JP2011127094A - Oxygen-absorbing resin composition - Google Patents

Oxygen-absorbing resin composition Download PDF

Info

Publication number
JP2011127094A
JP2011127094A JP2010242256A JP2010242256A JP2011127094A JP 2011127094 A JP2011127094 A JP 2011127094A JP 2010242256 A JP2010242256 A JP 2010242256A JP 2010242256 A JP2010242256 A JP 2010242256A JP 2011127094 A JP2011127094 A JP 2011127094A
Authority
JP
Japan
Prior art keywords
oxygen
resin
resin composition
polyamide resin
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010242256A
Other languages
Japanese (ja)
Inventor
Takashi Kashiba
隆史 加柴
Satoshi Okada
聡史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2010242256A priority Critical patent/JP2011127094A/en
Publication of JP2011127094A publication Critical patent/JP2011127094A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-absorbing resin composition excellent in resin processability, widely applicable to usages and excellent in oxygen absorption performance. <P>SOLUTION: The oxygen-absorbing resin composition comprises a polyolefin resin, a transition metal catalyst and a polyamide resin, wherein the polyamide resin is prepared by condensation polymerization of adipic acid with a diamine component comprising 80-20 mol% metaxylylene diamine and 20-80 mol% para-xylylene diamine to have ≤30 μeq/g terminal amino group concentration, and the sum total amount of the transition metal catalyst and the polyamide resin is 15-60 wt.% based on the whole amount of the oxygen-absorbing resin composition. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、優れた酸素吸収性能を示し、且つ、樹脂の酸化劣化による強度低下、臭気発生のない酸素吸収樹脂組成物に関するものである。   The present invention relates to an oxygen-absorbing resin composition that exhibits excellent oxygen-absorbing performance and is free from strength reduction and odor generation due to oxidative degradation of the resin.

従来、包装容器としては、金属缶、ガラス瓶、各種プラスチック包装等の容器が知られているが、包装容器内の酸素による品質劣化が問題となっている。このため、近年、脱酸素包装技術の一つとして、熱可塑性樹脂に鉄系脱酸素剤等を配合した酸素吸収樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成し、容器のガスバリア性の向上を図ると共に、容器自体に酸素吸収機能を付与した包装容器の開発が行われている。例えば、酸素吸収性多層フィルムは、ヒートシール層及びガスバリア層が積層してなる従来のガスバリア性多層フィルムの間に、場合により熱可塑性樹脂からなる中間層を介して酸素吸収剤を分散した熱可塑性樹脂層である酸素吸収層を加え、外部からの酸素透過を防ぐ機能に容器内の酸素を吸収する機能を付与したものとして利用され、押し出しラミネートや共押し出しラミネート、ドライラミネート等の従来公知の製造方法を利用して製造されている(特許文献1参照)。   Conventionally, containers such as metal cans, glass bottles, and various plastic packages are known as packaging containers, but quality deterioration due to oxygen in the packaging containers is a problem. For this reason, in recent years, as one of the deoxygenation packaging technologies, a container is constituted by a multilayer material in which an oxygen absorption layer composed of an oxygen absorption resin composition in which an iron-based oxygen absorber is blended with a thermoplastic resin is provided. Development of packaging containers in which the gas barrier property is improved and the container itself is provided with an oxygen absorbing function has been performed. For example, an oxygen-absorbing multilayer film is a thermoplastic in which an oxygen absorbent is dispersed between a conventional gas-barrier multilayer film in which a heat seal layer and a gas barrier layer are laminated, and optionally through an intermediate layer made of a thermoplastic resin. It is used as a resin layer with an oxygen absorption layer added to the outside to prevent oxygen permeation, and to absorb oxygen in the container. It is manufactured using a method (see Patent Document 1).

しかしながら、鉄粉等の酸素吸収剤を用いるものは、食品等の異物検知に使用される金属探知機に検知される、不透明性の問題により内部視認性が不足する、さらに、鉄粉の混入により風味が損なわれるアルコール等の飲料への使用ができない、といった課題を有していた。また、鉄粉の酸化反応を利用しているため、被保存物が高水分系であるものでしか、酸素吸収の効果を発現することができなかった。   However, those using oxygen absorbers such as iron powder are detected by metal detectors used for detecting foreign substances such as food, and the internal visibility is insufficient due to the problem of opacity. There was a problem that it cannot be used for beverages such as alcohol whose flavor is impaired. In addition, since the oxidation reaction of iron powder is used, the effect of oxygen absorption can be exhibited only when the material to be preserved is a high moisture type.

一方、ポリマーからなり、酸素捕捉特性を有する組成物では、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属からなる樹脂組成物が知られており、酸素捕捉機能を有する樹脂組成物やその樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムの例示もある(特許文献2〜6参照)。   On the other hand, in a composition composed of a polymer and having an oxygen scavenging property, a resin composition comprising a polyamide, particularly a xylylene group-containing polyamide and a transition metal, is known as an oxidizable organic component, and a resin composition having an oxygen scavenging function or There are also examples of oxygen absorbents obtained by molding the resin composition, packaging materials, and multilayer laminated films for packaging (see Patent Documents 2 to 6).

しかしながら、遷移金属触媒を含有させ、ポリアミド樹脂等を酸化させ酸素吸収機能を発現させる樹脂組成物は、キシリレン基含有ポリアミド樹脂が酸化するため、樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。   However, a resin composition containing a transition metal catalyst and oxidizing a polyamide resin or the like to develop an oxygen absorbing function oxidizes the xylylene group-containing polyamide resin, resulting in a decrease in strength due to oxidative degradation of the resin, and the packaging container itself There is a problem that the strength of the glass is reduced.

さらに、ポリアミド樹脂と遷移金属触媒にて酸化反応を示すものとして、メタキシリレンジアミンとアジピン酸との重縮合によって得られるポリアミドであるMXD6の例示があるが、MXD6に遷移金属を混合した系では、酸素吸収樹脂組成物として使用し、被保存物を良好に保存するには、酸素吸収能力が低い場合があった。また、MXD6に遷移金属を混合した系は、通常、ポリエチレンテレフタレート(以下、PETと表記する)等のポリエステル樹脂やナイロン6等の比較的高融点の樹脂とのブレンドが使用されていた。   Furthermore, there is an example of MXD6, which is a polyamide obtained by polycondensation of metaxylylenediamine and adipic acid, as an example showing an oxidation reaction with a polyamide resin and a transition metal catalyst. In a system in which transition metal is mixed with MXD6, For use as an oxygen-absorbing resin composition and preserving the material to be stored well, the oxygen-absorbing ability may be low. In addition, a system in which transition metal is mixed with MXD6 usually uses a blend of a polyester resin such as polyethylene terephthalate (hereinafter referred to as PET) or a resin having a relatively high melting point such as nylon 6.

特開平9−234832号公報Japanese Patent Laid-Open No. 9-234832 特開平5−140555号公報Japanese Patent Laid-Open No. 5-140555 特開2001−252560号公報JP 2001-252560 A 特開2003−341747号公報JP 2003-341747 A 特開2005−119693号公報JP 2005-119893 A 特開2001−179090号公報JP 2001-179090 A

本発明の目的は、上記問題点を解決した、酸素吸収性能、樹脂強度、樹脂加工性に優れた樹脂組成物を提供することにある。   The objective of this invention is providing the resin composition excellent in oxygen absorption performance, resin strength, and resin processability which solved the said problem.

本発明者らは、特定のポリアミド、遷移金属およびポリオレフィン樹脂を、特定の割合でブレンドすることにより、酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れた酸素吸収樹脂組成物を得ることを見出した。   The present inventors blended specific polyamides, transition metals and polyolefin resins in specific ratios, so that oxygen absorption performance is excellent, resin strength after storage is maintained, and oxygen absorption is excellent in processability. It has been found that a resin composition is obtained.

すなわち、本発明は、ポリオレフィン樹脂、遷移金属触媒及びポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂がメタキシリレンジアミンを80〜20mol%及びパラキシリレンジアミンを20〜80mol%含有するジアミン成分と、アジピン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂であり、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が酸素吸収樹脂組成物の総量に対して15〜60重量%であることを特徴とする酸素吸収樹脂組成物である。   That is, the present invention is an oxygen-absorbing resin composition containing a polyolefin resin, a transition metal catalyst, and a polyamide resin, wherein the polyamide resin contains 80 to 20 mol% of metaxylylenediamine and 20 to 80 mol% of paraxylylenediamine. It is a polyamide resin having a terminal amino group concentration of 30 μeq / g or less obtained by polycondensation of the diamine component and adipic acid, and the total content of the transition metal catalyst and the polyamide resin is the oxygen-absorbing resin composition. An oxygen-absorbing resin composition characterized by being 15 to 60% by weight based on the total amount.

本発明により、高い酸素吸収性能を有し、ポリアミド樹脂の酸化による強度劣化もほとんどみられない酸素吸収樹脂組成物を提供できる。   According to the present invention, it is possible to provide an oxygen-absorbing resin composition that has high oxygen-absorbing performance and hardly undergoes strength deterioration due to oxidation of a polyamide resin.

本発明の酸素吸収樹脂組成物は、メタキシリレンジアミンを80〜20mol%、パラキシリレンジアミンを20〜80mol%含有するジアミン成分と、アジピン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂(以下、当該ポリアミド樹脂を特に「ポリアミド樹脂A」と称する)と遷移金属触媒とポリオレフィン樹脂とを含有する、樹脂組成物である。樹脂組成物の各成分について、以下、詳細を説明する。   The oxygen-absorbing resin composition of the present invention has a terminal amino group concentration of 30 μeq obtained by polycondensation of a diamine component containing 80 to 20 mol% of metaxylylenediamine and 20 to 80 mol% of paraxylylenediamine and adipic acid. / G or less of a polyamide resin (hereinafter, the polyamide resin is particularly referred to as “polyamide resin A”), a transition metal catalyst, and a polyolefin resin. Details of each component of the resin composition will be described below.

酸素吸収樹脂組成物の酸素吸収性能は、酸素吸収能を有する遷移金属を添加したポリアミド樹脂が多い方が、良好と考えられるが、驚くべきことに、ポリアミド樹脂A及び遷移金属をポリオレフィン樹脂と混合し、一定の比率でブレンドした際に高い酸素吸収能力を示すことを見出した。   The oxygen absorption performance of the oxygen-absorbing resin composition is considered to be better when there are more polyamide resins to which a transition metal having oxygen-absorbing ability is added, but surprisingly, the polyamide resin A and the transition metal are mixed with the polyolefin resin. The present inventors have found that a high oxygen absorption ability is exhibited when blended at a constant ratio.

本発明におけるポリアミド樹脂Aは、少なくともメタキシリレンジアミンを80〜20mol%、パラキシリレンジアミンを20〜80mol%含有するジアミン成分とアジピン酸との重縮合で得られる。ジアミン成分とアジピン酸との重縮合は、ジアミン成分とアジピン酸を溶融させる溶融重合や、ポリアミド樹脂のペレットなどを減圧下、加熱する固相重合などにより進行させることができる。   The polyamide resin A in the present invention is obtained by polycondensation of a diamine component containing at least 80 to 20 mol% of metaxylylenediamine and 20 to 80 mol% of paraxylylenediamine and adipic acid. The polycondensation of the diamine component and adipic acid can proceed by melt polymerization in which the diamine component and adipic acid are melted, or solid phase polymerization in which polyamide resin pellets are heated under reduced pressure.

ポリアミド樹脂Aを作製する際のジアミン成分としては、パラキシリレンジアミンとメタキシリレンジアミンの混合物が挙げられる。混合時のそれぞれの含有率(mol%)はパラキシリレンジアミン:メタキシリレンジアミン=20〜60:80〜40が好ましく、25〜50:75〜50が特に好ましい。さらに性能に影響しない範囲で、各種脂肪族ジアミンや他の芳香族ジアミンを共重合成分として組み込んでもよい。   Examples of the diamine component for producing the polyamide resin A include a mixture of paraxylylenediamine and metaxylylenediamine. Each content (mol%) at the time of mixing is preferably paraxylylenediamine: metaxylylenediamine = 20 to 60:80 to 40, particularly preferably 25 to 50:75 to 50. Furthermore, various aliphatic diamines and other aromatic diamines may be incorporated as copolymerization components as long as the performance is not affected.

本発明におけるポリアミド樹脂Aとは、少なくともメタキシリレンジアミンを80〜20mol%、パラキシリレンジアミンを20〜80mol%含有するジアミン成分とアジピン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂であるが、末端アミノ基濃度が25μeq/g以下であると酸素吸収性能が向上するため好ましく、20μeq/g以下であると酸素吸収性能がさらに向上するため、より好ましい。このように酸素吸収性能は、末端アミノ基濃度の低下に伴って向上する傾向があり、出来るだけ当該濃度を低下させることが好ましいが、経済合理性を考慮するとその下限値は5μeq/g以上とすることが好ましい。なお、末端アミノ基濃度が30μeq/gより高いと、良好な酸素吸収性能を得ることができない。   The polyamide resin A in the present invention has a terminal amino group concentration obtained by polycondensation of a diamine component containing at least 80 to 20 mol% of metaxylylenediamine and 20 to 80 mol% of paraxylylenediamine and adipic acid to 30 μeq / Although the polyamide resin is not more than g, the terminal amino group concentration is preferably 25 μeq / g or less because oxygen absorption performance is improved, and it is more preferably 20 μeq / g or less because oxygen absorption performance is further improved. Thus, the oxygen absorption performance tends to improve as the terminal amino group concentration decreases, and it is preferable to reduce the concentration as much as possible. However, in consideration of economic rationality, the lower limit is 5 μeq / g or more. It is preferable to do. If the terminal amino group concentration is higher than 30 μeq / g, good oxygen absorption performance cannot be obtained.

ポリアミド樹脂の末端アミノ基濃度を30μeq/g以下にするためには、
1)少なくともメタキシリレンジアミンとパラキシリレンジアミンを含有するジアミン成分とアジピン酸のモル比を調整して重縮合を実施する方法
2)ポリアミド樹脂をカルボン酸と反応させて末端アミノ基を封止する方法
3)ポリアミド樹脂を固相重合する方法
等の方法を実施することが好ましく、これらの方法は、単独で若しくは組み合わせて実施することができる。特に、1)と3)、2)と3)の方法を組み合わせて実施すると、酸素吸収性能や多層体作製時の成形性がより優れたポリアミド樹脂が得られるため、好ましい。以下、これらの方法について説明する。
In order to reduce the terminal amino group concentration of the polyamide resin to 30 μeq / g or less,
1) A method in which polycondensation is carried out by adjusting the molar ratio of a diamine component containing at least metaxylylenediamine and paraxylylenediamine and adipic acid. 2) A terminal amino group is blocked by reacting a polyamide resin with a carboxylic acid. Method 3) It is preferable to carry out a method such as a method of solid-phase polymerization of a polyamide resin, and these methods can be carried out alone or in combination. In particular, the combination of the methods 1), 3), 2) and 3) is preferable because a polyamide resin having better oxygen absorption performance and moldability at the time of producing a multilayer body can be obtained. Hereinafter, these methods will be described.

1)少なくともメタキシリレンジアミンとパラキシリレンジアミンを含有するジアミン成分とアジピン酸のモル比を調整して重縮合を実施する方法においては、アジピン酸を上記ジアミン成分に対して過剰に用いることとし、具体的には、上記ジアミン成分とアジピン酸のモル比(上記ジアミン成分/アジピン酸)を0.985〜0.997とすることが好ましく、特に0.988〜0.995とすることが好ましい。該モル比が0.985を下回ると、ポリアミド樹脂の重合度が上昇しづらくなるため、好ましくない。   1) In a method in which polycondensation is carried out by adjusting the molar ratio of a diamine component containing at least metaxylylenediamine and paraxylylenediamine to adipic acid, adipic acid is used in excess of the diamine component. Specifically, the molar ratio of the diamine component and adipic acid (the diamine component / adipic acid) is preferably 0.985 to 0.997, particularly preferably 0.988 to 0.995. . If the molar ratio is less than 0.985, it is difficult to increase the degree of polymerization of the polyamide resin.

2)ポリアミド樹脂をカルボン酸と反応させて末端アミノ基を封止する方法においては、ポリアミド樹脂の末端アミノ基とカルボン酸を反応させて、末端アミノ基濃度を調整する。用いるカルボン酸には特に制限がないが、カルボン酸無水物が好ましく、具体的には無水フタル酸、無水マレイン酸、無水安息香酸、無水グルタル酸、無水イタコン酸、無水シトラコン酸、無水酢酸、無水酪酸、無水イソ酪酸、無水トリメリット酸、無水ピロメリット酸、などが例示できる。また、ポリアミド樹脂とカルボン酸は、例えば、溶融重合時に添加する方法や、溶融重合によって得られたポリアミド樹脂に対してカルボン酸を添加後、溶融混練する方法によって反応させることが出来、ポリアミド樹脂の重合度を上げるためには溶融混練が好ましい。   2) In the method of reacting the polyamide resin with carboxylic acid to seal the terminal amino group, the terminal amino group concentration of the polyamide resin is reacted with the carboxylic acid to adjust the terminal amino group concentration. The carboxylic acid to be used is not particularly limited, but a carboxylic anhydride is preferable, and specifically, phthalic anhydride, maleic anhydride, benzoic anhydride, glutaric anhydride, itaconic anhydride, citraconic anhydride, acetic anhydride, anhydrous Examples include butyric acid, isobutyric anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. The polyamide resin and the carboxylic acid can be reacted by, for example, a method of adding at the time of melt polymerization or a method of adding a carboxylic acid to the polyamide resin obtained by melt polymerization and then melt-kneading the polyamide resin. In order to increase the degree of polymerization, melt kneading is preferred.

3)ポリアミド樹脂を固相重合する方法においては、溶融重合によって得られたポリアミド樹脂をさらに固相重合反応に供することによって、末端アミノ基濃度を調整する。固相重合はポリアミド樹脂のペレットを減圧下、加熱することによって進行する。固相重合時の圧力は、100torr以下とすることが好ましく、30torr以下とすることがより好ましい。また、固相重合時の温度は、130℃以上必要で、且つポリアミド樹脂の融点より10℃以上低くすることが好ましく、15℃以上低くすることがより好ましい。固相重合を実施することによって、ポリアミド樹脂の末端アミノ基濃度が低下する他、分子量が上昇し、また、粘度を調整することができる。   3) In the method of solid-phase polymerization of polyamide resin, the terminal amino group concentration is adjusted by further subjecting the polyamide resin obtained by melt polymerization to a solid-phase polymerization reaction. Solid phase polymerization proceeds by heating polyamide resin pellets under reduced pressure. The pressure during the solid phase polymerization is preferably 100 torr or less, and more preferably 30 torr or less. Further, the temperature at the time of solid phase polymerization needs to be 130 ° C. or more, and is preferably lower by 10 ° C. or more than the melting point of the polyamide resin, more preferably 15 ° C. or more. By performing solid phase polymerization, the terminal amino group concentration of the polyamide resin is decreased, the molecular weight is increased, and the viscosity can be adjusted.

ポリアミド樹脂Aとポリオレフィン樹脂を混合した際、加工性を考慮すると、ポリアミド樹脂Aのメルトフローレート(以下、MFRと表記する)は、200℃で、3〜20g/10分、240℃で、4〜25g/10分のものが好ましく用いられる。この場合、ポリオレフィン樹脂のMFRとポリアミド樹脂AのMFRの差が±20g/10分、好ましくは±10g/10分を示す温度にて、樹脂加工すると、混練状態が良好となり、フィルム、シートとした場合、外観に問題のない加工品を得ることができる。ポリアミド樹脂AのMFRは、例えば分子量を調節して調整できる。分子量を調節する方法としては、重合進行剤としてリン系化合物を添加する方法や、ポリアミド樹脂Aを溶融重合後、固相重合する方法が、好適な方法として例示できる。なお、本明細書でいうMFRは、特に断りがない限り、JIS K7210に準拠した装置を用いて、特定の温度において、荷重2160gの条件下で測定した当該樹脂のMFRであり、「g/10分」の単位で測定温度と共に表記される。   When the polyamide resin A and the polyolefin resin are mixed, considering the processability, the melt flow rate (hereinafter referred to as MFR) of the polyamide resin A is 200 ° C., 3 to 20 g / 10 minutes, 240 ° C., 4 Those having ˜25 g / 10 min are preferably used. In this case, when the resin is processed at a temperature where the difference between the MFR of the polyolefin resin and the MFR of the polyamide resin A is ± 20 g / 10 minutes, preferably ± 10 g / 10 minutes, the kneaded state becomes good, and a film or sheet is obtained. In this case, a processed product having no problem in appearance can be obtained. The MFR of the polyamide resin A can be adjusted by adjusting the molecular weight, for example. Examples of a method for adjusting the molecular weight include a method of adding a phosphorus compound as a polymerization accelerator and a method of solid-phase polymerization after melt polymerization of the polyamide resin A. In addition, MFR as used in this specification is MFR of the said resin measured on the conditions of the load of 2160g in specific temperature using the apparatus based on JISK7210, unless there is particular notice, "g / 10. Expressed with the measured temperature in units of minutes.

少なくともメタキシリレンジアミンを80〜20mol%、パラキシリレンジアミンを20〜80mol%含有するジアミン成分とアジピン酸との重縮合で得られたポリアミド樹脂Aは、溶融重合の後、固相重合の2段階を経る方法で合成することが好ましい。ポリアミド樹脂Aの数平均分子量は、18000〜27000が好ましく、20000〜26000が特に好ましい。   A polyamide resin A obtained by polycondensation of a diamine component containing at least 80 to 20 mol% of metaxylylenediamine and 20 to 80 mol% of paraxylylenediamine and adipic acid is subjected to solid-phase polymerization after melt polymerization. It is preferable to synthesize by a method that goes through a step. The number average molecular weight of the polyamide resin A is preferably 18000 to 27000, particularly preferably 20000 to 26000.

本発明のポリオレフィン樹脂とは、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせて使用することができる。これら、ポリオレフィン樹脂の中でも、酸素吸収性能の観点では、酸素透過係数が80〜200cc・mm/(m・日・atm)(23℃・60%RH)が好ましく、この範囲の酸素透過係数を有するポリオレフィン樹脂を使用すると、良好な酸素吸収性能が得られる。酸素吸収性能やフィルム加工性から、ポリオレフィン樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類やプロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等の各種ポリプロピレン類が特に好ましく用いられる。これらポリオレフィン樹脂には、必要に応じて、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。 The polyolefin resin of the present invention includes high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, various polyethylenes such as polyethylene using a metallocene catalyst, polystyrene, polymethylpentene, and propylene homopolymer. Polypropylenes such as polymers, propylene-ethylene block copolymers, and propylene-ethylene random copolymers can be used alone or in combination. Among these polyolefin resins, from the viewpoint of oxygen absorption performance, the oxygen permeability coefficient is preferably 80 to 200 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). When the polyolefin resin is used, good oxygen absorption performance can be obtained. Due to oxygen absorption performance and film processability, polyolefin resins include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, various polyethylenes such as polyethylene using a metallocene catalyst, and propylene-ethylene block copolymers. Various polypropylenes such as propylene-ethylene random copolymer are particularly preferably used. These polyolefin resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, if necessary. A polymer, an ethylene-methyl methacrylate copolymer, or a thermoplastic elastomer may be added.

また、ポリアミド樹脂Aとの混合性を考慮すると、無水マレイン酸変性ポリオレフィン樹脂を添加することが特に好ましい。無水マレイン酸変性物の添加量は、ポリオレフィン樹脂に対し、1〜30wt%が好ましく、3〜15wt%が特に好ましい。   In consideration of the miscibility with the polyamide resin A, it is particularly preferable to add a maleic anhydride-modified polyolefin resin. The addition amount of the maleic anhydride-modified product is preferably 1 to 30 wt%, particularly preferably 3 to 15 wt% with respect to the polyolefin resin.

また、本発明のポリオレフィン樹脂には、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良い。特に、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加することが好ましい。   Further, the polyolefin resin of the present invention includes coloring pigments such as titanium oxide, additives such as antioxidants, slip agents, antistatic agents, stabilizers, fillers such as calcium carbonate, clay, mica, silica, and deodorants. An agent or the like may be added. In particular, it is preferable to add an antioxidant in order to recycle and reprocess offcuts generated during production.

本発明において使用される遷移金属触媒としては、第一遷移元素、例えばFe、Mn、Co、Cu、の化合物が挙げられる。また、遷移金属の有機酸塩、塩化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩などの単独、または、それらの混合物等も遷移金属触媒の一例として挙げられる。有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸などC2〜C22の脂肪族アルキル酸の塩、あるいは、マロン酸、コハク酸、アジピン酸、セバシン酸、ヘキサハイドロフタル酸、など2塩基酸の塩、ブタンテトラカルボン酸の塩、安息香酸、トルイック酸、o-フタル酸、イソフタル酸、テレフタル酸、トリメシン酸など芳香族カルボン酸塩の単独、または、混合物が挙げられる。遷移金属触媒の中でも、Coの有機酸塩が酸素吸収性の観点から、好ましく、安全性や加工性からステアリン酸Coが特に好ましい。   Examples of the transition metal catalyst used in the present invention include compounds of a first transition element such as Fe, Mn, Co, and Cu. Further, transition metal organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or a mixture thereof can be cited as examples of transition metal catalysts. Examples of the organic acid include salts of C2-C22 aliphatic alkyl acids such as acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, or malonic acid, succinic acid, adipic acid, sebacic acid, hexahydrophthalic acid A salt of a dibasic acid, a salt of butanetetracarboxylic acid, benzoic acid, toluic acid, o-phthalic acid, isophthalic acid, terephthalic acid, trimesic acid or the like, or a mixture of aromatic carboxylic acid salts alone or in combination. Among the transition metal catalysts, an organic acid salt of Co is preferable from the viewpoint of oxygen absorption, and Co stearate is particularly preferable from the viewpoint of safety and workability.

遷移金属触媒はポリアミド樹脂Aに添加し、その後、ポリオレフィン樹脂と混合することが好ましい。また、遷移金属触媒は、ポリアミド樹脂Aに対する該触媒中の全遷移金属の濃度が、10ppm〜5000ppm、好ましくは50ppm〜3000ppmとなるように添加することが好ましい。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの酸素吸収性能を高めることができるとともに、粘度の低下による樹脂加工性の悪化を防止することが出来る。   The transition metal catalyst is preferably added to the polyamide resin A and then mixed with the polyolefin resin. The transition metal catalyst is preferably added so that the concentration of all transition metals in the catalyst with respect to the polyamide resin A is 10 ppm to 5000 ppm, preferably 50 ppm to 3000 ppm. In this case, compared with the case where the addition amount is out of the above range, the oxygen absorption performance of the polyamide resin A can be improved, and the deterioration of the resin processability due to the decrease in the viscosity can be prevented.

酸素吸収樹脂組成物中の遷移金属触媒とポリアミド樹脂Aの合計含有量は、15〜60重量%であり、17〜60重量%が好ましく、20〜60重量%が更に好ましく、25〜50重量%が特に好ましい。酸素吸収樹脂層中の遷移金属触媒を含んだポリアミド樹脂Aの含有量が、15重量%より下回ったり、60重量%を超えた場合は、酸素吸収能力が低くなる。また、60重量%を超えると、ポリアミド樹脂Aの酸化による樹脂劣化が生じ、強度低下等の問題が発生する。   The total content of the transition metal catalyst and the polyamide resin A in the oxygen-absorbing resin composition is 15 to 60% by weight, preferably 17 to 60% by weight, more preferably 20 to 60% by weight, and 25 to 50% by weight. Is particularly preferred. When the content of the polyamide resin A including the transition metal catalyst in the oxygen-absorbing resin layer is less than 15% by weight or exceeds 60% by weight, the oxygen-absorbing ability is lowered. On the other hand, if it exceeds 60% by weight, resin degradation due to oxidation of the polyamide resin A occurs, causing problems such as strength reduction.

本発明の酸素吸収樹脂組成物を製造する別の方法としては、ポリオレフィン樹脂及び遷移金属触媒を含むマスターバッチと、ポリアミド樹脂とを溶融混練する酸素吸収樹脂組成物の製造方法が好ましく挙げられる。
遷移金属触媒はポリオレフィン樹脂に混練し、マスターバッチを製造し、その後、ポリアミド樹脂Aと溶融混合し、酸素吸収樹脂組成物とする。遷移金属触媒は、ポリオレフィン樹脂に対する該触媒中の全遷移金属の濃度が、好ましくは200ppm〜5000ppm、より好ましくは300ppm〜3000ppmとなるように添加する。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの酸素吸収性能を高めることができる。また、5000ppmを超える場合、マスターバッチを製造することが困難となる場合があったり、均一な性状を有するものを製造できなくなる場合がある。もし、遷移金属触媒をポリアミド樹脂Aに添加した場合には、ポリアミド樹脂Aの粘度低下による樹脂加工性の悪化が生じる。
Another method for producing the oxygen-absorbing resin composition of the present invention is preferably a method for producing an oxygen-absorbing resin composition in which a masterbatch containing a polyolefin resin and a transition metal catalyst and a polyamide resin are melt-kneaded.
The transition metal catalyst is kneaded with the polyolefin resin to produce a master batch, and then melt mixed with the polyamide resin A to obtain an oxygen-absorbing resin composition. The transition metal catalyst is added so that the concentration of all transition metals in the catalyst with respect to the polyolefin resin is preferably 200 ppm to 5000 ppm, more preferably 300 ppm to 3000 ppm. In this case, the oxygen absorption performance of the polyamide resin A can be enhanced as compared with the case where the addition amount is out of the above range. Moreover, when it exceeds 5000 ppm, it may become difficult to manufacture a masterbatch, and it may become impossible to manufacture what has a uniform property. If a transition metal catalyst is added to the polyamide resin A, the resin processability is deteriorated due to a decrease in the viscosity of the polyamide resin A.

本発明のマスターバッチとポリアミド樹脂Aを溶融混練する際に、ポリオレフィン樹脂を同時に加えることで、ポリアミド樹脂Aの含有量及び遷移金属濃度を調整することもできる。   When the master batch of the present invention and the polyamide resin A are melt-kneaded, the content of the polyamide resin A and the transition metal concentration can be adjusted by simultaneously adding the polyolefin resin.

本発明で得られたポリアミド樹脂Aに安定化剤等を適宜添加してもよい。特に、リン化合物は、安定化剤として好ましく用いられ、具体的には、ジ亜リン酸塩が好ましい。リン化合物は、ポリアミド樹脂Aが安定し、酸素吸収性能に影響するため、200ppm以下が好ましく、特に、100ppm以下が好ましい。   You may add a stabilizer etc. to the polyamide resin A obtained by this invention suitably. In particular, phosphorus compounds are preferably used as stabilizers, and specifically, diphosphites are preferable. The phosphorus compound is preferably not more than 200 ppm, particularly preferably not more than 100 ppm because the polyamide resin A is stable and affects the oxygen absorption performance.

本発明の酸素吸収樹脂組成物は、樹脂組成物として酸素吸収剤材料として用いることができる。すなわち、ペレット状またはシート状の酸素吸収樹脂組成物を通気性包装材料に充填し、小袋状脱酸素剤と使用しても良い。ペレット状とする際は、酸素との接触を保つため、粉砕し粉末状とすることが好ましい。また、シート状とする際は、延伸して、ポリアミド樹脂Aとポリオレフィン樹脂の海島状の層間に空隙を設けることが好ましい。延伸する際のポリオレフィン樹脂としては、高密度ポリエチレンが好ましく用いられる。   The oxygen-absorbing resin composition of the present invention can be used as an oxygen absorbent material as a resin composition. That is, an oxygen-absorbing resin composition in the form of pellets or sheets may be filled into a breathable packaging material and used as a sachet-shaped oxygen absorber. When making into pellet form, in order to keep contact with oxygen, it is preferable to grind | pulverize and make into powder form. Moreover, when setting it as a sheet form, it is preferable to extend | stretch and to provide a space | gap between the sea-island-like layers of the polyamide resin A and the polyolefin resin. As the polyolefin resin for stretching, high-density polyethylene is preferably used.

また、本発明の酸素吸収樹脂組成物は、フィルム状又はシート状として、ポリオレフィン樹脂を含有するシーラント層、酸素吸収樹脂組成物を含有する酸素吸収層及びガスバリア性物質を含有するガスバリア層の少なくとも3層を積層してなる酸素吸収多層体として用いることが好ましい。   Further, the oxygen-absorbing resin composition of the present invention is in the form of a film or a sheet, and includes at least three of a sealant layer containing a polyolefin resin, an oxygen-absorbing layer containing an oxygen-absorbing resin composition, and a gas barrier layer containing a gas barrier substance. It is preferable to use as an oxygen-absorbing multilayer body formed by laminating layers.

この場合、ポリオレフィン樹脂を含有するシーラント層は、相溶性を考慮して、酸素吸収樹脂組成物に用いたポリオレフィン樹脂と同様のものを用いることが好ましい。ガスバリア性物質としては、シリカ、アルミナ、アルミ等の各種蒸着フィルム、エチレン−ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン、アミン−エポキシ硬化剤等のガスバリア性樹脂、アルミ箔等の金属箔等、公知のガスバリア性物質が用いられる。   In this case, the sealant layer containing the polyolefin resin is preferably the same as the polyolefin resin used in the oxygen-absorbing resin composition in consideration of compatibility. Examples of the gas barrier material include various vapor-deposited films such as silica, alumina and aluminum, ethylene-vinyl alcohol copolymer, MXD6, polyvinylidene chloride, amine-epoxy curing agent and other gas barrier resins, aluminum foil and other metal foils, A known gas barrier material is used.

酸素吸収層として使用する際の酸素吸収樹脂組成物の厚みは、特に制限はないが、5〜100μmが好ましく、10〜50μmが特に好ましい。この場合、厚みが上記範囲を外れる場合に比べて、酸素吸収樹脂組成物が酸素を吸収する性能をより高めることができるとともに加工性や経済性が損なわれることを防止することができる。また、シーラント層の厚みは、シーラント層が酸素吸収樹脂組成物を含有する層との隔離層となるため、少ない方が好ましいが、特に、2〜50μmが好ましく、5〜30μmが特に好ましい。この場合、厚みが上記範囲を外れる場合に比べて、酸素吸収樹脂組成物の酸素を吸収する速度をより高めることができるとともに加工性が損なわれることを防止することができる。フィルム、シートに加工する際、加工性を考慮すると、シーラント層と酸素吸収層の厚み比が、1:0.5〜1:3にあることが好ましく、1:1〜1:2.5が特に好ましい。   Although there is no restriction | limiting in particular in the thickness of the oxygen absorption resin composition at the time of using as an oxygen absorption layer, 5-100 micrometers is preferable and 10-50 micrometers is especially preferable. In this case, as compared with the case where the thickness is out of the above range, the oxygen-absorbing resin composition can further improve the performance of absorbing oxygen and can prevent the workability and economy from being impaired. Further, the thickness of the sealant layer is preferably smaller because the sealant layer becomes an isolation layer from the layer containing the oxygen-absorbing resin composition, but is particularly preferably 2 to 50 μm, and particularly preferably 5 to 30 μm. In this case, compared with the case where the thickness is out of the above range, the oxygen absorbing rate of the oxygen absorbing resin composition can be further increased, and the workability can be prevented from being impaired. When processing into a film or sheet, considering the workability, the thickness ratio of the sealant layer and the oxygen absorbing layer is preferably 1: 0.5 to 1: 3, and 1: 1 to 1: 2.5. Particularly preferred.

また、多層体とする際、加工性を考慮すると、ガスバリア性物質を含有するガスバリア層と酸素吸収樹脂組成物を含有する酸素吸収層間にポリオレフィン樹脂を含有する中間層を介在することが好ましい。この中間層の厚みは、加工性から、シーラント層厚みとほぼ同一とすることが好ましい。この場合、加工によるバラツキを考慮すると、厚み比が±10%以内であれば、同一とする。   In addition, when considering the processability when forming a multilayer body, it is preferable to interpose an intermediate layer containing a polyolefin resin between a gas barrier layer containing a gas barrier substance and an oxygen absorbing layer containing an oxygen absorbing resin composition. The thickness of the intermediate layer is preferably substantially the same as the thickness of the sealant layer from the viewpoint of workability. In this case, considering variations due to processing, the thickness is the same if the thickness ratio is within ± 10%.

得られた酸素吸収多層体は、ガスバリア層の外層に紙基材を積層して、酸素吸収紙容器として用いることができる。紙基材と積層して紙容器の加工性は、ガスバリア層の内側部が60μm以下とすることが好ましく、50μm以下が特に好ましい。ガスバリア層より内部の厚みが大きくなると、紙基材を積層し、容器形状に成形する際、容器への加工性に問題が生じる。   The obtained oxygen-absorbing multilayer body can be used as an oxygen-absorbing paper container by laminating a paper substrate on the outer layer of the gas barrier layer. The processability of the paper container laminated with the paper base material is preferably 60 μm or less, particularly preferably 50 μm or less, at the inner side of the gas barrier layer. When the internal thickness is larger than that of the gas barrier layer, a problem arises in processability to a container when a paper base material is laminated and formed into a container shape.

得られた酸素吸収多層体は、フィルムとして作製し、袋状、蓋材に加工して用いることができる。また、得られた酸素吸収多層体は、シートとして作製し、トレイ、カップに成形することができる。また、得られた袋状容器やカップ状容器は、80〜100℃のボイル処理、100〜135℃のセミレトルト、レトルト、ハイレトルト処理を行うことができる。また、袋状容器に食品等の内容物を充填し、開封口を設け、電子レンジ加熱調理時にその開封口から蒸気を放出する、電子レンジ調理対応の易通蒸口付パウチに好ましく用いることができる。   The obtained oxygen-absorbing multilayer body can be prepared as a film, processed into a bag shape and a lid material, and used. The obtained oxygen-absorbing multilayer body can be produced as a sheet and molded into a tray or a cup. Moreover, the obtained bag-shaped container and cup-shaped container can perform a boil process of 80-100 degreeC, a semi-retort, a retort, and a high retort process of 100-135 degreeC. Moreover, it is preferably used for a microwave cooking-compatible pouch that fills a bag-like container with contents such as food, provides an opening, and releases steam from the opening when cooking with a microwave oven. it can.

本酸素吸収樹脂組成物は、被保存物の水分の有無によらず、酸素吸収することができるため、粉末調味料、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品や医薬品、ビタミン剤等の健康食品に好適に使用することができる。その他、本発明にて得られた、酸素吸収樹脂組成物は従来の鉄粉を使用した酸素吸収樹脂組成物と異なり、鉄の存在のため保存できないアルコール飲料や炭酸飲料に好適に用いることができる。   Since this oxygen-absorbing resin composition can absorb oxygen regardless of the presence or absence of moisture in the preserved product, dry foods such as powder seasonings, powdered coffee, coffee beans, rice, tea, beans, rice crackers, rice crackers, etc. It can be suitably used for health foods such as pharmaceuticals and vitamins. In addition, the oxygen-absorbing resin composition obtained in the present invention can be suitably used for alcoholic beverages and carbonated beverages that cannot be stored due to the presence of iron, unlike conventional oxygen-absorbing resin compositions using iron powder. .

その他、被保存物として、精米、米飯、赤飯、もち等の米加工類、スープ、シチュー、カレー等の調理食品、フルーツ、羊羹、プリン、ケーキ、饅頭等の菓子類、ツナ、魚貝等の水産製品、チーズ、バター等の乳加工品、肉、サラミ、ソーセージ、ハム等の畜肉加工品、にんじん、じゃがいも、アスパラ、しいたけ等の野菜類、卵を挙げることができる。   Other items to be preserved include rice processing such as polished rice, cooked rice, red rice, and glutinous rice, cooked foods such as soup, stew, and curry, fruit, mutton, pudding, cake, confectionery such as buns, tuna, and fish shellfish Examples include fishery products, processed milk products such as cheese and butter, processed meat products such as meat, salami, sausage and ham, vegetables such as carrots, potatoes, asparagus and shiitake mushrooms, and eggs.

以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。尚、本実施例及び比較例において、各種物性値は以下の測定方法及び測定装置により測定した。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples and comparative examples, various physical property values were measured by the following measuring methods and measuring apparatuses.

(Tgの測定方法)
Tgは、JIS K7122に準拠して測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(Measurement method of Tg)
Tg was measured according to JIS K7122. The measuring apparatus used was “DSC-60” manufactured by Shimadzu Corporation.

(融点の測定方法)
融点は、ISO11357に準拠して、DSC融解ピーク温度を測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(Measuring method of melting point)
The melting point was determined by measuring the DSC melting peak temperature according to ISO11357. The measuring apparatus used was “DSC-60” manufactured by Shimadzu Corporation.

(数平均分子量の測定方法)
数平均分子量は、GPC−LALLSにて測定した。測定装置は昭和電工(株)製「Shodex GPC−2001」を使用した。
(Measurement method of number average molecular weight)
The number average molecular weight was measured by GPC-LALLS. As a measuring apparatus, “Shodex GPC-2001” manufactured by Showa Denko KK was used.

(MFRの測定方法)
各樹脂のMFRは、JIS K7210に準拠した装置((株)東洋精機製作所製「メルトインデックサ」)を用いて、特定の温度において、荷重2160gの条件下で測定し、温度と共にその値を記載した(単位:「g/10分」)。なお、JIS K7210に準拠してMFRを測定した場合はその旨、特に記載した。
(Measurement method of MFR)
The MFR of each resin is measured under a load of 2160 g at a specific temperature using an apparatus in accordance with JIS K7210 (“Melt Indexer” manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the value is described together with the temperature. (Unit: “g / 10 min”). In addition, when MFR was measured based on JISK7210, it was described that much.

(酸素透過係数の測定方法)
酸素透過係数は、MOCON社製「OX−TRAN−2/21」を使用し、23℃・60%RH、セル面積50cmの条件下で測定した。
(Measurement method of oxygen permeability coefficient)
The oxygen transmission coefficient was measured using “OX-TRAN-2 / 21” manufactured by MOCON under the conditions of 23 ° C., 60% RH and a cell area of 50 cm 2 .

(末端アミノ基濃度の測定方法)
試料0.5gを30mLのフェノール/エタノール=4/1(体積比)に溶解させ、メタノール5mL加え、滴定液として0.01規定の塩酸にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端アミノ基濃度を算出した。
末端アミノ基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(mL)、B;ブランク滴定量(mL)、f;規定液のファクター、C;試料量(g))。
(Method for measuring terminal amino group concentration)
0.5 g of sample was dissolved in 30 mL of phenol / ethanol = 4/1 (volume ratio), 5 mL of methanol was added, and an automatic titrator with 0.01 N hydrochloric acid as a titrant (“COM-2000” manufactured by Hiranuma Seisakusho) Titration with The same operation titrated without adding a sample was used as a blank, and the terminal amino group concentration was calculated from the following formula.
Terminal amino group concentration (μeq / g) = (A−B) × f × 10 / C
(A: titer (mL), B: blank titer (mL), f: factor of normal solution, C: sample amount (g)).

(末端カルボキシル基濃度の測定方法)
試料0.5gを30mLのベンジルアルコールに溶解させ、メタノール10mL加え、滴定液として0.01規定の水酸化ナトリウム溶液にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端カルボキシル基濃度を算出した。
末端カルボキシル基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(mL)、B;ブランク滴定量(mL)、f;規定液のファクター、C;試料量(g))。
(Measurement method of terminal carboxyl group concentration)
0.5 g of a sample was dissolved in 30 mL of benzyl alcohol, 10 mL of methanol was added, and titrated with an automatic titration apparatus (“COM-2000” manufactured by Hiranuma Seisakusho) with 0.01 N sodium hydroxide solution as a titrant. The same operation titrated without adding a sample was used as a blank, and the terminal carboxyl group concentration was calculated from the following formula.
Terminal carboxyl group concentration (μeq / g) = (A−B) × f × 10 / C
(A: titer (mL), B: blank titer (mL), f: factor of normal solution, C: sample amount (g)).

(半結晶化時間の測定方法)
各温度にて、ペレットを溶融させ、各温度にて樹脂を結晶化させた場合、すべてが結晶化する時間を結晶化時間といい、結晶化50%到達時間を半結晶化時間という。半結晶化時間の測定は、脱偏光強度法により行った。即ち、溶融したサンプルペレットに光を照射し、サンプルペレットの結晶化とともに、光の透過量が減少して安定した時点を結晶化とし、その時間を結晶化時間とし、光の透過量が50%に到達した時間を半結晶化時間とした。なお、結晶化時間及び半結晶化時間は、測定温度で異なるが、以下の記載においては、各温度の半結晶化時間の内、最も半結晶化時間の短いものを「半結晶化時間」として記載した。また、結晶化時間及び半結晶化時間の測定にはコタキ製「ポリマー結晶化速度測定装置MK−701型」を使用した。
(Measurement method of semi-crystallization time)
When the pellet is melted at each temperature and the resin is crystallized at each temperature, the time for all to crystallize is called the crystallization time, and the time for reaching 50% crystallization is called the semi-crystallization time. The half crystallization time was measured by the depolarized intensity method. That is, when the sample pellets are irradiated with light and the sample pellets are crystallized, the amount of light transmission decreases and becomes stable when the amount of light transmission is stabilized. The time is defined as the crystallization time, and the amount of light transmission is 50%. The time to reach was defined as the half crystallization time. Although the crystallization time and the half crystallization time differ depending on the measurement temperature, in the following description, among the half crystallization times at each temperature, the one with the shortest half crystallization time is referred to as “half crystallization time”. Described. In addition, a “polymer crystallization rate measuring apparatus MK-701 type” manufactured by Kotaki was used to measure the crystallization time and the semi-crystallization time.

(ポリアミド樹脂の溶融重合による合成条件)
反応缶内でアジピン酸を170℃にて加熱し、溶融した後、内容物を攪拌しながら、ジアミン成分をアジピン酸とのモル比が約1:1となるように徐々に連続的に滴下し、かつ温度を240℃まで上昇させた。滴下終了後、260℃に昇温し、反応を継続した。反応終了後、反応缶内を窒素にて微加圧し、穴を有するダイヘッドからストランドを押出し、ペレタイザーでペレット化した。
(Synthesis conditions by melt polymerization of polyamide resin)
After adipic acid is heated and melted at 170 ° C. in a reaction can, the diamine component is gradually added dropwise continuously so that the molar ratio with adipic acid is about 1: 1 while stirring the contents. And the temperature was raised to 240 ° C. After completion of dropping, the temperature was raised to 260 ° C. and the reaction was continued. After completion of the reaction, the inside of the reaction can was slightly pressurized with nitrogen, the strand was extruded from a die head having holes, and pelletized with a pelletizer.

(ポリアミド樹脂の固相重合による合成条件)
上記の方法で溶融重合して得られたペレットを加熱装置付き回転式タンブラーに仕込み、回転させながらタンブラー内を1torr以下まで減圧した後、窒素で常圧にする操作を3回行った。その後、タンブラーを回転させながら装置内を30torr以下としながら加熱し、装置内が150℃以上になるよう調整し、その温度で所定時間、反応させた。その後、60℃まで冷却し、ポリアミド樹脂を得た。
(Synthesis conditions by solid phase polymerization of polyamide resin)
The pellets obtained by melt polymerization by the above method were charged into a rotary tumbler equipped with a heating device, the pressure inside the tumbler was reduced to 1 torr or less while rotating, and the operation of bringing the pressure to normal pressure with nitrogen was performed three times. Thereafter, the inside of the apparatus was heated while rotating the tumbler to 30 torr or less, the inside of the apparatus was adjusted to 150 ° C. or more, and the reaction was performed at that temperature for a predetermined time. Then, it cooled to 60 degreeC and obtained the polyamide resin.

(実施例1)
メタキシリレンジアミンとパラキシリレンジアミンを7:3で混合し、これらのジアミンとアジピン酸を0.993:1の割合のモル比で使用し、前記溶融重合及び固相重合を行ってポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド1と表記する)。ただし、滴下時間は2時間、溶融重合においてメタキシリレンジアミン滴下終了後の重合温度は277℃とし、反応時間は30分とした。このポリアミド1は、Tg87℃、融点259℃、半結晶化時間は18秒、末端アミノ基濃度15.8μeq/g、末端カルボキシル基濃度66.8μeq/g、数平均分子量は21500であった。また、280℃におけるMFRは、12.8g/10分であった。得られたポリアミド1単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.13cc・mm/(m・日・atm)(23℃・60%RH)であった。
Example 1
Metaxylylenediamine and paraxylylenediamine are mixed at a ratio of 7: 3, and these diamines and adipic acid are used in a molar ratio of 0.993: 1. (Hereinafter, the polyamide resin is referred to as polyamide 1). However, the dropping time was 2 hours, the polymerization temperature after completion of dropping of metaxylylenediamine in melt polymerization was 277 ° C., and the reaction time was 30 minutes. This polyamide 1 had a Tg of 87 ° C., a melting point of 259 ° C., a half crystallization time of 18 seconds, a terminal amino group concentration of 15.8 μeq / g, a terminal carboxyl group concentration of 66.8 μeq / g, and a number average molecular weight of 21,500. Moreover, MFR in 280 degreeC was 12.8 g / 10min. An unstretched film was prepared from the obtained polyamide 1 alone, and the oxygen permeability coefficient was determined. The oxygen permeability coefficient was 0.13 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). there were.

ポリアミド1に遷移金属触媒として、ステアリン酸コバルトをコバルト濃度400ppmとなるよう二軸押出機にて、溶融したポリアミド1にサイドフィードにて添加した。さらに、得られたポリアミドとステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド1と表記する)に、ポリオレフィン樹脂として、直鎖状低密度ポリエチレン(製品名;日本ポリエチレン(株)製「カーネルKF380」、MFR4.0g/10分(JIS K7210に準拠して測定)、240℃のMFR8.7g/10分、250℃のMFR10.0g/10分、以下LLDPEと表記する)を、ステアリン酸コバルト含有ポリアミド1:LLDPE=35:65の重量比で、280℃にて溶融混練し酸素吸収樹脂組成物を得た。次いで、該酸素吸収樹脂組成物を用いて厚さ50μmの単層の酸素吸収樹脂組成物からなるフィルムを得、フィルムの外観を観察したところ、そのフィルムの外観は、良好であった。そのフィルムを10cm×10cmのフィルムとし、該フィルムを袋内の湿度を100%としてアルミ箔積層フィルムからなるガスバリア袋に、空気300ccと共にそれぞれ2枚ずつ充填密封し、23℃下に保管して、密閉後7日間に吸収した酸素の総量を測定した。また、40℃下、湿度100%で1ヶ月間、保管した後のフィルムの伸び率を測定した。これらの結果を表1に示した。   Cobalt stearate was added to polyamide 1 as a transition metal catalyst by a side feed to molten polyamide 1 with a twin screw extruder so as to have a cobalt concentration of 400 ppm. Furthermore, a linear low density polyethylene (product name: “Knel KF380” manufactured by Nippon Polyethylene Co., Ltd.) is used as a polyolefin resin in a mixture of the obtained polyamide and cobalt stearate (hereinafter referred to as cobalt stearate-containing polyamide 1). MFR 4.0 g / 10 min (measured according to JIS K7210), 240 ° C. MFR 8.7 g / 10 min, 250 ° C. MFR 10.0 g / 10 min, hereinafter referred to as LLDPE) Polyamide 1: LLDPE = 35: 65 In a weight ratio, the mixture was melt-kneaded at 280 ° C. to obtain an oxygen-absorbing resin composition. Subsequently, when the film which consists of a 50-micrometer-thick oxygen absorption resin composition was obtained using this oxygen absorption resin composition and the external appearance of the film was observed, the external appearance of the film was favorable. The film is a 10 cm × 10 cm film, and the film is filled and sealed with two 300 cc air each in a gas barrier bag made of an aluminum foil laminated film with the humidity in the bag being 100%, and stored at 23 ° C., The total amount of oxygen absorbed in 7 days after sealing was measured. Further, the elongation percentage of the film after storage at 40 ° C. and 100% humidity for 1 month was measured. These results are shown in Table 1.

(実施例2)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE=55:45とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
(Example 2)
A film was produced in the same manner as in Example 1 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1: LLDPE = 55: 45, and the oxygen absorption amount of the film was measured. Appearance was observed. These results are shown in Table 1.

(実施例3)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE=25:75とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
(Example 3)
A film was produced in the same manner as in Example 1 except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1: LLDPE = 25: 75, and the oxygen absorption amount of the film was measured. Appearance was observed. These results are shown in Table 1.

(実施例4)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE=17:83とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
Example 4
A film was produced in the same manner as in Example 1 except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1: LLDPE = 17: 83, and the oxygen absorption amount of the film was measured. Appearance was observed. These results are shown in Table 1.

(実施例5)
LLDPEにステアリン酸コバルトをコバルト濃度600ppmとなるよう二軸押出機にて、溶融したLLDPEにサイドフィードにて添加した。さらに得られたLLDPEとステアリン酸コバルトの混合物に、ポリアミド1を、ポリアミド1:ステアリン酸コバルト含有LLDPE1=35:65の重量比で、280℃にて溶融混練し、酸素吸収樹脂ペレットを得た。
(Example 5)
Cobalt stearate was added to LLDPE by side feed to the melted LLDPE with a twin screw extruder so that the cobalt concentration was 600 ppm. Furthermore, polyamide 1 was melt-kneaded at 280 ° C. in a weight ratio of polyamide 1: cobalt stearate-containing LLDPE1 = 35: 65 to the obtained mixture of LLDPE and cobalt stearate to obtain oxygen-absorbing resin pellets.

以後、実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。   Thereafter, a film was produced in the same manner as in Example 1, and the oxygen absorption amount, elongation rate, and appearance of the film were observed. These results are shown in Table 1.

(比較例1)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1:LLDPE=80:20とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
(Comparative Example 1)
A film was produced in the same manner as in Example 1 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1: LLDPE = 80: 20, and the film was measured for oxygen absorption, elongation measurement, and appearance. Was observed. These results are shown in Table 1.

(比較例2)
LLDPEと溶融混練せず、ステアリン酸コバルト含有ポリアミド1のみのフィルムとした以外は、実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
(Comparative Example 2)
A film was produced in the same manner as in Example 1 except that it was not melt-kneaded with LLDPE and was made of only cobalt stearate-containing polyamide 1. The film was measured for oxygen absorption, measured for elongation, and observed for appearance. Went. These results are shown in Table 1.

(比較例3)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1:LLDPE=10:90とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
(Comparative Example 3)
A film was produced in the same manner as in Example 1 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1: LLDPE = 10: 90, measurement of oxygen absorption amount of the film, measurement of elongation rate, appearance Was observed. These results are shown in Table 1.

(比較例4)
メタキシリレンジアミンとパラキシリレンジアミンを7:3で混合し、これらのジアミンとアジピン酸を0.999:1の割合のモル比で使用し、固相重合を行なわずポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド2と表記する)。このポリアミド2は、Tg78℃、融点237℃、半結晶化時間は27秒、末端アミノ基濃度39.1μeq/g、末端カルボキシル基濃度70.2μeq/g、数平均分子量は17800であった。250℃におけるMFRは、51g/10分であった。
以後、溶融混練時の温度を250℃とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表1に示した。
(Comparative Example 4)
Metaxylylenediamine and paraxylylenediamine were mixed at a ratio of 7: 3, and these diamines and adipic acid were used in a molar ratio of 0.999: 1 to synthesize a polyamide resin without performing solid phase polymerization ( Hereinafter, the polyamide resin is referred to as polyamide 2.) Polyamide 2 had a Tg of 78 ° C., a melting point of 237 ° C., a semicrystallization time of 27 seconds, a terminal amino group concentration of 39.1 μeq / g, a terminal carboxyl group concentration of 70.2 μeq / g, and a number average molecular weight of 17,800. The MFR at 250 ° C. was 51 g / 10 minutes.
Thereafter, a film was produced in the same manner as in Example 1 except that the temperature at the time of melt kneading was 250 ° C., and the oxygen absorption amount, the elongation rate, and the appearance of the film were observed. These results are shown in Table 1.

実施例1〜5から明らかなように、本発明の酸素吸収樹脂組成物は、良好な酸素吸収性能を示し、かつ酸素吸収後のフィルム弾性を保持した樹脂組成物であった。   As is clear from Examples 1 to 5, the oxygen-absorbing resin composition of the present invention was a resin composition that exhibited good oxygen-absorbing performance and retained film elasticity after oxygen absorption.

これに対し、樹脂組成物中のポリオレフィン樹脂の含有量が60重量%を超過した比較例1及び2並びに同含有量が15重量%未満であった比較例3においては、酸素吸収性能が不充分であった。特に、比較例1及び2と実施例1乃至3との比較からも明らかなように、樹脂組成物中のポリアミド樹脂Aの含有量が多ければ、必ずしも良好な酸素吸収性能が得られるわけではなかった。   In contrast, Comparative Examples 1 and 2 in which the content of the polyolefin resin in the resin composition exceeded 60% by weight and Comparative Example 3 in which the content was less than 15% by weight had insufficient oxygen absorption performance. Met. In particular, as is clear from the comparison between Comparative Examples 1 and 2 and Examples 1 to 3, if the content of the polyamide resin A in the resin composition is large, good oxygen absorption performance is not necessarily obtained. It was.

一方、実施例1と比較して、固相重合を行わなかった比較例4は、末端アミノ基濃度が30μeq/gを超過し、良好な酸素吸収性能を得られなかった。また、比較例4においてはフィルムの外観も悪化した。   On the other hand, as compared with Example 1, in Comparative Example 4 in which solid phase polymerization was not performed, the terminal amino group concentration exceeded 30 μeq / g, and good oxygen absorption performance could not be obtained. In Comparative Example 4, the appearance of the film was also deteriorated.

(実施例6)
第1〜第4押出機、フィードブロック、Tダイ、冷却ロール、シート引取機からなる4種6層多層シート成形装置を用い、各押出機から、第1押出機;ポリプロピレン1、第2押出機;実施例1で作成した酸素吸収樹脂、第3押出機;MXD6(製品名;三菱ガス化学製 S7007、以下、MXD6と記す)、および第4押出機;ポリプロピレン系接着性樹脂(製品名;三菱化学製 モディックP604V)、を押し出し、酸素吸収多層シートを得た。該多層シートの構成は、内層より、ポリプロピレン1(100)/酸素吸収樹脂層(100)/接着層(15)/MXD6層(30)/接着層(15)/ポリプロピレン1(250)である。尚、括弧内の数字は各層の厚さ(単位:μm)を意味する。また、以下の実施例でも特別な断りがない限り、同様の表記をする。共押出による多層シートは厚みムラ等のない外観良好な多層シートであった。
(Example 6)
A four-kind, six-layer multilayer sheet forming apparatus comprising a first to a fourth extruder, a feed block, a T die, a cooling roll, and a sheet take-up machine is used. From each extruder, a first extruder; a polypropylene 1, a second extruder ; Oxygen absorbing resin prepared in Example 1, third extruder; MXD6 (product name; manufactured by Mitsubishi Gas Chemical Co., Ltd. S7007, hereinafter referred to as MXD6), and fourth extruder; polypropylene adhesive resin (product name: Mitsubishi) Chemical Modic P604V) was extruded to obtain an oxygen-absorbing multilayer sheet. The multilayer sheet is composed of polypropylene 1 (100) / oxygen absorbing resin layer (100) / adhesive layer (15) / MXD6 layer (30) / adhesive layer (15) / polypropylene 1 (250) from the inner layer. The numbers in parentheses mean the thickness of each layer (unit: μm). In the following examples, the same notation is used unless otherwise specified. The multilayer sheet obtained by coextrusion was a multilayer sheet having a good appearance with no thickness unevenness.

次いで、得られた多層シートについて、真空成形機を用いて、内層を内側にし、カップ状容器(内容積70cc、表面積120cm)に熱成形加工した。得られた酸素吸収多層容器は厚みムラなく外観良好であった。この容器にツナ60gを入れ、PETフィルム(製品名;東洋紡製 E5102)、アルミ箔、無延伸ポリプロピレンフィルム(製品名;オカモト製 アロマーUT21)をウレタン系接着剤(製品名;東洋モートン TM251)でドライラミネートしたガスバリア性フィルム(PETフィルム(12)/接着剤(3)/アルミ箔(7)/接着剤(3)/無延伸ポリプロピレンフィルム(60))をトップフィルムとして用い、密封し、充填した包装体容器を125℃・25分のレトルト処理を行い、25℃・60%RHの条件下に保存し、3ヶ月目の容器内酸素濃度を測定後に開封し、ツナの風味および色調を確認した。容器内酸素濃度は0.1%以下に保持され、ツナの色調、風味ともに良好であった。 Next, the obtained multilayer sheet was thermoformed into a cup-shaped container (inner volume 70 cc, surface area 120 cm 2 ) with the inner layer inside using a vacuum forming machine. The obtained oxygen-absorbing multilayer container had good appearance with no thickness unevenness. 60 g of tuna is put in this container, and PET film (product name: Toyobo E5102), aluminum foil, unstretched polypropylene film (product name: Okamoto Aroma UT21) is dried with urethane adhesive (product name: Toyo Morton TM251). Laminated gas barrier film (PET film (12) / adhesive (3) / aluminum foil (7) / adhesive (3) / unstretched polypropylene film (60)) as a top film, sealed and filled The body container was retorted at 125 ° C. for 25 minutes, stored under conditions of 25 ° C. and 60% RH, opened after measuring the oxygen concentration in the container at the third month, and the flavor and color tone of tuna were confirmed. The oxygen concentration in the container was maintained at 0.1% or less, and the color tone and flavor of the tuna were good.

本発明は、特定のポリアミド樹脂、遷移金属及びポリオレフィン樹脂を、特定の割合でブレンドすることにより、低湿度、高湿度いずれにおいても酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れ、様々な容器や用途に適用できる酸素吸収樹脂組成物であった。   The present invention blends a specific polyamide resin, transition metal and polyolefin resin at a specific ratio, so that it has excellent oxygen absorption performance at both low humidity and high humidity, maintains the resin strength after storage, The oxygen-absorbing resin composition was excellent in processability and applicable to various containers and uses.

Claims (3)

ポリオレフィン樹脂、遷移金属触媒及びポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂がメタキシリレンジアミンを80〜20mol%及びパラキシリレンジアミンを20〜80mol%含有するジアミン成分と、アジピン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂であり、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が酸素吸収樹脂組成物の総量に対して15〜60重量%であることを特徴とする酸素吸収樹脂組成物。   An oxygen-absorbing resin composition containing a polyolefin resin, a transition metal catalyst and a polyamide resin, wherein the polyamide resin contains 80 to 20 mol% of metaxylylenediamine and 20 to 80 mol% of paraxylylenediamine; It is a polyamide resin having a terminal amino group concentration of 30 μeq / g or less obtained by polycondensation with adipic acid, and the total content of the transition metal catalyst and the polyamide resin is 15 to 15% based on the total amount of the oxygen-absorbing resin composition. An oxygen-absorbing resin composition characterized by being 60% by weight. 上記遷移金属触媒がステアリン酸コバルトであることを特徴とする請求項1に記載の酸素吸収樹脂組成物。   The oxygen-absorbing resin composition according to claim 1, wherein the transition metal catalyst is cobalt stearate. 上記ポリアミド樹脂を得る際のモル比(上記ジアミン成分/アジピン酸)を0.985〜0.997とすることを特徴とする請求項1又は2に記載の酸素吸収樹脂組成物。   3. The oxygen-absorbing resin composition according to claim 1, wherein a molar ratio (the diamine component / adipic acid) in obtaining the polyamide resin is 0.985 to 0.997.
JP2010242256A 2009-11-17 2010-10-28 Oxygen-absorbing resin composition Pending JP2011127094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242256A JP2011127094A (en) 2009-11-17 2010-10-28 Oxygen-absorbing resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009262021 2009-11-17
JP2009262021 2009-11-17
JP2010242256A JP2011127094A (en) 2009-11-17 2010-10-28 Oxygen-absorbing resin composition

Publications (1)

Publication Number Publication Date
JP2011127094A true JP2011127094A (en) 2011-06-30

Family

ID=44290031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242256A Pending JP2011127094A (en) 2009-11-17 2010-10-28 Oxygen-absorbing resin composition

Country Status (1)

Country Link
JP (1) JP2011127094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132502A (en) * 2009-11-30 2011-07-07 Mitsubishi Gas Chemical Co Inc Oxygen-absorbing resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445152A (en) * 1990-06-11 1992-02-14 Toppan Printing Co Ltd Oxygen-absorbing resin composition
JP2000345053A (en) * 1999-03-31 2000-12-12 Toyobo Co Ltd Molding excellent in gas barrier property
JP2001011308A (en) * 1999-06-29 2001-01-16 Tsutsumi Yotaro Oxygen absorbing resin composition and packaging material and packaging container
US6689437B1 (en) * 1999-03-31 2004-02-10 Toyo Boseki Kabushiki Kaisha Oxygen-absorbing material
JP2004237570A (en) * 2003-02-06 2004-08-26 Mitsubishi Gas Chem Co Inc Multi-layer oriented film and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445152A (en) * 1990-06-11 1992-02-14 Toppan Printing Co Ltd Oxygen-absorbing resin composition
JP2000345053A (en) * 1999-03-31 2000-12-12 Toyobo Co Ltd Molding excellent in gas barrier property
US6689437B1 (en) * 1999-03-31 2004-02-10 Toyo Boseki Kabushiki Kaisha Oxygen-absorbing material
JP2001011308A (en) * 1999-06-29 2001-01-16 Tsutsumi Yotaro Oxygen absorbing resin composition and packaging material and packaging container
JP2004237570A (en) * 2003-02-06 2004-08-26 Mitsubishi Gas Chem Co Inc Multi-layer oriented film and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132502A (en) * 2009-11-30 2011-07-07 Mitsubishi Gas Chemical Co Inc Oxygen-absorbing resin composition

Similar Documents

Publication Publication Date Title
JP2011132502A (en) Oxygen-absorbing resin composition
JP2011136761A (en) Method for preserving tea-containing article
US9844927B2 (en) Multi-layered container
EP3078491B1 (en) Multilayer container
JP2011131935A (en) Deoxidizing packaging container for heat treatment
JP2011126270A (en) Oxygen-absorbing multilayer body
JP2011094021A (en) Oxygen absorbing resin composition
JP5581833B2 (en) Oxygen absorbing resin composition
JP2011236285A (en) Method for producing oxygen-absorbing resin composition
JP2010013638A (en) Oxygen-absorbing resin composition
JP5263040B2 (en) Oxygen absorbing multilayer
JP3978542B2 (en) Deoxygenating multilayer body and packaging container comprising the same
JP2012131912A (en) Oxygen absorbing resin composition
JP5601118B2 (en) Oxygen absorbing multilayer and container
JP2011127094A (en) Oxygen-absorbing resin composition
JP5633213B2 (en) Oxygen absorbing resin composition
JP2011122140A (en) Oxygen-absorbing resin composition
JP2011131578A (en) Oxygen absorbing multilayer object
JP2011136552A (en) Oxygen absorbing multilayered body
JP2011135870A (en) Method for preserving flesh of fruit
JP2011136762A (en) Method for preserving allyl isothiocyanate-containing article
JP2011131579A (en) Oxygen absorbing multilayered body for heat-sterilized food
JP2011135865A (en) Method for preserving acetic acid-containing food product
JP2011131934A (en) Oxygen absorbing paper container
JP2011136765A (en) Oxygen-absorbing sealed container

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602