JP2008200685A - Cooling method for continuously cast slab - Google Patents

Cooling method for continuously cast slab Download PDF

Info

Publication number
JP2008200685A
JP2008200685A JP2007036640A JP2007036640A JP2008200685A JP 2008200685 A JP2008200685 A JP 2008200685A JP 2007036640 A JP2007036640 A JP 2007036640A JP 2007036640 A JP2007036640 A JP 2007036640A JP 2008200685 A JP2008200685 A JP 2008200685A
Authority
JP
Japan
Prior art keywords
slab
cooling
watering
temperature
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007036640A
Other languages
Japanese (ja)
Other versions
JP4623022B2 (en
Inventor
Masaaki Yamade
雅章 山出
Yuji Tanaka
勇次 田中
Koichi Ikeda
耕一 池田
Takeshi Okada
剛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007036640A priority Critical patent/JP4623022B2/en
Publication of JP2008200685A publication Critical patent/JP2008200685A/en
Application granted granted Critical
Publication of JP4623022B2 publication Critical patent/JP4623022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where a slab in high temperature after continuous casting can be cooled at high efficiency without generating shape deformation caused by warpage even in cooling from a high temperature region where surface temperature exceeds 600°C. <P>SOLUTION: Disclosed is a cooling method for a continuously cast slab where a slab in high temperature after continuous casting is periodically repeatedly subjected to water spray treatment and water spray stopping treatment, so as to cool the slab. In the above cooling method, by periodically repeatedly subjecting the side faces in the longitudinal direction of stacked slabs in high temperature to water spray treatment and water spray stopping treatment, large effect can be exhibited. Preferably, water spray time is controlled to 5 to 30 min and water spray stopping time is controlled to 5 to 30 min, and, more preferably, the upper face of the slab in the uppermost stage in the stacked high temperature slabs is subjected to temperature holding treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造後の高温の鋳片を、形状変化を発生させることなく冷却する方法に関し、さらに詳しくは、連続鋳造後の主としてスラブを、反りによる形状変化を発生させることなく高い効率で冷却することのできる連続鋳造鋳片の冷却方法に関する。   The present invention relates to a method for cooling a high-temperature slab after continuous casting without causing a shape change, and more specifically, a slab after continuous casting mainly with high efficiency without causing a shape change due to warpage. The present invention relates to a method for cooling a continuously cast slab that can be cooled.

連続鋳造後の高温の鋳片を冷却する場合には、冷却の過程で鋳片内の温度に偏差が生じ、その温度偏差による熱収縮率の差や相変態による膨張に起因して鋳片の形状変形が発生しやすい。また、鋼のように熱伝導率が比較的低い材料では、冷却によって材料の表面温度は低下するものの、材料内部の温度は低下しにくい。そして、散水冷却の場合に材料の表面温度が100℃未満にまで低下すると、水の蒸発潜熱による抜熱作用がなくなることから、散水量当たりの冷却効率は著しく低下する。   When cooling a hot slab after continuous casting, a temperature deviation occurs in the slab during the cooling process, and due to the difference in thermal shrinkage due to the temperature deviation and expansion due to phase transformation, Shape deformation is likely to occur. In addition, in a material having a relatively low thermal conductivity such as steel, the surface temperature of the material is lowered by cooling, but the temperature inside the material is hardly lowered. When the surface temperature of the material is lowered to less than 100 ° C. in the case of sprinkling cooling, the heat removal effect due to the latent heat of evaporation of water is lost, so the cooling efficiency per sprinkling amount is significantly reduced.

連続鋳造後の高温の鋳片を冷却するための従来技術としては、例えば下記の特許文献1や特許文献2などに開示された方法が公知である。   As a conventional technique for cooling a high-temperature slab after continuous casting, for example, methods disclosed in Patent Document 1 and Patent Document 2 below are known.

特許文献1には、高温のスラブを複数枚積層し、積層したスラブの最上段に位置するスラブの上面に、散水による水滴付着防止処置を施し、高温スラブの長手方向側面に冷却水を散水することにより、最上段に積載したスラブの反りを防止しながらスラブを冷却する方法が開示されている。しかし、同文献で開示された方法では、スラブの反りを完全に防止することは困難であり、また、表面温度が低下した後の冷却効率の悪化を防止できないため、所定の温度まで冷却するのに長時間を要する。さらに、水冷の前後において冷鋳片スラブなどの水滴付着防止板の設置および除去といったハンドリング作業が必要であり、冷却工数が増大する。   In Patent Document 1, a plurality of high-temperature slabs are stacked, a water droplet adhesion prevention treatment is applied to the upper surface of the slab positioned at the top of the stacked slabs, and cooling water is sprinkled on the longitudinal side surfaces of the high-temperature slabs. Thus, a method of cooling the slab while preventing warping of the slab loaded on the uppermost stage is disclosed. However, in the method disclosed in the same document, it is difficult to completely prevent the slab from being warped, and the deterioration of the cooling efficiency after the surface temperature is lowered cannot be prevented. Takes a long time. Furthermore, handling work such as installation and removal of a water droplet adhesion prevention plate such as a cold cast slab before and after water cooling is required, which increases the number of cooling steps.

また、特許文献2には、積層したスラブの側面の表面温度が600℃以下となるまで大気中で放冷後、最上段スラブの上面から下向きに少なくとも0.3mの範囲を除いて、その下部のスラブの長手方向側面に散水するスラブの冷却方法が開示されている。しかし、この方法においても、スラブの反りによる変形を完全に防止することは難しく、特に、表面温度が600℃を超える場合には、散水冷却に起因するスラブの反りの発生を抑制することは困難である。   Further, Patent Document 2 describes that the lower part of the laminated slab is left in the air until the surface temperature of the side surface of the laminated slab becomes 600 ° C. or lower, and then the lower part of the lower part except for a range of at least 0.3 m downward from the upper surface of the uppermost slab. The cooling method of the slab sprayed on the longitudinal direction side surface of this slab is disclosed. However, even in this method, it is difficult to completely prevent deformation due to slab warpage, and in particular, when the surface temperature exceeds 600 ° C., it is difficult to suppress the occurrence of slab warpage caused by water spray cooling. It is.

上記のように、連続鋳造後の高温の鋳片を散水冷却により冷却するに際して、鋳片の表面温度が600℃を超える高温領域からの冷却であっても、鋳片の反りなどによる形状変形を防止し、かつ、高い効率のもとに冷却するためには、改善されねばならない課題が残されている。   As described above, when cooling a high temperature slab after continuous casting by sprinkling cooling, even if it is cooling from a high temperature region where the surface temperature of the slab exceeds 600 ° C., shape deformation due to warpage of the slab etc. In order to prevent and cool with high efficiency, there remains a problem that must be improved.

特開平11−286728号公報(特許請求の範囲および段落[0004])JP 11-286728 A (Claims and paragraph [0004]) 特開2006−55865号公報(特許請求の範囲および段落[0025]〜[0027])JP 2006-55865 A (Claims and paragraphs [0025] to [0027])

本発明は、連続鋳造後の高温の鋳片を冷却するに際して発生する上記の問題に鑑みてなされたものであり、その課題は、連続鋳造後の高温の鋳片、特に積層されたスラブの散水冷却に際して、その表面温度が600℃を超える高温領域からの冷却であっても、鋳片の反りなどによる形状変形を防止し、高い効率で鋳片を冷却できる方法を提供することにある。   The present invention has been made in view of the above-described problems that occur when cooling a high-temperature slab after continuous casting, and the problem is that the high-temperature slab after continuous casting, particularly sprinkling of laminated slabs. An object of the present invention is to provide a method for preventing the deformation of the slab due to warpage of the slab and cooling the slab with high efficiency even when cooling from a high temperature region whose surface temperature exceeds 600 ° C.

本発明者らは、上記の課題を解決するため、連続鋳造後の高温の鋳片を、適正な散水条件のもとに、鋳片の反りなどによる形状変形を抑制し、かつ高い効率で冷却できる冷却方法を検討し、下記の(a)〜(d)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors can cool a high-temperature slab after continuous casting under high watering conditions by suppressing shape deformation due to warpage of the slab and with high efficiency. The cooling method which can be performed was examined, the following knowledge (a) to (d) was obtained, and the present invention was completed.

(a)連続鋳造後の高温の鋳片を散水冷却すると、散水が鋳片の上面にかかりやすく、また発生した水蒸気の影響により、鋳片の上面では下面よりも冷却が急速に進行する。このため、鋳片の上面と下面との温度差に起因する熱収縮率の差により、上反り(下に凸形状の反り)が発生する。また、冷却過程において鋳片の上面からフェライトへの相変態が進行するため、上面近傍の膨張にともなう鋳片の下反り(上に凸形状の反り)が生じる。特に、積層された高温スラブの長手方向の側面を散水冷却する場合には、最上段に位置するスラブが上記の影響を大きく受ける。   (A) When the high-temperature slab after continuous casting is sprinkled and cooled, the water spray is likely to be applied to the upper surface of the slab, and due to the generated water vapor, the cooling on the upper surface of the slab proceeds more rapidly than the lower surface. For this reason, an upward warp (a warped convex shape) occurs due to a difference in thermal shrinkage due to a temperature difference between the upper surface and the lower surface of the slab. In addition, since the phase transformation from the upper surface of the slab to ferrite proceeds during the cooling process, the slab is warped downward (convex in a convex shape) due to expansion in the vicinity of the upper surface. In particular, when the longitudinal side surfaces of the stacked high-temperature slabs are sprinkled and cooled, the slab located in the uppermost stage is greatly affected by the above.

(b)上記(a)に記載の鋳片の反りによる形状変形を緩和するためには、散水処理と散水停止処理とを周期的に繰り返す散水方法が効果的である。散水期間中に発生した鋳片の上下面間の温度偏差が、散水停止期間中に、鋳片内部の高温部からの復熱により緩和され、鋳片の反りが低減されるからである。   (B) In order to relieve the shape deformation due to warping of the slab described in (a) above, a watering method that periodically repeats the watering treatment and the watering stop treatment is effective. This is because the temperature deviation between the upper and lower surfaces of the slab generated during the watering period is relaxed by the reheat from the high temperature portion inside the slab during the watering stop period, and the warpage of the slab is reduced.

(c)上記(b)の方法によれば、散水停止期間中に鋳片の表面温度が復熱により上昇するので、鋳片の表面温度を比較的高温に維持できる。その結果、単位冷却水量当たりの冷却効率を高めることができるので、散水冷却時間当たりの冷却能率を、連続的に散水する場合と同程度にすることができるとともに、冷却水の節減および省エネルギー化を図ることも可能となる。   (C) According to the above method (b), the surface temperature of the slab rises due to recuperation during the watering stop period, so that the surface temperature of the slab can be maintained at a relatively high temperature. As a result, the cooling efficiency per unit cooling water volume can be increased, so that the cooling efficiency per sprinkling cooling time can be made the same level as when continuously sprinkling water, and cooling water can be saved and energy can be saved. It is also possible to plan.

(d)上記(b)の方法では、散水時間および散水停止時間は、それぞれ5〜30分の範囲とすることが好ましい。また、積層されたスラブの最上段に位置するスラブの上面に保温処置を施すことにより、散水冷却によるスラブの反りの発生をほぼ皆無とすることができる。   (D) In the method (b), the watering time and the watering stop time are preferably in the range of 5 to 30 minutes, respectively. In addition, by applying a heat retaining treatment to the upper surface of the slabs positioned at the uppermost stage of the stacked slabs, the occurrence of warpage of the slabs due to sprinkling cooling can be almost eliminated.

本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)〜(4)に示す連続鋳造鋳片の冷却方法にある。   This invention is completed based on said knowledge, The summary exists in the cooling method of the continuous cast slab shown to following (1)-(4).

(1)連続鋳造後の高温の鋳片に散水処理および散水停止処理を周期的に繰り返し施すことにより該鋳片を冷却することを特徴とする連続鋳造鋳片の冷却方法(以下、「第1発明」とも記す)。   (1) A cooling method for a continuous cast slab (hereinafter referred to as “first”), wherein the slab is cooled by periodically subjecting a high-temperature slab after continuous casting to water spraying treatment and water spray stop treatment. Also referred to as “invention”).

(2)連続鋳造後の高温のスラブを積層した後、該積層された高温のスラブの長手方向の側面に散水処理および散水停止処理を周期的に繰り返し施すことにより該スラブを冷却することを特徴とする連続鋳造鋳片の冷却方法(以下、「第2発明」とも記す)。   (2) After laminating high-temperature slabs after continuous casting, the slabs are cooled by periodically repeating watering treatment and watering stop treatment on the side surfaces in the longitudinal direction of the laminated high-temperature slabs. And a method for cooling a continuous cast slab (hereinafter also referred to as “second invention”).

(3)前記散水時間を5〜30分間とし、前記散水停止時間を5〜30分間として、散水処理および散水停止処理を周期的に繰り返し施すことを特徴とする前記(1)または(2)に記載の連続鋳造鋳片の冷却方法(以下、「第3発明」とも記す)。   (3) The watering time is 5 to 30 minutes, the watering stop time is 5 to 30 minutes, and watering treatment and watering stop processing are periodically repeated. A method for cooling the continuous cast slab described above (hereinafter also referred to as “third invention”).

(4)前記積層された高温スラブの最上段に位置するスラブの上面に保温処置を施すことを特徴とする前記(2)または(3)のいずれかに記載の連続鋳造鋳片の冷却方法(以下、「第4発明」とも記す)。   (4) The method for cooling a continuously cast slab according to any one of (2) and (3), wherein a heat treatment is applied to the upper surface of the slab located at the uppermost stage of the stacked high-temperature slabs ( Hereinafter, also referred to as “fourth invention”).

本発明において、「高温の鋳片」または「高温のスラブ」とは表面温度が100℃〜800℃の範囲にある鋳片またはスラブを意味する。なお、表面温度は、鋳片またはスラブの長手方向側面の平均表面温度または長手方向中央部の表面温度により代表させるのが好ましい。   In the present invention, “high temperature slab” or “high temperature slab” means a slab or slab having a surface temperature in the range of 100 ° C. to 800 ° C. The surface temperature is preferably represented by the average surface temperature of the side surface in the longitudinal direction of the slab or slab or the surface temperature of the central portion in the longitudinal direction.

本発明の鋳片の冷却方法によれば、連続鋳造後の高温の鋳片、特に積層されたスラブに、散水処理と散水停止処理とを周期的に繰り返し施すことにより、その表面温度が600℃を超える高温領域からの冷却であっても、鋳片の反りなどによる形状変形を防止し、かつ、高い冷却効率で鋳片を散水冷却することができる。   According to the method for cooling a slab of the present invention, a surface temperature of 600 ° C. is obtained by periodically subjecting a high-temperature slab after continuous casting, particularly a laminated slab, to repeated watering treatment and watering stop treatment. Even if it is cooling from the high temperature area | region exceeding this, shape deformation by the curvature of a slab etc. can be prevented, and a slab can be water-cooled with high cooling efficiency.

本発明は、前記のとおり、連続鋳造後の高温の鋳片に散水処理および散水停止処理を周期的に繰り返し施すことにより鋳片を冷却する連続鋳造鋳片の冷却方法であり、特に、連続鋳造後に積層された高温のスラブの長手方向の側面に散水処理および散水停止処理を周期的に繰り返し施すことによりスラブを冷却する方法である。以下の説明では、散水処理および散水停止処理を周期的に繰り返し施す冷却方法を「間欠散水冷却」とも記し、従来の連続散水による冷却方法と区別する。   As described above, the present invention is a continuous casting slab cooling method for cooling a slab by periodically subjecting a high-temperature slab after continuous casting to watering treatment and watering stop treatment, and in particular, continuous casting. This is a method of cooling the slab by periodically repeating the watering treatment and the watering stop treatment on the side surface in the longitudinal direction of the high-temperature slab laminated later. In the following description, a cooling method in which watering treatment and watering stop processing are periodically repeated is also referred to as “intermittent watering cooling”, and is distinguished from a conventional cooling method by continuous watering.

連続鋳造後の高温の鋳片を散水冷却すると、散水が鋳片の上面にかかりやすく、また発生した水蒸気の影響により、鋳片の上面は下面よりも冷却が進行する。その結果、鋳片の上面と下面との間に温度偏差が生じ、熱収縮率の差による上反りが発生したり、また、冷却過程における鋳片上面付近からのフェライトへの相変態による膨張にともなって、鋳片の下反りが発生する。   When the high temperature slab after continuous casting is sprinkled and cooled, the water spray is likely to be applied to the upper surface of the slab, and the upper surface of the slab is cooled more than the lower surface due to the influence of the generated water vapor. As a result, a temperature deviation occurs between the upper surface and the lower surface of the slab, causing an upward warpage due to a difference in thermal shrinkage rate, or expansion due to a phase transformation from near the upper surface of the slab to ferrite during the cooling process. Along with this, the slab is warped.

図1は、本発明の散水冷却方法による積層スラブの冷却を模式的に示す図である。積層された高温のスラブ1の長手方向の側面2(同図中の斜線部)を散水冷却する場合には、最上段に位置するスラブ3において、上記のようなスラブの上面4と下面5との間の温度偏差の発生が著しく、したがって、その温度偏差に起因するスラブの反りによる形状変形も大きくなる。   FIG. 1 is a diagram schematically showing cooling of a laminated slab by the sprinkling cooling method of the present invention. When sprinkling and cooling the longitudinal side surface 2 of the laminated high temperature slab 1 (shaded portion in the figure), the upper surface 4 and the lower surface 5 of the slab as described above in the uppermost slab 3 The temperature deviation during this period is remarkably generated, and therefore, the shape deformation due to the slab warpage caused by the temperature deviation also becomes large.

本発明は、散水冷却の方法を改善することにより、鋳片の形状変形を生じさせる上記の鋳片内の温度偏差を緩和し、反りによる形状変形を抑制しつつ、高い効率で冷却する散水冷却方法である。以下に、本発明の構成を前記のように規定した理由および好ましい態様について、詳細に説明する。   The present invention improves the sprinkling cooling method to alleviate the temperature deviation in the above slab that causes shape deformation of the slab, and suppresses the shape deformation due to warping while cooling with high efficiency. Is the method. Hereinafter, the reason why the configuration of the present invention is defined as described above and preferred embodiments will be described in detail.

(1)散水処理および散水停止処理の周期的繰り返し
本発明は、高温の鋳片に散水処理および散水停止処理を周期的に繰り返すことを特徴とする。鋳片の反りの発生を抑制するためには、上記のように散水処理と散水停止処理とを周期的に繰り返す散水方法が効果的である。その理由は、散水期間中に発生した鋳片の上下面間の温度偏差が散水停止期間中に、鋳片内部の高温部からの熱伝導に基づく復熱現象により緩和され、その結果、鋳片の反りが低減されるからである。
(1) Periodic repetition of sprinkling treatment and sprinkling stop processing The present invention is characterized by periodically repeating sprinkling treatment and sprinkling stop processing on a high-temperature slab. In order to suppress the occurrence of warpage of the slab, a watering method that periodically repeats the watering process and the watering stop process as described above is effective. The reason for this is that the temperature deviation between the upper and lower surfaces of the slab generated during the watering period is alleviated by the recuperation phenomenon based on the heat conduction from the high-temperature part inside the slab during the watering stop period. This is because the warpage of the sheet is reduced.

また、連続的に散水冷却を行う従来法の場合は、鋳片の表面温度は低下するものの、鋳片内部の温度は低下しにくく、さらに、表面温度が100℃以下にまで低下すると、冷却水の蒸発潜熱による抜熱が生じなくなることから、散水によって鋳片から奪われる熱量は、鋳片の表面温度と冷却水温度との温度差に基づく熱伝達のみとなるため、単位水量当たりの冷却効率が著しく低下することとなる。   Further, in the case of the conventional method in which water spray cooling is continuously performed, the surface temperature of the slab is lowered, but the temperature inside the slab is hardly lowered, and when the surface temperature is lowered to 100 ° C. or lower, the cooling water Since heat removal due to the latent heat of evaporation does not occur, the amount of heat taken away from the slab by sprinkling is only heat transfer based on the temperature difference between the surface temperature of the slab and the cooling water temperature, so cooling efficiency per unit water volume Will be significantly reduced.

これに対して、散水処理と散水停止処理とを周期的に繰り返す間欠散水冷却では、散水停止期間中に鋳片の表面温度が復熱現象により上昇するので、鋳片の表面温度を比較的高温に維持できる。その結果、冷却水の蒸発潜熱による抜熱の効果を長時間にわたって確保できるとともに、鋳片表面と冷却水との温度差に基づく熱伝達速度も高く維持することができ、単位冷却水量当たりの冷却効率を高めることができる。したがって、散水冷却時間当たりの冷却効果も、連続的に散水冷却する場合と同程度とすることができるとともに、冷却水の節減および省エネルギー化をも図ることが可能となる。   On the other hand, in intermittent sprinkling cooling that periodically repeats the sprinkling treatment and the sprinkling stop treatment, the surface temperature of the slab rises due to the recuperation phenomenon during the sprinkling stop period, so the surface temperature of the slab is relatively high. Can be maintained. As a result, the effect of heat removal due to the latent heat of vaporization of the cooling water can be secured over a long period of time, and the heat transfer rate based on the temperature difference between the slab surface and the cooling water can be maintained at a high level. Efficiency can be increased. Therefore, the cooling effect per sprinkling cooling time can be set to the same level as in the case of continuous sprinkling cooling, and cooling water can be saved and energy can be saved.

積層された高温のスラブに散水冷却を施す場合は、各スラブの上面と下面とにおける冷却効果の差を可能な限り小さくし、かつ冷却効率を高める観点から、積層されたスラブの長手方向の側面に散水処理と散水停止処理とを周期的に繰り返し施すことが好ましい。また、スラブの幅方向の温度偏差に起因して地面と平行な横方向の反り(横反り)が発生するのを防止するため、長手方向の両側の側面に散水処理と散水停止処理とを周期的に繰り返し施すことが好ましい。   When water spray cooling is applied to the stacked high-temperature slabs, the side surfaces in the longitudinal direction of the stacked slabs are designed to minimize the difference in cooling effect between the upper and lower surfaces of each slab and to increase the cooling efficiency. It is preferable to periodically and repeatedly perform the watering treatment and the watering stop treatment. In addition, in order to prevent the occurrence of lateral warping (lateral warping) parallel to the ground due to temperature deviation in the width direction of the slab, water spraying treatment and water spray stopping treatment are periodically performed on both sides in the longitudinal direction. It is preferable to apply repeatedly.

(2)散水時間および散水停止時間
第3発明に規定されたとおり、散水時間は5〜30分とし、散水停止時間は5〜30分とすることが好ましい。
(2) Sprinkling time and sprinkling stop time As prescribed in the third invention, the sprinkling time is preferably 5 to 30 minutes, and the sprinkling stop time is preferably 5 to 30 minutes.

その理由は下記のとおりである。すなわち、散水時間が5分未満の場合には、単位時間当たりの鋳片の冷却速度が低下し、一方、散水時間が30分を超えて長くなると、鋳片の表面温度が低下し過ぎて、単位水量当たりの冷却効率が低下するのに加えて、鋳片内部の温度偏差が拡大し、温度偏差に起因する反りなどの形状変形が助長されるからである。また、散水停止時間が5分未満の場合には、鋳片の表面温度が充分に復熱せず、したがって単位水量あたりの冷却効率が低下し、一方、散水停止時間が30分を超えて長くなると、単位水量当たりの冷却効率は低下しないものの、鋳片の冷却に要する時間が長くなり、散水冷却能力が低下するからである。   The reason is as follows. That is, when the watering time is less than 5 minutes, the cooling rate of the slab per unit time decreases, while when the watering time exceeds 30 minutes, the surface temperature of the slab decreases too much, This is because, in addition to the cooling efficiency per unit amount of water being lowered, the temperature deviation inside the slab is enlarged, and shape deformation such as warpage caused by the temperature deviation is promoted. In addition, when the watering stop time is less than 5 minutes, the surface temperature of the slab is not sufficiently reheated, and thus the cooling efficiency per unit water amount is lowered, while the watering stop time is longer than 30 minutes. This is because although the cooling efficiency per unit amount of water does not decrease, the time required for cooling the slab becomes longer and the sprinkling cooling capacity decreases.

(3)積層スラブの最上段スラブの上面保温処置
第4発明に規定されたとおり、積層されたスラブの最上段スラブの上面には保温処置を施すことが好ましい。その理由は、最上段のスラブの上面には、冷却散水が特にかかりやすく、また発生した水蒸気の影響により、スラブの上面の冷却が急速に進行して、熱収縮率の差による上反りやフェライトへの相変態に起因する下反りが生じやすいからである。
(3) Upper surface heat retention treatment of the uppermost slab of the laminated slab As defined in the fourth invention, it is preferable to apply a heat retention treatment to the upper surface of the uppermost slab of the laminated slab. The reason for this is that the top surface of the uppermost slab is particularly susceptible to cooling sprinkling, and the cooling of the upper surface of the slab proceeds rapidly due to the influence of the generated water vapor, causing warpage and ferrite due to differences in the heat shrinkage rate. This is because the downward warping caused by the phase transformation to is likely to occur.

積層スラブの最上段スラブの上面保温処置としては、例えば、グラスウールやロックウールなどの不燃性の繊維状耐火物、または耐火物からなるボードや多孔質レンガなどを組み合わせてスラブの上面に載置することにより、散水冷却によるスラブの反りの発生をほぼ皆無とすることができる。   As the top surface heat treatment of the uppermost slab of the laminated slab, for example, a non-combustible fibrous refractory such as glass wool or rock wool, or a board or porous brick made of refractory is combined and placed on the top surface of the slab. Therefore, almost no slab warpage due to sprinkling cooling can be achieved.

本発明に係るスラブの散水冷却方法の効果を確認するため、以下に述べる試験を実施し、その結果を評価した。   In order to confirm the effect of the water spray cooling method of the slab according to the present invention, the test described below was performed and the result was evaluated.

試験条件および試験結果を表1に示した。   Test conditions and test results are shown in Table 1.

Figure 2008200685
Figure 2008200685

同表に示すとおり、試験条件として、スラブ寸法、スラブ枚数、スラブの初期表面温度、散水パターン、散水量、最上段スラブの上面の保温処置などを変化させ、スラブの反り量および冷却所要日数を調査した。   As shown in the table, slab dimensions, number of slabs, initial surface temperature of slab, water spray pattern, water spray amount, heat treatment on top surface of top slab, etc. are changed as test conditions, and the amount of warpage of slab and the number of days required for cooling are changed investigated.

(1)試験方法
連続鋳造により鋳造された、厚さ:227mm、幅:950mmまたは1250mm、および長さ:9〜10mで、初期表面温度が500〜760℃の高温のスラブを用い、1枚のスラブの上面に散水を行う冷却試験、および8枚(8段)または9枚(9段)の積層されたスラブの側面に散水を行う冷却試験を実施した。散水冷却には、横1列または複数列に配したフルコーンタイプのノズルを用いて、スラブ上面または積層スラブ側面の表面温度が所定の温度に低下するまでスラブの表面に散水を行った。
(1) Test method Using a high-temperature slab cast by continuous casting and having a thickness of 227 mm, a width of 950 mm or 1250 mm, and a length of 9 to 10 m and an initial surface temperature of 500 to 760 ° C. A cooling test in which water was sprayed on the upper surface of the slab and a cooling test in which water was sprayed on the side surfaces of the stacked slabs of 8 sheets (8 stages) or 9 sheets (9 stages) were performed. For sprinkling cooling, water was sprayed on the surface of the slab using a full cone type nozzle arranged in one or more rows until the surface temperature of the upper surface of the slab or the side surface of the laminated slab decreased to a predetermined temperature.

表1中に記載の「散水パターン」は、連続散水冷却または本発明法に係る間欠散水冷却の区別を示し、さらに散水パターン中のA、BおよびCは、それぞれ散水時間、散水停止時間、および全散水冷却時間を表す。これらの関係を明確にするために、図2に、散水冷却方法における散水量の経時変化の概念図を示す。冷却試験中の間欠散水冷却では、同図に示す散水時間(A)、散水停止時間(B)および散水冷却開始から散水冷却終了までの全散水冷却時間(C)として、上記の表1中に示したA、BおよびCの各値を採用し、試験を行った。   The “watering pattern” described in Table 1 indicates the distinction between continuous watering cooling or intermittent watering cooling according to the method of the present invention, and A, B and C in the watering pattern are watering time, watering stop time, and Represents total sprinkling cooling time. In order to clarify these relationships, FIG. 2 shows a conceptual diagram of the change over time in the watering amount in the watering cooling method. In intermittent sprinkling cooling during the cooling test, the sprinkling time (A), sprinkling stop time (B) and total sprinkling cooling time (C) from the start of sprinkling cooling to the end of sprinkling cooling shown in FIG. Each value of A, B, and C shown was adopted and tested.

また、同表中に記載の「平均散水量」は、(全散水冷却時間内に散水した総散水量(L))/(散水冷却開始から散水冷却終了までの時間(min))/(冷却スラブの総質量(t))により算出される値を表す。   In addition, “average watering amount” described in the table is (total watering amount (L) sprayed within the total watering cooling time) / (time from the start of watering cooling to the end of watering cooling (min)) / (cooling The value calculated by the total mass (t) of the slab.

同表中に記載の「最上段スラブ保温処置」は、保温処置の有無を示し、「有り」との表示は、スラブ上面の保温処置として、グラスウールやロックウールなどの不燃性の繊維状耐火物、または耐火物からなるボードや多孔質レンガなどを組み合わせてスラブの上面に載置することにより保温処置を施したことを表し、また、「無し」との表示は何らの処置をも行わなかったことを表す。   The “top slab heat treatment” in the table indicates the presence or absence of heat treatment, and “present” indicates non-flammable fibrous refractories such as glass wool and rock wool as heat treatment on the top surface of the slab. , Or a combination of refractory boards, porous bricks, etc., placed on the top of the slab to indicate that it has been kept warm, and the indication “none” did not take any action Represents that.

散水冷却の後、スラブの表面温度が40℃以下となるまで放冷を行い、「反り量」の測定を行った。反り量の測定は、地面と垂直方向への反り(縦反り)について行い、スラブの長手方向の単位長さ(m)当たりの反り量(mm)により表示した。   After sprinkling cooling, the slab was allowed to cool until the surface temperature became 40 ° C. or less, and the “warping amount” was measured. The amount of warpage was measured in terms of warpage in the direction perpendicular to the ground (longitudinal warpage), and indicated by the amount of warpage (mm) per unit length (m) in the longitudinal direction of the slab.

「冷却日数」は、連続鋳造の鋳込み終了からスラブの表面温度が40℃に低下するまでの所要日数により表示した。   “Cooling days” is indicated by the required days from the end of continuous casting until the surface temperature of the slab drops to 40 ° C.

また、スラブの表面温度の測定は、下記のように行った。すなわち、1枚のスラブの表面温度については、スラブの長手方向の片側側面の中央部での表面温度を測定し、これを表面温度とした。積層されたスラブの表面温度については、積層スラブの下から5枚目のスラブの長手方向の片側側面の中央部における表面温度を測定し、これを表面温度とした。なお、散水前の表面温度は放射型温度計により測定し、散水後の表面温度については、表面を乾燥後、接触型温度計により測定した。   The surface temperature of the slab was measured as follows. That is, for the surface temperature of one slab, the surface temperature at the center of one side surface in the longitudinal direction of the slab was measured and used as the surface temperature. Regarding the surface temperature of the laminated slabs, the surface temperature at the central portion of one side surface in the longitudinal direction of the fifth slab from the bottom of the laminated slab was measured and used as the surface temperature. In addition, the surface temperature before watering was measured with the radiation type thermometer, and the surface temperature after watering was measured with the contact-type thermometer after drying the surface.

(2)試験結果
試験番号1〜4は、本発明で規定する要件を満たさない連続散水冷却を行った比較例についての試験であり、試験番号5〜12は、本発明で規定する間欠散水冷却の要件を満足する本発明例についての試験である。また、試験番号1および5は、一枚のスラブの上面に散水冷却を施した試験であり、試験番号2〜4および試験番号6〜12は、積層されたスラブの長手方向の両側面に散水冷却を施した試験である。そして試験番号4および試験番号10〜12は、最上段に位置するスラブの上面に保温処置を行った試験であり、試験番号1〜3および試験番号5〜9は、保温処置を行わなかった試験である。
(2) Test results Test Nos. 1 to 4 are tests on comparative examples in which continuous watering cooling that does not satisfy the requirements defined in the present invention is performed, and test numbers 5 to 12 are intermittent water cooling defined in the present invention. This is a test for an example of the present invention that satisfies the above requirements. Test numbers 1 and 5 are tests in which water is cooled on the upper surface of one slab, and test numbers 2 to 4 and test numbers 6 to 12 are water sprays on both side surfaces in the longitudinal direction of the stacked slabs. This is a test with cooling. Test numbers 4 and 10 to 12 are tests in which heat treatment was performed on the upper surface of the uppermost slab, and test numbers 1 to 3 and test numbers 5 to 9 were tests in which heat treatment was not performed. It is.

一枚のスラブの上面に散水冷却を施した比較例の試験番号1と第1発明の発明例である試験番号5を比較すると、比較例の試験番号1では、スラブに大きな反りが発生したのに対して、本発明例の試験番号5では、スラブの反り量は試験番号1の場合の約1/5に抑制されており、良好な形状の冷却スラブが得られた。また、全散水冷却時間内に散水した総散水量を散水冷却開始から散水冷却終了までの時間および冷却スラブの総質量により除した平均散水量は、試験番号1の場合に比較して、試験番号5では著しく低減しており、スラブの単位質量当たりの総散水量も、試験番号5では試験番号1の場合の約70%にまで低減している。   When comparing test number 1 of the comparative example in which water spray cooling was performed on the upper surface of one slab and test number 5 which is the invention example of the first invention, in test number 1 of the comparative example, a large warp occurred in the slab. On the other hand, in the test number 5 of the example of the present invention, the amount of warpage of the slab was suppressed to about 1/5 that in the case of the test number 1, and a cooling slab having a good shape was obtained. Moreover, the average watering amount obtained by dividing the total watering amount sprinkled within the total watering cooling time by the time from the start of watering cooling to the end of watering cooling and the total mass of the cooling slab is the test number compared to the case of test number 1. No. 5 is markedly reduced, and the total water spray amount per unit mass of the slab is also reduced to about 70% in the case of Test No. 5 in the case of Test No. 1.

積層されたスラブの側面に散水冷却を施した第3発明の発明例である試験番号6および7では、同じく積層スラブの側面に散水冷却を施した比較例の試験番号2および3に比較して、スラブの反り量が約40%に抑制されており、また、スラブの単位質量当たりの総散水量も、約1/2に低減している。   In test numbers 6 and 7, which are invention examples of the third invention in which water spray cooling is performed on the side surfaces of the laminated slabs, as compared with test numbers 2 and 3 in the comparative example in which water spray cooling is similarly performed on the side surfaces of the laminated slabs. The amount of warpage of the slab is suppressed to about 40%, and the total amount of water sprayed per unit mass of the slab is also reduced to about ½.

試験番号7、8および9は、スラブの初期表面温度が700℃から760℃に上昇した場合に対応して、散水時間(A)を10分から25分に増加させ、散水停止時間(B)を10分から5分に短縮した第3発明の発明例である。スラブの初期表面温度が高温の状態から散水冷却を行っても、スラブの反り量に大きな変化はなく、低位に抑制されており、スラブの単位質量当たりの総散水量も、比較的低位に維持されている。   Test Nos. 7, 8 and 9 increase the watering time (A) from 10 minutes to 25 minutes in response to the initial surface temperature of the slab rising from 700 ° C to 760 ° C, and the watering stop time (B). This is an example of the invention of the third invention shortened from 10 minutes to 5 minutes. Even when water spray cooling is performed from the initial surface temperature of the slab, the amount of warpage of the slab is not significantly changed and is suppressed to a low level, and the total water spray amount per unit mass of the slab is also maintained at a relatively low level. Has been.

積層されたスラブの最上段に位置するスラブの上面に保温処置を施した第4発明の発明例である試験番号10では、同じくと積層されたスラブの最上段に位置するスラブの上面に保温処置を施した比較例の試験番号4に比較して、スラブの反りが飛躍的に改善され、反りが皆無の極めて良好な形状の冷却スラブが得られた。また、スラブの単位質量当たりの総散水量も、試験番号4の場合の60%程度に低減している。   In test number 10 which is the invention example of the fourth invention in which the upper surface of the slab positioned at the uppermost layer of the stacked slabs is subjected to heat insulation treatment, the heat retaining treatment is performed on the upper surface of the slab positioned at the uppermost layer of the stacked slabs. Compared with the test number 4 of the comparative example to which the slab was applied, the warpage of the slab was drastically improved, and a cooling slab having a very good shape with no warpage was obtained. Further, the total water spray amount per unit mass of the slab is also reduced to about 60% in the case of test number 4.

試験番号11および12は、スラブの初期表面温度が740〜760℃とさらに高温の条件で実施した第4発明の発明例であるにも拘わらず、スラブの反りは皆無の極めて良好な形状の冷却スラブが得られた。また、スラブの単位質量当たりの総散水量も、比較例の試験番号4に比較して著しく低い結果が得られた。   Although test numbers 11 and 12 are examples of the invention of the fourth invention carried out under conditions where the initial surface temperature of the slab is 740 to 760 ° C., the cooling of a very good shape without any warping of the slab A slab was obtained. In addition, the total amount of water sprayed per unit mass of the slab was significantly lower than the test number 4 of the comparative example.

また、本発明例である試験番号5〜12の冷却所要日数は、比較例である試験番号1〜4の冷却所要日数と同程度か、またはそれ以下の日数に短縮されている。   In addition, the days required for cooling in Test Nos. 5 to 12 as examples of the present invention are shortened to the same number as or less than the days required for cooling in Test Nos. 1 to 4 as comparative examples.

本発明の鋳片の冷却方法によれば、連続鋳造後の高温の鋳片、特に積層されたスラブに、散水処理と散水停止処理とを周期的に繰り返し施すことにより、その表面温度が600℃を超える高温領域からの冷却であっても、鋳片の反りなどによる形状変形を防止し、かつ、高い効率で経済的に冷却することができる。したがって、本発明の鋳片の冷却方法は、簡便な設備により高能率で冷却することを要求されるスラブなどの冷却工程に広範に適用できる。   According to the method for cooling a slab of the present invention, a surface temperature of 600 ° C. is obtained by periodically subjecting a high-temperature slab after continuous casting, particularly a laminated slab, to repeated watering treatment and watering stop treatment. Even if the cooling is from a high temperature region exceeding 1, it is possible to prevent shape deformation due to warping of the slab and to economically cool with high efficiency. Therefore, the method for cooling a slab of the present invention can be widely applied to a cooling process such as a slab that is required to be cooled with high efficiency by simple equipment.

本発明の散水冷却方法による積層スラブの冷却を模式的に示す図である。It is a figure which shows typically cooling of the lamination | stacking slab by the water spray cooling method of this invention. 本発明の散水冷却方法における散水量の経時変化の概念図である。It is a conceptual diagram of the time-dependent change of the watering amount in the watering cooling method of this invention.

符号の説明Explanation of symbols

1:積層された高温のスラブ、 2:スラブの長手方向の側面、 3:最上段に位置するスラブ、 4:スラブの上面、 5:スラブの下面   1: Laminated high-temperature slab 2: Longitudinal side surface of the slab 3: Slab located at the top, 4: Upper surface of the slab, 5: Lower surface of the slab

Claims (4)

連続鋳造後の高温の鋳片に散水処理および散水停止処理を周期的に繰り返し施すことにより該鋳片を冷却することを特徴とする連続鋳造鋳片の冷却方法。   A method for cooling a continuous cast slab, characterized in that the slab is cooled by periodically subjecting a high-temperature slab after continuous casting to water spray treatment and water spray stop treatment. 連続鋳造後の高温のスラブを積層した後、該積層された高温のスラブの長手方向の側面に散水処理および散水停止処理を周期的に繰り返し施すことにより該スラブを冷却することを特徴とする連続鋳造鋳片の冷却方法。   Continuously characterized by laminating a high-temperature slab after continuous casting and then cooling the slab by periodically repeating watering treatment and watering stop treatment on the side surface in the longitudinal direction of the laminated high-temperature slab A method for cooling cast slabs. 前記散水時間を5〜30分間とし、前記散水停止時間を5〜30分間として、散水処理および散水停止処理を周期的に繰り返し施すことを特徴とする請求項1または2に記載の連続鋳造鋳片の冷却方法。   The continuous casting slab according to claim 1 or 2, wherein the watering time is 5 to 30 minutes, the watering stop time is 5 to 30 minutes, and the watering treatment and watering stop processing are periodically repeated. Cooling method. 前記積層された高温スラブの最上段に位置するスラブの上面に保温処置を施すことを特徴とする請求項2または3のいずれかに記載の連続鋳造鋳片の冷却方法。   The method for cooling a continuous cast slab according to any one of claims 2 and 3, wherein heat treatment is applied to the upper surface of the slab located at the uppermost stage of the stacked high-temperature slabs.
JP2007036640A 2007-02-16 2007-02-16 Cooling method for continuous cast slab Active JP4623022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036640A JP4623022B2 (en) 2007-02-16 2007-02-16 Cooling method for continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036640A JP4623022B2 (en) 2007-02-16 2007-02-16 Cooling method for continuous cast slab

Publications (2)

Publication Number Publication Date
JP2008200685A true JP2008200685A (en) 2008-09-04
JP4623022B2 JP4623022B2 (en) 2011-02-02

Family

ID=39778706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036640A Active JP4623022B2 (en) 2007-02-16 2007-02-16 Cooling method for continuous cast slab

Country Status (1)

Country Link
JP (1) JP4623022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125883A (en) * 2009-12-16 2011-06-30 Nippon Steel Corp Slab cooling method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896410A (en) * 1972-03-24 1973-12-10
JPS5133711A (en) * 1974-09-17 1976-03-23 Nippon Steel Corp Surabu no reikyakuhoho
JPS51130612A (en) * 1975-05-10 1976-11-13 Kawasaki Steel Corp A slab cooling method
JPS5348110U (en) * 1976-09-28 1978-04-24
JPH11286728A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Slab cooling method after continuous casting
JP2006055865A (en) * 2004-08-18 2006-03-02 Sumitomo Metal Ind Ltd Method for cooling slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896410A (en) * 1972-03-24 1973-12-10
JPS5133711A (en) * 1974-09-17 1976-03-23 Nippon Steel Corp Surabu no reikyakuhoho
JPS51130612A (en) * 1975-05-10 1976-11-13 Kawasaki Steel Corp A slab cooling method
JPS5348110U (en) * 1976-09-28 1978-04-24
JPH11286728A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Slab cooling method after continuous casting
JP2006055865A (en) * 2004-08-18 2006-03-02 Sumitomo Metal Ind Ltd Method for cooling slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125883A (en) * 2009-12-16 2011-06-30 Nippon Steel Corp Slab cooling method and device

Also Published As

Publication number Publication date
JP4623022B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
KR102507090B1 (en) Method for producing stress-relaxed-annealing-resistant low iron loss-grain-oriented silicon steel
RU2757364C1 (en) Textured silicon steel with a heat-resistant magnetic domain, and method for manufacture thereof
JP4623022B2 (en) Cooling method for continuous cast slab
JP2000042621A (en) Cooling control method of hot rolled steel plate
US4604157A (en) Acid pickling tank for metal strips
JP4089664B2 (en) Cooling method of slab
JP6292160B2 (en) Heat treatment method and bogie type heat treatment furnace
JPH11286728A (en) Slab cooling method after continuous casting
JP4403083B2 (en) Controlled cooling method for steel sheet
RU2763025C1 (en) Sheet of anisotropic electrotechnical steel with magnetic loss stabilization and thermally stable laser barriers
TWI575076B (en) Steel cooling method, steel manufacturing methods, steel cooling equipment and steel manufacturing equipment
JPH0548078Y2 (en)
JP2007016257A (en) Structure for furnace wall of blast furnace
JPS5913074A (en) Method for preventing formation of fish scale in enameled steel sheet
KR20050063498A (en) Skid button for slab support in walking beam type furnace
JPS586570Y2 (en) Horizontal slab cooling water tank
JP2007283327A (en) Cooling equipment line and cooling method for thick steel plate
JPH10237537A (en) Heating furnace skid
JP5533419B2 (en) Dehydrogenation method for continuous cast slabs
JP5359847B2 (en) Slab cooling method and apparatus
KR101291538B1 (en) Scaling reduction method of high carbon steel
KR101357562B1 (en) Door apparatus of heating furnace
JP2020069490A (en) Cooling facility of billet, and cooling method of billet
JP2013049032A (en) Method of detoxification treatment of building material
JP5573290B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4623022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350