JP2010013638A - Oxygen-absorbing resin composition - Google Patents

Oxygen-absorbing resin composition Download PDF

Info

Publication number
JP2010013638A
JP2010013638A JP2009134405A JP2009134405A JP2010013638A JP 2010013638 A JP2010013638 A JP 2010013638A JP 2009134405 A JP2009134405 A JP 2009134405A JP 2009134405 A JP2009134405 A JP 2009134405A JP 2010013638 A JP2010013638 A JP 2010013638A
Authority
JP
Japan
Prior art keywords
oxygen
absorbing
resin
film
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009134405A
Other languages
Japanese (ja)
Inventor
Satoshi Okada
聡史 岡田
Takashi Kashiba
隆史 加柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009134405A priority Critical patent/JP2010013638A/en
Publication of JP2010013638A publication Critical patent/JP2010013638A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-absorbing resin excellent in oxygen-absorbing performance, which is excellent in resin processability and has no limit in applications. <P>SOLUTION: The oxygen-absorbing resin composition at least includes a polyolefin resin, a transition metal catalyst, and a polyamide resin. The polyamide resin has a melting point of 200°C or lower and a glass transition temperature of 80°C or lower. The total content of the transition metal catalyst and the polyamide resin is 20 to 60% by weight. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、優れた酸素吸収性能を示し、且つ、樹脂の酸化劣化による強度低下、臭気発生のない酸素吸収樹脂組成物に関するものである。また本発明は、該酸素吸収樹脂組成物を用いた、樹脂加工性に優れる酸素吸収多層体と該多層体を熱成形してなる酸素吸収多層容器に関するものである。   The present invention relates to an oxygen-absorbing resin composition that exhibits excellent oxygen-absorbing performance and is free from strength reduction and odor generation due to oxidative degradation of the resin. The present invention also relates to an oxygen-absorbing multilayer body excellent in resin processability using the oxygen-absorbing resin composition, and an oxygen-absorbing multilayer container formed by thermoforming the multilayer body.

従来、包装容器としては、金属缶、ガラス瓶、各種プラスチック包装等の容器が知られているが、包装容器内の酸素による品質劣化が問題となっている。このため、近年、脱酸素包装技術の一つとして、熱可塑性樹脂に鉄系脱酸素剤等を配合した酸素吸収性樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成し、容器のガスバリア性の向上を図ると共に、容器自体に酸素吸収機能を付与した包装容器の開発が行われている。例えば、酸素吸収性多層シートは、酸素透過層及びガスバリア層が積層してなる従来のガスバリア性多層シートの間に、酸素吸収性樹脂組成物からなる酸素吸収層を加え、外部からの酸素透過を防ぐ機能に容器内の酸素を吸収する機能を付与したものとして利用され、共押出法や各種ラミネート法等の従来公知の製造方法を利用して製造されている(特許文献1参照)。   Conventionally, containers such as metal cans, glass bottles, and various plastic packages are known as packaging containers, but quality deterioration due to oxygen in the packaging containers is a problem. Therefore, in recent years, as one of deoxygenation packaging technologies, a container is constituted by a multilayer material in which an oxygen absorption layer composed of an oxygen-absorbing resin composition in which an iron-based oxygen absorber is blended with a thermoplastic resin, Development of packaging containers in which the gas barrier property is improved and the container itself is provided with an oxygen absorbing function has been carried out. For example, in an oxygen-absorbing multilayer sheet, an oxygen-absorbing layer made of an oxygen-absorbing resin composition is added to a conventional gas-barrier multilayer sheet formed by laminating an oxygen-permeable layer and a gas barrier layer to allow oxygen permeation from the outside. It is used as a function of preventing oxygen in the container from being added to the function of preventing, and is manufactured using a conventionally known manufacturing method such as a co-extrusion method or various laminating methods (see Patent Document 1).

一方、ポリマーからなり、酸素捕捉特性を有する組成物では、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属からなる樹脂組成物が知られており、酸素捕捉機能を有する樹脂組成物やその樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムの例示もある(特許文献2〜6参照)。   On the other hand, in a composition composed of a polymer and having an oxygen scavenging property, a resin composition comprising a polyamide, particularly a xylylene group-containing polyamide and a transition metal, is known as an oxidizable organic component, and a resin composition having an oxygen scavenging function or There are also examples of oxygen absorbers obtained by molding the resin composition, packaging materials, and multilayer laminated films for packaging (see Patent Documents 2 to 6).

しかしながら、鉄粉等の酸素吸収剤を用いるものは、食品等の異物検知に使用される金属探知機に検知される、不透明性の問題により内部視認性が不足する、さらに、鉄粉の混入により風味が損なわれるアルコール等の飲料への使用ができない、といった課題を有していた。また、鉄粉の酸化反応を利用しているため、被保存物が高水分系であるものでしか、酸素吸収の効果を発現することができなかった。   However, those using oxygen absorbers such as iron powder are detected by metal detectors used for detecting foreign substances such as food, and the internal visibility is insufficient due to the problem of opacity. There was a problem that it cannot be used for beverages such as alcohol whose flavor is impaired. In addition, since the oxidation reaction of iron powder is used, the effect of oxygen absorption can be exhibited only when the material to be preserved is a high moisture type.

さらに、鉄粉を使用した酸素吸収性多層体を成形する際には、鉄粉を使用しているため自重が高く、フィルム、シート、中空成形体、その他の成形体成形時に成形不良が発生する問題を有している。例えば、フィルム、シート成形時のネックイン、偏肉、中空成形体成形時のドローダウンが例示される。また成形した際には、表面に凹凸が生じる問題も有している。   Furthermore, when forming an oxygen-absorbing multilayer body using iron powder, the use of iron powder results in high weight, and defective molding occurs when molding films, sheets, hollow molded bodies, and other molded bodies. Have a problem. Examples thereof include neck-in at the time of film and sheet molding, uneven thickness, and drawdown at the time of molding a hollow molded body. Moreover, when it shape | molds, it also has the problem that an unevenness | corrugation arises on the surface.

一方、遷移金属触媒を含有させ、ポリアミド樹脂等を酸化させ酸素吸収機能を発現させる樹脂組成物は、ポリアミド樹脂が酸化するため、樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。   On the other hand, a resin composition that contains a transition metal catalyst and oxidizes a polyamide resin or the like to develop an oxygen absorbing function causes the polyamide resin to oxidize, resulting in a decrease in strength due to oxidative degradation of the resin, and the strength of the packaging container itself. It has the problem of being lowered.

さらに、ポリアミド樹脂と遷移金属触媒にて酸化反応を示すものとして、メタキシリレンジアミンとアジピン酸との重縮合によって得られるポリアミドである、MXD6が使用されているが、MXD6に遷移金属を混合した系では、酸素吸収樹脂組成物として使用し、被保存物を良好に保存するには、酸素吸収能力が低い問題があった。また、MXD6に遷移金属を混合した系に包装フィルム等のシール層材料に用いられるポリオレフィン樹脂をブレンドすると、樹脂の融点が大きく異なり、フィルム等の包装容器とする際の成形加工性が劣るという問題があり、通常、ポリエチレンテレフタレート(以下、PETと表記する)等のポリエステル樹脂やナイロン6等の比較的高融点の樹脂とのブレンドが使用されていた。   Furthermore, MXD6, which is a polyamide obtained by polycondensation of metaxylylenediamine and adipic acid, is used as an indicator of an oxidation reaction with a polyamide resin and a transition metal catalyst. A transition metal was mixed with MXD6. In the system, there is a problem that the oxygen absorption ability is low in order to use it as an oxygen-absorbing resin composition and to preserve an object to be stored satisfactorily. In addition, when polyolefin resin used for sealing layer materials such as packaging films is blended into a system in which transition metal is mixed with MXD6, the melting point of the resins is greatly different, and the molding processability when used as packaging containers for films and the like is inferior. Usually, a blend with a polyester resin such as polyethylene terephthalate (hereinafter referred to as PET) or a relatively high melting point resin such as nylon 6 has been used.

特開平9−234832号公報Japanese Patent Laid-Open No. 9-234832 特開平5−140555号公報Japanese Patent Laid-Open No. 5-140555 特開2001−252560号公報JP 2001-252560 A 特開2003−341747号公報JP 2003-341747 A 特開2005−119693号公報JP 2005-119893 A 特開2001−179090号公報JP 2001-179090 A

本発明の目的は、上記問題点を解決した、酸素吸収性能、樹脂強度、樹脂加工性に優れた樹脂組成物を提供することにある。また該組成物を使用した、外観に優れる酸素吸収多層体及び該多層体を熱成形してなる、内容物を視認可能な酸素吸収多層容器を提供することにある。   The objective of this invention is providing the resin composition excellent in oxygen absorption performance, resin strength, and resin processability which solved the said problem. Another object of the present invention is to provide an oxygen-absorbing multilayer body excellent in appearance using the composition, and an oxygen-absorbing multilayer container which is formed by thermoforming the multilayer body and whose contents are visible.

本発明者らは、特定のポリアミド樹脂と遷移金属にポリオレフィン樹脂を、特定の割合でブレンドすることにより、酸素吸収性能に優れ、保存後の樹脂強度を保持し、熱成形加工性に優れた酸素吸収樹脂組成物が得られることを見出した。また、該組成物を使用した外観に優れる酸素吸収多層体が得られることを見出し、さらに、該多層シートを熱成形してなる、内容物を視認可能な酸素吸収多層容器を見出した。   The inventors of the present invention blended a specific polyamide resin and a transition metal with a polyolefin resin at a specific ratio, thereby improving oxygen absorption performance, maintaining the resin strength after storage, and excellent oxygen molding processability. It has been found that an absorbent resin composition can be obtained. Moreover, it discovered that the oxygen absorption multilayer body excellent in the external appearance which used this composition was obtained, and also discovered the oxygen absorption multilayer container which can visually recognize the contents formed by thermoforming this multilayer sheet.

すなわち、本発明は、少なくとも、ポリオレフィン樹脂、遷移金属触媒及びポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂の融点が200℃以下、ガラス転移温度(以下、Tgと表記する)が80℃以下で、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が20〜60重量%であることを特徴とする酸素吸収樹脂組成物である。   That is, the present invention is an oxygen-absorbing resin composition containing at least a polyolefin resin, a transition metal catalyst, and a polyamide resin, wherein the polyamide resin has a melting point of 200 ° C. or less and a glass transition temperature (hereinafter referred to as Tg). Is an oxygen-absorbing resin composition, wherein the total content of the transition metal catalyst and the polyamide resin is 20 to 60% by weight.

また、本発明は、熱可塑性樹脂からなる酸素透過層、前記酸素吸収樹脂組成物からなる酸素吸収樹脂層、並びにガスバリア性物質からなるガスバリア層の少なくとも3層がこの順に積層してなる酸素吸収多層体と該酸素吸収多層体の酸素透過層を内側として熱成形してなる酸素吸収多層容器である。   In addition, the present invention provides an oxygen-absorbing multilayer in which at least three layers of an oxygen-permeable layer made of a thermoplastic resin, an oxygen-absorbing resin layer made of the oxygen-absorbing resin composition, and a gas barrier layer made of a gas-barrier substance are laminated in this order. And an oxygen-absorbing multilayer container formed by thermoforming the body and the oxygen-permeable layer of the oxygen-absorbing multilayer body inside.

本発明により、高い酸素吸収性能と高い成形加工性と透明性を有し、ポリアミド樹脂の酸化による強度劣化もほとんどみられない酸素吸収樹脂組成物、酸素吸収多層体及び該多層体を熱成形してなる酸素吸収多層容器を提供できる。   According to the present invention, an oxygen-absorbing resin composition, an oxygen-absorbing multilayer body, and a multilayer body that have high oxygen-absorbing performance, high moldability, and transparency, and that hardly deteriorate in strength due to oxidation of polyamide resin are thermoformed. An oxygen-absorbing multilayer container can be provided.

本発明の酸素吸収樹脂組成物は、少なくとも、融点が200℃以下、Tgが80℃以下であるポリアミド樹脂(以下、当該ポリアミド樹脂を特に「ポリアミド樹脂A」と称する)と遷移金属触媒とポリオレフィン樹脂とを含有し、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が20〜60重量%である樹脂組成物である。以下、該組成物を構成する各成分について、詳細を説明する。   The oxygen-absorbing resin composition of the present invention comprises at least a polyamide resin having a melting point of 200 ° C. or lower and a Tg of 80 ° C. or lower (hereinafter, the polyamide resin is particularly referred to as “polyamide resin A”), a transition metal catalyst, and a polyolefin resin. And the total content of the transition metal catalyst and the polyamide resin is 20 to 60% by weight. Hereinafter, details of each component constituting the composition will be described.

酸素吸収樹脂組成物の酸素吸収性能は、酸素吸収能を有する遷移金属を添加したポリアミド樹脂が多い方が、良好と考えられるが、驚くべきことに、ポリアミド樹脂Aをポリオレフィン樹脂と混合し、一定の比率でブレンドした際に高い酸素吸収能力を示すことを見出した。   The oxygen absorption performance of the oxygen-absorbing resin composition is considered to be better when there are more polyamide resins to which a transition metal having oxygen-absorbing ability is added. Surprisingly, the polyamide resin A is mixed with a polyolefin resin and is fixed. It was found that a high oxygen absorption ability was exhibited when blended at a ratio of.

本発明において、ポリアミド樹脂Aとしては、ポリオレフィン樹脂との加工性や酸素吸収性能を考慮すると、融点やTgが低いものが好ましく用いられる。   In the present invention, as the polyamide resin A, those having a low melting point and Tg are preferably used in consideration of the workability with the polyolefin resin and the oxygen absorption performance.

本発明におけるポリアミド樹脂Aは、ジアミンとジカルボン酸との重縮合反応で得られる。ポリアミド樹脂Aを作製する際のジアミンは、酸素吸収性能の観点からメタキシリレンジアミンが好ましく用いられ、性能に影響しない範囲で、各種脂肪族ジアミンや芳香族ジアミンを共重合成分として組み込んでもよい。ジカルボン酸としては、C8〜C12の脂肪族ジカルボン酸、具体的には、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸が挙げられる。これらの中でも、加工しやすい融点及びTgが得られるセバシン酸が特に好ましい。各種ジカルボン酸に、性能に影響しない程度で、他の各種脂肪族ジカルボン酸や芳香族ジカルボン酸を共重合成分として組み込んでもよい。得られた、ポリアミド樹脂Aの融点は、200℃以下が好ましく、さらに190℃以下が特に好ましい。Tgは、80℃以下が好ましく、75℃以下が特に好ましい。また、得られたポリアミド樹脂Aは、酸素バリア性が低い方が好ましく、酸素透過係数が0.3cc・mm/(m・日・atm)(23℃・60%RH)以上が好ましく、0.5cc・mm/(m・日・atm)(23℃・60%RH)以上がより好ましい。 The polyamide resin A in the present invention is obtained by a polycondensation reaction between a diamine and a dicarboxylic acid. As the diamine for producing the polyamide resin A, metaxylylenediamine is preferably used from the viewpoint of oxygen absorption performance, and various aliphatic diamines and aromatic diamines may be incorporated as copolymerization components as long as the performance is not affected. Examples of the dicarboxylic acid include C8 to C12 aliphatic dicarboxylic acids, specifically, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Of these, sebacic acid is particularly preferable because it provides a melting point and Tg that are easy to process. Various dicarboxylic acids and aromatic dicarboxylic acids may be incorporated as copolymerization components in various dicarboxylic acids as long as the performance is not affected. The obtained polyamide resin A has a melting point of preferably 200 ° C. or lower, more preferably 190 ° C. or lower. Tg is preferably 80 ° C. or lower, and particularly preferably 75 ° C. or lower. The obtained polyamide resin A preferably has a low oxygen barrier property, and preferably has an oxygen permeability coefficient of 0.3 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH) or more. It is more preferably 5 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH) or more.

ポリアミド樹脂Aとポリオレフィン樹脂を混合した際、加工性を考慮すると、ポリアミド樹脂Aのメルトフローレート(以下、MFRと表記する)は、200℃で、3〜8g/10分、240℃で、4〜12g/10分のものが好ましく用いられる。この場合、ポリオレフィン樹脂のMFRとポリアミド樹脂AのMFRの差が±3g/10分程度を示す温度にて、樹脂加工すると、混練状態が良好となり、多層体の外観に問題のない加工品を得ることができる。ポリアミド樹脂AのMFRは、固相重合により、分子量を調節して、調整できる。ジアミンとジカルボン酸との重縮合反応で得られたポリアミド樹脂Aは、溶融重合の後、固相重合の2段階を経る方法が好ましい。固相重合にて得られたポリアミド樹脂Aの数平均分子量は、20000〜25000が好ましく、21000〜24000が特に好ましい。なお、本願でいうMFRは、特に断りがない限り、JIS K7210に準拠した装置を用いて、特定の温度において、荷重2160gの条件下で測定した当該樹脂のMFRであり、「g/10分」の単位で測定温度と共に表記される。   When the polyamide resin A and the polyolefin resin are mixed, considering the processability, the melt flow rate (hereinafter referred to as MFR) of the polyamide resin A is 200 ° C., 3 to 8 g / 10 minutes, 240 ° C., 4 Those of ˜12 g / 10 min are preferably used. In this case, when the resin is processed at a temperature at which the difference between the MFR of the polyolefin resin and the MFR of the polyamide resin A is about ± 3 g / 10 minutes, the kneaded state becomes good and a processed product having no problem in the appearance of the multilayer body is obtained. be able to. The MFR of the polyamide resin A can be adjusted by adjusting the molecular weight by solid phase polymerization. The polyamide resin A obtained by the polycondensation reaction of diamine and dicarboxylic acid is preferably a method of undergoing two steps of solid phase polymerization after melt polymerization. The number average molecular weight of the polyamide resin A obtained by solid phase polymerization is preferably 20000 to 25000, particularly preferably 21000 to 24000. In addition, unless otherwise indicated, MFR as used in this application is MFR of the said resin measured on the conditions of load 2160g in the specific temperature using the apparatus based on JISK7210, and is "g / 10min." It is expressed with the measured temperature in units of.

メタキシリレンジアミン等のジアミンと、C8〜C12の脂肪族ジカルボン酸、例えば、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸と、他のジカルボン酸を共重合成分として組み込む場合は、メタキシリレンジアミン等のジアミン:セバシン酸等のC8〜C12の脂肪族ジカルボン酸:アジピン酸、イソフタル酸等の他のジカルボン酸、のモル比が、100:50以上:50以下、となるように共重合させてもよい。   When incorporating diamines such as metaxylylenediamine, C8-C12 aliphatic dicarboxylic acids such as suberic acid, azelaic acid, sebacic acid, dodecanedioic acid and other dicarboxylic acids as copolymerization components, Copolymerization is carried out so that the molar ratio of diamine such as amine: C8-C12 aliphatic dicarboxylic acid such as sebacic acid: other dicarboxylic acid such as adipic acid and isophthalic acid is 100: 50 or more and 50 or less. May be.

本発明の酸素吸収樹脂組成物に用いるポリオレフィン樹脂とは、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせて使用することができる。これらポリオレフィン樹脂には、必要に応じて、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。   Polyolefin resins used in the oxygen-absorbing resin composition of the present invention include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, various polyethylenes such as polyethylene by metallocene catalyst, polystyrene Polypropylenes such as polymethylpentene, propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer can be used alone or in combination. These polyolefin resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, if necessary. A polymer, an ethylene-methyl methacrylate copolymer, or a thermoplastic elastomer may be added.

また、ポリアミド樹脂Aとの混合性を考慮すると、酸素吸収樹脂組成物に対して無水マレイン酸変性ポリオレフィン樹脂を添加することが特に好ましい。無水マレイン酸変性物の添加量は、ポリオレフィン樹脂に対し、1〜30%程度が好ましく、3〜15%が特に好ましい。ポリオレフィン樹脂のMFRは、フィルムの加工性を考慮すると、200℃で、3〜8g/10分、240℃で、4〜12g/10分のものが好ましく用いられる。   In consideration of the miscibility with the polyamide resin A, it is particularly preferable to add a maleic anhydride-modified polyolefin resin to the oxygen-absorbing resin composition. The addition amount of the maleic anhydride-modified product is preferably about 1 to 30%, particularly preferably 3 to 15% with respect to the polyolefin resin. The MFR of polyolefin resin is preferably 3 to 8 g / 10 minutes at 200 ° C. and 4 to 12 g / 10 minutes at 240 ° C. in consideration of film processability.

また、本発明のポリオレフィン樹脂には、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良い。特に、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加することが好ましい。   Further, the polyolefin resin of the present invention includes coloring pigments such as titanium oxide, additives such as antioxidants, slip agents, antistatic agents, stabilizers, fillers such as calcium carbonate, clay, mica, silica, and deodorants. An agent or the like may be added. In particular, it is preferable to add an antioxidant in order to recycle and reprocess offcuts generated during production.

本発明の酸素吸収樹脂組成物に用いる遷移金属触媒としては、第一遷移元素、例えばFe、Mn、Co、Cu、の化合物が挙げられる。また、遷移金属の有機酸塩、塩化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩などの単独、又は、それらの混合物等も遷移金属触媒の一例として挙げられる。有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸などC2〜C22の脂肪族アルキル酸の塩、あるいは、マロン酸、コハク酸、アジピン酸、セバシン酸、ヘキサハイドロフタル酸、など2塩基酸の塩、ブタンテトラカルボン酸の塩、安息香酸、トルイック酸、o-フタル酸、イソフタル酸、テレフタル酸、トリメシン酸など芳香族カルボン酸塩の単独、又は、混合物が挙げられる。遷移金属触媒の中でも、Coの有機酸塩が酸素吸収性の観点から、好ましく、安全性や加工性からステアリン酸Coが特に好ましい。   Examples of the transition metal catalyst used in the oxygen-absorbing resin composition of the present invention include compounds of first transition elements such as Fe, Mn, Co, and Cu. Further, transition metal organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or a mixture thereof can be cited as examples of transition metal catalysts. Examples of the organic acid include salts of C2-C22 aliphatic alkyl acids such as acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, or malonic acid, succinic acid, adipic acid, sebacic acid, hexahydrophthalic acid A salt of a dibasic acid, a salt of a butanetetracarboxylic acid, benzoic acid, toluic acid, o-phthalic acid, isophthalic acid, terephthalic acid, trimesic acid, or the like, or a mixture of aromatic carboxylates alone or in combination. Among the transition metal catalysts, an organic acid salt of Co is preferable from the viewpoint of oxygen absorption, and Co stearate is particularly preferable from the viewpoint of safety and workability.

遷移金属触媒はポリアミド樹脂Aに添加し、その後、ポリオレフィン樹脂と混合することが好ましい。また、遷移金属触媒は、ポリアミド樹脂Aに対する該触媒中の全遷移金属の濃度が、10ppm〜5000ppm、好ましくは50ppm〜3000ppmとなるように添加することが好ましい。添加量が少ないと酸素吸収性能が低下し、多すぎると樹脂加工性等に悪影響を及ぼす。   The transition metal catalyst is preferably added to the polyamide resin A and then mixed with the polyolefin resin. The transition metal catalyst is preferably added so that the concentration of all transition metals in the catalyst with respect to the polyamide resin A is 10 ppm to 5000 ppm, preferably 50 ppm to 3000 ppm. If the addition amount is small, the oxygen absorption performance is lowered, and if it is too much, the resin processability is adversely affected.

遷移金属触媒を添加したポリアミド樹脂Aと、ポリオレフィン樹脂とを混合し、酸素吸収樹脂組成物とすることが好ましい。酸素吸収樹脂組成物中の遷移金属触媒を含んだポリアミド樹脂Aの含有量は、20〜60重量%が好ましく、30〜50重量%が、特に好ましい。酸素吸収樹脂組成物中の遷移金属触媒を含んだポリアミド樹脂Aの含有量が、20重量%より下回ったり、60重量%を超えた場合は、酸素吸収能力が低くなる。また、60重量%を超えると、ポリアミド樹脂Aの酸化による樹脂劣化が生じ、強度低下等の問題が発生する。   It is preferable to mix the polyamide resin A to which the transition metal catalyst is added and the polyolefin resin to obtain an oxygen-absorbing resin composition. The content of the polyamide resin A containing the transition metal catalyst in the oxygen-absorbing resin composition is preferably 20 to 60% by weight, particularly preferably 30 to 50% by weight. When the content of the polyamide resin A containing the transition metal catalyst in the oxygen-absorbing resin composition is less than 20% by weight or exceeds 60% by weight, the oxygen-absorbing ability is lowered. On the other hand, if it exceeds 60% by weight, resin degradation due to oxidation of the polyamide resin A occurs, causing problems such as strength reduction.

本発明で得られたポリアミド樹脂Aに安定化剤等を適宜添加してもよい。特に、リン化合物は、安定化剤として好ましく用いられ、具体的には、ジ亜リン酸塩が好ましい。リン化合物は、ポリアミド樹脂Aが安定し、酸素吸収性能に影響するため、200ppm以下が好ましく、特に、100ppm以下が好ましい。   You may add a stabilizer etc. to the polyamide resin A obtained by this invention suitably. In particular, phosphorus compounds are preferably used as stabilizers, and specifically, diphosphites are preferable. The phosphorus compound is preferably not more than 200 ppm, particularly preferably not more than 100 ppm because the polyamide resin A is stable and affects the oxygen absorption performance.

本発明におけるポリアミド樹脂Aの末端アミノ基濃度は、1〜30μeq/gであることが好ましく、1〜25μeq/gであることがより好ましい。末端アミノ基濃度が1〜30μeq/gの範囲にあると、酸素吸収樹脂組成物がより高い酸素吸収性能を得ることが出来る。   The terminal amino group concentration of the polyamide resin A in the present invention is preferably 1 to 30 μeq / g, and more preferably 1 to 25 μeq / g. When the terminal amino group concentration is in the range of 1 to 30 μeq / g, the oxygen-absorbing resin composition can obtain higher oxygen absorption performance.

本発明の酸素吸収樹脂組成物は、酸素吸収剤材料として用いることができる。すなわち、ペレット状又はシート状の酸素吸収樹脂組成物を通気性包装材料に充填し、小袋状脱酸素剤と使用しても良い。ペレット状とする際は、酸素との接触を保つため、粉砕し粉末状とすることが好ましい。また、シート状とする際は、延伸して、ポリアミド樹脂Aとポリオレフィン樹脂の海島状の層間に空隙を設けることが好ましい。延伸する際のポリオレフィン樹脂としては、高密度ポリエチレンが好ましく用いられる。   The oxygen-absorbing resin composition of the present invention can be used as an oxygen absorbent material. That is, an oxygen-absorbing resin composition in the form of a pellet or sheet may be filled into a breathable packaging material and used as a sachet-shaped oxygen absorber. When making into pellet form, in order to keep contact with oxygen, it is preferable to grind | pulverize and make into powder form. Moreover, when setting it as a sheet form, it is preferable to extend | stretch and to provide a space | gap between the sea-island-like layers of the polyamide resin A and the polyolefin resin. As the polyolefin resin for stretching, high-density polyethylene is preferably used.

また、本発明の酸素吸収樹脂組成物を用いることにより、熱可塑性樹脂からなる酸素透過層、本発明の酸素吸収樹脂組成物を含有する酸素吸収樹脂層及びガスバリア性物質からなるガスバリア層の少なくとも3層がこの順に積層してなる酸素吸収多層体とすることができ、例えば、容器の本体や蓋、包装材料の全部又は一部を構成する用途に使用することがきる。以下、当該酸素吸収多層体の各層及び各組成物について、詳細を説明する。 Further, by using the oxygen-absorbing resin composition of the present invention, at least 3 of an oxygen-permeable layer made of a thermoplastic resin, an oxygen-absorbing resin layer containing the oxygen-absorbing resin composition of the present invention, and a gas barrier layer made of a gas barrier material. It can be set as the oxygen absorption multilayer body by which a layer is laminated | stacked in this order, For example, it can be used for the use which comprises all or one part of the main body and lid | cover of a container, and a packaging material. Hereinafter, the details of each layer and each composition of the oxygen-absorbing multilayer body will be described.

酸素透過層に用いる熱可塑性樹脂とは、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせて使用することができる。これらポリオレフィン樹脂には、必要に応じて、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。熱可塑性樹脂のMFRは、フィルムの加工性を考慮すると、200℃で、3〜8g/10分、240℃で、4〜12g/10分のものが好ましく用いられる。また、酸素透過層の酸素透過度は10cc/(m・日・atm)(23℃・60%RH)以上であることが好ましい。なお、酸素透過層に用いる熱可塑性樹脂は、樹脂の加工性、密着性を考慮すると、酸素吸収樹脂層に用いるポリオレフィン樹脂と同種のものが、好ましく用いられる。 The thermoplastic resin used for the oxygen permeable layer includes high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, various polyethylenes such as polyethylene using a metallocene catalyst, polystyrene, and polymethylpentene. , Polypropylenes such as a propylene homopolymer, a propylene-ethylene block copolymer, and a propylene-ethylene random copolymer can be used alone or in combination. These polyolefin resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, if necessary. A polymer, an ethylene-methyl methacrylate copolymer, or a thermoplastic elastomer may be added. The MFR of the thermoplastic resin is preferably 3 to 8 g / 10 minutes at 200 ° C. and 4 to 12 g / 10 minutes at 240 ° C. in consideration of film processability. The oxygen permeability of the oxygen permeable layer is preferably 10 cc / (m 2 · day · atm) (23 ° C. · 60% RH) or more. The thermoplastic resin used for the oxygen-permeable layer is preferably the same type as the polyolefin resin used for the oxygen-absorbing resin layer, considering the processability and adhesion of the resin.

また、酸素透過層に用いる熱可塑性樹脂には、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良い。特に、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加することが好ましい。   The thermoplastic resin used for the oxygen permeable layer includes coloring pigments such as titanium oxide, antioxidants, slip agents, antistatic agents, stabilizers, lubricants and other additives, calcium carbonate, clay, mica, silica, etc. You may add a filler, a deodorizing agent, etc. In particular, it is preferable to add an antioxidant in order to recycle and reprocess offcuts generated during production.

酸素吸収樹脂層に用いる酸素吸収樹脂組成物は、少なくとも、ポリアミド樹脂Aと遷移金属触媒とポリオレフィン樹脂とを含有し、且つ該遷移金属触媒と該ポリアミド樹脂Aの合計含有量が20〜60重量%である樹脂組成物であり、その詳細については前記したとおりである。   The oxygen-absorbing resin composition used for the oxygen-absorbing resin layer contains at least a polyamide resin A, a transition metal catalyst, and a polyolefin resin, and the total content of the transition metal catalyst and the polyamide resin A is 20 to 60% by weight. The details of the resin composition are as described above.

ガスバリア層に用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミ等の各種蒸着フィルム、アルミ箔等の金属箔を用いることが出来る。ガスバリア性熱可塑性樹脂としては、例えばエチレン−ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。また、ガスバリア性熱硬化性樹脂としては、アミン−エポキシ硬化剤等が例示できる。なお、ガスバリア層の酸素透過度は10cc/(m・日・atm)(23℃・60%RH)未満であることが好ましい。 As the gas barrier material used for the gas barrier layer, a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various deposited films such as silica, alumina, and aluminum, and a metal foil such as an aluminum foil can be used. Examples of the gas barrier thermoplastic resin include ethylene-vinyl alcohol copolymer, MXD6, and polyvinylidene chloride. Examples of the gas barrier thermosetting resin include amine-epoxy curing agents. The oxygen permeability of the gas barrier layer is preferably less than 10 cc / (m 2 · day · atm) (23 ° C. · 60% RH).

本発明の酸素吸収多層体における、酸素吸収樹脂層の厚みは、特に制限はないが、5〜200μmが好ましく、10〜100μmが特に好ましい。厚みが少なすぎると加工性、酸素吸収性能に問題が生じ、多すぎると、加工性、コスト等の問題が生じる。また、酸素透過層の厚みは、酸素透過層が酸素吸収樹脂層との隔離層となるため、少ない方が好ましいが、特に、5〜200μmが好ましく、10〜80μmが特に好ましい。大きすぎると、酸素吸収性能が低下し、少なすぎると加工性に問題が生じる。   Although there is no restriction | limiting in particular in the thickness of the oxygen absorption resin layer in the oxygen absorption multilayer body of this invention, 5-200 micrometers is preferable and 10-100 micrometers is especially preferable. If the thickness is too small, problems occur in workability and oxygen absorption performance, and if it is too large, problems such as processability and cost occur. Further, the thickness of the oxygen permeable layer is preferably less because the oxygen permeable layer becomes an isolation layer from the oxygen absorbing resin layer, but is preferably 5 to 200 μm, particularly preferably 10 to 80 μm. If it is too large, the oxygen absorption performance will be reduced, and if it is too small, there will be a problem in workability.

ガスバリア性熱可塑性樹脂をガスバリア層に用いる際の厚みは、5〜200μmが好ましく、10〜100μmが特に好ましい。厚みが少なすぎると加工性、ガスバリア性に問題が生じ、多すぎると、加工性、コスト等の問題が生じる。アミン−エポキシ硬化剤のようなガスバリア性熱硬化性樹脂をガスバリア性接着剤層に使用する場合の厚みは、0.1〜100μmが好ましく、0.5〜20μmが特に好ましい。厚みが少なすぎるとガスバリア性に問題が生じ、多すぎると、加工性、コスト等の問題が生じる。   The thickness when the gas barrier thermoplastic resin is used for the gas barrier layer is preferably 5 to 200 μm, particularly preferably 10 to 100 μm. If the thickness is too small, there will be problems in workability and gas barrier properties, and if it is too large, problems such as processability and cost will occur. When using a gas barrier thermosetting resin such as an amine-epoxy curing agent for the gas barrier adhesive layer, the thickness is preferably from 0.1 to 100 μm, particularly preferably from 0.5 to 20 μm. If the thickness is too small, there will be a problem in gas barrier properties, and if it is too large, problems such as processability and cost will occur.

脱酸素性多層体の加工性を考慮すると、酸素透過層と酸素吸収樹脂層の厚み比が、1:1〜1:3にあることが好ましく、1:1.5〜1:2.5が特に好ましい。さらにまた、加工性を考慮すると、ガスバリア層と酸素吸収樹脂層との層間に、ポリオレフィン樹脂からなる中間層を介在することが好ましい。この中間層の厚みは、加工性から、酸素透過層の厚みとほぼ同一とすることが好ましい。この場合、加工によるバラツキを考慮すると、厚み比が±10%以内であれば、同一とする。   Considering the processability of the deoxidizing multilayer, the thickness ratio of the oxygen permeable layer and the oxygen absorbing resin layer is preferably 1: 1 to 1: 3, and 1: 1.5 to 1: 2.5 Particularly preferred. Furthermore, in consideration of processability, it is preferable to interpose an intermediate layer made of polyolefin resin between the gas barrier layer and the oxygen-absorbing resin layer. The thickness of the intermediate layer is preferably substantially the same as the thickness of the oxygen permeable layer in view of workability. In this case, considering variations due to processing, the thickness is the same if the thickness ratio is within ± 10%.

本発明の酸素吸収多層体は、熱可塑性樹脂からなる酸素透過層、少なくともポリオレフィン樹脂、遷移金属触媒及びポリアミド樹脂を含有する酸素吸収樹脂層、並びにガスバリア性物質からなるガスバリア層の少なくとも3層がこの順に積層してなるが、その他の層を付加することは差し支えない。   The oxygen-absorbing multilayer body of the present invention comprises at least three layers of an oxygen-permeable layer made of a thermoplastic resin, an oxygen-absorbing resin layer containing at least a polyolefin resin, a transition metal catalyst and a polyamide resin, and a gas barrier layer made of a gas barrier material. Although they are laminated in order, other layers may be added.

例えば、ガスバリア層の破損やピンホールを防ぐために、ガスバリア層の内側や外側に熱可塑性樹脂からなる保護層を設けることが好ましい。保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類及びこれらの組合せが挙げられる。   For example, in order to prevent damage to the gas barrier layer and pinholes, it is preferable to provide a protective layer made of a thermoplastic resin inside and outside the gas barrier layer. Examples of the resin used for the protective layer include polyethylenes such as high density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 and the like. Polyamides, polyesters such as PET, and combinations thereof.

酸素吸収多層体の製造方法については、各種材料の性状、加工目的、加工工程等に応じて、共押出法、各種ラミネート法、各種コーティング法などの公知の方法を利用することができる。例えば、フィルムやシートの成形については、Tダイ、サーキュラーダイ等を通して溶融させた樹脂組成物付属した押出機から押し出して製造する方法や、酸素吸収フィルムもしくはシートに接着剤を塗布し、他のフィルムやシートと貼り合わせることで製造する方法がある。また、射出機を用い、溶融した樹脂を、多層多重ダイスを通して射出金型中に共射出または逐次射出することによって所定の形状の多層容器に一挙に成形することができる。   About the manufacturing method of an oxygen absorption multilayer body, well-known methods, such as a co-extrusion method, various lamination methods, and various coating methods, can be utilized according to the property of various materials, the process objective, a process process, etc. For example, for film and sheet molding, a method of manufacturing by extruding from an extruder attached to a resin composition melted through a T die, a circular die or the like, or applying an adhesive to an oxygen absorbing film or sheet, and other films There is a method of manufacturing by bonding to a sheet. In addition, by using an injection machine, molten resin can be molded into a multilayer container having a predetermined shape by co-injection or sequential injection into an injection mold through a multilayer multiple die.

本発明の酸素吸収多層体は、フィルムとして作製し、袋状、蓋材に加工して用いることができる。また、ガスバリア層の外層に紙基材を積層して、酸素吸収紙容器として用いることもできる。紙基材と積層して紙容器とした時の加工性を考慮すると、ガスバリア層の内側部が50μm以下とすることが好ましく、40μm以下が特に好ましい。ガスバリア層より内部の厚みが大きくなると、紙基材を積層し、容器形状に成形する際、容器への加工性に問題が生じる。   The oxygen-absorbing multilayer body of the present invention can be prepared as a film, processed into a bag shape and a lid material, and used. In addition, a paper base material can be laminated on the outer layer of the gas barrier layer to be used as an oxygen-absorbing paper container. Considering processability when laminated with a paper base material to form a paper container, the inner portion of the gas barrier layer is preferably 50 μm or less, and particularly preferably 40 μm or less. When the internal thickness is larger than that of the gas barrier layer, a problem arises in processability to a container when a paper base material is laminated and formed into a container shape.

また、本発明の酸素吸収多層体は、シートとして作製し、真空成形、圧空成形、プラグアシスト成形等の成形方法によりトレイ、カップ、ボトル、チューブ、PTP(プレス・スルー・パック)等の所定の形状の酸素吸収多層容器に熱成形することができる。また、得られた酸素吸収多層容器は、80〜100℃のボイル処理、100〜135℃のセミレト、レトルト、ハイレトルト処理を行うことができる。また、袋状容器に食品等の内容物を充填し、開封口を設け、電子レンジ加熱調理時にその開封口から蒸気を放出する、電子レンジ調理対応の易通蒸口付パウチに好ましく用いることができる。   Further, the oxygen-absorbing multilayer body of the present invention is produced as a sheet, and a predetermined method such as tray, cup, bottle, tube, PTP (press-through pack) or the like is formed by a molding method such as vacuum forming, pressure forming, or plug assist molding. It can be thermoformed into a shaped oxygen absorbing multilayer container. The obtained oxygen-absorbing multilayer container can be subjected to a boil treatment at 80 to 100 ° C., a semi-retort, a retort, and a high retort treatment at 100 to 135 ° C. Moreover, it is preferably used for a microwave cooking-compatible pouch that fills a bag-like container with contents such as food, provides an opening, and releases steam from the opening when cooking with a microwave oven. it can.

本発明の酸素吸収多層体及び酸素吸収多層容器を、酸素透過層を内側として密封用包装容器の一部または全部に使用することにより、容器外からわずかに侵入する酸素の他、容器内の酸素を吸収して、酸素による容器内収納物の変質等を防止することができる。   By using the oxygen-absorbing multilayer body and the oxygen-absorbing multilayer container of the present invention as a part or all of the sealing packaging container with the oxygen-permeable layer inside, in addition to oxygen that slightly enters from the outside of the container, oxygen in the container It is possible to prevent deterioration of the contents stored in the container due to oxygen.

本発明の酸素吸収多層体及び酸素吸収多層容器は、被保存物の水分の有無によらず、酸素吸収することができるため、粉末調味料、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品や医薬品、ビタミン剤等の健康食品に好適に使用することができる。その他、本発明にて得られた、酸素吸収樹脂組成物は従来の鉄粉を使用した酸素吸収樹脂組成物と異なり、鉄の存在にて保存できないアルコール飲料や炭酸飲料、酢酸含有食品用途等や容器を滅菌するため、過酸化水素殺菌する用途に好適に用いることができる。   Since the oxygen-absorbing multilayer body and oxygen-absorbing multilayer container of the present invention can absorb oxygen regardless of the presence or absence of moisture in the object to be preserved, powder seasonings, powdered coffee, coffee beans, rice, tea, beans, rice cakes It can be suitably used for dried foods such as rice crackers and health foods such as pharmaceuticals and vitamins. In addition, the oxygen-absorbing resin composition obtained in the present invention is different from the conventional oxygen-absorbing resin composition using iron powder, such as alcohol drinks and carbonated drinks that cannot be stored in the presence of iron, acetic acid-containing food applications, Since the container is sterilized, the container can be suitably used for sterilization with hydrogen peroxide.

その他、被保存物としては、精米、米飯、赤飯、もち等の米加工類、スープ、シチュー、カレー等の調理食品、フルーツ、羊羹、プリン、ケーキ、饅頭、ジャム等の菓子類、ツナ、魚貝等の水産製品、チーズ、バター、卵等の乳加工品、肉、サラミ、ソーセージ、ハム等の畜肉加工品、にんじん、じゃがいも、アスパラ、しいたけ等の野菜類を挙げることができる。   Other items to be preserved include processed rice such as polished rice, cooked rice, red rice, and glutinous rice, cooked foods such as soup, stew, and curry, fruits, mutton, pudding, cakes, buns, jams, and other sweets, tuna, and fish Seafood products such as shellfish, processed milk products such as cheese, butter and eggs, processed meat products such as meat, salami, sausage and ham, and vegetables such as carrots, potatoes, asparagus and shiitake mushrooms.

以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。尚、本実施例及び比較例において、各種物性値は以下の測定方法及び測定装置により測定した。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples and comparative examples, various physical property values were measured by the following measuring methods and measuring apparatuses.

(Tgの測定方法)
Tgは、JIS K7122に準拠して測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(Measurement method of Tg)
Tg was measured according to JIS K7122. The measuring apparatus used was “DSC-60” manufactured by Shimadzu Corporation.

(融点の測定方法)
融点は、ISO11357に準拠して、DSC融解ピーク温度を測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(Measuring method of melting point)
The melting point was determined by measuring the DSC melting peak temperature according to ISO11357. The measuring apparatus used was “DSC-60” manufactured by Shimadzu Corporation.

(数平均分子量の測定方法)
数平均分子量は、GPC−LALLSにて測定した。測定装置は昭和電工(株)製「Shodex GPC−2001」を使用した。
(Measurement method of number average molecular weight)
The number average molecular weight was measured by GPC-LALLS. As a measuring apparatus, “Shodex GPC-2001” manufactured by Showa Denko KK was used.

(MFRの測定方法)
各樹脂のMFRは、JIS K7210に準拠した装置((株)東洋精機製作所製「メルトインデックサ」)を用いて、特定の温度において、荷重2160gの条件下で測定し、温度と共にその値を記載した(単位:「g/10分」)。なお、JIS K7210に準拠してMFRを測定した場合はその旨、特に記載した。
(Measurement method of MFR)
The MFR of each resin is measured under a load of 2160 g at a specific temperature using an apparatus in accordance with JIS K7210 (“Melt Indexer” manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the value is described together with the temperature. (Unit: “g / 10 min”). In addition, when MFR was measured based on JISK7210, it was described that much.

(末端アミノ基濃度の測定方法)
試料0.5gを30mlのフェノール/エタノール=4/1(体積比)に溶解させ、メタノール5ml加え、滴定液として0.01規定の塩酸にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端アミノ基濃度を算出した。
末端アミノ基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(ml)、B;ブランク滴定量(ml)、f;規定液のファクター、C;試料量(g))。
(Method for measuring terminal amino group concentration)
0.5 g of sample is dissolved in 30 ml of phenol / ethanol = 4/1 (volume ratio), 5 ml of methanol is added, and an automatic titration apparatus (“COM-2000” manufactured by Hiranuma Seisakusho) is used with 0.01 N hydrochloric acid as a titrant. Titration with The same operation titrated without adding a sample was used as a blank, and the terminal amino group concentration was calculated from the following formula.
Terminal amino group concentration (μeq / g) = (A−B) × f × 10 / C
(A: titer (ml), B: blank titer (ml), f: factor of normal solution, C: sample amount (g)).

(末端カルボキシル基濃度の測定方法)
試料0.5gを30mlのベンジルアルコールに溶解させ、メタノール10ml加え、滴定液として0.01規定の水酸化ナトリウム溶液にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端カルボキシル基濃度を算出した。
末端カルボキシル基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(ml)、B;ブランク滴定量(ml)、f;規定液のファクター、C;試料量(g))。
(Measurement method of terminal carboxyl group concentration)
0.5 g of a sample was dissolved in 30 ml of benzyl alcohol, 10 ml of methanol was added, and titration was performed with an automatic titration apparatus (“COM-2000” manufactured by Hiranuma Seisakusho) with 0.01 N sodium hydroxide solution as a titrant. The same operation titrated without adding a sample was used as a blank, and the terminal carboxyl group concentration was calculated from the following formula.
Terminal carboxyl group concentration (μeq / g) = (A−B) × f × 10 / C
(A: titer (ml), B: blank titer (ml), f: factor of normal solution, C: sample amount (g)).

(半結晶化時間の測定方法)
各温度にて、ペレットを溶融させ、各温度にて樹脂を結晶化させた場合、すべてが結晶化する時間を結晶化時間といい、結晶化50%到達時間を半結晶化時間という。半結晶化時間の測定は、脱偏光強度法により行った。脱偏光強度法は、結晶化により樹脂を透過する光が複屈折を起こす現象を利用して、光源と偏光板及び受光素子からなる装置を用いて樹脂の結晶化の進行度を測定する方法である。非晶または溶融状態の検体を結晶化させると、結晶化の進行度に比例して偏光板を透過する光量が変化する。測定条件において変化する透過光量の半分、すなわち半分の結晶化迄にかかる時間を半結晶化時間とした。なお、半結晶化時間は、測定温度で異なるが、以下の記載においては、各温度の半結晶化時間の内、最も半結晶化時間の短いものを「半結晶化時間」として記載した。また、結晶化時間及び半結晶化時間の測定には(株)コタキ製作所製「ポリマー結晶化速度測定装置 MK−701型」を使用した。
(Measurement method of semi-crystallization time)
When the pellet is melted at each temperature and the resin is crystallized at each temperature, the time for all to crystallize is called the crystallization time, and the time for reaching 50% crystallization is called the semi-crystallization time. The half crystallization time was measured by the depolarized intensity method. The depolarization intensity method is a method of measuring the progress of crystallization of a resin using a device comprising a light source, a polarizing plate and a light receiving element, utilizing the phenomenon that light transmitted through the resin due to crystallization causes birefringence. is there. When an amorphous or molten specimen is crystallized, the amount of light transmitted through the polarizing plate changes in proportion to the progress of crystallization. The half crystallization time was defined as half the amount of transmitted light that changes under the measurement conditions, that is, half the time required for crystallization. Although the half crystallization time varies depending on the measurement temperature, in the following description, the shortest half crystallization time among the half crystallization times at each temperature is described as “half crystallization time”. Further, “Polymer Crystallization Rate Measuring Device Model MK-701” manufactured by Kotaki Manufacturing Co., Ltd. was used for measurement of crystallization time and semi-crystallization time.

(ポリアミド樹脂の合成条件)
反応缶内でジカルボン酸を170℃にて加熱し、溶融した後、内容物を攪拌しながら、メタキシリレンジアミンをジカルボン酸とのモル比が1:1となるように徐々に連続的に滴下し、かつ温度を240℃まで上昇させた。滴下終了後、260℃に昇温し、反応を継続した。反応終了後、反応缶内を窒素にて微加圧し、穴を有するダイヘッドからストランドを押出し、ペレタイザーでペレット化した。得られたペレットをタンブラーに仕込み、減圧下で固相重合し、分子量及びMFRを調整したポリアミド樹脂を得た。
(Polyamide resin synthesis conditions)
After the dicarboxylic acid is heated and melted at 170 ° C. in the reaction vessel, the metaxylylenediamine is added dropwise gradually and continuously so that the molar ratio with the dicarboxylic acid becomes 1: 1 while stirring the contents. And the temperature was raised to 240 ° C. After completion of dropping, the temperature was raised to 260 ° C. and the reaction was continued. After completion of the reaction, the inside of the reaction can was slightly pressurized with nitrogen, the strand was extruded from a die head having holes, and pelletized with a pelletizer. The obtained pellets were charged into a tumbler and subjected to solid phase polymerization under reduced pressure to obtain a polyamide resin having an adjusted molecular weight and MFR.

(実施例1)
(ポリアミド1の合成)
メタキシリレンジアミンとセバシン酸を1:1の割合のモル比で使用し、前記合成条件にてポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド1と表記する)。なお、固相重合時の温度は、160℃とした。ポリアミド1は、Tg63℃、融点193℃、末端アミノ基濃度は15.9μeq/g、末端カルボキシル基濃度は70.3μeq/g、数平均分子量は23000、半結晶化時間は154秒、240℃のMFRが7.8g/10分であった。また、得られたポリアミド1単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、1.58cc・mm/(m・日・atm)(23℃・60%RH)であった。
Example 1
(Synthesis of polyamide 1)
Metaxylylenediamine and sebacic acid were used in a molar ratio of 1: 1, and a polyamide resin was synthesized under the above synthesis conditions (hereinafter, the polyamide resin is referred to as polyamide 1). The temperature during solid phase polymerization was 160 ° C. Polyamide 1 has a Tg of 63 ° C., a melting point of 193 ° C., a terminal amino group concentration of 15.9 μeq / g, a terminal carboxyl group concentration of 70.3 μeq / g, a number average molecular weight of 23,000, a half-crystallization time of 154 seconds, and 240 ° C. MFR was 7.8 g / 10min. Moreover, when the unstretched film was produced with the obtained polyamide 1 alone and the oxygen permeability coefficient was determined, it was 1.58 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). .

ポリアミド1に遷移金属触媒として、ステアリン酸コバルトをコバルト濃度400ppmとなるよう二軸押出機にて、溶融したポリアミド1にサイドフィードにて添加した。さらに、得られたポリアミド1とステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド1Aと表記する)に、ポリオレフィン樹脂として、直鎖状低密度ポリエチレン(製品名;日本ポリエチレン(株)製「カーネルKF380」、MFR4.0g/10分(JIS K7210に準拠して測定)、240℃のMFR8.7g/10分、250℃のMFR10.0g/10分、以下LLDPEと表記する)を、ステアリン酸コバルト含有ポリアミド1A:LLDPE=35:65の重量比で、240℃にて溶融混練し、酸素吸収樹脂ペレットAを得た。次いで、該ペレットを用いて厚さ30μmの単層の酸素吸収樹脂組成物からなるフィルムを得たところ、そのフィルムの外観は、良好で、HAZEは、28%であった。そのフィルムを10×10mmのフィルムとし、該フィルムを袋内の湿度が30%、及び100%のアルミ箔積層フィルムからなるガスバリア袋に、空気150ccと共にそれぞれ2枚ずつ充填密封し、40℃下に保管して、保管開始から7日間の酸素吸収量を調査した。また、1ヶ月保管後のフィルムの伸び率を調査した。これらの結果を表1に示した。   Cobalt stearate was added to polyamide 1 as a transition metal catalyst by a side feed to molten polyamide 1 with a twin screw extruder so as to have a cobalt concentration of 400 ppm. Furthermore, a linear low density polyethylene (product name; manufactured by Nippon Polyethylene Co., Ltd.) “Kernel” is used as a polyolefin resin in a mixture of the obtained polyamide 1 and cobalt stearate (hereinafter referred to as cobalt stearate-containing polyamide 1A). KF380 ”, MFR 4.0 g / 10 min (measured in accordance with JIS K7210), 240 ° C. MFR 8.7 g / 10 min, 250 ° C. MFR 10.0 g / 10 min, hereinafter referred to as LLDPE), cobalt stearate Polyamide 1A: LLDPE = 35: 65 was melt kneaded at 240 ° C. to obtain oxygen-absorbing resin pellets A. Next, when a film made of a single layer oxygen-absorbing resin composition having a thickness of 30 μm was obtained using the pellets, the appearance of the film was good and the HAZE was 28%. The film is made into a 10 × 10 mm film, and the film is filled and sealed in a gas barrier bag made of an aluminum foil laminated film having a humidity of 30% and 100% in a bag together with 150 cc of air, respectively, at 40 ° C. After storage, the oxygen absorption amount for 7 days from the start of storage was investigated. In addition, the elongation percentage of the film after one month storage was investigated. These results are shown in Table 1.

(実施例2)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1A:LLDPE=55:45とした以外は、実施例1と同様にして酸素吸収樹脂組成物からなるフィルムを得た後、実施例1と同様の保存試験を実施した。これらの結果を表1に示した。
(Example 2)
A film made of the oxygen-absorbing resin composition was obtained in the same manner as in Example 1 except that the weight ratio during melt-kneading was changed to cobalt stearate-containing polyamide 1A: LLDPE = 55: 45. A storage test was performed. These results are shown in Table 1.

(実施例3)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1A:LLDPE=25:75とした以外は、実施例1と同様にして酸素吸収樹脂組成物からなるフィルムを得た後、実施例1と同様の保存試験を実施した。これらの結果を表1に示した。
(Example 3)
A film made of the oxygen-absorbing resin composition was obtained in the same manner as in Example 1 except that the weight ratio during melt-kneading was changed to cobalt stearate-containing polyamide 1A: LLDPE = 25: 75. A storage test was performed. These results are shown in Table 1.

(比較例1)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1A:LLDPE=80:20とした以外は、実施例1と同様にして酸素吸収樹脂組成物からなるフィルムを得た後、実施例1と同様の保存試験を実施した。これらの結果を表1に示した。
(Comparative Example 1)
A film made of the oxygen-absorbing resin composition was obtained in the same manner as in Example 1 except that the weight ratio during melt-kneading was changed to cobalt stearate-containing polyamide 1A: LLDPE = 80: 20. A storage test was performed. These results are shown in Table 1.

(比較例2)
LLDPEと溶融混練せず、ステアリン酸コバルト含有ポリアミド1Aのみのフィルムとした以外は、実施例1と同様にして酸素吸収樹脂組成物からなるフィルムを得た後、実施例1と同様の保存試験を実施した。これらの結果を表1に示した。
(Comparative Example 2)
A film made of the oxygen-absorbing resin composition was obtained in the same manner as in Example 1 except that it was not melt-kneaded with LLDPE and made of only cobalt stearate-containing polyamide 1A, and then the same storage test as in Example 1 was performed. Carried out. These results are shown in Table 1.

Figure 2010013638
Figure 2010013638

実施例1〜3から明らかなように、本発明の酸素吸収樹脂組成物は、高湿度下、低湿度下にて良好な酸素吸収性能を示し、かつ酸素吸収後のフィルム弾性を保持し、さらに、加工性の良好な樹脂組成物であった。   As is clear from Examples 1 to 3, the oxygen-absorbing resin composition of the present invention exhibits good oxygen absorption performance under high humidity and low humidity, and retains film elasticity after oxygen absorption. The resin composition had good processability.

(実施例4)
酸素吸収樹脂ペレットAをコア層とし、スキン層をLLDPEとした、2種3層フィルム1(厚み;10μm/20μm/10μm)を、幅800mmで、120m/分で、片面をコロナ放電処理して、作製した。得られたフィルムの外観は良好で、HAZEは28%であった。コロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン(株)製 TM251/CAT−RT88、以下、ラミネート用接着剤と表記する)を用いて、ナイロンフィルムA(製品名;東洋紡績(株)製 N1202、以下、ONyと表記する)、アルミ箔及びPETフィルムA(製品名;東洋紡績(株)製 E5100)を積層し、PETフィルムA(12)/ラミネート用接着剤(3)/アルミ箔(9)/ラミネート用接着剤(3)/ONy(15)/ラミネート用接着剤(3)/LLDPE(10)/酸素吸収樹脂組成物(20)/LLDPE(10)の酸素吸収多層フィルムを得た。尚、括弧内の数字は各層の厚さ(単位:μm)を意味する。また、以下の実施例でも特別な断りがない限り、同様の表記をする。次いで、該酸素吸収多層フィルムを用いて、15×20cmの三方シール袋を作製し、水分活性0.35のビタミンC錠剤を200g充填し、密封後、40℃下にて保存した。1ヶ月保存後の袋内酸素濃度及び外観を調査した所、袋内酸素濃度は、0.1%以下であり、ビタミンC錠剤の外観は、良好に保持されていた。
Example 4
Two-layer three-layer film 1 (thickness: 10 μm / 20 μm / 10 μm) having oxygen absorbing resin pellet A as a core layer and skin layer as LLDPE was corona discharge treated on one side at a width of 800 mm and 120 m / min. Made. The appearance of the obtained film was good, and HAZE was 28%. Nylon film A (product name: Toyo) using urethane-type dry laminate adhesive (product name: TM251 / CAT-RT88, hereinafter referred to as laminate adhesive) manufactured on the corona-treated surface side. N1202, manufactured by Spinning Co., Ltd., hereinafter referred to as ONy), aluminum foil and PET film A (product name; E5100 manufactured by Toyobo Co., Ltd.) are laminated, and PET film A (12) / laminating adhesive (3 ) / Aluminum foil (9) / Laminating adhesive (3) / ONy (15) / Laminating adhesive (3) / LLDPE (10) / Oxygen absorbing resin composition (20) / LLDPE (10) oxygen absorption A multilayer film was obtained. The numbers in parentheses mean the thickness of each layer (unit: μm). In the following examples, the same notation is used unless otherwise specified. Next, using this oxygen-absorbing multilayer film, a 15 × 20 cm three-side sealed bag was prepared, filled with 200 g of a vitamin C tablet having a water activity of 0.35, sealed, and stored at 40 ° C. When the oxygen concentration in the bag and the appearance after storage for 1 month were examined, the oxygen concentration in the bag was 0.1% or less, and the appearance of the vitamin C tablet was well maintained.

(実施例5)
実施例4で得られた、2種3層フィルム1を用いて、低密度ポリエチレン(製品名;三井化学(株)製「ミラソン18SP」、以下PEと表記する)による押し出しラミネートにて、晒クラフト紙(坪量340g/m)/ラミネート用接着剤(3)/アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製「GL-AEH」、12)/ウレタン系アンカーコート剤(東洋モートン(株)製「EL−557A/B」、0.5)/PE(20)/LLDPE(10)/酸素吸収樹脂(20)/LLDPE(10)の酸素吸収多層紙基材を得た。この基材を、1リットル用のゲーベルトップ型の紙容器に成形した。容器の成形性は良好であった。この紙容器に、日本酒を充填し、密封後、40℃下にて保存した。1ヶ月後の風味及び紙容器内の酸素濃度は、0.1%以下であり、日本酒の風味は良好に保持されていた。
(Example 5)
Bleached kraft by extrusion lamination with low-density polyethylene (product name: “Mirason 18SP” manufactured by Mitsui Chemicals, Inc., hereinafter referred to as PE) using the two-type three-layer film 1 obtained in Example 4. Paper (basis weight 340 g / m 2 ) / laminating adhesive (3) / alumina-deposited PET film (product name: “GL-AEH”, 12 manufactured by Toppan Printing Co., Ltd.) / Urethane anchor coating agent (Toyo Morton ( An oxygen-absorbing multilayer paper substrate of “EL-557A / B”, 0.5) / PE (20) / LLDPE (10) / oxygen-absorbing resin (20) / LLDPE (10) was obtained. This base material was formed into a 1-liter paperbell-top type paper container. The moldability of the container was good. This paper container was filled with sake, sealed, and stored at 40 ° C. The flavor after one month and the oxygen concentration in the paper container were 0.1% or less, and the flavor of sake was well maintained.

(実施例6)
LLDPEに代えてエチレン−プロピレンブロック共重合体(製品名;日本ポリプロ(株)製「ノバテック FG3DC」、230℃のMFR9.5g/10分、240℃のMFR10.6g/10分、以下PP1と表記する)を使用した以外は実施例1と同様にして酸素吸収樹脂ペレットBを得た。次いで、酸素吸収樹脂ペレットBをコア層とし、スキン層をLLDPEに代えてPP1とした以外は実施例4と同様にして、2種3層フィルム2(厚み;15μm/30μm/15μm)を作製した。得られたフィルムのHAZEは64%であった。コロナ処理面側にラミネート用接着剤を用いて、アルミナ蒸着PET(製品名;凸版印刷(株)製「GL-AEH」)及びONyを積層し、アルミナ蒸着PET(12)/ラミネート用接着剤(3)/ONy(15)/ラミネート用接着剤(3)/PP1(15)/酸素吸収樹脂(30)/PP1(15)の酸素吸収多層フィルムを得た。次いで、該酸素吸収多層フィルムを用いて、10×20cmの三方シール袋を作製し、その一部に直径2mmの円状の通蒸口を設け、その通蒸口をラベルシールにて周辺を仮着した。その袋に、ニンジン、肉を含んだカレーを充填し、密封後、124℃、30分のレトルト調理、加熱殺菌した後、40℃下にて保存した。1ヶ月後、袋をそのまま電子レンジにて約4分加熱し、約3分後には、袋が膨張し、仮着したラベルシール部が剥がれ、通蒸口から蒸気が出ることを確認した。調理終了後、カレーの風味、ニンジンの色調を調査した所、ニンジンの外観は、良好に保持され、カレーの風味は良好であった。
(Example 6)
Instead of LLDPE, ethylene-propylene block copolymer (product name: “NOVATEC FG3DC” manufactured by Nippon Polypro Co., Ltd., MFR 9.5 g / 10 min at 230 ° C., MFR 10.6 g / 10 min at 240 ° C., hereinafter referred to as PP1) Oxygen-absorbing resin pellets B were obtained in the same manner as in Example 1 except that was used. Subsequently, a two-layer three-layer film 2 (thickness: 15 μm / 30 μm / 15 μm) was produced in the same manner as in Example 4 except that the oxygen-absorbing resin pellet B was used as a core layer and the skin layer was replaced with PP1 instead of LLDPE. . The obtained film had a HAZE of 64%. Alumina-deposited PET (product name: “GL-AEH” manufactured by Toppan Printing Co., Ltd.) and ONy are laminated on the corona-treated surface side using a laminating adhesive, and alumina-deposited PET (12) / laminating adhesive ( 3) An oxygen-absorbing multilayer film of / ONy (15) / laminate adhesive (3) / PP1 (15) / oxygen-absorbing resin (30) / PP1 (15) was obtained. Next, using this oxygen-absorbing multilayer film, a 10 × 20 cm three-sided sealing bag is prepared, and a circular steaming port having a diameter of 2 mm is provided on a part of the bag, and the periphery of the steaming port is temporarily sealed with a label seal. I wore it. The bag was filled with curry containing carrot and meat, sealed, retort cooked at 124 ° C. for 30 minutes, heat sterilized, and stored at 40 ° C. One month later, the bag was heated as it was for about 4 minutes in a microwave oven, and after about 3 minutes, the bag was inflated, the temporarily attached label seal part was peeled off, and it was confirmed that steam was emitted from the steaming port. After cooking, when the flavor of the curry and the color of the carrot were investigated, the appearance of the carrot was kept well, and the flavor of the curry was good.

(比較例3)
平均粒径20μmの鉄粉と塩化カルシウムを100:1の割合で混合し、LLDPEと30:70の重量比で混練して、鉄系酸素吸収樹脂組成物Aを得た。鉄系酸素吸収樹脂組成物Aをコア層とし、実施例4と同様に2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、フィルムが得られなかった。そのため、厚さ40μmのLLDPEに酸素吸収層として、鉄系酸素吸収樹脂組成物Aを厚さ20μmで押出ラミネートし、酸素吸収層面をコロナ放電処理したラミネートフィルムを得た。このラミネートフィルムを実施例5同様に晒クラフト紙と積層し、晒クラフト紙(坪量340g/m)/ラミネート用接着剤(3)/アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製「GL-AEH」、12)/ウレタン系アンカーコート剤(東洋モートン(株)製「EL−557A/B」、0.5)/PE(20)/鉄系酸素吸収樹脂組成物A(20)/LLDPE(40)の酸素吸収多層紙基材からなるゲーベルトップ型紙容器を作製しようとしたが、厚みが厚く、紙容器の角を作製することが困難であった。容器作製速度を落とし、不良品を排除してようやく容器得た。以下、実施例5と同様に、日本酒の保存試験を行ったが、開封時アルデヒド臭が発生しており、風味は著しく低下した。
(Comparative Example 3)
Iron powder having an average particle size of 20 μm and calcium chloride were mixed at a ratio of 100: 1 and kneaded at a weight ratio of LLDPE of 30:70 to obtain an iron-based oxygen-absorbing resin composition A. An iron-based oxygen-absorbing resin composition A was used as a core layer, and an attempt was made to produce a two-kind / three-layer film in the same manner as in Example 4. However, irregularities of iron powder occurred on the film surface, and no film was obtained. Therefore, an iron-based oxygen-absorbing resin composition A was extruded and laminated to a thickness of 20 μm as an oxygen-absorbing layer on LLDPE having a thickness of 40 μm, and a laminate film was obtained in which the oxygen-absorbing layer surface was subjected to corona discharge treatment. This laminate film was laminated with bleached kraft paper as in Example 5, bleached kraft paper (basis weight 340 g / m 2 ) / laminating adhesive (3) / alumina-deposited PET film (product name: manufactured by Toppan Printing Co., Ltd.) "GL-AEH", 12) / urethane anchor coating agent ("EL-557A / B" manufactured by Toyo Morton Co., Ltd., 0.5) / PE (20) / iron-based oxygen absorbing resin composition A (20) An attempt was made to produce a Gobeltop type paper container comprising an oxygen-absorbing multilayer paper base material of / LLDPE (40), but it was thick and it was difficult to produce the corners of the paper container. The container production speed was reduced and defective products were finally removed to obtain a container. Thereafter, a preservation test of sake was conducted in the same manner as in Example 5. However, an aldehyde odor was generated at the time of opening, and the flavor was significantly reduced.

(比較例4)
LLDPEに代えて、PP1を使用した以外は比較例3と同様にして、鉄系酸素吸収樹脂組成物Bを得た。次いで、鉄系酸素吸収樹脂組成物B(20)/PP1(40)のラミネートフィルムを作製後、酸素吸収層面をコロナ放電処理した。以下実施例6と同様にして、アルミナ蒸着PET(製品名;凸版印刷(株)製「GL-AEH」、12)/ラミネート用接着剤(3)/ONy(15)/接着剤(3)/鉄系酸素吸収樹脂組成物B(20)/PP1(40)の酸素吸収多層フィルムを得た。得られた酸素吸収多層フィルムを用いて実施例6と同様の試験をした結果、風味は良好に保持されていたが、内容物は視認できず、電子レンジ加熱時に、表面に気泡状のムラが発生した。
(Comparative Example 4)
An iron-based oxygen-absorbing resin composition B was obtained in the same manner as in Comparative Example 3 except that PP1 was used instead of LLDPE. Subsequently, after producing the laminated film of iron-type oxygen absorption resin composition B (20) / PP1 (40), the oxygen absorption layer surface was subjected to corona discharge treatment. Hereinafter, in the same manner as in Example 6, alumina-deposited PET (product name: “GL-AEH”, 12 manufactured by Toppan Printing Co., Ltd.) / Laminating adhesive (3) / ONy (15) / adhesive (3) / An oxygen-absorbing multilayer film of iron-based oxygen-absorbing resin composition B (20) / PP1 (40) was obtained. As a result of performing the same test as in Example 6 using the obtained oxygen-absorbing multilayer film, the flavor was well maintained, but the contents were not visible, and when the microwave oven was heated, bubble-like unevenness was observed on the surface. Occurred.

実施例5〜6から明らかなように、本発明の酸素吸収樹脂組成物は、紙容器への加工性に優れ、アルコール飲料の保存や、電子レンジ加熱調理の際、通蒸口をとりつけても良好な保存容器となった。また、内部視認性も有しており、内容物の色調等を確認することができた。   As is clear from Examples 5 to 6, the oxygen-absorbing resin composition of the present invention is excellent in processability into a paper container, and even when a steam inlet is attached during storage of an alcoholic beverage or cooking in a microwave oven. It became a good storage container. Moreover, it also has internal visibility, and the color tone of the contents could be confirmed.

本発明は、特定のポリアミド樹脂と遷移金属にポリオレフィン樹脂を、特定の割合でブレンドすることにより、低湿度、高湿度における酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れ、様々な容器や用途に適用できる酸素吸収樹脂組成物であった。   The present invention blends a specific polyamide resin and a transition metal with a polyolefin resin at a specific ratio, so that the oxygen absorption performance at low humidity and high humidity is excellent, the resin strength after storage is maintained, and the processability is further improved. And an oxygen-absorbing resin composition applicable to various containers and uses.

(実施例7)
ポリアミド1に遷移金属触媒として、ステアリン酸コバルトをコバルト濃度200ppmとなるよう二軸押出機にて、溶融したポリアミド1にサイドフィードにて添加した。さらに、得られたポリアミド1とステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド1Bと表記する)に、ポリオレフィン樹脂として、LLDPEを、ステアリン酸コバルト含有ポリアミド1B:LLDPE=40:60の重量比で、240℃にて溶融混練し、酸素吸収樹脂ペレットCを得た。
(Example 7)
Cobalt stearate was added to polyamide 1 as a transition metal catalyst by a side feed to molten polyamide 1 with a twin screw extruder so as to have a cobalt concentration of 200 ppm. Furthermore, LLDPE is used as a polyolefin resin in the obtained polyamide 1 and cobalt stearate mixture (hereinafter referred to as cobalt stearate-containing polyamide 1B), and a weight ratio of cobalt stearate-containing polyamide 1B: LLDPE = 40: 60. Then, it was melt kneaded at 240 ° C. to obtain oxygen-absorbing resin pellets C.

得られた酸素吸収樹脂ペレットCを酸素吸収樹脂層とし、LLDPEを酸素透過層とした、2種2層フィルム1(厚さ;酸素吸収樹脂層20μm/酸素透過層10μm)を、幅800mmで、130m/分で、酸素吸収樹脂層面をコロナ放電処理し、フィルムロールを作製した。フィルムロールにコブ等の偏肉はなく、得られたフィルムの外観は良好で、HAZEは72%であった。コロナ処理面側にラミネート用接着剤を用いて、ONy、アルミ箔及びPETフィルムA(製品名;東洋紡績(株)製 E5100)を積層し、PETフィルムA(12)/ラミネート用接着剤(3)/アルミ箔(9)/ラミネート用接着剤(3)/ONy(15)/ラミネート用接着剤(3)/酸素吸収樹脂(20)/LLDPE(10)の酸素吸収多層体からなる酸素吸収多層フィルムを得た。次いで、該酸素吸収多層フィルムを用いて、LLDPE層側を内面にして15×20cmの三方シール袋を作製し、水分活性0.35の粉末調味料「だしの素」を200g充填し、密封、40℃下にて保存した。7日目及び1ヶ月保存後の袋内酸素濃度及び粉末調味料の風味を調査した。これらの結果を表2に示した。   The obtained oxygen-absorbing resin pellet C was used as an oxygen-absorbing resin layer, and LLDPE was used as an oxygen-permeable layer. A two-layer two-layer film 1 (thickness; oxygen-absorbing resin layer 20 μm / oxygen-permeable layer 10 μm) having a width of 800 mm, The surface of the oxygen-absorbing resin layer was subjected to corona discharge treatment at 130 m / min to produce a film roll. The film roll had no uneven thickness such as bumps, the appearance of the obtained film was good, and the HAZE was 72%. Using a laminating adhesive on the corona-treated surface side, ONy, aluminum foil and PET film A (product name: E5100 manufactured by Toyobo Co., Ltd.) are laminated, and PET film A (12) / laminating adhesive (3 ) / Aluminum foil (9) / adhesive for laminating (3) / ONy (15) / adhesive for laminating (3) / oxygen absorbing resin (20) / oxygen absorbing multilayer comprising LLDPE (10) A film was obtained. Next, using the oxygen-absorbing multilayer film, a 15 × 20 cm three-sided sealed bag with the LLDPE layer side as the inner surface was prepared, filled with 200 g of a powder seasoning “Dashi no Moto” having a water activity of 0.35, and sealed. Stored at 40 ° C. The oxygen concentration in the bag and the flavor of the powder seasoning were examined on the 7th day and after 1 month storage. These results are shown in Table 2.

(実施例8)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1B:LLDPE=55:45とした以外は、実施例7と同様にして酸素吸収多層フィルムを得た後、三方シール袋を作製して、実施例7と同様の保存試験を実施した。これらの結果を表2に示した。
(Example 8)
An oxygen-absorbing multilayer film was obtained in the same manner as in Example 7 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1B: LLDPE = 55: 45. The same storage test as in No. 7 was performed. These results are shown in Table 2.

(実施例9)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1B:LLDPE=25:75とした以外は、実施例7と同様にして酸素吸収多層フィルムを得た後、三方シール袋を作製して、実施例7と同様の保存試験を実施した。これらの結果を表2に示した。
Example 9
An oxygen-absorbing multilayer film was obtained in the same manner as in Example 7 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1B: LLDPE = 25: 75. The same storage test as in No. 7 was performed. These results are shown in Table 2.

(実施例10)
(ポリアミド2の合成)
メタキシリレンジアミンとセバシン酸とアジピン酸とを、10:8:2の割合のモル比で使用し、ポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド2と表記する)。なお、固相重合時の温度は、160℃とした。このポリアミド2は、Tg68℃、融点188℃、末端アミノ基濃度16.2μeq/g、末端カルボキシル基濃度70.7μeq/g、半結晶化時間は144秒、数平均分子量は23000、240℃のMFRが7.6g/10分であった。また、得られたポリアミド2単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、1.18cc・mm/(m・日・atm)(23℃・60%RH)であった。
(Example 10)
(Synthesis of polyamide 2)
Metaxylylenediamine, sebacic acid and adipic acid were used in a molar ratio of 10: 8: 2 to synthesize a polyamide resin (hereinafter, the polyamide resin is referred to as polyamide 2). The temperature during solid phase polymerization was 160 ° C. This polyamide 2 has a Tg of 68 ° C., a melting point of 188 ° C., a terminal amino group concentration of 16.2 μeq / g, a terminal carboxyl group concentration of 70.7 μeq / g, a semi-crystallization time of 144 seconds, a number average molecular weight of 23,000, and an MFR of 240 ° C. Was 7.6 g / 10 min. Moreover, when the unstretched film was produced with the obtained polyamide 2 single-piece | unit and the oxygen permeability coefficient was calculated | required, it was 1.18cc * mm / (m < 2 > * day * atm) (23 degreeC * 60% RH). .

以下、ポリアミド1に代えてポリアミド2を使用した以外は、実施例7と同様にして酸素吸収多層フィルムを得た後、三方シール袋を作製して、実施例7と同様の保存試験を実施した。これらの結果を表2に示した。   Hereinafter, except that polyamide 2 was used in place of polyamide 1, an oxygen-absorbing multilayer film was obtained in the same manner as in Example 7, and then a three-side sealed bag was prepared, and the same storage test as in Example 7 was performed. . These results are shown in Table 2.

(比較例5)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1B:LLDPE=70:30とした以外は、実施例7と同様にして酸素吸収多層フィルムを得た後、三方シール袋を作製して、実施例7と同様の保存試験を実施した。これらの結果を表2に示した。
(Comparative Example 5)
After obtaining an oxygen-absorbing multilayer film in the same manner as in Example 7 except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1B: LLDPE = 70: 30, a three-side sealed bag was prepared, and Example The same storage test as in No. 7 was performed. These results are shown in Table 2.

(比較例6)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1B:LLDPE=15:85とした以外は、実施例7と同様にして酸素吸収多層フィルムを得た後、三方シール袋を作製して、実施例7と同様の保存試験を実施した。これらの結果を表2に示した。
(Comparative Example 6)
An oxygen-absorbing multilayer film was obtained in the same manner as in Example 7 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1B: LLDPE = 15: 85. The same storage test as in No. 7 was performed. These results are shown in Table 2.

Figure 2010013638
Figure 2010013638

(実施例11)
酸素吸収樹脂ペレットCをコア層とし、LLDPEをスキン層とした、2種3層フィルム3(厚さ;10μm/20μm/10μm)を、幅800mmで、130m/分で、片面をコロナ放電処理し、フィルムロールを作製した。フィルムロールは、実施例7〜10で作製したフィルムロールより、さらに良好であった。
2種3層フィルム3を用いて、PEによる押し出しラミネートにて、アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製 GL-AEH、12)/ラミネート用接着剤(3)/ONy(15)/ウレタン系アンカーコート剤(東洋モートン(株)製 EL−557A/B、0.5)/PE(20)/LLDPE(10)/酸素吸収樹脂(20)/LLDPE(10)の酸素吸収多層体からなる酸素吸収多層フィルムを得た。このフィルムを、LLDPE層側を内面にして側面フィルム2枚と底面フィルム1枚の自立性袋(130×175×35mm)に加工したところ、袋加工性は良好であった。その袋に、40袋/分の速度で、高速自動充填にて、アスパラを酢酸を含有した溶液と共に計150g充填したところ、袋開口性が良好で、ヒートシールも問題なく行なえた。充填、密封した袋、10個を90℃・30分のボイル処理を行い、40℃下にて保存し、1ヶ月後のアスパラの風味及び自立袋の外観を調査した。アスパラは袋外部から視認でき、アスパラの風味、色調は良好に保持されており、袋の外観に異常はなかった。
(Example 11)
Two-layer three-layer film 3 (thickness: 10 μm / 20 μm / 10 μm) with oxygen-absorbing resin pellet C as a core layer and LLDPE as a skin layer is subjected to corona discharge treatment on one side at a width of 800 mm and 130 m / min. A film roll was prepared. The film roll was even better than the film rolls made in Examples 7-10.
Alumina-deposited PET film (product name: GL-AEH, 12 manufactured by Toppan Printing Co., Ltd.) / Adhesive for laminating (3) / ONy (15) by extrusion lamination with PE using two types of three-layer film 3 / Urethane anchor coating agent (EL-557A / B, 0.5 manufactured by Toyo Morton Co., Ltd.) / PE (20) / LLDPE (10) / Oxygen absorbing resin (20) / LLDPE (10) oxygen absorbing multilayer An oxygen-absorbing multilayer film consisting of When this film was processed into a self-supporting bag (130 × 175 × 35 mm) of two side films and one bottom film with the LLDPE layer side as the inner surface, the bag processability was good. The bag was filled with 150 g of asparagus together with a solution containing acetic acid at a rate of 40 bags / minute by high-speed automatic filling. As a result, the bag opening was good and heat sealing could be performed without any problem. Ten filled and sealed bags were boiled at 90 ° C. for 30 minutes, stored at 40 ° C., and the asparagus flavor and the appearance of the self-supporting bag after one month were investigated. Asparagus was visible from the outside of the bag, the asparagus flavor and color tone were well maintained, and there was no abnormality in the appearance of the bag.

(比較例7)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1B:LLDPE=80:20とした以外は、実施例7と同様にして酸素吸収樹脂ペレットを作製した後、該ペレットを使用して実施例11と同様にして酸素吸収多層フィルムを作製し、自立性袋に加工した。実施例11と同様にしてアスパラを酢酸を含有した溶液と共に計150g充填したところ、該袋のシール強度は低く、特に、酸素透過層と酸素吸収樹脂層との剥離が生じた。そのまま、充填した袋を90℃・30分のボイル処理を行ったが、6袋に破袋が生じていた。残った袋にて実施例11と同様の保存試験したところ、アスパラの風味、色調が低下していた。袋の外観には異常はなかった。
(Comparative Example 7)
An oxygen-absorbing resin pellet was prepared in the same manner as in Example 7 except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1B: LLDPE = 80: 20. Similarly, an oxygen-absorbing multilayer film was produced and processed into a self-supporting bag. When 150 g of asparagus was filled with a solution containing acetic acid in the same manner as in Example 11, the sealing strength of the bag was low, and in particular, peeling between the oxygen permeable layer and the oxygen absorbing resin layer occurred. The filled bags were boiled at 90 ° C. for 30 minutes as they were, but 6 bags were broken. When the same storage test as in Example 11 was performed on the remaining bag, the flavor and color tone of asparagus were reduced. There was no abnormality in the appearance of the bag.

(比較例8)
酸素吸収樹脂ペレットCに代えて鉄系酸素吸収樹脂組成物Aを使用して、実施例11と同様に2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、フィルムが得られなかった。そのため、厚さ40μmの直鎖状低密度ポリエチレンB(製品名;(株)オカモト製 LRW)からなるフィルムに、酸素吸収樹脂層として鉄系酸素吸収樹脂組成物Aを厚さ20μmで押出ラミネートし、酸素吸収樹脂層面をコロナ放電処理したラミネートフィルムを得た。そのラミネートフィルムを実施例11と同様にラミネートし、アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製 GL-AEH、12)/ラミネート用接着剤(3)/ONy(15)/ウレタン系アンカーコート剤(製品名;東洋モートン(株)製 EL−557A/B、0.5)/PE(20)/鉄系酸素吸収樹脂組成物A(20)/直鎖状低密度ポリエチレンB(40)の鉄系酸素吸収多層体を作製し、実施例11と同様にして、自立性袋に加工した。実施例11と同様に、アスパラを酢酸を含有した溶液と共に計150g充填しようと試みたところ、袋開口性が悪く、数袋において、内容物がこぼれ出し、充填することができなかった。さらに、実施例11と同様にしてボイル処理後、保存試験を実施したが、アスパラは袋外部から視認できなかったため、袋を開封した。アスパラの風味、色調は良好に保持されていたものの、袋の外観には、凹凸が生じ、一部デラミネーションが発生していた。
(Comparative Example 8)
Using the iron-based oxygen-absorbing resin composition A in place of the oxygen-absorbing resin pellet C, an attempt was made to produce a two-kind three-layer film in the same manner as in Example 11, but iron powder irregularities occurred on the film surface, A film was not obtained. Therefore, an iron-based oxygen-absorbing resin composition A as an oxygen-absorbing resin layer is extruded and laminated to a thickness of 20 μm on a film made of linear low-density polyethylene B (product name; LRW manufactured by Okamoto Co., Ltd.) having a thickness of 40 μm. Then, a laminate film in which the oxygen-absorbing resin layer surface was subjected to corona discharge treatment was obtained. The laminate film was laminated in the same manner as in Example 11, and alumina-deposited PET film (product name: GL-AEH, 12 manufactured by Toppan Printing Co., Ltd.) / Laminating adhesive (3) / ONy (15) / urethane anchor Coating agent (product name; manufactured by Toyo Morton Co., Ltd. EL-557A / B, 0.5) / PE (20) / iron-based oxygen-absorbing resin composition A (20) / linear low-density polyethylene B (40) The iron-based oxygen-absorbing multilayer was prepared and processed into a self-supporting bag in the same manner as in Example 11. As in Example 11, an attempt was made to fill a total of 150 g of asparagus with a solution containing acetic acid. As a result, the bag opening property was poor, and the contents spilled out and could not be filled in several bags. Furthermore, after the boil treatment in the same manner as in Example 11, a storage test was conducted. However, since asparagus was not visible from the outside of the bag, the bag was opened. Although the flavor and color tone of asparagus were well maintained, the bag appearance was uneven and some delamination occurred.

(実施例12)
ポリアミド1に代えてポリアミド2を用い、LLDPEに代えてPP1を使用した以外は実施例7と同様にして酸素吸収樹脂ペレットを作製した。続いて、LLDPEをPP1とした以外は実施例11と同様にして、2種3層フィルム4(厚さ;15μm/30μm/15μm)を作製した。作製したフィルムロールの外観形状やフィルムの外観は、良好であった。HAZEは64%であった。コロナ処理面側にラミネート用接着剤を用いて、ONy及びシリカ蒸着PETフィルム(製品名;三菱樹脂(株)製 テックバリアTXR)を積層し、シリカ蒸着PETフィルム(12)/ラミネート用接着剤(3)/ONy(15)/ラミネート用接着剤(3)/PP1(15)/酸素吸収樹脂(30)/PP1(15)の酸素吸収多層体からなる酸素吸収多層フィルムを得た。本酸素吸収多層フィルムを用いて、PP1層側を内面にして10×20cmの三方シール袋を作製し、その一部に直径2mmの円状の通蒸口を設け、その通蒸口をラベルシールにて周辺を仮着した。その袋に、イカ、カニ、貝等の魚貝類を含んだリゾット100gを充填し、密封、124℃、30分のレトルト調理、加熱殺菌した後、40℃下にて保存した。1ヶ月後、袋をそのまま電子レンジにて約4分加熱し、約3分後には、袋が膨張し、仮着したラベルシール部が剥がれ、通蒸口から蒸気が出ることを確認した。調理終了後、リゾットの風味、カニ等の魚貝類の色調を調査した所、魚貝類の外観は、良好に保持され、リゾットの風味は良好であった。
Example 12
Oxygen-absorbing resin pellets were prepared in the same manner as in Example 7 except that polyamide 2 was used instead of polyamide 1 and PP1 was used instead of LLDPE. Subsequently, a two-type three-layer film 4 (thickness: 15 μm / 30 μm / 15 μm) was produced in the same manner as in Example 11 except that LLDPE was changed to PP1. The appearance shape of the produced film roll and the appearance of the film were good. HAZE was 64%. Using a laminating adhesive on the corona-treated surface side, ONy and silica-deposited PET film (product name: Tech Barrier TXR manufactured by Mitsubishi Plastics, Inc.) are laminated, and silica-deposited PET film (12) / laminating adhesive ( An oxygen-absorbing multilayer film comprising an oxygen-absorbing multilayer body of 3) / ONy (15) / laminating adhesive (3) / PP1 (15) / oxygen-absorbing resin (30) / PP1 (15) was obtained. Using this oxygen-absorbing multilayer film, the PP1 layer side is used as the inner surface to produce a 10 x 20 cm three-sided sealing bag, and a circular steaming port with a diameter of 2 mm is provided on a part of the bag, and the steaming port is label-sealed. I temporarily attached around. The bag was filled with 100 g of risotto containing fish and shellfish such as squid, crab and shellfish, sealed, cooked at 124 ° C. for 30 minutes, sterilized by heating, and stored at 40 ° C. One month later, the bag was heated as it was for about 4 minutes in a microwave oven, and after about 3 minutes, the bag was inflated, the temporarily attached label seal part was peeled off, and it was confirmed that steam was emitted from the steaming port. After cooking, the flavor of the risotto and the color of the fish and shellfish such as crabs were examined. The appearance of the fish and shellfish was well maintained and the flavor of the risotto was good.

(比較例9)
ステアリン酸コバルト含有ポリアミド1B:PP1=10:90とした以外は、実施例7と同様にして酸素吸収樹脂ペレットを作製し、該ペレットを用いて、実施例12と同様にして三方シール袋を作製し、リゾットの保存・調理試験を実施した。レンジ調理後の袋に異常はなかったが、カニ等の魚貝類色調やリゾットの風味が低下していた。
(Comparative Example 9)
Except for the cobalt stearate-containing polyamide 1B: PP1 = 10: 90, an oxygen-absorbing resin pellet was prepared in the same manner as in Example 7, and a three-side sealed bag was prepared in the same manner as in Example 12 using the pellet. The risotto was stored and cooked. Although there was no abnormality in the bags after cooking the range, the color of fish shellfish such as crabs and the flavor of risotto were decreasing.

(実施例13)
酸素吸収樹脂ペレットCからなる酸素吸収樹脂層30μmとオレフィン系ポリマーアロイ(製品名;三菱化学(株)製 VMX/X150F、MFR3.5g/10分(JIS K7210に準拠して測定)、240℃の溶融粘度7.9g/10分)からなる酸素透過層30μmを積層して、2種2層フィルム2を作製した。続いて、ラミネート用接着剤を用いて、エチレン−ビニルアルコール共重合体層15μmとナイロンフィルムB(製品名;東洋紡(株)製「N1102」)層15μmを積層し、ナイロンフィルムB(15)/ラミネート用接着剤(3)/エチレン−ビニルアルコール共重合体フィルムA((株)クラレ製 エバールEF−XL、15)/ラミネート用接着剤(3)/酸素吸収樹脂(30)/オレフィン系ポリマーアロイ(30)の酸素吸収多層体からなる酸素吸収多層フィルムを得た。フィルムの外観は良好であった。
(Example 13)
Oxygen-absorbing resin layer 30 μm composed of oxygen-absorbing resin pellets C and olefin polymer alloy (product name: VMX / X150F manufactured by Mitsubishi Chemical Corporation, MFR 3.5 g / 10 min (measured according to JIS K7210), 240 ° C. An oxygen permeable layer 30 μm having a melt viscosity of 7.9 g / 10 min was laminated to prepare a two-kind two-layer film 2. Subsequently, using a laminating adhesive, 15 μm of an ethylene-vinyl alcohol copolymer layer and 15 μm of a nylon film B (product name: “N1102” manufactured by Toyobo Co., Ltd.) are laminated to form a nylon film B (15) / Adhesive for laminate (3) / Ethylene-vinyl alcohol copolymer film A (Eval EF-XL, 15 manufactured by Kuraray Co., Ltd.) / Adhesive for laminate (3) / Oxygen absorbing resin (30) / olefin polymer alloy An oxygen-absorbing multilayer film comprising the oxygen-absorbing multilayer body of (30) was obtained. The appearance of the film was good.

次に、PP1(400)/無水マレイン酸変性ポリプロピレン(製品名;三井化学(株)製 アドマーQF500、15)/エチレン−ビニルアルコール共重合体B(製品名;(株)クラレ製 エバールL104B、40)/無水マレイン酸変性ポリプロピレン(製品名;同上、15)/PP1(400)のシートを絞り比2.5で70ccカップに成形した。該カップにオレンジゼリーを満杯充填し、作製した酸素吸収多層フィルムを、ナイロンフィルムB層側を外面とする蓋材として使用して密封した。内容物の色調は、蓋材から視認することができた。密封容器を85℃、30分間の加熱処理し、40℃、1ヶ月保存した。1ヶ月後、開封した所、二重蓋になることなく、開封性は良好で、内容物の風味、色調は、良好に保持されていた。   Next, PP1 (400) / maleic anhydride modified polypropylene (product name: Admer QF500, 15 manufactured by Mitsui Chemicals, Inc.) / Ethylene-vinyl alcohol copolymer B (product name: Eval L104B, 40 manufactured by Kuraray Co., Ltd.) ) / Maleic anhydride modified polypropylene (product name; same as above, 15) / PP1 (400) sheet was molded into a 70 cc cup with a drawing ratio of 2.5. The cup was filled with orange jelly, and the produced oxygen-absorbing multilayer film was sealed by using it as a cover material with the nylon film B layer side as the outer surface. The color tone of the contents was visible from the lid. The sealed container was heat-treated at 85 ° C. for 30 minutes and stored at 40 ° C. for 1 month. One month later, the container was opened, and it did not become a double lid. The opening was good, and the flavor and color of the contents were well maintained.

(実施例14)
実施例13と同様にして得た酸素吸収多層フィルムと70ccカップを用い、それぞれ浸漬による過酸化水素殺菌を行った。殺菌時に酸素吸収多層フィルムに異常はなかった。カップに80℃に保温されたイチゴジャムをホット充填し、酸素吸収多層フィルムを、ナイロンフィルムB層側を外側とする蓋材として、密封した。密封容器を40℃、1ヶ月保存した。1ヶ月後、蓋材から内容物を視認したところ、色調は、良好に保たれていた。蓋材を開封した所、二重蓋になることなく、開封性は良好で、内容物の風味は、良好に保持されていた。
(Example 14)
Using an oxygen-absorbing multilayer film obtained in the same manner as in Example 13 and a 70 cc cup, hydrogen peroxide sterilization was performed by immersion. There was no abnormality in the oxygen-absorbing multilayer film during sterilization. The cup was hot-filled with strawberry jam kept at 80 ° C., and the oxygen-absorbing multilayer film was sealed as a lid with the nylon film B layer side outside. The sealed container was stored at 40 ° C. for 1 month. One month later, when the contents were visually confirmed from the lid material, the color tone was kept good. When the lid was opened, the opening was good and the flavor of the contents was well maintained without becoming a double lid.

(比較例10)
比較例8と同様にして得た鉄系酸素吸収樹脂層を有する鉄系酸素吸収多層体を、実施例14と同様の方法で過酸化水素殺菌したところ、過酸化水素に気泡が発生し、殺菌を継続することができなかった。
(Comparative Example 10)
When an iron-based oxygen-absorbing multilayer body having an iron-based oxygen-absorbing resin layer obtained in the same manner as in Comparative Example 8 was sterilized with hydrogen peroxide by the same method as in Example 14, bubbles were generated in the hydrogen peroxide, and sterilization was performed. Could not continue.

実施例7〜14から明らかなように、本発明の酸素吸収多層体は、酸素吸収性能、加工性、強度に優れ、さらに、ボイル処理、レトルト処理が可能で、鉄系酸素吸収剤を使用した酸素吸収多層体では保存できない食品等に適用でき、過酸化水素殺菌が可能で、電子レンジ加熱調理の際、通蒸口をとりつけても良好な保存容器となる。また、内部視認性も有しており、内容物の色調等を確認することができ、容器蓋材にも使用できる。   As is clear from Examples 7 to 14, the oxygen-absorbing multilayer body of the present invention is excellent in oxygen absorption performance, workability, and strength, and can be boiled and retorted, and uses an iron-based oxygen absorbent. It can be applied to foods and the like that cannot be stored with an oxygen-absorbing multilayer, can be sterilized with hydrogen peroxide, and can be a good storage container even if a fume hood is attached during microwave cooking. Moreover, it also has internal visibility, can confirm the color tone of the contents, etc., and can also be used for a container lid.

本発明は、特定のポリアミドと遷移金属触媒にポリオレフィン樹脂を、特定の割合でブレンドした酸素吸収樹脂層を有する多層体とすることにより、低湿度、高湿度における酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れ、様々な容器や用途に適用できる酸素吸収多層体に関するものである。   The present invention provides a multilayer body having an oxygen-absorbing resin layer obtained by blending a specific polyamide and a transition metal catalyst with a polyolefin resin at a specific ratio, thereby providing excellent oxygen absorption performance at low humidity and high humidity. The present invention relates to an oxygen-absorbing multilayer body that retains resin strength, has excellent processability, and can be applied to various containers and uses.

(実施例15)
ポリアミド1に遷移金属触媒として、ステアリン酸コバルトをコバルト濃度400ppmとなるよう二軸押出機にて、溶融したポリアミド1にサイドフィードにて添加した。さらに、得られたポリアミド1とステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド1Cと表記する)に、ポリオレフィン樹脂として、ポリプロピレンA(製品名;日本ポリプロ(株)製、ノバテックPP EG7F、MFR1.3g/10分(JIS K7210に準拠して測定)、240℃のMFR8.2g/10分、250℃のMFR9.8g/10分、以下PP2と表記する)をステアリン酸コバルト含有ポリアミド1C:PP2=35:65となるように、二軸押出機にて240℃にて溶融混練し、酸素吸収樹脂ペレットDを得た。
(Example 15)
Cobalt stearate was added to polyamide 1 as a transition metal catalyst by a side feed to molten polyamide 1 with a twin screw extruder so as to have a cobalt concentration of 400 ppm. Furthermore, polypropylene A (product name; manufactured by Nippon Polypro Co., Ltd., Novatec PP EG7F, MFR1) was used as a polyolefin resin in a mixture of the obtained polyamide 1 and cobalt stearate (hereinafter referred to as cobalt stearate-containing polyamide 1C). .3 g / 10 min (measured according to JIS K7210), MFR 8.2 g / 10 min at 240 ° C., MFR 9.8 g / 10 min at 250 ° C., hereinafter referred to as PP2), and cobalt stearate-containing polyamide 1C: PP2 = Oxygen-absorbing resin pellet D was obtained by melt-kneading at 240 ° C. with a twin-screw extruder so as to be 35:65.

次いで、第1〜第4押出機、フィードブロック、Tダイ、冷却ロール、シート引取機からなる4種6層多層シート成形装置を用い、各押出機から、第1押出機;PP2、第2押出機;前記酸素吸収樹脂ペレットD、第3押出機;エチレン−ビニルアルコール共重合体C(製品名;クラレ製 エバールL171B)、及び第4押出機;ポリプロピレン系接着性樹脂(製品名;三菱化学(株)製 モディックP604V)、を押し出し、酸素吸収多層シートを得た。該多層シートの構成は、内層より、PP2(80)/酸素吸収樹脂(100)/接着層(15)/エチレン−ビニルアルコール共重合体C(30)/接着層(15)/PP2(250)であった。また、共押出による多層シートは厚みムラ等のない外観良好な多層シートであった。   Next, using a four-kind 6-layer multi-layer sheet forming apparatus comprising a first to a fourth extruder, a feed block, a T die, a cooling roll, and a sheet take-up machine, the first extruder; PP2, the second extrusion Machine; oxygen-absorbing resin pellet D, third extruder; ethylene-vinyl alcohol copolymer C (product name; Eval L171B manufactured by Kuraray), and fourth extruder; polypropylene adhesive resin (product name: Mitsubishi Chemical ( Co., Ltd. Modic P604V) was extruded to obtain an oxygen-absorbing multilayer sheet. The multilayer sheet is composed of PP2 (80) / oxygen absorbing resin (100) / adhesive layer (15) / ethylene-vinyl alcohol copolymer C (30) / adhesive layer (15) / PP2 (250) from the inner layer. Met. Further, the multilayer sheet obtained by coextrusion was a multilayer sheet having a good appearance without thickness unevenness.

次いで、得られた多層シートについて、真空成形機を用いて、内層を内側にし、トレイ状容器(内容積350cc、表面積200cm)に熱成形加工した。得られた酸素吸収多層容器は厚みムラなく外観良好であった。この容器を紫外線殺菌により殺菌し、その容器に炊飯直後の無菌米飯200gを入れ、容器内酸素を窒素ガスにて置換して酸素濃度を0.5%とした。次いで、PETフィルムB(製品名;東洋紡績(株)製 E5102)、MXD6系多層共押出ナイロンフィルム(製品名;三菱樹脂(株)製 スーパーニールSP−R)、無延伸ポリプロピレンフィルム(製品名;(株)オカモト製 アロマーUT21)をラミネート用接着剤でドライラミネートしたガスバリア性フィルム(PETフィルムB(12)/ラミネート用接着剤(3)/MXD6系多層共押出ナイロンフィルム(15)/ラミネート用接着剤(3)/無延伸ポリプロピレンフィルム(60))をトップフィルムとして用い、容器同様紫外線殺菌した後、前記容器を密封し、40℃・50%RHの条件下に保存した。保存開始から3ヶ月後の容器内酸素濃度を測定後に開封し、炊飯米の風味及び酸素吸収容器の強度を確認した。この結果を表3に示した。 Next, the obtained multilayer sheet was thermoformed into a tray-like container (inner volume 350 cc, surface area 200 cm 2 ) with the inner layer inside using a vacuum forming machine. The obtained oxygen-absorbing multilayer container had good appearance with no thickness unevenness. This container was sterilized by ultraviolet sterilization, and 200 g of aseptic cooked rice immediately after cooking was placed in the container, and oxygen in the container was replaced with nitrogen gas to adjust the oxygen concentration to 0.5%. Next, PET film B (product name: E5102 manufactured by Toyobo Co., Ltd.), MXD6-based multilayer coextruded nylon film (product name: Super Neal SP-R manufactured by Mitsubishi Plastics), unstretched polypropylene film (product name; Gas barrier film (PET film B (12) / Laminating adhesive (3) / MXD6 multilayer coextruded nylon film (15) / Laminating adhesive) obtained by dry laminating Aroma UT21, manufactured by Okamoto Co., Ltd. Agent (3) / Unstretched polypropylene film (60)) was used as a top film, and after sterilization with ultraviolet rays as in the case of the container, the container was sealed and stored under conditions of 40 ° C. and 50% RH. The container was opened after measuring the oxygen concentration in the container 3 months after the start of storage, and the flavor of the cooked rice and the strength of the oxygen absorbing container were confirmed. The results are shown in Table 3.

(実施例16)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1C:PP2=55:45とした以外は、実施例15と同様にして酸素吸収多層シートを得た後、酸素吸収多層容器を作製して、実施例15と同様の保存試験を実施した。この結果を表3に示した。
(Example 16)
Except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1C: PP2 = 55: 45, an oxygen-absorbing multilayer sheet was obtained in the same manner as in Example 15 and then an oxygen-absorbing multilayer container was prepared and carried out. The same storage test as in Example 15 was performed. The results are shown in Table 3.

(実施例17)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1C:PP2=20:80とした以外は、実施例15と同様にして酸素吸収多層シートを得た後、酸素吸収多層容器を作製して、実施例15と同様の保存試験を実施した。この結果を表3に示した。
(Example 17)
Except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1C: PP2 = 20: 80, after obtaining an oxygen-absorbing multilayer sheet in the same manner as in Example 15, an oxygen-absorbing multilayer container was prepared and carried out. The same storage test as in Example 15 was performed. The results are shown in Table 3.

(実施例18)
ポリアミド1に代えてポリアミド2を使用した以外は実施例15と同様にして酸素吸収多層シートを得た後、酸素吸収多層容器を作製して、実施例15と同様の保存試験を実施した。この結果を表3に示した。
(Example 18)
An oxygen-absorbing multilayer sheet was obtained in the same manner as in Example 15 except that polyamide 2 was used in place of polyamide 1, and then an oxygen-absorbing multilayer container was prepared and the same storage test as in Example 15 was performed. The results are shown in Table 3.

(比較例11)
平均粒径20μmの鉄粉と塩化カルシウムを100:1の割合で混合し、これとPP2とを30:70の重量比で混練して、鉄系酸素吸収樹脂組成物Bを得た。続いて、酸素吸収樹脂層に鉄系酸素吸収樹脂組成物Bを使用した以外は、実施例15と同様にして鉄系酸素吸収多層シートを作製した。該多層シートの構成は、内層より、PP2(80)/鉄系酸素吸収樹脂B(100)/接着層(15)/エチレン−ビニルアルコール共重合体C(30)/接着層(15)/PP2(250)であった。得られた鉄系酸素吸収多層シートを熱成形し、トレイ状容器を作製しようとしたが、ドローダウンが発生したため加工が困難であった。また作製した容器は鉄粉を使用しているため不透明であり、鉄粉に起因する凹凸のため外観が悪かった。しかし、外観の及第する容器が得られたため、実施例15と同様の保存試験を実施した。この結果を表3に示した。
(Comparative Example 11)
Iron powder having an average particle diameter of 20 μm and calcium chloride were mixed at a ratio of 100: 1, and this and PP2 were kneaded at a weight ratio of 30:70 to obtain an iron-based oxygen-absorbing resin composition B. Subsequently, an iron-based oxygen-absorbing multilayer sheet was produced in the same manner as in Example 15 except that the iron-based oxygen-absorbing resin composition B was used for the oxygen-absorbing resin layer. The multilayer sheet is composed of PP2 (80) / iron-based oxygen absorbing resin B (100) / adhesive layer (15) / ethylene-vinyl alcohol copolymer C (30) / adhesive layer (15) / PP2 from the inner layer. (250). The obtained iron-based oxygen-absorbing multilayer sheet was thermoformed to produce a tray-like container, but it was difficult to process because a drawdown occurred. Moreover, since the produced container used iron powder, it was opaque and the external appearance was bad because of unevenness caused by the iron powder. However, since a container having an appearance was obtained, the same storage test as in Example 15 was performed. The results are shown in Table 3.

Figure 2010013638
Figure 2010013638

実施例15〜18から明らかなように、本発明の酸素吸収多層容器は、良好な成形性及び酸素吸収性能を示し、透明であり、かつ酸素吸収後も容器の強度を保持することが可能である。   As is clear from Examples 15-18, the oxygen-absorbing multilayer container of the present invention exhibits good moldability and oxygen-absorbing performance, is transparent, and can retain the strength of the container even after oxygen absorption. is there.

(実施例19)
ステアリン酸コバルト含有ポリアミド1Cに、ポリオレフィン樹脂として、ポリプロピレンB(製品名;日本ポリプロ(株)製、ノバテックPP FW4BT、MFR6.5g/10分(JIS K7210に準拠して測定)、240℃のMFR8.3g/10分、250℃のMFR10.0g/10分、以下PP3と表記する)を、ステアリン酸コバルト含有ポリアミド1C:PP3=35:65の重量比で、240℃にて溶融混練し、酸素吸収樹脂ペレットEを得た。次いで酸素吸収樹脂ペレットEをコア層とし、スキン層をPP3とした、2種3層フィルム5(厚み;10μm/10μm/10μm)を、幅800mm、100m/分で、片面をコロナ放電処理して、作製した。得られたフィルムの外観は良好で、HAZEは10%であった。
(Example 19)
Cobalt stearate-containing polyamide 1C, polypropylene B (product name; manufactured by Nippon Polypro Co., Ltd., Novatec PP FW4BT, MFR 6.5 g / 10 min (measured in accordance with JIS K7210), 240 ° C. MFR8. 3 g / 10 min, MFR 10.0 g / 10 min at 250 ° C., hereinafter referred to as PP3), and melt-kneaded at 240 ° C. in a weight ratio of cobalt stearate-containing polyamide 1C: PP3 = 35: 65 to absorb oxygen Resin pellet E was obtained. Next, a two-kind three-layer film 5 (thickness: 10 μm / 10 μm / 10 μm) with oxygen-absorbing resin pellet E as the core layer and PP3 as the skin layer was subjected to corona discharge treatment on one side with a width of 800 mm and 100 m / min. Made. The appearance of the obtained film was good, and HAZE was 10%.

本酸素吸収フィルムと200μmのポリプロピレンシート(製品名;住友ベークライト製 NS3451)を、ガスバリア性接着剤(製品名;三菱ガス化学(株)製 マクシーブ)を用いて、ドライラミネートし、内層より、PP3(10)/酸素吸収樹脂(10)/PP3(10)/ガスバリア性接着剤(3)/ポリプロピレンシート(200)の酸素吸収多層シートを作製した後、本酸素吸収多層シートを、内層を内側にして真空成形して、プレス・スルー・パックのポケット(直径12mm、深さ5mm)を成形した。また25μmのアルミ箔にウレタン系のアンカーコート剤(製品名;三井化学ポリウレタン(株)製 A3210)をコートし、ヒートシール材としてポリプロピレンC(製品名;(株)プライムポリマー製 F329RA)を25μmの厚さで押出コートし、アルミ箔(25)/アンカーコート剤(1)/ポリプロピレンC(25)のアルミ箔積層体を得た。ポケットに、水分活性0.35のビタミンC錠剤を2g充填し、アルミ箔積層体をヒートシールして密封後、40℃下にて保存した。1ヶ月保存後の袋内酸素濃度及び外観を調査した所、ポケット内酸素濃度は、0.1%以下であり、ビタミンC錠剤の外観は、良好に保持されていた。   This oxygen-absorbing film and a 200 μm polypropylene sheet (product name: NS3451 manufactured by Sumitomo Bakelite) were dry-laminated using a gas barrier adhesive (product name: Maxive manufactured by Mitsubishi Gas Chemical Co., Ltd.), and PP3 ( 10) / Oxygen-absorbing resin (10) / PP3 (10) / gas barrier adhesive (3) / polypropylene sheet (200), after preparing the oxygen-absorbing multilayer sheet, Vacuum forming was performed to form a press-through pack pocket (diameter 12 mm, depth 5 mm). Further, 25 μm aluminum foil is coated with a urethane anchor coating agent (product name: A3210 manufactured by Mitsui Chemicals Polyurethane Co., Ltd.), and polypropylene C (product name: F329RA manufactured by Prime Polymer Co., Ltd.) as a heat seal material is coated with 25 μm. Extrusion coating was performed at a thickness to obtain an aluminum foil laminate of aluminum foil (25) / anchor coating agent (1) / polypropylene C (25). The pocket was filled with 2 g of a vitamin C tablet having a water activity of 0.35, the aluminum foil laminate was heat-sealed and sealed, and stored at 40 ° C. When the oxygen concentration in the bag and the appearance after storage for 1 month were investigated, the oxygen concentration in the pocket was 0.1% or less, and the appearance of the vitamin C tablet was well maintained.

(実施例20)
実施例15と同様にして、酸素吸収多層シートを作製した。該多層シートの構成は、内層より、PP2(90)/酸素吸収樹脂(80)/接着層(15)/エチレン−ビニルアルコール共重合体C(30)/接着層(15)/PP2(250)であった。次いで、該多層シートを、真空成形機を用いて、内層を内側にし、カップ状容器(内容積100cc、表面積96cm)に熱成形加工した。該容器に霧状の過酸化水素を吹き付けた後、熱風で乾燥させ、殺菌した。その後、オレンジジャムを充填し、実施例15と同様にして得たガスバリア性フィルムを同様に過酸化水素で殺菌し、トップフィルムに用いて密封後、40℃下に保存した。1ヵ月保存後の容器内酸素濃度は0.1%以下であり、オレンジジャムは風味を保持していた。
(Example 20)
In the same manner as in Example 15, an oxygen-absorbing multilayer sheet was produced. The multilayer sheet is composed of PP2 (90) / oxygen absorbing resin (80) / adhesive layer (15) / ethylene-vinyl alcohol copolymer C (30) / adhesive layer (15) / PP2 (250) from the inner layer. Met. Next, the multilayer sheet was thermoformed into a cup-shaped container (inner volume: 100 cc, surface area: 96 cm 2 ) with the inner layer inside, using a vacuum forming machine. After spraying the container with mist of hydrogen peroxide, it was dried with hot air and sterilized. Thereafter, orange jam was filled, and the gas barrier film obtained in the same manner as in Example 15 was similarly sterilized with hydrogen peroxide, sealed using a top film, and stored at 40 ° C. The oxygen concentration in the container after storage for 1 month was 0.1% or less, and the orange jam retained the flavor.

(比較例12)
比較例11と同様にして、鉄系酸素吸収多層シートを作製した。該多層シートの構成は、内層より、PP2(90)/鉄系酸素吸収樹脂B層(80)/接着層(15)/エチレン−ビニルアルコール共重合体C(30)/接着層(15)/PP2(250)であった。次いで、該鉄系酸素吸収多層シートを熱成形し、実施例20と同様のカップ状容器を作製しようとしたが、ドローダウンが発生したため加工が困難であった。しかし、外観の及第する容器が得られたため、容器に霧状の過酸化水素を吹き付けたところ、容器端面に露出している鉄粉と過酸化水素が反応し、殺菌が困難であり、熱風での乾燥後は端面の鉄粉が錆びていた。
(Comparative Example 12)
In the same manner as in Comparative Example 11, an iron-based oxygen absorbing multilayer sheet was produced. The multilayer sheet is composed of PP2 (90) / iron-based oxygen-absorbing resin B layer (80) / adhesive layer (15) / ethylene-vinyl alcohol copolymer C (30) / adhesive layer (15) / from the inner layer. PP2 (250). Next, the iron-based oxygen-absorbing multilayer sheet was thermoformed to try to produce a cup-like container similar to that in Example 20, but it was difficult to process because drawdown occurred. However, since a container having an appearance was obtained, when atomized hydrogen peroxide was sprayed on the container, the iron powder exposed on the container end surface reacted with hydrogen peroxide, and sterilization was difficult. The iron powder on the end face was rusted after drying at.

本発明は、特定のポリアミド樹脂と遷移金属にポリオレフィン樹脂を、特定の割合で混練することにより、低湿度、高湿度における酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れ、様々な容器や用途に適用できる酸素吸収多層体を熱成形してなる酸素吸収多層容器に関するものである。   The present invention kneads a polyolefin resin with a specific polyamide resin and transition metal at a specific ratio, so that the oxygen absorption performance at low humidity and high humidity is excellent, the resin strength after storage is maintained, and the processability is further improved. The present invention relates to an oxygen-absorbing multilayer container that is formed by thermoforming an oxygen-absorbing multilayer body that is excellent in and applicable to various containers and uses.

Claims (3)

少なくとも、ポリオレフィン樹脂、遷移金属触媒及びポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂の融点が200℃以下、ガラス転移温度が80℃以下で、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が20〜60重量%であることを特徴とする酸素吸収樹脂組成物。   An oxygen-absorbing resin composition comprising at least a polyolefin resin, a transition metal catalyst, and a polyamide resin, wherein the polyamide resin has a melting point of 200 ° C. or lower, a glass transition temperature of 80 ° C. or lower, and the transition metal catalyst and the polyamide An oxygen-absorbing resin composition having a total resin content of 20 to 60% by weight. 熱可塑性樹脂からなる酸素透過層、請求項1記載の酸素吸収樹脂組成物を含有する酸素吸収樹脂層及びガスバリア性物質からなるガスバリア層の少なくとも3層がこの順に積層してなる酸素吸収多層体。   An oxygen-absorbing multilayer body comprising at least three layers of an oxygen-permeable layer made of a thermoplastic resin, an oxygen-absorbing resin layer containing the oxygen-absorbing resin composition according to claim 1 and a gas barrier layer made of a gas-barrier substance in this order. 請求項2記載の酸素吸収多層体の酸素透過層を内側として熱成形してなる酸素吸収多層容器。   An oxygen-absorbing multilayer container obtained by thermoforming an oxygen-permeable layer of the oxygen-absorbing multilayer body according to claim 2 as an inside.
JP2009134405A 2008-06-05 2009-06-03 Oxygen-absorbing resin composition Pending JP2010013638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134405A JP2010013638A (en) 2008-06-05 2009-06-03 Oxygen-absorbing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008148198 2008-06-05
JP2009134405A JP2010013638A (en) 2008-06-05 2009-06-03 Oxygen-absorbing resin composition

Publications (1)

Publication Number Publication Date
JP2010013638A true JP2010013638A (en) 2010-01-21

Family

ID=41700030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134405A Pending JP2010013638A (en) 2008-06-05 2009-06-03 Oxygen-absorbing resin composition

Country Status (1)

Country Link
JP (1) JP2010013638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042666A (en) * 2008-07-14 2010-02-25 Mitsubishi Gas Chemical Co Inc Oxygen absorbing multilayer body
JP2011236285A (en) * 2010-05-07 2011-11-24 Mitsubishi Gas Chemical Co Inc Method for producing oxygen-absorbing resin composition
WO2014010598A1 (en) * 2012-07-10 2014-01-16 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
EP2444458A4 (en) * 2009-06-15 2015-08-19 Mitsubishi Gas Chemical Co Oxygen-absorbing resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445152A (en) * 1990-06-11 1992-02-14 Toppan Printing Co Ltd Oxygen-absorbing resin composition
JPH05140555A (en) * 1991-11-15 1993-06-08 Mitsubishi Gas Chem Co Inc Oxygen-capturing composition
JPH11240095A (en) * 1998-02-24 1999-09-07 Mitsubishi Gas Chem Co Inc Deoxidized multi-layer film
JP2001261957A (en) * 2000-03-14 2001-09-26 Toyobo Co Ltd Oxygen absorber
JP2002238521A (en) * 2001-02-15 2002-08-27 Mitsubishi Gas Chem Co Inc Method for preserving food
JP2002240813A (en) * 2001-02-13 2002-08-28 Toyo Seikan Kaisha Ltd Oxygen-absorbing container excellent in storability as empty container
JP2003327715A (en) * 2002-05-16 2003-11-19 Mitsubishi Gas Chem Co Inc Method of storing molded product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445152A (en) * 1990-06-11 1992-02-14 Toppan Printing Co Ltd Oxygen-absorbing resin composition
JPH05140555A (en) * 1991-11-15 1993-06-08 Mitsubishi Gas Chem Co Inc Oxygen-capturing composition
JPH11240095A (en) * 1998-02-24 1999-09-07 Mitsubishi Gas Chem Co Inc Deoxidized multi-layer film
JP2001261957A (en) * 2000-03-14 2001-09-26 Toyobo Co Ltd Oxygen absorber
JP2002240813A (en) * 2001-02-13 2002-08-28 Toyo Seikan Kaisha Ltd Oxygen-absorbing container excellent in storability as empty container
JP2002238521A (en) * 2001-02-15 2002-08-27 Mitsubishi Gas Chem Co Inc Method for preserving food
JP2003327715A (en) * 2002-05-16 2003-11-19 Mitsubishi Gas Chem Co Inc Method of storing molded product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042666A (en) * 2008-07-14 2010-02-25 Mitsubishi Gas Chemical Co Inc Oxygen absorbing multilayer body
EP2444458A4 (en) * 2009-06-15 2015-08-19 Mitsubishi Gas Chemical Co Oxygen-absorbing resin composition
US9260596B2 (en) 2009-06-15 2016-02-16 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition
JP2011236285A (en) * 2010-05-07 2011-11-24 Mitsubishi Gas Chemical Co Inc Method for producing oxygen-absorbing resin composition
WO2014010598A1 (en) * 2012-07-10 2014-01-16 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
JPWO2014010598A1 (en) * 2012-07-10 2016-06-23 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition
US9630764B2 (en) 2012-07-10 2017-04-25 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition

Similar Documents

Publication Publication Date Title
KR101535321B1 (en) Oxygen-absorbing resin composition
JP5288079B1 (en) Oxygen-absorbing resin composition, oxygen-absorbing multilayer body, and oxygen-absorbing hollow container
EP3078604B1 (en) Multi-layered container
JP2011132502A (en) Oxygen-absorbing resin composition
EP3078491B1 (en) Multilayer container
JP2011136761A (en) Method for preserving tea-containing article
JP2011126270A (en) Oxygen-absorbing multilayer body
JP2010013638A (en) Oxygen-absorbing resin composition
JP2011094021A (en) Oxygen absorbing resin composition
JP5581833B2 (en) Oxygen absorbing resin composition
JP5601118B2 (en) Oxygen absorbing multilayer and container
JP2011136155A (en) Method for preserving content of transfusion container
JP3978542B2 (en) Deoxygenating multilayer body and packaging container comprising the same
JP5263040B2 (en) Oxygen absorbing multilayer
JP2003341747A (en) Packaging container
JP2011136552A (en) Oxygen absorbing multilayered body
JP2011236285A (en) Method for producing oxygen-absorbing resin composition
JP2011131579A (en) Oxygen absorbing multilayered body for heat-sterilized food
JP5633213B2 (en) Oxygen absorbing resin composition
JP5954194B2 (en) Oxygen-absorbing multilayer
JP2011131578A (en) Oxygen absorbing multilayer object
JP2011122140A (en) Oxygen-absorbing resin composition
JP2011135865A (en) Method for preserving acetic acid-containing food product
JP2011131581A (en) Oxygen absorbing multilayer object for hydrogen peroxide sterilization treatment
JP2011127094A (en) Oxygen-absorbing resin composition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917