible to prevent the capacity of the condenser 14 of the low-side refrigeration cycle 1 and the evaporator 23 of the high-side refrigeration cycle 2 from being increased, and the compressor 21 of the high-side refrigeration cycle 2 can be prevented from being damaged.

実施の形態2.
図3は、本発明の実施の形態2に係る温水熱源機での除霜運転の流れを説明するためのフローチャートである。温水熱源機の構成および機能は、実施の形態1で説明したものと略同様であるので、詳細な説明を省略する。また、実施の形態1と同様の構成については同様の符号を用いて説明する。また、実施の形態1と実施の形態2とで異なるフロー部分について説明する。
Embodiment 2. FIG.
FIG. 3 is a flowchart for explaining the flow of the defrosting operation in the hot water heat source apparatus according to Embodiment 2 of the present invention. Since the configuration and function of the hot water heat source machine are substantially the same as those described in the first embodiment, detailed description thereof is omitted. Further, the same configuration as that of Embodiment 1 will be described using the same reference numerals. In addition, a flow part different between the first embodiment and the second embodiment will be described.

本実施の形態2では、ステップS6’において、四方弁の回路の切り替え処理を低元側冷凍サイクル1の四方弁12に対してのみ行う。また、ステップS11の処理の後に、ステップS200の処理を追加し、ステップS200において高元側冷凍サイクル2の四方弁22の回路の切り替えを行う。また、ステップS9の処理の後にステップS201の処理を追加し、ステップS201において、低元側冷凍サイクル1のみで除霜運転を終了した場合に、低元側冷凍サイクル1の四方弁12のみの回路の切り替えを行っている。   In the second embodiment, the switching process of the four-way valve circuit is performed only for the four-way valve 12 of the low-source side refrigeration cycle 1 in step S6 '. Moreover, the process of step S200 is added after the process of step S11, and the circuit of the four-way valve 22 of the high-source side refrigeration cycle 2 is switched in step S200. In addition, when the process of step S201 is added after the process of step S9, and the defrosting operation is finished only in the low-source side refrigeration cycle 1 in step S201, the circuit of only the four-way valve 12 of the low-source side refrigeration cycle 1 Switching.

ステップS6’において、四方弁の回路の切り替えを低元側冷凍サイクル1の四方弁12のみとし、除霜処理に高元側冷凍サイクル2の運転が必要と判断した場合のみ、ステップ200において、高元側冷凍サイクル2の四方弁22を切り替えることにより、低元側冷凍サイクル1のみで除霜処理が完了した場合に、高元側冷凍サイクル2の四方弁22を切り替える必要はなくなる。その結果、高元側冷凍サイクル2の四方弁22の切り替え回数を減らすことができ、高元側冷凍サイクル2の四方弁22の長寿命化を図ることができる。   In step S6 ′, only the four-way valve 12 of the low-source side refrigeration cycle 1 is switched in the circuit of the four-way valve, and only in the case where it is determined that the operation of the high-side refrigeration cycle 2 is necessary for the defrosting process, By switching the four-way valve 22 of the original refrigeration cycle 2, it is not necessary to switch the four-way valve 22 of the high refrigeration cycle 2 when the defrosting process is completed only by the low original refrigeration cycle 1. As a result, the number of switching of the four-way valve 22 of the high-source side refrigeration cycle 2 can be reduced, and the life of the four-way valve 22 of the high-source side refrigeration cycle 2 can be extended.

実施の形態3.
図4は、本発明の実施の形態3に係る温水熱源機での除霜運転の流れを示すフローチャートである。温水熱源機の構成および機能は、実施の形態1で説明したものと略同様であるので、詳細な説明を省略する。また、実施の形態1と同様の構成については同様の符号を用いて説明する。実施の形態2と実施の形態3とで異なるフロー部分について説明する。
Embodiment 3 FIG.
FIG. 4 is a flowchart showing the flow of the defrosting operation in the hot water heat source apparatus according to Embodiment 3 of the present invention. Since the configuration and function of the hot water heat source machine are substantially the same as those described in the first embodiment, detailed description thereof is omitted. Further, the same configuration as that of Embodiment 1 will be described using the same reference numerals. A flow part different between the second embodiment and the third embodiment will be described.

ステップS5’において、圧縮機の停止処理を低元側冷凍サイクル1の圧縮機11のみとする。また、ステップS11の処理の後にステップS300の処理を追加し、ステップS300において高元側冷凍サイクル2の圧縮機21の停止処理を行う。また、ステップS201の処理の後に、ステップS301の処理を追加し、ステップS301において、低元側冷凍サイクル1のみで除霜運転を終了した場合に、低元側冷凍サイクル1を運転させた後、ステップS17等の凝縮器14出口での冷媒温度の判別を行わずに、除霜運転を終了する。ここでも、除霜運転の終了により、ステップS2に戻って、再度、暖房運転の継続時間等に基づいて除霜運転の要否が判断されることとなる。   In step S <b> 5 ′, the compressor stop process is limited to the compressor 11 of the low-source side refrigeration cycle 1. Moreover, the process of step S300 is added after the process of step S11, and the stop process of the compressor 21 of the high-source side refrigeration cycle 2 is performed in step S300. In addition, after the process of step S201, the process of step S301 is added, and in step S301, when the defrosting operation is completed only with the low-source side refrigeration cycle 1, the low-side refrigeration cycle 1 is operated, The defrosting operation is terminated without determining the refrigerant temperature at the outlet of the condenser 14 such as step S17. Here again, upon completion of the defrosting operation, the process returns to step S2, and the necessity of the defrosting operation is determined again based on the duration of the heating operation and the like.

ステップS5’において、圧縮機の停止処理を低元側冷凍サイクル1の圧縮機11のみとし、高元側冷凍サイクル2の圧縮機21の運転を継続させ、除霜処理に高元側冷凍サイクル2の運転が必要と判断した場合のみ、ステップ300において、高元側冷凍サイクル2の圧縮機21を停止させている。その結果、低元側冷凍サイクル1のみで除霜処理が完了した場合に、除霜処理による温水温度低下の抑制、しいては室内温熱環境の悪化を抑制することが可能となる。   In step S5 ′, the compressor stop processing is limited to the compressor 11 of the low-source side refrigeration cycle 1, the operation of the compressor 21 of the high-source side refrigeration cycle 2 is continued, and the high-source side refrigeration cycle 2 is used for defrosting processing. Only when it is determined that the above operation is necessary, in step 300, the compressor 21 of the high-side refrigeration cycle 2 is stopped. As a result, when the defrosting process is completed only in the low-source side refrigeration cycle 1, it is possible to suppress a decrease in the temperature of the hot water due to the defrosting process, and further suppress a deterioration in the indoor thermal environment.

さらに、低元側冷凍サイクル1のみで除霜処理が完了した場合、すなわちステップS9に進んだ場合、高元側冷凍サイクル2は暖房運転を継続しているため、低元側冷凍サイクル1のみ暖房運転を再開すれば、通常運転となり、除霜運転終了後、迅速に暖房運転を開始することが可能となる。   Further, when the defrosting process is completed only in the low-source side refrigeration cycle 1, that is, when the process proceeds to step S9, the high-source side refrigeration cycle 2 continues the heating operation, so that only the low-source side refrigeration cycle 1 is heated. If the operation is resumed, the normal operation is performed, and the heating operation can be quickly started after the defrosting operation is completed.

なお、上記実施の形態において、制御部5で判別される基準温度として、第1〜第5の基準温度があるが、これらの基準温度として同じ温度が設定されていてもよいし、すべて異なる温度に設定されていてもよい。第1〜第5の基準温度は、温水熱源機50の使用条件や使用環境によって、様々に変更可能である。   In the above embodiment, the reference temperatures discriminated by the control unit 5 include the first to fifth reference temperatures. However, the same temperatures may be set as these reference temperatures, or different temperatures. May be set. The first to fifth reference temperatures can be variously changed according to the use conditions and use environment of the hot water heat source device 50.

以上のように、本発明にかかる温水熱源機は、除霜運転を行う温水熱源機に有用であり、特に、除霜運転の効率化に適している。   As described above, the hot water heat source apparatus according to the present invention is useful for a hot water heat source apparatus that performs a defrosting operation, and is particularly suitable for increasing the efficiency of the defrosting operation.

1 低元側冷凍サイクル
2 高元側冷凍サイクル
3 温水循環サイクル
4 放熱器
5 制御部
11 圧縮機(低元側圧縮機)
12 四方弁(低元側四方弁)
13 蒸発器(低元側蒸発器)
14 凝縮器(低元側凝縮器)
15 膨張弁(低元側膨張弁)
16 蒸発器冷媒温度検知手段
17 凝縮器冷媒温度検知手段
21 圧縮機(高元側圧縮機)
22 四方弁(高元側四方弁)
23 蒸発器(高元側蒸発器)
24 凝縮器(高元側凝縮器)
25 膨張弁(高元側膨張弁)
31 温水循環手段
32 温水熱交換器
33 タンク
50 温水熱源機
DESCRIPTION OF SYMBOLS 1 Low original side refrigerating cycle 2 High original side refrigerating cycle 3 Hot water circulation cycle 4 Radiator 5 Control part 11 Compressor (low original side compressor)
12 Four-way valve (Lower side four-way valve)
13 Evaporator (Lower Evaporator)
14 Condenser (Low-side condenser)
15 Expansion valve (low-side expansion valve)
16 Evaporator refrigerant temperature detection means 17 Condenser refrigerant temperature detection means 21 Compressor (high-side compressor)
22 Four-way valve (high-side four-way valve)
23 Evaporator (High-source evaporator)
24 Condenser (high-side condenser)
25 Expansion valve (high-side expansion valve)
31 Hot water circulation means 32 Hot water heat exchanger 33 Tank 50 Hot water heat source machine

Claims (6)

低元側圧縮機と、低元側蒸発器と、低元側凝縮器と、低元側四方弁とが配管接続されて、低元側冷媒が循環する可逆冷凍サイクルとされた低元側冷凍サイクルと、高元側圧縮機、高元側蒸発器、高元側凝縮器、高元側四方弁が配管接続されて、高元側冷媒が循環する可逆冷凍サイクルとされた高元側冷凍サイクルとを備え、前記低元側冷媒と前記高元側冷媒との間で熱交換可能に前記低元側蒸発器と前記高元側凝縮器とを接続し、前記高元側凝縮器で前記高元側冷媒と温水との熱交換により温水を加熱する温水加熱運転を行う温水熱源機において、
前記低元側蒸発器での冷媒温度を検知する蒸発器冷媒温度検知手段と、
前記蒸発器冷媒温度検知手段で検知された冷媒温度が第1の基準温度以下となった場合に、前記低元側冷凍サイクルを用いた除霜運転を行わせ、前記低元側冷凍サイクルを用いた除霜運転から所定の時間を経過しても前記蒸発器冷媒温度検知手段で検知された冷媒温度が第2の基準温度以下である場合に、前記低元側冷凍サイクルを用いた除霜運転に加え、前記高元側冷凍サイクルを用いた除霜運転を行わせる制御部と、を備えることを特徴とする温水熱源機。
Low-source side refrigeration in which a low-side compressor, a low-side evaporator, a low-side side condenser, and a low-side side four-way valve are connected to form a reversible refrigeration cycle in which the low-side refrigerant circulates. A high-end side refrigeration cycle in which a high-end side compressor, a high-end side evaporator, a high-end side condenser, and a high-end side four-way valve are connected to each other, and the high-end side refrigerant circulates. Connecting the low-side evaporator and the high-side condenser so that heat can be exchanged between the low-side refrigerant and the high-side refrigerant, and In a warm water heat source machine that performs warm water heating operation that heats warm water by heat exchange between the original refrigerant and warm water,
Evaporator temperature detecting means for detecting refrigerant temperature in the low-side evaporator,
When the refrigerant temperature detected by the evaporator refrigerant temperature detection means becomes equal to or lower than a first reference temperature, the defrosting operation using the low-source side refrigeration cycle is performed, and the low-source side refrigeration cycle is used. When the refrigerant temperature detected by the evaporator refrigerant temperature detecting means is equal to or lower than the second reference temperature even after a predetermined time has elapsed since the defrosting operation, the defrosting operation using the low-source side refrigeration cycle And a control unit for performing a defrosting operation using the high-source side refrigeration cycle.
前記低元側凝縮器での冷媒温度を検知する凝縮器冷媒温度検知手段をさらに備え、
前記制御部は、前記低元側冷凍サイクルのみを用いた除霜運転中に、前記凝縮器冷媒温度検知手段で検知された冷媒温度が第3の基準温度以下となった場合に、前記低元側冷凍サイクルを用いた除霜運転に加え、前記高元側冷凍サイクルを用いた除霜運転を行わせることを特徴とする請求項1に記載の温水熱源機。
Further comprising a condenser refrigerant temperature detection means for detecting a refrigerant temperature in the low-side condenser,
When the refrigerant temperature detected by the condenser refrigerant temperature detecting means becomes equal to or lower than a third reference temperature during the defrosting operation using only the low-source side refrigeration cycle, the control unit The hot water heat source apparatus according to claim 1, wherein the defrosting operation using the high-source side refrigeration cycle is performed in addition to the defrosting operation using the side refrigeration cycle.
前記制御部は、前記除霜運転中に、前記蒸発器冷媒温度検知手段で検知された冷媒温度が第4の基準温度を超えた場合に、除霜処理完了と判断し、前記低元側冷凍サイクルを用いた前記温水加熱運転を行わせ、前記凝縮器冷媒温度検知手段で検知された冷媒温度が第5の基準温度を超えた場合に、前記低元側冷凍サイクルに加えて、前記高元側冷凍サイクルを用いて、温水加熱運転を行わせることを特徴とする請求項2に記載の温水熱源機。   The control unit determines that the defrosting process is completed when the refrigerant temperature detected by the evaporator refrigerant temperature detecting unit exceeds a fourth reference temperature during the defrosting operation, and the low-side refrigeration is performed. When the refrigerant temperature detected by the condenser refrigerant temperature detection means exceeds a fifth reference temperature, in addition to the low-source side refrigeration cycle, the high-water heating operation using a cycle is performed. The hot water heat source apparatus according to claim 2, wherein the hot water heating operation is performed using a side refrigeration cycle. 前記制御部は、前記除霜運転中に、前記蒸発器冷媒温度検知手段で検知された冷媒温度が第4の基準温度を超えた場合に、除霜処理完了と判断し、前記低元側冷凍サイクルを用いた温水加熱運転を行わせ、前記低元側冷凍サイクルを用いた温水加熱運転開始から所定の時間が経過した後に、前記低元側冷凍サイクルに加えて、前記高元側冷凍サイクルを用いて、温水加熱運転を行うことを特徴とする請求項1〜3のいずれか1つに記載の温水熱源機。   The control unit determines that the defrosting process is completed when the refrigerant temperature detected by the evaporator refrigerant temperature detecting unit exceeds a fourth reference temperature during the defrosting operation, and the low-side refrigeration is performed. The hot water heating operation using the cycle is performed, and after a predetermined time has elapsed from the start of the hot water heating operation using the low-source side refrigeration cycle, the high-source side refrigeration cycle is added to the low-source side refrigeration cycle. The hot water heat source machine according to any one of claims 1 to 3, wherein a hot water heating operation is performed. 前記制御部は、前記低元側冷凍サイクルを用いた除霜運転を行う際に、前記高元側四方弁の回路を切り替えず、前記高元側冷凍サイクルを用いた除霜運転を行う際に前記高元側四方弁の回路を切り替えることを特徴とする請求項1〜4のいずれか1つに記載の温水熱源機。   When performing the defrosting operation using the high-source side refrigeration cycle without switching the circuit of the high-source side four-way valve when performing the defrosting operation using the low-source-side refrigeration cycle, the control unit The hot water heat source apparatus according to any one of claims 1 to 4, wherein the high-side four-way valve circuit is switched. 前記制御部は、前記低元側冷凍サイクルを用いた除霜運転中に、前記高元側圧縮機の運転を継続させることを特徴とする請求項5に記載の温水熱源機。   The hot water heat source device according to claim 5, wherein the control unit continues the operation of the high-side compressor during the defrosting operation using the low-side refrigeration cycle.
JP2009289434A 2009-12-21 2009-12-21 Hot water heat source machine Active JP5393433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289434A JP5393433B2 (en) 2009-12-21 2009-12-21 Hot water heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289434A JP5393433B2 (en) 2009-12-21 2009-12-21 Hot water heat source machine

Publications (2)

Publication Number Publication Date
JP2011127878A true JP2011127878A (en) 2011-06-30
JP5393433B2 JP5393433B2 (en) 2014-01-22

Family

ID=44290645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289434A Active JP5393433B2 (en) 2009-12-21 2009-12-21 Hot water heat source machine

Country Status (1)

Country Link
JP (1) JP5393433B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592367A2 (en) 2011-11-14 2013-05-15 Panasonic Corporation Refrigeration cycle apparatus and hot water producing apparatus
CN103335452A (en) * 2013-07-09 2013-10-02 烟台冰轮股份有限公司 Refrigeration and heat recovery double-working-condition system with ammonia as refrigerant
JP2013253709A (en) * 2012-06-05 2013-12-19 Panasonic Corp Refrigeration cycle device and hot water generation device equipped with the same
CN106801955A (en) * 2017-01-17 2017-06-06 青岛海信日立空调系统有限公司 A kind of air-to-water heat pump system and control method
CN109373629A (en) * 2018-11-26 2019-02-22 科希曼电器有限公司 It makes high water temperature and the heat pump system and its working method of constant heating effect can be maintained
WO2023190233A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Heat pump device
EP4257893A4 (en) * 2020-12-01 2024-05-15 Daikin Industries, Ltd. Refrigeration cycle system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234041A (en) * 1994-02-22 1995-09-05 Sanyo Electric Co Ltd Cascade refrigerating equipment
JPH11173711A (en) * 1997-12-12 1999-07-02 Daikin Ind Ltd Dual refrigerator
JP2000105029A (en) * 1998-09-30 2000-04-11 Daikin Ind Ltd Two-stage cascade refrigerating device
JP2005299935A (en) * 2004-04-06 2005-10-27 Fujitsu General Ltd Air conditioner
JP2007155259A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Refrigerant heating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234041A (en) * 1994-02-22 1995-09-05 Sanyo Electric Co Ltd Cascade refrigerating equipment
JPH11173711A (en) * 1997-12-12 1999-07-02 Daikin Ind Ltd Dual refrigerator
JP2000105029A (en) * 1998-09-30 2000-04-11 Daikin Ind Ltd Two-stage cascade refrigerating device
JP2005299935A (en) * 2004-04-06 2005-10-27 Fujitsu General Ltd Air conditioner
JP2007155259A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Refrigerant heating apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592367A2 (en) 2011-11-14 2013-05-15 Panasonic Corporation Refrigeration cycle apparatus and hot water producing apparatus
CN103105026A (en) * 2011-11-14 2013-05-15 松下电器产业株式会社 Refrigeration cycle apparatus and hot water producing apparatus
JP2013253709A (en) * 2012-06-05 2013-12-19 Panasonic Corp Refrigeration cycle device and hot water generation device equipped with the same
CN103335452A (en) * 2013-07-09 2013-10-02 烟台冰轮股份有限公司 Refrigeration and heat recovery double-working-condition system with ammonia as refrigerant
CN106801955A (en) * 2017-01-17 2017-06-06 青岛海信日立空调系统有限公司 A kind of air-to-water heat pump system and control method
CN109373629A (en) * 2018-11-26 2019-02-22 科希曼电器有限公司 It makes high water temperature and the heat pump system and its working method of constant heating effect can be maintained
EP4257893A4 (en) * 2020-12-01 2024-05-15 Daikin Industries, Ltd. Refrigeration cycle system
WO2023190233A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Heat pump device
JP2023147886A (en) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル Heat pump device
JP7380739B2 (en) 2022-03-30 2023-11-15 株式会社富士通ゼネラル heat pump equipment

Also Published As

Publication number Publication date
JP5393433B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5393433B2 (en) Hot water heat source machine
JP5053430B2 (en) Air conditioner
JP5641875B2 (en) Refrigeration equipment
JP5094942B2 (en) Heat pump equipment
EP2522934A2 (en) Heat storing apparatus having cascade cycle and control process of the same
JP2008096033A (en) Refrigerating device
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
KR101588205B1 (en) Air conditioner and Defrosting driving method of the same
JP2004353995A (en) Refrigerating device
JP2003240391A (en) Air conditioner
JP2009036502A (en) Air conditioner
KR20180093342A (en) Method for controlling of air conditioner
JP2008025901A (en) Air conditioner
JP2011174662A (en) Air heat source heat pump water heater/air conditioner
JP2012007751A (en) Heat pump cycle device
KR101124872B1 (en) Heat pump having plural evaporation members
JP5313774B2 (en) Air conditioner
JP2007247997A (en) Air conditioner
JP3993540B2 (en) Refrigeration equipment
JP2008249268A (en) Air conditioner
JP6685472B2 (en) Refrigeration equipment
JP2006029637A (en) Heat storage type air conditioner and its operation method
JP2007298188A (en) Refrigerating device
JP2008164205A (en) Refrigerating device
JP2004053168A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250