JP2011125883A - Slab cooling method and device - Google Patents

Slab cooling method and device Download PDF

Info

Publication number
JP2011125883A
JP2011125883A JP2009285122A JP2009285122A JP2011125883A JP 2011125883 A JP2011125883 A JP 2011125883A JP 2009285122 A JP2009285122 A JP 2009285122A JP 2009285122 A JP2009285122 A JP 2009285122A JP 2011125883 A JP2011125883 A JP 2011125883A
Authority
JP
Japan
Prior art keywords
slab
cooling
water
cooling water
slabs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009285122A
Other languages
Japanese (ja)
Other versions
JP5359847B2 (en
Inventor
Isao Yoshii
功 吉居
Kenji Suwa
健志 諏訪
Toru Nagai
亨 永井
Satoru Yoshikawa
悟 吉川
Seizo Hosokawa
清三 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009285122A priority Critical patent/JP5359847B2/en
Publication of JP2011125883A publication Critical patent/JP2011125883A/en
Application granted granted Critical
Publication of JP5359847B2 publication Critical patent/JP5359847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slab cooling method and device, for effectively cooling a high temperature slab after continuous casting, without generating warpage. <P>SOLUTION: Cooling water feed nozzles 3a, 3b of water-spraying and cooling the side faces in the longitudinal direction of stacked slabs 1 are arranged on both the sides of a slab placing stand 2 to be stacked with a plurality of high temperature slabs after continuous casting. The intervals between the tips of cooling water feed nozzles 3a, 3b and the side face in the longitudinal of each slab are controlled to 1,500 to 2,000 mm, and the area of ≥80% in the side face in the longitudinal direction of the slab 1 is water-sprayed and cooled at the water quality density of 2-5 L/min/t. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、連続鋳造後の鋼片(以下、スラブ)を、複数枚、段積みされた状態で、反りの発生を抑えて効率的に冷却することができるスラブ冷却方法及びスラブ冷却装置に関するものである。   The present invention relates to a slab cooling method and a slab cooling device capable of efficiently cooling while suppressing generation of warpage in a state where a plurality of steel pieces (hereinafter referred to as slabs) after continuous casting are stacked. It is.

連続鋳造されたスラブは、次工程である熱間圧延工程に運ばれ、所定の処理が施されるが、生産管理上の観点から、所定の処理を施す前に常温まで冷却することが広く行われている。この冷却は、ヤードスペースの制約上、スラブを複数枚段積みにした状態で水冷する方法が広く行われている。一方、水冷の仕方によっては、スラブの変形が発生するという問題がある。   The continuously cast slab is transported to the next hot rolling step and subjected to a predetermined treatment. From the viewpoint of production management, it is widely cooled to the room temperature before the predetermined treatment. It has been broken. For this cooling, a method of water-cooling in a state where a plurality of slabs are stacked is widely performed due to the limitation of the yard space. On the other hand, depending on the method of water cooling, there is a problem that deformation of the slab occurs.

変形が発生する原因について図面を用いて説明する。鋼片の冷却においては、図3に示すように、段積みにされたスラブに対し、長手方向の端面に冷却水を噴射する方法が広く行われているが、このとき、冷却水はスラブと接触した後、冷却面に沿って落下し、図1に示すように段積みされたスラブ間の隙間、または、最下段のスラブと置き台の間に溜まることがある。滞留部分では、図2に示すように、鋼片が急速に冷却されるため、鋼片の上/下面において温度差が拡大し、下面における熱膨張量(熱応力)と上面における熱膨張量に大きな差を生じる結果、スラブは変形する。特に、最下段のスラブにおいては、置き台に滞留した水により下面の冷却が進行し、スラブは、上に凸の形状に変形する。この熱膨張の作用に加え、スラブの自重により、鋼片長手方向端に作用する鉛直下向きの力により、冷却の進行とともに上に凸の反り(以下、上反り)が拡大する。   The cause of the deformation will be described with reference to the drawings. In cooling billets, as shown in FIG. 3, a method of injecting cooling water to the end face in the longitudinal direction is widely used for stacked slabs. After contact, it may fall along the cooling surface and accumulate between the stacked slabs as shown in FIG. 1 or between the bottom slab and the pedestal. In the staying part, as shown in FIG. 2, the steel slab is rapidly cooled, so that the temperature difference between the upper and lower surfaces of the steel slab increases, and the amount of thermal expansion (thermal stress) on the lower surface and the amount of thermal expansion on the upper surface are increased. As a result, the slab deforms. In particular, in the lowermost slab, the cooling of the lower surface proceeds by the water staying on the cradle, and the slab is deformed into a convex shape. In addition to this thermal expansion effect, due to the slab's own weight, upward downward warping (hereinafter referred to as “upward warping”) expands with the progress of cooling due to the vertically downward force acting on the end of the steel piece in the longitudinal direction.

特に、段積みされた最下段のスラブに上反りが発生すると、その上に積まれたスラブは最下段のスラブの形状に沿う形で変形し、段積みされたスラブは連鎖的に上反りの形状となる。このように反りが発生したスラブは、次工程の熱間圧延工程において、様々な障害を引き起こす要因となる。   In particular, when an upper warp occurs in the bottom slabs stacked, the slabs stacked on the slabs deform in a shape that conforms to the shape of the bottom slab, and the stacked slabs are chained upward. It becomes a shape. Such a slab in which warpage has occurred becomes a factor causing various obstacles in the subsequent hot rolling process.

連続鋳造後の高温スラブの冷却に対しては、例えば、下記の特許文献に開示された方法がある。   For cooling the high-temperature slab after continuous casting, for example, there is a method disclosed in the following patent document.

特許文献1には、連続鋳造された鋼片の側面の表面温度が600℃以下になるまで大気中で放冷した後、高さ1m以上に積層等し、積層された最上段の鋼片の上面から下向きに少なくとも0.3mまでの範囲を除いて、その下部に位置する鋼片の長手方向の両側面を散水冷却する方法が開示されているが、この方法では、最下段の鋼片の下面と地面の間の隙間に冷却水が滞留し、鋼片下面を冷却する可能性が高く、上記のように、最下面の鋼片を起点として上反りを発生させることになる。   In Patent Document 1, after cooling in the air until the surface temperature of the side surface of the continuously cast steel slab is 600 ° C. or lower, the steel slab is laminated to a height of 1 m or more, A method of spraying and cooling both longitudinal sides of the steel slab located in the lower part except for a range of at least 0.3 m downward from the upper surface is disclosed. There is a high possibility that cooling water stays in the gap between the lower surface and the ground and cools the lower surface of the steel slab, and as described above, warping occurs from the bottom steel slab.

また、表面温度が600℃以下になるまで散水冷却を行わない場合、鋳造から600℃までスラブ温度が低下するまでの間、ヤードなどのスペースを必要とし、また、常温までの冷却時間が長くなり、生産効率が低下する。 In addition, when water spray cooling is not performed until the surface temperature becomes 600 ° C. or less, a space such as a yard is required until the slab temperature decreases from casting to 600 ° C., and the cooling time to room temperature becomes longer. , Production efficiency decreases.

特許第4089664号公報Japanese Patent No. 4089664

本発明は、かかる点に鑑みてなされたものであり、連続鋳造後の高温スラブを、反りを発生させることなく効果的に冷却することができるスラブ冷却方法及び装置を提供することを目的とするものである。   This invention is made | formed in view of this point, and it aims at providing the slab cooling method and apparatus which can cool the high temperature slab after continuous casting effectively, without generating a curvature. Is.

前記の目的を達成するため、発明者らが鋭意研究を重ねた結果、高温スラブ長手方向に散水する冷却水量、噴射距離を所定範囲にしてスラブを冷却することにより、冷却水が段積みされた最下段のスラブと地面の間に冷却水が溜まることなく、均一に冷却できることを見出した。   In order to achieve the above-mentioned object, the inventors have conducted extensive research, and as a result, cooling water was stacked by cooling the slab with the amount of cooling water sprayed in the longitudinal direction of the high-temperature slab and the injection distance within a predetermined range. It has been found that cooling water can be uniformly cooled without accumulating cooling water between the bottom slab and the ground.

本発明は、上記の知見を基になされたものであって、以下を要旨とするものである。
(1) 冷却水供給ノズルの先端とスラブ長手方向側面の間隔を1500mm以上2000mm以下とし、2L/min/t以上、5L/min/t以下の水量密度で、長手方向側面の80%以上の面積を散水冷却する高温スラブの冷却方法、及び冷却装置。
(2) 上記(1)の発明において、冷却水供給ノズルを、噴射角が40°以上の円錐型ノズルとすることを特長とする高温スラブの冷却方法、及び冷却装置。
The present invention has been made on the basis of the above findings, and has the following gist.
(1) The distance between the tip of the cooling water supply nozzle and the side surface in the longitudinal direction of the slab is 1500 mm or more and 2000 mm or less, and the water amount density is 2 L / min / t or more and 5 L / min / t or less, and the area is 80% or more of the longitudinal side surface. Method and apparatus for cooling a high-temperature slab for water spray cooling.
(2) In the invention of (1), the cooling water supply nozzle is a conical nozzle having an injection angle of 40 ° or more.

本発明の高温スラブの冷却方法、及び冷却装置によれば、連続鋳造後の高温スラブを複数枚積層した後、散水冷却するに際し、散水する冷却水の水量密度、及び冷却範囲を適正化することにより、特段の処置を施すことなく、スラブの反りの発生を防止し、効率的にスラブを冷却することができる。   According to the cooling method and the cooling device of the high-temperature slab of the present invention, after laminating a plurality of high-temperature slabs after continuous casting, the water density and the cooling range of the cooling water to be sprinkled are optimized when the water is cooled. Therefore, it is possible to prevent the slab from warping and cool the slab efficiently without taking any special measures.

冷却水の滞留状態を示した概略図である。It is the schematic which showed the retention state of the cooling water. 冷却水滞留による温度低下を表す図である。It is a figure showing the temperature fall by cooling water retention. 本発明の散水冷却方法を示した概略図(正面図)である。It is the schematic (front view) which showed the water spray cooling method of this invention. 本発明の散水冷却方法を示した概略図(側面図)である。It is the schematic (side view) which showed the water spray cooling method of this invention.

本発明は、前記のように、連続鋳造後のスラブを積層した後、スラブの長手方向の両端面を、2L/min/t以上、5L/min/t以下の水量密度で、長手方向両端面の80%以上の面積を散水冷却するスラブの冷却方法である。以下に、本発明の実施の形態について図面を用いて説明する。図1は本実施の形態にかかる冷却装置の構成の概略を示している。   In the present invention, as described above, after laminating the slabs after continuous casting, both end surfaces in the longitudinal direction of the slabs are end surfaces in the longitudinal direction at a water density of 2 L / min / t or more and 5 L / min / t or less. This is a cooling method for a slab in which an area of 80% or more is sprayed and cooled. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an outline of the configuration of the cooling device according to the present embodiment.

図3に示すように、複数枚、段積みされた高温のスラブ1が設置されるスラブ置き台2の長手方向両側の近傍には、段積みされたスラブ1の側面に向かって冷却水を散水する冷却装置3が設けられている。その冷却ノズル3a、3bからは、段積みされた高温スラブ1の両端面の80%以上を覆うように冷却水が噴射される。噴射される冷却水の量(水量密度)は、段積みされたスラブの総重量(t:トン)に対して、2L/min/t以上、5L/min/t以下であり、また、冷却水供給ノズル3a、3bの先端と冷却されるスラブ1の端面の距離Lは1500mm以上2000mm以下である。なお図4に示すように、冷却ノズル3a、3bは散水されないスラブ表面積をできるだけ小さくするように、長手方向に多数設置されている。   As shown in FIG. 3, in the vicinity of both sides in the longitudinal direction of the slab table 2 on which a plurality of stacked high-temperature slabs 1 are installed, water is sprayed toward the side surfaces of the stacked slabs 1. A cooling device 3 is provided. From the cooling nozzles 3a and 3b, cooling water is sprayed so as to cover 80% or more of both end faces of the stacked high-temperature slabs 1. The amount of cooling water to be injected (water density) is 2 L / min / t or more and 5 L / min / t or less with respect to the total weight (t: ton) of the stacked slabs. The distance L between the tips of the supply nozzles 3a and 3b and the end face of the slab 1 to be cooled is 1500 mm or more and 2000 mm or less. As shown in FIG. 4, a large number of cooling nozzles 3a and 3b are installed in the longitudinal direction so as to minimize the surface area of the slab that is not sprinkled.

一般に、冷却水量が多い程、高温スラブを常温まで冷却するのに要する時間は短縮できるが、上述したように、冷却水が段積みされているスラブ間、及び最下段スラブと地面またはスラブ置き台2の隙間に溜まると、スラブ上/下面温度差に起因した変形が起こる。そのため、冷却後の水を瞬時に気化させ、外気による拡散効果により冷却水溜まりを抑制することが重要である。   Generally, as the amount of cooling water increases, the time required to cool the high-temperature slab to room temperature can be shortened. However, as described above, between the slabs in which the cooling water is stacked and between the bottom slab and the ground or slab stand. When it accumulates in the gap between the two, deformation due to the temperature difference between the upper and lower surfaces of the slab occurs. For this reason, it is important to instantly vaporize the water after cooling and suppress the cooling water pool by the diffusion effect of the outside air.

上記観点より、噴射される冷却水の量は、段積みされたスラブの総重量に対して、5L/min/t以下とし、冷却水供給ノズル3a、3bの先端と冷却を行うスラブ1の端面の距離Lは、1500mm以上とする必要がある。しかし噴射される冷却水の量が少なすぎると、冷却に長時間を要するため、所定の時間で目標温度まで冷却するために、2L/min/t以上とする。尚、水冷時間は10hr以内、温度は100℃未満である。   From the above viewpoint, the amount of the cooling water to be injected is 5 L / min / t or less with respect to the total weight of the stacked slabs, and the end surfaces of the cooling water supply nozzles 3a and 3b and the end surface of the slab 1 that performs cooling. The distance L must be 1500 mm or more. However, if the amount of the cooling water to be injected is too small, it takes a long time for cooling. Therefore, in order to cool to the target temperature in a predetermined time, it is set to 2 L / min / t or more. The water cooling time is within 10 hours, and the temperature is less than 100 ° C.

一方、冷却水噴射距離が離れると、風による飛散などにより、冷却水が十分にスラブ1に到達できない場合があるため、冷却水供給ノズル3a、3bの先端と冷却を行うスラブ1の端面の距離Lを2000mm以下とする。   On the other hand, if the cooling water injection distance is increased, the cooling water may not sufficiently reach the slab 1 due to scattering by the wind and the like, and therefore the distance between the tips of the cooling water supply nozzles 3a and 3b and the end surface of the slab 1 that performs cooling. L is 2000 mm or less.

また、高温スラブを常温まで冷却するための時間は、生産管理の点から短い方が望ましい。そのため、冷却効率を確保する上で、スラブ長手方向端面の80%以上の面積を散水する。   Further, it is desirable that the time for cooling the high-temperature slab to room temperature is shorter from the viewpoint of production control. Therefore, in ensuring cooling efficiency, water is sprayed over an area of 80% or more of the end surface in the slab longitudinal direction.

冷却水供給ノズル3a、3bは、冷却水噴流4の噴射角度が40°以上の円錐型ノズルであることが望ましい。これは、スラブ1の端面の80%以上の面積を冷却水で覆う場合、散水面積を確保する上で設置するノズル個数を少なくでき、設備投資を抑えることができるからである。また、冷却水がより細かい液滴の状態で噴射されるため、高温スラブとの接触により容易に気化し、滞留水の発生を防ぐ上でも有効である。   The cooling water supply nozzles 3a and 3b are preferably conical nozzles having an injection angle of the cooling water jet 4 of 40 ° or more. This is because, when the area of 80% or more of the end face of the slab 1 is covered with cooling water, the number of nozzles to be installed can be reduced for securing the water spray area, and the capital investment can be suppressed. Further, since the cooling water is jetted in the form of finer droplets, it is easily vaporized by contact with the high temperature slab, and is effective in preventing the generation of stagnant water.

本発明に係るスラブの冷却方法の効果を確認した試験結果を表1に示す。

Figure 2011125883
Table 1 shows the test results confirming the effect of the slab cooling method according to the present invention.
Figure 2011125883

表1において、試験1ないし試験8は本発明の実施例を、試験9から試験14は、比較例を示している。試験条件としては、スラブを冷却する水量密度の影響、及び、スラブと冷却水供給ノズル先端距離の影響を評価した。   In Table 1, Test 1 to Test 8 show examples of the present invention, and Test 9 to Test 14 show comparative examples. As test conditions, the influence of the water density for cooling the slab and the influence of the slab and the cooling water supply nozzle tip distance were evaluated.

冷却を開始する時のスラブ温度は、スラブ長手方向中心部の温度を基準として用いた。
連続鋳造終了から試験を開始するまでには、搬送時間を要するため、冷却は約700℃の状態から行った。
The slab temperature at the start of cooling was used based on the temperature at the center of the slab longitudinal direction.
Since a conveyance time is required from the end of continuous casting to the start of the test, cooling was performed from a temperature of about 700 ° C.

冷却を行うスラブの大きさには幅があるため、表1には、平均の大きさとして示した。
段数はいずれも7段である。
Since the size of the slab to be cooled varies, it is shown in Table 1 as an average size.
The number of stages is 7 stages.

試験1ないし試験8は、冷却目標時間である10時間以内の散水冷却で、長手方向端面温度を目標である100℃よりも低くでき、また、冷却終了時のスラブの変形量(反り量)は、許容量である70mm未満を達成した。試験9は、水量密度が2L/min/tよりも少ない場合であり、反り量は目標を達成するが、所要冷却時間が目標を達成できなかった。   Tests 1 to 8 are sprinkling cooling within 10 hours, which is the target cooling time, and the end surface temperature in the longitudinal direction can be lower than the target 100 ° C., and the deformation amount (warpage) of the slab at the end of cooling is The allowable amount of less than 70 mm was achieved. Test 9 is a case where the water density is less than 2 L / min / t, and the amount of warpage achieved the target, but the required cooling time failed to achieve the target.

試験12ないし14は、冷却水量が5L/min/tよりも多い場合であり、冷却時間は短くなるが、反り量は許容量よりも大きく、目的を達成できなかった。また、試験10及び11は、冷却水噴射距離がそれぞれ、2100mm、1400mmの場合であり、試験10では水冷時間を目標以内とすることができず、また、試験11では反り量が規制値よりも大きくなった。 Tests 12 to 14 were cases where the amount of cooling water was greater than 5 L / min / t, and the cooling time was shortened, but the amount of warpage was greater than the allowable amount, and the objective could not be achieved. In Tests 10 and 11, the cooling water injection distances are 2100 mm and 1400 mm, respectively. In Test 10, the water cooling time cannot be within the target, and in Test 11, the amount of warpage is less than the regulation value. It became bigger.

1 段積みされたスラブ
11〜17 スラブ
2 スラブ置き台
3 冷却装置
3a 冷却水供給ノズル
3b 冷却水供給ノズル
4 冷却水噴流
L スラブ長手方向端面と冷却水ノズル先端距離
1 stacked slabs 11 to 17 slabs 2 slab table 3 cooling device 3a cooling water supply nozzle 3b cooling water supply nozzle 4 cooling water jet
L Slab longitudinal direction end surface and cooling water nozzle tip distance

Claims (4)

連続鋳造後の高温スラブを冷却する方法であって、複数枚、段積みされた状態のスラブの長手方向側面に冷却水供給ノズルを設置し、該冷却水供給ノズルの先端とスラブ長手方向側面との間隔を1500mm以上2000mm以下とし、2L/min/t以上、5L/min/t以下の水量密度で、長手方向側面の80%以上の面積を散水冷却することを特徴とするスラブ冷却方法。   A method for cooling a high-temperature slab after continuous casting, wherein a plurality of stacked slabs in a stacked state are provided with a cooling water supply nozzle on the longitudinal side surface, and the tip of the cooling water supply nozzle and the slab longitudinal side surface The slab cooling method is characterized by spraying and cooling an area of 80% or more of the side surface in the longitudinal direction at a water density of 2 L / min / t or more and 5 L / min / t or less with an interval of 1500 mm to 2000 mm. 冷却水供給ノズルとして、噴射角が40°以上の円錐型ノズルを用いることを特徴とする請求項1に記載のスラブ冷却方法。   2. The slab cooling method according to claim 1, wherein a conical nozzle having an injection angle of 40 ° or more is used as the cooling water supply nozzle. 連続鋳造後の高温スラブが複数枚、段積みされるスラブ置き台の両側に、スラブの長手方向側面を散水冷却する冷却水供給ノズルを配置したスラブ冷却装置であって、該冷却水供給ノズルがその先端とスラブ長手方向側面の間隔を1500mm以上2000mm以下とし、2L/min/t以上、5L/min/t以下の水量密度で、長手方向側面の80%以上の面積を散水冷却するものであることを特徴とするスラブ冷却装置。   A slab cooling device in which a cooling water supply nozzle for sprinkling and cooling the longitudinal side surface of a slab is disposed on both sides of a slab placing table on which a plurality of high-temperature slabs after continuous casting are stacked. The distance between the tip and the side surface in the longitudinal direction of the slab is 1500 mm or more and 2000 mm or less, and the water density of 2 L / min / t or more and 5 L / min / t or less is used for water-cooling the area of 80% or more of the longitudinal side surface. A slab cooling device characterized by that. 冷却水供給ノズルを、噴射角が40°以上の円錐型ノズルとしたことを特徴とする請求項3に記載のスラブ冷却装置。   The slab cooling device according to claim 3, wherein the cooling water supply nozzle is a conical nozzle having an injection angle of 40 ° or more.
JP2009285122A 2009-12-16 2009-12-16 Slab cooling method and apparatus Active JP5359847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285122A JP5359847B2 (en) 2009-12-16 2009-12-16 Slab cooling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285122A JP5359847B2 (en) 2009-12-16 2009-12-16 Slab cooling method and apparatus

Publications (2)

Publication Number Publication Date
JP2011125883A true JP2011125883A (en) 2011-06-30
JP5359847B2 JP5359847B2 (en) 2013-12-04

Family

ID=44289054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285122A Active JP5359847B2 (en) 2009-12-16 2009-12-16 Slab cooling method and apparatus

Country Status (1)

Country Link
JP (1) JP5359847B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133711A (en) * 1974-09-17 1976-03-23 Nippon Steel Corp Surabu no reikyakuhoho
JPS5348110U (en) * 1976-09-28 1978-04-24
JPS63268546A (en) * 1987-03-02 1988-11-07 レヒレル・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Two-substance injection nozzle generating completely conical injection
JPH11286728A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Slab cooling method after continuous casting
JP4089664B2 (en) * 2004-08-18 2008-05-28 住友金属工業株式会社 Cooling method of slab
JP2008200685A (en) * 2007-02-16 2008-09-04 Sumitomo Metal Ind Ltd Cooling method for continuously cast slab
JP2009173993A (en) * 2008-01-24 2009-08-06 Sumitomo Metal Ind Ltd Apparatus for watering cooling cast slab

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133711A (en) * 1974-09-17 1976-03-23 Nippon Steel Corp Surabu no reikyakuhoho
JPS5348110U (en) * 1976-09-28 1978-04-24
JPS63268546A (en) * 1987-03-02 1988-11-07 レヒレル・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Two-substance injection nozzle generating completely conical injection
JPH11286728A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Slab cooling method after continuous casting
JP4089664B2 (en) * 2004-08-18 2008-05-28 住友金属工業株式会社 Cooling method of slab
JP2008200685A (en) * 2007-02-16 2008-09-04 Sumitomo Metal Ind Ltd Cooling method for continuously cast slab
JP2009173993A (en) * 2008-01-24 2009-08-06 Sumitomo Metal Ind Ltd Apparatus for watering cooling cast slab

Also Published As

Publication number Publication date
JP5359847B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101209355B1 (en) Cooling method for hot-rolled steel sheets
JP4774887B2 (en) Steel sheet cooling equipment and manufacturing method
JP2007061838A (en) Hot-rolling equipment and method for steel plate
EP2015880B1 (en) Method for cooling anodes
JP4874437B2 (en) Thick steel plate manufacturing equipment
JP5471935B2 (en) Steel strip rolling device
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
KR101193693B1 (en) Method and apparatus for cooling of slag
JP5423575B2 (en) Steel plate cooling equipment
JP2010253529A (en) Secondary cooling method for continuous casting
JP4800245B2 (en) Billet descaler
JP5359847B2 (en) Slab cooling method and apparatus
JP2010247227A (en) Equipment and method for manufacturing thick steel plate
JP7004018B2 (en) Cooling method of steel bar and manufacturing method of steel bar, and cooling mist spraying device
JP2010253528A (en) Secondary cooling method in continuous casting
KR20110034452A (en) Accelerated cooling method of thermo-mechanical controlled process and the accelerated cooling apparatus
JP4874156B2 (en) Rolling machine roll cooling device and cooling method
JP5609199B2 (en) Secondary cooling method in continuous casting
JP4398898B2 (en) Thick steel plate cooling device and method
JP5121039B2 (en) Billet water cooling method
KR20120107168A (en) Apparatus for removing surface scale of steel product
JP2018001208A (en) Secondary cooling apparatus and secondary cooling method for continuous casting
JP5556073B2 (en) Secondary cooling method in continuous casting
JP4621061B2 (en) Steel plate cooling equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350