JP2011124074A - Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery - Google Patents
Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery Download PDFInfo
- Publication number
- JP2011124074A JP2011124074A JP2009280326A JP2009280326A JP2011124074A JP 2011124074 A JP2011124074 A JP 2011124074A JP 2009280326 A JP2009280326 A JP 2009280326A JP 2009280326 A JP2009280326 A JP 2009280326A JP 2011124074 A JP2011124074 A JP 2011124074A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- ion secondary
- thermal runaway
- secondary battery
- runaway inhibitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池用熱暴走抑制剤及びリチウムイオン二次電池に関する。 The present invention relates to a thermal runaway inhibitor for lithium ion secondary batteries and a lithium ion secondary battery.
近年の電子技術の進歩に伴い、カメラ一体型VTR、携帯電話、ラップトップコンピューター等の小型のポータブル電子機器が開発され、それらに使用するためのポータブル電源として、小型且つ軽量で高エネルギー密度の二次電池の開発が強く要請されている。 With recent advances in electronic technology, small portable electronic devices such as camera-integrated VTRs, mobile phones, laptop computers, etc. have been developed. There is a strong demand for the development of secondary batteries.
このような要請に応える二次電池としては、理論上高電圧を発生でき、且つ高エネルギー密度を有するリチウム、ナトリウム、アルミニウム等の軽金属を負極活物質として用いる非水電解液二次電池が期待されている。中でも、リチウムイオンの充放電を、非水系電解液を介して行うリチウムイオン二次電池は、水溶液系電解液二次電池であるニッケル・カドミウム電池や鉛蓄電池と比較して、高出力及び高エネルギー密度を実現できるものとして活発に研究開発が進められている。 As a secondary battery that meets such a demand, a non-aqueous electrolyte secondary battery that uses a light metal such as lithium, sodium, and aluminum as a negative electrode active material that can theoretically generate a high voltage and has a high energy density is expected. ing. In particular, lithium ion secondary batteries that charge and discharge lithium ions via non-aqueous electrolytes are higher in output and energy than nickel-cadmium batteries and lead-acid batteries, which are aqueous electrolyte secondary batteries. Research and development is actively underway to achieve density.
このリチウムイオン二次電池においては、内在するエネルギーが大きいため、内部短絡・外部短絡などの異常時に高い安全性が求められており、この安全対策のために、ポリオレフィン系微孔膜がセパレータとして使用されている。このポリオレフィン系微孔膜は異常発熱時に無孔化して電気を流さない機能(シャットダウン機能)を有すると考えられているためである。しかしながら、このような安全対策を講じていても異常発熱が止まらず、ポリオレフィン系微孔膜が収縮又は溶融し、電極同士が接触してショートしてしまい、発火する場合が考えられた。 In this lithium ion secondary battery, since the inherent energy is large, high safety is required in the event of an abnormality such as an internal short circuit or external short circuit. For this safety measure, a polyolefin microporous membrane is used as a separator. Has been. This is because the polyolefin-based microporous membrane is considered to have a function (shutdown function) that is made non-porous at the time of abnormal heat generation and does not flow electricity. However, even if such safety measures were taken, abnormal heat generation did not stop, and the polyolefin microporous membrane contracted or melted, and the electrodes contacted each other to cause a short circuit, resulting in ignition.
そこで、本願出願人は「ビニルアルコール単位部分の量として電池容量1mAhあたり0.3mg以上のビニルアルコール系ポリマー又はその誘導体を内蔵するリチウムイオン二次電池」を提案した(特許文献1)。 Therefore, the applicant of the present application has proposed a “lithium ion secondary battery containing a vinyl alcohol polymer or its derivative of 0.3 mg or more per 1 mAh of battery capacity as the amount of vinyl alcohol unit portion” (Patent Document 1).
この特許文献1のリチウムイオン二次電池は高温状態での電池電圧を下げることができ、しかも高温状態に曝された後、再度充電することのできない、安全性の優れるものであった。しかしながら、高温状態となった場合に、速やかに電池電圧を下げることができた方がより安全であるため、そのようなリチウムイオン二次電池が待ち望まれていた。 The lithium ion secondary battery of Patent Document 1 is capable of lowering the battery voltage in a high temperature state, and is excellent in safety that cannot be recharged after being exposed to a high temperature state. However, since it is safer to quickly reduce the battery voltage when the temperature becomes high, such a lithium ion secondary battery has been desired.
本発明は上述のような状況に鑑みてなされたものであり、高温状態となった場合に、速やかに電池電圧を下げることのできるリチウムイオン二次電池用熱暴走抑制剤、及びその熱暴走抑制剤を内蔵する、より安全性の高いリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the situation as described above, and when it becomes a high temperature state, a thermal runaway inhibitor for a lithium ion secondary battery that can quickly lower the battery voltage, and its thermal runaway suppression. An object of the present invention is to provide a lithium ion secondary battery having a higher safety and containing an agent.
本発明は、
[1]容器内に、ポリビニルアルコールの水溶液が封入されていることを特徴とする、リチウムイオン二次電池用熱暴走抑制剤、
[2]前記[1]に記載の熱暴走抑制剤を内蔵していることを特徴とする、リチウムイオン二次電池、
[3]熱暴走抑制剤が、ビニルアルコール単位部分の量として、電池容量1mAhあたり0.4mg以上の量で内蔵されていることを特徴とする、前記[2]に記載のリチウムイオン二次電池
に関する。
The present invention
[1] A thermal runaway inhibitor for lithium ion secondary batteries, wherein an aqueous solution of polyvinyl alcohol is enclosed in a container,
[2] A lithium ion secondary battery comprising the thermal runaway inhibitor according to [1],
[3] The lithium ion secondary battery according to [2], wherein the thermal runaway inhibitor is incorporated in an amount of 0.4 mg or more per 1 mAh of battery capacity as the amount of vinyl alcohol unit portion. About.
本発明の前記[1]のリチウムイオン二次電池用熱暴走抑制剤は、ポリビニルアルコールが水溶液の状態にあると、リチウムイオン二次電池が高温状態になったとしても、速やかに電池電圧を下げることができることを見出したものである。
本発明の前記[2]のリチウムイオン二次電池は、前記熱暴走抑制剤を内蔵しているため、高温状態になったとしても、速やかに電池電圧を下げることのできる、安全性の高い、リチウムイオン二次電池である。
本発明のリチウムイオン二次電池における前記[3]の好適態様は、熱暴走抑制剤の量が特定量以上であると、高温状態になったとしても、速やかに電池電圧を下げることのできる、特に安全性の高い、リチウムイオン二次電池である。
When the polyvinyl alcohol is in an aqueous solution state, the thermal runaway inhibitor for lithium ion secondary battery according to [1] of the present invention quickly lowers the battery voltage even when the lithium ion secondary battery is in a high temperature state. It has been found that it can be.
Since the lithium ion secondary battery of [2] of the present invention incorporates the thermal runaway inhibitor, even if it becomes a high temperature state, the battery voltage can be quickly lowered, and the safety is high. It is a lithium ion secondary battery.
In a preferred embodiment of the above [3] in the lithium ion secondary battery of the present invention, the amount of the thermal runaway inhibitor is not less than a specific amount, and even when the temperature becomes high, the battery voltage can be quickly reduced. It is a lithium ion secondary battery with particularly high safety.
本発明のリチウムイオン二次電池用熱暴走抑制剤(以下、単に「熱暴走抑制剤」と表記することがある)は、容器内に、ポリビニルアルコール(以下、「PVA」と表記することがある)の水溶液が封入されたものである。本発明は、PVAが固体状態ではなく、水溶液の状態にあることによって、高温状態になった場合に、速やかに電池電圧を下げることができ、安全性に優れることを見出したものである。なお、発明者らは、電池の異常発熱時には、水の比熱が高いため、電池内部における温度上昇が緩やかになる効果もあると考えている。 The thermal runaway inhibitor for lithium ion secondary batteries of the present invention (hereinafter sometimes simply referred to as “thermal runaway inhibitor”) may be represented as polyvinyl alcohol (hereinafter referred to as “PVA”) in the container. ) In an aqueous solution. The present invention has been found that PVA is not in a solid state but in an aqueous solution state, so that when it reaches a high temperature state, the battery voltage can be quickly lowered and the safety is excellent. Note that the inventors believe that when the battery is abnormally heated, the specific heat of water is high, so that the temperature rise inside the battery is moderated.
本発明のPVA水溶液を構成するPVAはビニルアルコール単位[−CH(OH)−CH2−]を基本とするポリマーである。なお、重合度、けん化度は特に限定するものではないが、重合度は100〜10,000であることができ、好ましくは300〜5,000であり、より好ましくは500〜3,000である。また、PVAのけん化度は60〜98%であることができ、好ましくは70〜98%のPVAを用いる。 PVA constituting the PVA aqueous solution of the present invention is a polymer based on vinyl alcohol units [—CH (OH) —CH 2 —]. The degree of polymerization and the degree of saponification are not particularly limited, but the degree of polymerization can be 100 to 10,000, preferably 300 to 5,000, more preferably 500 to 3,000. . The saponification degree of PVA can be 60 to 98%, preferably 70 to 98% PVA is used.
本発明においては、PVAを水に溶解させたPVA水溶液を使用しているが、その濃度等は特に限定するものではない。 In this invention, although the PVA aqueous solution which dissolved PVA in water is used, the density | concentration etc. are not specifically limited.
本発明の熱暴走抑制剤は上述のようなPVA水溶液が容器内に封入されていることによって、PVA水溶液を直接、電解液に添加した場合に生じる各種の不都合(例えば、フッ化水素の生成や電解液の分解など、電解液の変質)を防止することができる。なお、短絡時等の異常発熱時にはPVA水溶液による電池電圧降下作用を奏するように、容器からPVA水溶液が漏洩する必要がある。したがって、容器には、リチウムイオン二次電池の電解液と反応及び浸かされず、しかも異常発熱時には溶融するなどして、PVA水溶液を漏洩する材質のものである必要がある。通常、電解液として、エチレンカーボネートとジエチルカーボネートの混合溶媒にLiPF6を溶解させたもの等が使用され、また、日常における電池使用温度は60℃以下程度であるため、容器の材質としては、前記のような電解液と反応及び浸かされず、しかも安全をみて80℃以上の融点を有するものが好ましい。なお、容器の融点が高すぎると、熱暴走を抑制することが困難になる場合があるため、融点は150℃以下であるのが好ましい。より具体的には、容器の材質として、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、エチレン系共重合体(例えば、エチレン−ビニルアルコール共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体)などのエチレン系樹脂を挙げることができる。 The thermal runaway suppressing agent of the present invention has various disadvantages (for example, generation of hydrogen fluoride and the like) caused by adding the PVA aqueous solution directly to the electrolytic solution because the PVA aqueous solution as described above is sealed in the container. It is possible to prevent deterioration of the electrolyte solution such as decomposition of the electrolyte solution. It should be noted that the PVA aqueous solution needs to leak from the container so that the battery voltage drop effect by the PVA aqueous solution is exerted during abnormal heat generation such as during a short circuit. Therefore, the container needs to be made of a material that does not react and soak with the electrolyte solution of the lithium ion secondary battery and that leaks the aqueous PVA solution by melting when abnormal heat is generated. Usually, as the electrolytic solution, a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate is used, and the battery operating temperature in daily life is about 60 ° C. or less. Those having a melting point of 80 ° C. or higher are preferable because they are not reacted and soaked with the electrolytic solution as described above, and for safety. In addition, since it may become difficult to suppress thermal runaway when the melting point of the container is too high, the melting point is preferably 150 ° C. or lower. More specifically, the material of the container includes low density polyethylene, linear low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, ethylene copolymer (for example, ethylene-vinyl alcohol copolymer, ethylene-acrylic). And ethylene resins such as acid copolymers and ethylene-methacrylic acid copolymers.
なお、本発明の熱暴走抑制剤における容器は前記作用を奏する限り、その形、大きさ等は特に限定するものではない。
なお、本発明において「封入」とは、80℃未満の温度において、容器内のPVA水溶液が漏洩しない状態にあることをいう。
In addition, as long as the container in the thermal runaway inhibitor of this invention has the said effect | action, the shape, a magnitude | size, etc. are not specifically limited.
In the present invention, “encapsulation” means that the PVA aqueous solution in the container does not leak at a temperature of less than 80 ° C.
このような本発明の熱暴走抑制剤の製造方法は、特に限定するものではないが、例えば、所望の大きさの容器を準備し、容器内にPVA水溶液を注入した後、ヒートシールなどの方法により封入することができる。また、常法により、マイクロカプセル化することもできる。 The method for producing the thermal runaway inhibitor of the present invention is not particularly limited. For example, after preparing a container of a desired size and injecting a PVA aqueous solution into the container, a method such as heat sealing Can be sealed. Moreover, it can also be microencapsulated by a conventional method.
本発明のリチウムイオン二次電池は上述のような熱暴走抑制剤を内蔵するものである。そのため、異常発熱して高温状態になったとしても、速やかに電池電圧を下げることのできる、安全性の高い、リチウムイオン二次電池である。 The lithium ion secondary battery of the present invention incorporates the thermal runaway inhibitor as described above. Therefore, even if the battery is abnormally heated and becomes a high temperature state, it is a highly safe lithium ion secondary battery that can quickly reduce the battery voltage.
熱暴走抑制剤の内蔵量は、ビニルアルコール単位部分の量として、電池容量1mAhあたり0.4mg以上の量であるのが好ましい。0.4mg以上であると、電池電圧を降下させる速度が速いためである。より好ましくは0.5mg以上であり、更に好ましくは0.6mg以上である。熱暴走抑制剤の内蔵量の上限は電池内に内蔵できる限り、特に限定されるものではないが、例えば、小型のポータブル電子機器、ハイブリット自動車(HEV)及び電気自動車(PEV)のリチウムイオン二次電池の様に、体積が限られた電池に内蔵することを考慮すると、例えば、電池容量1mAhあたり100mg以下である。
なお、「ビニルアルコール単位部分の量」は、PVAの量とPVAにおけるビニルアルコール単位の比率から算出することができ、例えば、PVA量がM(g)で、けん化度がS(%)である場合、このPVAのビニルアルコール単位部分の量は[M×(S/100)=MS/100]である。
The built-in amount of the thermal runaway inhibitor is preferably 0.4 mg or more per 1 mAh of battery capacity as the amount of vinyl alcohol unit portion. This is because the rate of dropping the battery voltage is high when it is 0.4 mg or more. More preferably, it is 0.5 mg or more, More preferably, it is 0.6 mg or more. The upper limit of the built-in amount of the thermal runaway inhibitor is not particularly limited as long as it can be built in the battery. For example, the lithium ion secondary of small portable electronic devices, hybrid vehicles (HEV) and electric vehicles (PEV) Considering that it is built in a battery with a limited volume like a battery, for example, it is 100 mg or less per 1 mAh of battery capacity.
The “amount of vinyl alcohol unit portion” can be calculated from the amount of PVA and the ratio of vinyl alcohol units in PVA. For example, the amount of PVA is M (g) and the degree of saponification is S (%). In this case, the amount of vinyl alcohol unit portion of the PVA is [M × (S / 100) = MS / 100].
本発明のリチウムイオン二次電池は上述のような熱暴走抑制剤を内蔵するものであるが、電池の異常発熱により熱暴走抑制剤からPVA水溶液が漏洩した時に、電解液とPVA水溶液とが接触する場所であれば、どこに内蔵していても良いが、例えば、電池の内壁、蓋付近、管底などに配置することができる。特に、漏洩前から熱暴走抑制剤が電解液と接触する場所に内蔵していれば、効率的に電解液とPVA水溶液とが接触できるため好適である。なお、マイクロカプセル化した場合のように、セパレータ(例えば、不織布セパレータ)に熱暴走抑制剤を担持させることができると、異常発熱時にPVA水溶液が電極間に存在することになるため、より効果が高い。 The lithium ion secondary battery of the present invention incorporates the thermal runaway inhibitor as described above, but when the PVA aqueous solution leaks from the thermal runaway inhibitor due to abnormal heat generation of the battery, the electrolytic solution and the PVA aqueous solution are in contact with each other. However, it can be placed on the inner wall of the battery, in the vicinity of the lid, on the tube bottom, or the like. In particular, it is preferable that the thermal runaway inhibitor is incorporated in a place where it comes into contact with the electrolytic solution before leakage because the electrolytic solution and the PVA aqueous solution can be efficiently contacted. In addition, when a thermal runaway inhibitor can be carried on a separator (for example, a nonwoven fabric separator) as in the case of microencapsulation, the PVA aqueous solution exists between the electrodes at the time of abnormal heat generation, which is more effective. high.
本発明のリチウムイオン二次電池は、前述のような熱暴走抑制剤を内蔵していること以外は、従来のリチウムイオン二次電池と同様の構成とすることができる。例えば、正極として、リチウム含有金属化合物のペーストを集電材に担持させたもの等を使用し、負極として、リチウム金属やリチウムと合金になる材料(例えば、スズ系合金、シリコン系合金、SiOなどの材料)、及びリチウムを吸蔵、放出可能なカーボン又はグラファイトを含む炭素材料(例えば、コークス、天然黒鉛や人造黒鉛などの炭素材料)を集電材に担持させたもの等を使用し、電解質として、非水系電解液(例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒にLiPF6を溶解させた電解液)等を使用することができる。また、リチウムイオン二次電池のセル構造も特に限定するものではなく、例えば、円筒型、角型、コイン型などであることができる。 The lithium ion secondary battery of this invention can be set as the structure similar to the conventional lithium ion secondary battery except incorporating the thermal runaway inhibitor as mentioned above. For example, a material in which a paste of a lithium-containing metal compound is carried on a current collector is used as the positive electrode, and a material that becomes an alloy with lithium metal or lithium (for example, a tin alloy, a silicon alloy, SiO, etc. Material), and carbon materials that can store and release lithium or carbon materials containing graphite (for example, carbon materials such as coke, natural graphite, and artificial graphite) supported on a current collector, etc. An aqueous electrolytic solution (for example, an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate) or the like can be used. Further, the cell structure of the lithium ion secondary battery is not particularly limited, and may be, for example, a cylindrical shape, a square shape, a coin shape, or the like.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
(実施例1)
(1)正極の作製;
正極活物質としてコバルト酸リチウム(LiCoO2)粉末90質量%と、アセチレンブラック5質量%と、ポリフッ化ビニリデン(PVdF)5質量%を、N−メチル−2−ピロリドン(NMP)中に分散させ、スラリーを調製した。得られたスラリーを厚さ20μmのアルミ箔上に塗工し、温度140℃で30分間乾燥した後にプレスして、正極を作製した。
Example 1
(1) Production of positive electrode;
90% by mass of lithium cobaltate (LiCoO 2 ) powder, 5% by mass of acetylene black, and 5% by mass of polyvinylidene fluoride (PVdF) as a positive electrode active material are dispersed in N-methyl-2-pyrrolidone (NMP), A slurry was prepared. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C. for 30 minutes, and then pressed to prepare a positive electrode.
(2)負極の作製;
負極活物質として天然黒鉛粉末90質量%と、PVdF10質量%をNMP中に分散させてスラリーを調製した。得られたスラリーを厚さ15μmの銅箔上に塗工し、温度140℃で30分間減圧乾燥した後にプレスして、負極を作製した。
(2) Production of negative electrode;
As a negative electrode active material, 90% by mass of natural graphite powder and 10% by mass of PVdF were dispersed in NMP to prepare a slurry. The obtained slurry was coated on a copper foil having a thickness of 15 μm, dried under reduced pressure at a temperature of 140 ° C. for 30 minutes, and then pressed to prepare a negative electrode.
(3)非水電解液;
エチレンカボネート(EC)とジエチルカボネート(DEC)の混合溶媒(50:50)に、LiPF6を1.0mol/Lとなるように溶解させた非水電解液[LiPF6−EC/DEC(50:50);キシダ化学(株)製]を用意した。
(3) non-aqueous electrolyte;
In a mixed solvent of ethylene Cabo sulfonate (EC) and diethyl Cabo sulfonate (DEC) (50:50), non-aqueous electrolytic solution obtained by dissolving LiPF 6 as a 1.0mol / L [LiPF 6 -EC / DEC ( 50:50); manufactured by Kishida Chemical Co., Ltd.].
(4)セパレータ;
ポリプロピレン製微孔膜(Celgard(登録商標)2400;セルガード製)を、セパレータとして用意した。
(4) Separator;
A polypropylene microporous membrane (Celgard (registered trademark) 2400; manufactured by Celgard) was prepared as a separator.
(5)PVA水溶液の調製;
純水に対してポリビニルアルコール(PVA)粉末5質量%[けん化度:96mol%以上、平均重合度:1000、和光純薬工業(株)製]を溶解させて、PVA水溶液を調製した。
(5) Preparation of PVA aqueous solution;
5% by mass of polyvinyl alcohol (PVA) powder [degree of saponification: 96 mol% or more, average degree of polymerization: 1000, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in pure water to prepare a PVA aqueous solution.
(6)熱暴走抑制剤の作製;
市販のポリエチレン製袋[ジェイフィルム(株)製、融点:122℃]を切り開いた後、大きさ2cm×1.5cmの長方形に切断し、2枚のポリエチレンフィルムを得た。次いで、これらポリエチレンフィルム2枚を重ね合わせた後、長方形フィルムの三辺に相当する箇所を熱融着して、長方形の容器(袋)を作製した。
次いで、この容器(袋)にPVA水溶液を注入した後、前記長方形の残りの一辺に相当する箇所を熱融着して、81.2mgのPVA水溶液を封入した熱暴走抑制剤を作製した。なお、PVA水溶液の封入量は、封入前後における質量から算出した。
(6) Preparation of thermal runaway inhibitor;
A commercially available polyethylene bag [manufactured by J Film Co., Ltd., melting point: 122 ° C.] was cut open, and then cut into a 2 cm × 1.5 cm rectangle to obtain two polyethylene films. Next, after superposing these two polyethylene films, portions corresponding to the three sides of the rectangular film were heat-sealed to prepare a rectangular container (bag).
Subsequently, after pouring PVA aqueous solution into this container (bag), the part corresponding to the one side of the said rectangle was heat-seal | fused, and the thermal runaway inhibitor which enclosed 81.2 mg PVA aqueous solution was produced. The enclosed amount of the PVA aqueous solution was calculated from the mass before and after encapsulation.
(7)電池の作製;
上記正極、負極、非水電解液、セパレータ及び熱暴走抑制剤を用いて、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤は端子側とは反対方向の端部に配置した。また、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.65mgであった。
(7) Battery production;
A lithium ion secondary battery (laminated type) was produced using the positive electrode, negative electrode, non-aqueous electrolyte, separator, and thermal runaway inhibitor. The thermal runaway inhibitor was disposed at the end in the direction opposite to the terminal side. The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.65 mg per 1 mAh of battery capacity.
(実施例2)
実施例1の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.56mgであった。
(Example 2)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 1 except that the amount of PVA aqueous solution injected into the container (bag) in the production of the thermal runaway inhibitor of Example 1 was changed. . The amount of the vinyl alcohol unit part of the thermal runaway inhibitor was 0.56 mg per 1 mAh of battery capacity.
(実施例3)
実施例1の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.42mgであった。
(Example 3)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 1 except that the amount of PVA aqueous solution injected into the container (bag) in the production of the thermal runaway inhibitor of Example 1 was changed. . The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.42 mg per 1 mAh of battery capacity.
(比較例1)
実施例1の熱暴走抑制剤に替えて、容器(袋)を使用せず、ポリビニルアルコール粉末[けん化度:96%、重合度:1000、和光純薬工業(株)製]を直接電池内に添加したこと以外は、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、ポリビニルアルコール粉末のビニルアルコール単位部分の量は電池容量1mAh当たり0.67mgであった。
(Comparative Example 1)
Instead of the thermal runaway inhibitor of Example 1, a container (bag) was not used, and polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, manufactured by Wako Pure Chemical Industries, Ltd.] was directly placed in the battery. A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 1 except that it was added. The amount of vinyl alcohol unit portion of the polyvinyl alcohol powder was 0.67 mg per 1 mAh of battery capacity.
(実施例4)
実施例1の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.34mgであった。
Example 4
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 1 except that the amount of PVA aqueous solution injected into the container (bag) in the production of the thermal runaway inhibitor of Example 1 was changed. . The amount of the vinyl alcohol unit part of the thermal runaway inhibitor was 0.34 mg per 1 mAh of battery capacity.
(実施例5)
純水に対してポリビニルアルコール(PVA)粉末10質量%[けん化度:96mol%以上、平均重合度:1000、和光純薬工業(株)製]を溶解させて、PVA水溶液を調製した。次いで、このPVA水溶液42.6mg注入したことを除いて、実施例1と同様に熱暴走抑制剤を作製した。
その後、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.63mgであった。
(Example 5)
Polyvinyl alcohol (PVA) powder 10 mass% [saponification degree: 96 mol% or more, average polymerization degree: 1000, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in pure water to prepare a PVA aqueous solution. Next, a thermal runaway inhibitor was produced in the same manner as in Example 1 except that 42.6 mg of this PVA aqueous solution was injected.
Then, it carried out similarly to Example 1, and produced the lithium ion secondary battery (laminate type). The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.63 mg per 1 mAh of battery capacity.
(実施例6)
実施例5の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例5と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.57mgであった。
(Example 6)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 5 except that the amount of PVA aqueous solution injected into the container (bag) was changed in the production of the thermal runaway inhibitor of Example 5. . The amount of the vinyl alcohol unit part of the thermal runaway inhibitor was 0.57 mg per 1 mAh of battery capacity.
(実施例7)
実施例5の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例5と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.41mgであった。
(Example 7)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 5 except that the amount of PVA aqueous solution injected into the container (bag) was changed in the production of the thermal runaway inhibitor of Example 5. . The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.41 mg per 1 mAh of battery capacity.
(実施例8)
実施例5の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例5と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.37mgであった。
(Example 8)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 5 except that the amount of PVA aqueous solution injected into the container (bag) was changed in the production of the thermal runaway inhibitor of Example 5. . The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.37 mg per 1 mAh of battery capacity.
(実施例9)
純水に対してポリビニルアルコール(PVA)粉末15質量%[けん化度:96mol%以上、平均重合度:1000、和光純薬工業(株)製]を溶解させて、PVA水溶液を調製した。次いで、このPVA水溶液26.3mg注入したことを除いて、実施例1と同様に熱暴走抑制剤を作製した。
その後、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.61mgであった。
Example 9
Polyvinyl alcohol (PVA) powder 15 mass% [saponification degree: 96 mol% or more, average polymerization degree: 1000, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in pure water to prepare an aqueous PVA solution. Next, a thermal runaway inhibitor was produced in the same manner as in Example 1 except that 26.3 mg of this PVA aqueous solution was injected.
Then, it carried out similarly to Example 1, and produced the lithium ion secondary battery (laminate type). The amount of the vinyl alcohol unit part of the thermal runaway inhibitor was 0.61 mg per 1 mAh of battery capacity.
(実施例10)
実施例9の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例9と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.52mgであった。
(Example 10)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 9, except that the amount of PVA aqueous solution injected into the container (bag) in the production of the thermal runaway inhibitor of Example 9 was changed. . The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.52 mg per 1 mAh of battery capacity.
(実施例11)
実施例9の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例9と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.43mgであった。
(Example 11)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 9, except that the amount of PVA aqueous solution injected into the container (bag) in the production of the thermal runaway inhibitor of Example 9 was changed. . The amount of vinyl alcohol unit portion of the thermal runaway inhibitor was 0.43 mg per 1 mAh of battery capacity.
(実施例12)
実施例9の熱暴走抑制剤の作製における、容器(袋)へのPVA水溶液の注入量を変えたこと以外は、実施例9と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。なお、熱暴走抑制剤のビニルアルコール単位部分の量は電池容量1mAh当たり0.32mgであった。
(Example 12)
A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 9, except that the amount of PVA aqueous solution injected into the container (bag) in the production of the thermal runaway inhibitor of Example 9 was changed. . The amount of the vinyl alcohol unit portion of the thermal runaway inhibitor was 0.32 mg per 1 mAh of battery capacity.
(比較例2)
繊維として、芯成分がポリプロピレン、鞘部がポリエチレンからなる繊度0.8dtex、繊維長5mmの芯鞘型複合繊維を用い、湿式抄造法により繊維ウエブを形成した後、温度130℃のホットロールプレスにより芯鞘型複合繊維を融着させ、目付10g/m2の不織布を作製した。
次いで、その不織布上に、繊度0.02dtex、繊維長2mmのポリプロピレン繊維を抄造し(目付5g/m2)、温度130℃のホットロールプレスにより芯鞘型複合繊維を再度融着させた後、ロールカレンダーで厚さ調整を行い、厚さ35μm、目付15g/m2の複合不織布を作製した。
別途、ポリビニルアルコール(PVA)粉末10質量%[けん化度:96%、重合度:1000、和光純薬工業(株)製]を純水に溶解させたPVA水溶液を調製した。
次いで、複合不織布に前記PVA水溶液を含浸し、ローラにより余分な溶液を除去した後、乾燥し、ロールカレンダーで厚さ調整を行うことにより、複合不織布構成繊維表面をポリビニルアルコールで被覆した、PVA含有複合不織布(厚さ:35μm、PVAの付加重量:3.1g/m2)を製造した。
そして、実施例1の熱暴走抑制剤に替えて、前記PVA含有複合不織布を、電池容量1mAhあたりビニルアルコール単位部分量が0.64mgとなるように切断し、セパレータと重ねて、電極間に配置したこと以外は、実施例1と同様にして、リチウムイオン二次電池(ラミネート型)を作製した。
(Comparative Example 2)
As a fiber, a core-sheath type composite fiber having a core component of polypropylene and a sheath part of polyethylene having a fineness of 0.8 dtex and a fiber length of 5 mm is used. After forming a fiber web by a wet papermaking method, a hot roll press at 130 ° C. The core-sheath type composite fiber was fused to prepare a nonwoven fabric having a basis weight of 10 g / m 2 .
Next, on the nonwoven fabric, a polypropylene fiber having a fineness of 0.02 dtex and a fiber length of 2 mm is made (5 g / m 2 basis weight), and the core-sheath type composite fiber is fused again by a hot roll press at a temperature of 130 ° C. The thickness was adjusted with a roll calender to prepare a composite nonwoven fabric having a thickness of 35 μm and a basis weight of 15 g / m 2 .
Separately, an aqueous PVA solution in which 10% by mass of polyvinyl alcohol (PVA) powder [degree of saponification: 96%, degree of polymerization: 1000, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in pure water was prepared.
Next, impregnating the composite non-woven fabric with the PVA aqueous solution, removing excess solution with a roller, drying, and adjusting the thickness with a roll calender to coat the surface of the composite non-woven fabric with polyvinyl alcohol, containing PVA A composite nonwoven fabric (thickness: 35 μm, additional weight of PVA: 3.1 g / m 2 ) was produced.
And it replaced with the thermal runaway inhibitor of Example 1, and cut | disconnected the said PVA containing composite nonwoven fabric so that a vinyl alcohol unit partial amount might be 0.64 mg per battery capacity 1mAh, and it piled up with a separator, and arrange | positioned between electrodes. A lithium ion secondary battery (laminate type) was produced in the same manner as in Example 1 except that.
(高温安全性試験)
各実施例及び比較例のリチウムイオン二次電池を、3−4.2Vの電圧範囲で、0.2Cの定電流充放電を5サイクル実施し、電池が正常に作動することを確認した後、以下の高温安全性試験を行った。
高温安全性試験は、0.2Cの定電流で4.2Vまで充電し、さらに定電圧法で5時間充電を継続して満充電状態にした後、電池を温度140℃に設定した熱風オーブン中に保持し、開回路電圧(OCV)変化を測定し、電池電圧が2V以下になるまでの時間を計測した。この結果は表1に示す通りであった。
(High temperature safety test)
The lithium ion secondary batteries of each Example and Comparative Example were subjected to 5 cycles of 0.2 C constant current charge / discharge in a voltage range of 3-4.2 V, and after confirming that the batteries were operating normally, The following high temperature safety test was conducted.
In the high-temperature safety test, the battery was charged at a constant current of 0.2 C to 4.2 V, further charged for 5 hours by the constant voltage method until fully charged, and then the battery was heated in a hot air oven set at a temperature of 140 ° C. The open circuit voltage (OCV) change was measured and the time until the battery voltage became 2 V or less was measured. The results are shown in Table 1.
表1から明らかなように、電池容量1mAhあたりのビニルアルコール単位部分の量が同程度であれば、PVAが水溶液の状態にある方が、電池電圧が2V以下になるまでの時間が短く、安全性に優れることがわかった。また、同程度の時間であれば、PVAが水溶液の状態にある方が、PVAの量を減らせることがわかった。 As is clear from Table 1, if the amount of vinyl alcohol unit part per 1 mAh of battery capacity is about the same, the time until the battery voltage becomes 2 V or less is shorter and safer when the PVA is in an aqueous solution state. It was found to be excellent in performance. Further, it was found that the amount of PVA can be reduced when the PVA is in the state of an aqueous solution if the time is comparable.
本発明のリチウムイオン二次電池はカメラ一体型VTR、携帯電話、ラップトップコンピューター等の電子機器の電源として使用することができる。 The lithium ion secondary battery of the present invention can be used as a power source for electronic devices such as camera-integrated VTRs, mobile phones, and laptop computers.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009280326A JP5354740B2 (en) | 2009-12-10 | 2009-12-10 | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009280326A JP5354740B2 (en) | 2009-12-10 | 2009-12-10 | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011124074A true JP2011124074A (en) | 2011-06-23 |
JP2011124074A5 JP2011124074A5 (en) | 2012-12-27 |
JP5354740B2 JP5354740B2 (en) | 2013-11-27 |
Family
ID=44287772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009280326A Expired - Fee Related JP5354740B2 (en) | 2009-12-10 | 2009-12-10 | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5354740B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022027534A (en) * | 2020-07-29 | 2022-02-10 | 輝能科技股▲分▼有限公司 | Thermorunaway suppressant for lithium battery, and related application |
US12002920B2 (en) | 2020-07-29 | 2024-06-04 | Prologium Technology Co., Ltd. | Method for suppressing thermal runaway of lithium batteries |
US12107246B2 (en) | 2020-07-29 | 2024-10-01 | Prologium Technology Co., Ltd. | Thermal runaway suppression element and the related applications |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457558A (en) * | 1977-10-17 | 1979-05-09 | Kuraray Co Ltd | Manufacture of molded polyvinyl alcohol-type hydrous gel article |
JPH06283206A (en) * | 1993-03-30 | 1994-10-07 | Canon Inc | Microcapsule contained battery |
JPH10270084A (en) * | 1997-03-27 | 1998-10-09 | Seiko Instr Inc | Nonaqueous electrolyte secondary battery |
JPH10340739A (en) * | 1997-06-04 | 1998-12-22 | Toyota Motor Corp | Secondary lithium ion battery |
WO1999031750A1 (en) * | 1997-12-18 | 1999-06-24 | Mitsubishi Denki Kabushiki Kaisha | Adhesive for cells, a cell using the same and a process for producing cells |
JP2003219858A (en) * | 2002-01-30 | 2003-08-05 | Tokai Corp | Portable ashtray |
WO2009025332A1 (en) * | 2007-08-22 | 2009-02-26 | Japan Vilene Company, Ltd. | Lithium ion secondary battery |
JP2009301798A (en) * | 2008-06-11 | 2009-12-24 | Mitsubishi Heavy Ind Ltd | Secondary battery |
JP2010182460A (en) * | 2009-02-03 | 2010-08-19 | Mitsubishi Heavy Ind Ltd | Secondary battery |
JP2010192248A (en) * | 2009-02-18 | 2010-09-02 | Japan Vilene Co Ltd | Lithium ion secondary battery |
-
2009
- 2009-12-10 JP JP2009280326A patent/JP5354740B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457558A (en) * | 1977-10-17 | 1979-05-09 | Kuraray Co Ltd | Manufacture of molded polyvinyl alcohol-type hydrous gel article |
JPH06283206A (en) * | 1993-03-30 | 1994-10-07 | Canon Inc | Microcapsule contained battery |
JPH10270084A (en) * | 1997-03-27 | 1998-10-09 | Seiko Instr Inc | Nonaqueous electrolyte secondary battery |
JPH10340739A (en) * | 1997-06-04 | 1998-12-22 | Toyota Motor Corp | Secondary lithium ion battery |
WO1999031750A1 (en) * | 1997-12-18 | 1999-06-24 | Mitsubishi Denki Kabushiki Kaisha | Adhesive for cells, a cell using the same and a process for producing cells |
JP2003219858A (en) * | 2002-01-30 | 2003-08-05 | Tokai Corp | Portable ashtray |
WO2009025332A1 (en) * | 2007-08-22 | 2009-02-26 | Japan Vilene Company, Ltd. | Lithium ion secondary battery |
JP2009301798A (en) * | 2008-06-11 | 2009-12-24 | Mitsubishi Heavy Ind Ltd | Secondary battery |
JP2010182460A (en) * | 2009-02-03 | 2010-08-19 | Mitsubishi Heavy Ind Ltd | Secondary battery |
JP2010192248A (en) * | 2009-02-18 | 2010-09-02 | Japan Vilene Co Ltd | Lithium ion secondary battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022027534A (en) * | 2020-07-29 | 2022-02-10 | 輝能科技股▲分▼有限公司 | Thermorunaway suppressant for lithium battery, and related application |
JP7223812B2 (en) | 2020-07-29 | 2023-02-16 | 輝能科技股▲分▼有限公司 | Thermal runaway inhibitor for lithium batteries and related applications |
US12002920B2 (en) | 2020-07-29 | 2024-06-04 | Prologium Technology Co., Ltd. | Method for suppressing thermal runaway of lithium batteries |
US12107246B2 (en) | 2020-07-29 | 2024-10-01 | Prologium Technology Co., Ltd. | Thermal runaway suppression element and the related applications |
Also Published As
Publication number | Publication date |
---|---|
JP5354740B2 (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5195499B2 (en) | Nonaqueous electrolyte secondary battery | |
US7311994B2 (en) | Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith | |
JP4517440B2 (en) | Lithium ion solid electrolyte secondary battery | |
JP4414165B2 (en) | Electronic component separator and electronic component | |
JP2004146190A (en) | Separator for lithium ion secondary battery and lithium ion secondary battery provided with same | |
JP5458304B2 (en) | Lithium ion secondary battery | |
TW201312827A (en) | Lithium secondary-battery pack, electronic device using same, charging system, and charging method | |
JP2009123399A (en) | Separator for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP2011103278A (en) | Collector for nonaqueous electrolyte secondary battery, and negative electrode using the same | |
JP2005019156A (en) | Separator for electronic component, and electronic component | |
US10270077B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4490055B2 (en) | Separator for lithium ion secondary battery or polymer lithium battery | |
US20210242499A1 (en) | Non-aqueous electrolyte power storage device and method for manufacturing non-aqueous electrolytic power storage device | |
JP5354740B2 (en) | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery | |
JP2004095382A (en) | Lithium-ion secondary battery | |
JP2009135540A (en) | Nonaqueous lithium power storage element and manufacturing method | |
JP2010192248A (en) | Lithium ion secondary battery | |
JP6083289B2 (en) | Lithium ion secondary battery | |
JP2011198548A (en) | Electrode plate for battery and battery using it | |
JP5488990B2 (en) | Lithium ion secondary battery | |
JP2007087958A (en) | Solid electrolyte battery | |
JP5354745B2 (en) | Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery | |
JP5311317B2 (en) | Lithium ion secondary battery separator and lithium ion secondary battery | |
JP2005039139A (en) | Non-aqueous-based lithium power storage element and manufacturing method | |
JPH1050292A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121022 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121012 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5354740 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |