JP2011198548A - Electrode plate for battery and battery using it - Google Patents

Electrode plate for battery and battery using it Download PDF

Info

Publication number
JP2011198548A
JP2011198548A JP2010062335A JP2010062335A JP2011198548A JP 2011198548 A JP2011198548 A JP 2011198548A JP 2010062335 A JP2010062335 A JP 2010062335A JP 2010062335 A JP2010062335 A JP 2010062335A JP 2011198548 A JP2011198548 A JP 2011198548A
Authority
JP
Japan
Prior art keywords
battery
electrode plate
binder
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010062335A
Other languages
Japanese (ja)
Inventor
Sanae Senba
早奈恵 千場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010062335A priority Critical patent/JP2011198548A/en
Publication of JP2011198548A publication Critical patent/JP2011198548A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery of high quality excellent in charge discharge cycle characteristics and low-temperature characteristic through maintenance of adhesion between active materials themselves and restraint of coating of an electrode mixture layer by a binding agent.SOLUTION: For an electrode plate for a battery forming an electrode plate mixture layer 3 by applying electrode mixture paint structured of at least an anode active material 2, a binder 1 and a solvent on the surface of an anode collector 4, and drying and pressing it, the binder 1 with a particle size not crushed even by being pressed is utilized.

Description

本発明は、活物質と結着剤を含有する電極合剤層が集電体に担持された電池用電極板およびそれを用いた電池に関するものである。   The present invention relates to a battery electrode plate in which an electrode mixture layer containing an active material and a binder is supported on a current collector, and a battery using the same.

従来より、リチウムイオン電池などの非水電解質二次電池あるいはニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池においては、活物質からなる電極合剤を集電体に担持させた正極板あるいは負極板を用いるようにしている。そして、このような正極板と負極板との間に多孔質絶縁体としてのセパレータを介在させて互いに対向させて電極群とし、この電極群を電解液とともに電池外装体に収容して、電池外装体を気密に封止することにより電池を構成するようにしている。   Conventionally, in a non-aqueous electrolyte secondary battery such as a lithium ion battery or an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, a positive electrode plate or a negative electrode in which an electrode mixture made of an active material is supported on a current collector A plate is used. Then, a separator as a porous insulator is interposed between the positive electrode plate and the negative electrode plate so as to face each other to form an electrode group, and this electrode group is housed in the battery outer package together with the electrolyte solution, The battery is configured by hermetically sealing the body.

上述した正極板あるいは負極板は、粉末状の活物質に結着剤や導電剤を添加、混合して電極合剤塗料とし、この電極合剤塗料を集電体に塗布した後、乾燥させ、乾燥後に所定の充填密度になるように圧縮して製造している。この場合、電極合剤層に混合される結着剤としては、鎖状構造(網状構造も含む)の高分子を用いるのが一般的である。このような高分子からなる結着剤を用いることにより、活物質同士が結着剤を介して互いに結着されるとともに、活物質が集電体に結着されるようになる。   The positive electrode plate or negative electrode plate described above is a powdered active material with a binder and a conductive agent added and mixed to form an electrode mixture paint, and after applying this electrode mixture paint to the current collector, it is dried. Compressed and manufactured to a predetermined packing density after drying. In this case, as the binder mixed in the electrode mixture layer, a polymer having a chain structure (including a network structure) is generally used. By using such a high molecular binder, the active materials are bound to each other via the binder, and the active material is bound to the current collector.

ところが、鎖状構造(網状構造も含む)の高分子を結着剤として用いると、使用する活物質の嵩が高い場合には、電極板の作製工程において活物質が集電体より剥離してこの種の電極板の歩留まりの低下を招きやすいという問題を生じていた。また、充放電時に膨張・収縮する活物質を用いた場合には、充放電時の膨張・収縮に伴って、急激な容量低下が起こり、活物質の剥離も発生するという問題を生じるものであった。   However, when a polymer having a chain structure (including a network structure) is used as a binder, the active material is peeled off from the current collector in the electrode plate manufacturing process when the active material used is bulky. There has been a problem that the yield of this type of electrode plate tends to decrease. In addition, when an active material that expands and contracts during charge and discharge is used, there is a problem in that sudden capacity reduction occurs due to expansion and contraction during charge and discharge, and active material peeling occurs. It was.

そこで、このような問題に対処するため、鎖状構造の高分子に代えて粒子状高分子(粒状高分子)を結着剤として使用することが提案されるようになった(例えば特許文献1、特許文献2参照)。   Therefore, in order to deal with such problems, it has been proposed to use a particulate polymer (granular polymer) as a binder instead of a polymer having a chain structure (for example, Patent Document 1). , See Patent Document 2).

しかしながら、これらで提案された結着剤を使用すると、上述した嵩が高い活物質や、充放電時に膨張・収縮する活物質を用いた場合においては若干の密着性の向上効果が認められるものの、使用する結着剤が粒子状高分子のみから構成されているため、結着剤と活物質との接触面積が小さくなり実用上では密着強度が不十分であった。   However, when the binders proposed in these are used, although the above-described bulky active material and an active material that expands and contracts during charge and discharge are used, a slight improvement in adhesion is observed, Since the binder to be used is composed only of the particulate polymer, the contact area between the binder and the active material is reduced, and the adhesion strength is insufficient in practical use.

そこで結着剤と活物質との接触面積を増大させるために、粒径の異なる結着剤を多分散(「多分散」とは、結着剤粒子が粒径分布を持っている状態のこと)するようにしている。結着剤と活物質との接触面積を増大させることで活物質同士が互いに密着するとともに、活物質と集電体との密着性が向上するため、密着強度に優れた電極板を提供できるとしている(例えば特許文献3参照)。   Therefore, in order to increase the contact area between the binder and the active material, the binders having different particle sizes are polydispersed (“polydisperse” is a state in which the binder particles have a particle size distribution. ) By increasing the contact area between the binder and the active material, the active materials are brought into close contact with each other and the adhesion between the active material and the current collector is improved, so that an electrode plate having excellent adhesion strength can be provided. (For example, refer to Patent Document 3).

特開平11−297329号公報JP 11-297329 A 特開2009−206079号公報JP 2009-206079 A 特開2003−109598号公報JP 2003-109598 A

しかしながら、粒径の異なる結着剤を多分散すると密着強度は増大するものの、図4に示すように集電体20の表面に形成される電極合剤層23としての大きな粒径の結着剤21は加圧時に潰されて活物質粒子22の表面を覆ってしまうため低温での充放電や低温サイクルで特性の低下を招いてしまうという課題を持っていた。   However, when the binders having different particle diameters are polydispersed, the adhesion strength increases, but the binder having a large particle diameter as the electrode mixture layer 23 formed on the surface of the current collector 20 as shown in FIG. Since No. 21 is crushed during pressurization and covers the surface of the active material particles 22, it has a problem that the characteristics are deteriorated by charge / discharge at a low temperature and a low temperature cycle.

本発明はこのような課題を解消するためになされたものであって、電極合剤層の表面を結着剤で完全に被覆しない電池用電極板を提供するとともに、密着強度に優れた電池用電極板を提供することを目的とするものである。   The present invention has been made to solve such problems, and provides a battery electrode plate that does not completely cover the surface of the electrode mixture layer with a binder, and has excellent adhesion strength. The object is to provide an electrode plate.

上記目的を達成するために本発明の電池用電極板は、集電体の表面に少なくとも活物質、結着剤および溶媒によって構成された電極合剤塗料を塗布し、乾燥、加圧して電極合剤層を形成した電池用電極板において、前記結着剤として加圧されても潰れない粒径のものを用いたことを特徴とするものである。   In order to achieve the above object, the battery electrode plate of the present invention is formed by applying an electrode mixture paint composed of at least an active material, a binder and a solvent to the surface of a current collector, drying and pressurizing the electrode assembly. In the battery electrode plate in which the agent layer is formed, a binder having a particle size that does not collapse even when pressed is used as the binder.

本発明によれば、加圧されても潰れない粒径の結着剤を用いているために、活物質同士の密着性は維持しつつ電極合剤層の表面は結着剤で完全に覆われていないため、充放電により膨張・収縮する性質があるリチウムイオンを吸蔵・放出することが可能な活物質を結着させる場合に、本発明の電池用電極板を用いると活物質の脱落が低減でき低温での充放電特性が向上する。   According to the present invention, since the binder having a particle size that does not collapse even when pressed is used, the surface of the electrode mixture layer is completely covered with the binder while maintaining the adhesion between the active materials. Therefore, when binding an active material capable of inserting and extracting lithium ions, which has the property of expanding and contracting due to charge and discharge, the active material can be removed when the battery electrode plate of the present invention is used. The charge / discharge characteristics at low temperature can be improved.

本発明における圧延後の活物質粒子と結着剤粒子の状態を模式的に示す構成図The block diagram which shows typically the state of the active material particle and binder particle | grains after rolling in this invention 本発明の電池用電極板を用いた電極群の要部の構成を示す断面図Sectional drawing which shows the structure of the principal part of the electrode group using the battery electrode plate of this invention. 本発明の電池用電極板を用いて構成した電池を示す断面図Sectional drawing which shows the battery comprised using the electrode plate for batteries of this invention 従来の圧延後の活物質粒子と結着剤粒子の状態を模式的に示す構成図Configuration diagram schematically showing the state of active material particles and binder particles after conventional rolling

本発明の第1の発明は、集電体の表面に少なくとも活物質、結着剤および溶媒によって構成された電極合剤塗料を塗布し、乾燥、加圧して電極合剤層を形成した電池用電極板において、前記結着剤として加圧されても潰れない粒径のものを用いたことを特徴とする電池用電極板である。   The first invention of the present invention is for a battery in which an electrode mixture coating composed of at least an active material, a binder and a solvent is applied to the surface of a current collector, and dried and pressed to form an electrode mixture layer In the electrode plate, a battery electrode plate having a particle size that does not collapse even when pressed is used as the binder.

本発明によれば、加圧されても潰れない粒径の結着剤を用いるため電極合剤層の表面は結着剤で完全に被覆されることがなく、充放電により膨張・収縮する性質があるリチウムイオンを吸蔵・放出することが可能な活物質を結着させる場合に本発明の電池用電極板を用いると、活物質の脱落が低減でき低温での充放電特性が向上する。   According to the present invention, the surface of the electrode mixture layer is not completely covered with the binder because it uses a binder having a particle size that does not collapse even when pressed, and expands and contracts due to charge and discharge. When the battery electrode plate of the present invention is used when binding an active material capable of inserting and extracting a certain lithium ion, dropping of the active material can be reduced and charge / discharge characteristics at a low temperature are improved.

本発明の第2の発明は、前記結着剤の平均粒径は0.01〜10μmのものを用いることが好ましい。これは、平均粒径が0.01μmより小さい場合、活物質同士の密着性が極端に低下し、活物質の脱落が生じてしまうからである。また、10μmより大きい場合、加圧時に結着剤が潰されてしまい電極合剤層の表面を結着剤で覆ってしまうからである。   In the second invention of the present invention, it is preferable to use a binder having an average particle diameter of 0.01 to 10 μm. This is because, when the average particle size is smaller than 0.01 μm, the adhesion between the active materials is extremely lowered, and the active materials fall off. Moreover, when it is larger than 10 μm, the binder is crushed during pressurization and the surface of the electrode mixture layer is covered with the binder.

本発明の第3の発明は、前記結着剤の添加量は前記活物質100重量部に対して0.4〜3.0重量部が好ましい。これは、添加量を0.4重量部より少なくした場合、電極合剤塗料が充分に増粘せず、塗工に適切な粘度とならないからである。また、3.0重量部
よりも多い場合、負極のエネルギー密度が低下し、高負荷放電、低温放電などの電池特性に悪影響を及ぼすからである。
In the third aspect of the present invention, the amount of the binder added is preferably 0.4 to 3.0 parts by weight with respect to 100 parts by weight of the active material. This is because when the addition amount is less than 0.4 parts by weight, the electrode mixture paint does not sufficiently thicken and does not have a viscosity suitable for coating. On the other hand, when the amount is more than 3.0 parts by weight, the energy density of the negative electrode is lowered, which adversely affects battery characteristics such as high load discharge and low temperature discharge.

本発明の第4の発明は、前記活物質としては負極活物質を用いるのが好ましい。これは、負極合剤層の密着性の向上と低温特性の向上が求められているためである。   In the fourth aspect of the present invention, it is preferable to use a negative electrode active material as the active material. This is because improvement in adhesion of the negative electrode mixture layer and improvement in low temperature characteristics are required.

本発明の第5の発明は、電池用電極板として集電体の表面に電極合剤層を形成した正極板と負極板とを多孔質絶縁体を介して積層または巻回して構成した電極群を電解液とともに電池外装体に封入してなる電池において、前記正極板または負極板の少なくともいずれか一方に上記第1〜第4の発明の電池用電極板を用いたことを特徴とする電池である。本発明の電池用電極板を用いると、電極合剤層の表面は結着剤で完全に被覆されることがなく、充放電により膨張・収縮する性質があるリチウムイオンを吸蔵・放出することが可能な活物質を結着させる場合に、活物質の脱落が低減でき低温での充放電特性が向上する。   According to a fifth aspect of the present invention, there is provided an electrode group comprising a positive electrode plate having an electrode mixture layer formed on the surface of a current collector and a negative electrode plate stacked or wound via a porous insulator as a battery electrode plate. A battery comprising a battery case and an electrolyte solution, wherein the battery electrode plate according to any one of the first to fourth inventions is used for at least one of the positive electrode plate and the negative electrode plate. is there. When the battery electrode plate of the present invention is used, the surface of the electrode mixture layer is not completely covered with the binder, and can absorb and release lithium ions that have the property of expanding and contracting due to charge and discharge. When binding a possible active material, dropping of the active material can be reduced, and charge / discharge characteristics at a low temperature can be improved.

以下、本発明の電池用電極板が負極板に適用された場合の例を実施の形態として詳細に説明する。   Hereinafter, an example in which the battery electrode plate of the present invention is applied to a negative electrode plate will be described in detail as an embodiment.

本発明の負極板について図1を用いて説明する。まず負極活物質2と水と増粘剤を混合する。その後、得られた混合物に水溶液状の結着剤1を混合し負極合剤塗料を調製する。なお、増粘剤の添加は負極合剤塗料に一定の粘度を持たせるためのものである。そして、得られた負極合剤塗料を図1に示されたように、負極集電体4に塗布し乾燥させて負極合剤層3を形成することにより負極板が得られる。負極合剤塗料を負極集電体4に塗布する方法は特に限定されない。例えば、ダイコートを用いて、負極集電体4の原反に負極合剤塗料を所定パターンで塗布する。塗膜の乾燥温度も特に限定されない。乾燥後の塗膜は、圧延ロールで圧延し所定厚さに制御される。圧延工程により負極合剤層3と負極集電体4との接着強度や、活物質粒子間の接着強度が高められる。こうして得られた負極合剤層3を負極集電体4とともに所定形状に裁断することにより負極板が完成する。   The negative electrode plate of the present invention will be described with reference to FIG. First, the negative electrode active material 2, water, and a thickener are mixed. Thereafter, an aqueous binder 1 is mixed with the obtained mixture to prepare a negative electrode mixture paint. The addition of the thickener is to give the negative electrode mixture paint a certain viscosity. Then, as shown in FIG. 1, the obtained negative electrode mixture paint is applied to the negative electrode current collector 4 and dried to form the negative electrode mixture layer 3, whereby a negative electrode plate is obtained. The method for applying the negative electrode mixture paint to the negative electrode current collector 4 is not particularly limited. For example, the negative electrode mixture paint is applied in a predetermined pattern to the raw material of the negative electrode current collector 4 using a die coat. The drying temperature of the coating film is not particularly limited. The coating film after drying is rolled to a predetermined thickness by a rolling roll. By the rolling process, the adhesive strength between the negative electrode mixture layer 3 and the negative electrode current collector 4 and the adhesive strength between the active material particles are increased. The negative electrode mixture layer 3 thus obtained is cut into a predetermined shape together with the negative electrode current collector 4 to complete a negative electrode plate.

負極活物質2としては、導電性を有したものであり、リチウムイオンを吸蔵・放出することができる炭素材料やSiO等の珪素酸化物などを用いることができる。特に炭素材料が好ましく、炭素材料としては導電性を有したものであり、リチウムイオンを吸蔵・放出することができる難活物質化炭素、コークスや天然活物質、人造活物質、活物質化メソフェーズカーボン粒子などが使用可能である。これらの炭素材料の粒子径は特に限定されるものではない。 As the negative electrode active material 2, a material having conductivity, a carbon material capable of inserting and extracting lithium ions, a silicon oxide such as SiO 2, and the like can be used. In particular, carbon materials are preferable, and carbon materials are conductive, and inactive material carbon that can occlude and release lithium ions, coke, natural active material, artificial active material, active material mesophase carbon Particles can be used. The particle diameter of these carbon materials is not particularly limited.

増粘剤としては、特に限定されないが、セルロース、ポリビニルアルコール、ポリビニルピロリドン、これらの誘導体などが挙げられる。これらのうちでも特に、セルロース、セルロース誘導体などが好ましい。セルロース誘導体としては、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースのNa塩などが好ましい。
負極合剤層に含ませる結着剤1は、加圧されても潰れない粒径のものである必要がある。これは、加圧により結着剤1が潰れることで電極合剤層3の表面を結着剤1で被覆されることを避けるためである。
Although it does not specifically limit as a thickener, A cellulose, polyvinyl alcohol, polyvinylpyrrolidone, these derivatives, etc. are mentioned. Of these, cellulose, cellulose derivatives and the like are particularly preferable. As the cellulose derivative, methyl cellulose, carboxymethyl cellulose, Na salt of carboxymethyl cellulose and the like are preferable.
The binder 1 contained in the negative electrode mixture layer needs to have a particle size that does not collapse even when pressed. This is to avoid covering the surface of the electrode mixture layer 3 with the binder 1 due to the binder 1 being crushed by pressurization.

結着剤1としては、平均粒径は0.01〜10μmであることが好ましく、0.05〜1μmが更に好ましく、0.05〜0.1μmが特に好ましい。これは、平均粒径が0.01μmより小さい場合、活物質同士の密着性が極端に低下し、活物質の脱落が生じてしまうからである。また、10μmより大きい場合、加圧時に結着剤が潰されてしまい電極合剤層の表面を結着剤で覆ってしまうからである。   The binder 1 preferably has an average particle size of 0.01 to 10 μm, more preferably 0.05 to 1 μm, and particularly preferably 0.05 to 0.1 μm. This is because, when the average particle size is smaller than 0.01 μm, the adhesion between the active materials is extremely lowered, and the active materials fall off. Moreover, when it is larger than 10 μm, the binder is crushed during pressurization and the surface of the electrode mixture layer is covered with the binder.

負極合剤層3に含まれる結着剤1の量は、活物質100重量部あたり、0.4〜3.0
重量部が好ましく、0.4〜1.0重量部が更に好ましく、0.4〜0.7重量部が特に好ましい。これは、添加量が0.4重量部より少なくした場合、電極合剤塗料が充分に増粘せず、塗工に適切な粘度とならないからである。また、3.0重量部よりも多い場合、負極のエネルギー密度が低下し、高負荷放電、低温放電などの電池特性に悪影響を及ぼすからである。
The amount of the binder 1 contained in the negative electrode mixture layer 3 is 0.4 to 3.0 per 100 parts by weight of the active material.
Parts by weight are preferred, 0.4 to 1.0 parts by weight are more preferred, and 0.4 to 0.7 parts by weight are particularly preferred. This is because when the addition amount is less than 0.4 parts by weight, the electrode mixture paint does not sufficiently thicken and does not have a viscosity suitable for coating. On the other hand, when the amount is more than 3.0 parts by weight, the energy density of the negative electrode is lowered, which adversely affects battery characteristics such as high load discharge and low temperature discharge.

負極集電体4としては、金属箔などが用いられる。リチウムイオン二次電池の負極板を作製する場合には、一般に銅箔、銅合金箔などが負極集電体4として用いられる。なかでも銅箔(0.2モル%以下の銅以外の成分が含まれていてもよい)が好ましく、特に電解銅箔が好ましい。   As the negative electrode current collector 4, a metal foil or the like is used. When producing a negative electrode plate of a lithium ion secondary battery, a copper foil, a copper alloy foil or the like is generally used as the negative electrode current collector 4. Of these, copper foil (which may contain components other than copper of 0.2 mol% or less) is preferable, and electrolytic copper foil is particularly preferable.

本発明の電池は図3に示すように、上記の負極板5と、Liを電気化学的に吸蔵および放出可能な正極板6と、負極板5と正極板6との間に介在する多孔質絶縁体としてのセパレータ7とを積層または巻回して電極群8を構成し、この電極群8を図3に示すように非水系の電解液とともに電池外装体としての電池ケース9に絶縁体12とともに収納し、この電池ケース9の開口部に封口板10を封着して電池11を構成している。本発明の電池としては、円筒型、扁平型、コイン型、角形など、様々な形状の電池に適用可能であり、電池の形状は特に限定されない。   As shown in FIG. 3, the battery of the present invention has a negative electrode plate 5, a positive electrode plate 6 capable of electrochemically inserting and extracting Li, and a porous material interposed between the negative electrode plate 5 and the positive electrode plate 6. The electrode group 8 is configured by stacking or winding the separator 7 as an insulator, and the electrode group 8 is combined with a non-aqueous electrolyte and a battery case 9 as a battery outer package together with the insulator 12 as shown in FIG. The battery 11 is configured by being housed and sealing the sealing plate 10 in the opening of the battery case 9. The battery of the present invention can be applied to batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited.

正極板6は、例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを含む正極合剤塗料を、アルミニウム箔などの正極集電体に塗布し、乾燥、圧延して形成された正極合剤層を形成することにより得られる。この正極板6の結着剤にも負極板5で用いた結着剤を用いてもよい。   For example, the positive electrode plate 6 is formed by applying a positive electrode mixture paint containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride to a positive electrode current collector such as an aluminum foil, and drying. It is obtained by forming a positive electrode mixture layer formed by rolling. The binder used for the negative electrode plate 5 may also be used for the positive electrode plate 6.

電解液の溶媒としては、高誘電率溶媒と低粘度溶媒とからなるものが好ましい。高誘電率溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類が好適にあげられる。これらの高誘電率溶媒は、一種類、または二種以上を組み合わせて使用してもよい。   As a solvent for the electrolytic solution, a solvent composed of a high dielectric constant solvent and a low viscosity solvent is preferable. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate. These high dielectric constant solvents may be used alone or in combination of two or more.

低粘度溶媒としては、ジメチルカーボネート、ジエチルカーボネート、ジ―n―プロピルカーボネート等の対称鎖状カーボネート類、エチルメチルカーボネート、メチル―n―プロピルカーボネート、エチル―n―プロピルカーボネート、メチル―i―プロピルカーボネート、エチル―i―プロピルカーボネート等の非対称鎖状カーボネート類、γ―ブチロラクトン、γ―バレロラクトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類、ジメチルホルムアミド等のアミド類が挙げられる。これらの低粘度溶媒は一種類、または二種類以上を組み合わせて用いることができる。高誘電率溶媒と低粘度溶媒とはそれぞれ任意に選択し、組み合わせて使用できる。   Low-viscosity solvents include symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and methyl-i-propyl carbonate. Asymmetric chain carbonates such as ethyl-i-propyl carbonate, cyclic esters such as γ-butyrolactone and γ-valerolactone, chain esters such as methyl acetate and methyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydro Examples include cyclic ethers such as pyran, chain ethers such as dimethoxyethane and dimethoxymethane, and amides such as dimethylformamide. These low-viscosity solvents can be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent can be arbitrarily selected and used in combination.

電解液の電解質塩としては、例えば、LiClO、LiPF、LiBFから選ばれる無機リチウム塩やLiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSOなどの含フッ素有機リチウム塩等が挙げられる。中でもLiPF、LiBFを用いることが好ましい。これらの電解質塩は一種類、または二種類以上を組み合わせて用いることができる。これらの電解質は、上記の非水溶媒に通常0.1〜3M、好ましくは0.5〜2Mの濃度で使用するのが望ましい。 Examples of the electrolyte salt of the electrolytic solution include an inorganic lithium salt selected from LiClO 4 , LiPF 6 , and LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , Examples thereof include fluorine-containing organic lithium salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 . Of these, LiPF 6 and LiBF 4 are preferably used. These electrolyte salts can be used alone or in combination of two or more. These electrolytes are desirably used in the above non-aqueous solvent at a concentration of usually 0.1 to 3M, preferably 0.5 to 2M.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例によ
り何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples in any way, and can be appropriately modified and implemented without departing from the scope of the present invention. Is.

(負極板の作成)
まず、負極活物質である天然黒鉛粒子100重量部と、増粘剤1重量部とを混合し、混合物の温度を20℃に制御しながら攪拌した。混合物101重量部(すなわち黒鉛100重量部+増粘剤1重量部)に、スチレン単位およびブタジエン単位を含み、ゴム弾性を有する0.01μm、0.05μm、0.1μm、1μm、10μmのそれぞれの粒子径の結着剤を0.7重量部混合し、下記(表1)のような比率の負極合剤塗料A1〜A5を調製した。また、粒子径0.1μmの結着剤を0.4重量部、0.7重量部、1重量部、3重量部それぞれ混合し、下記(表1)のような比率の負極合剤塗料A6〜A9を調製した。得られた負極合剤塗料を、負極集電体4である電解銅箔(厚さ8μm)の両面に塗布し、塗膜を110℃で乾燥させた。その後、乾燥塗膜を圧延ローラで圧延して、厚さ148μmの負極合剤層を形成した。負極合剤層3を負極集電体4とともに所定形状に裁断することにより負極板5を得た。
(Creation of negative electrode plate)
First, 100 parts by weight of natural graphite particles as a negative electrode active material and 1 part by weight of a thickener were mixed and stirred while controlling the temperature of the mixture at 20 ° C. Each of 0.01 μm, 0.05 μm, 0.1 μm, 1 μm, and 10 μm having rubber elasticity containing styrene units and butadiene units in 101 parts by weight of the mixture (that is, 100 parts by weight of graphite + 1 part by weight of thickener) 0.7 parts by weight of a binder having a particle size was mixed to prepare negative electrode mixture paints A1 to A5 having the ratios shown below (Table 1). In addition, 0.4 parts by weight, 0.7 parts by weight, 1 part by weight, and 3 parts by weight of a binder having a particle diameter of 0.1 μm were mixed, and the negative electrode mixture paint A6 having a ratio as shown below (Table 1). -A9 was prepared. The obtained negative electrode mixture paint was applied on both surfaces of an electrolytic copper foil (thickness 8 μm) as the negative electrode current collector 4, and the coating film was dried at 110 ° C. Thereafter, the dried coating film was rolled with a rolling roller to form a negative electrode mixture layer having a thickness of 148 μm. A negative electrode plate 5 was obtained by cutting the negative electrode mixture layer 3 together with the negative electrode current collector 4 into a predetermined shape.

(正極板の作成)
正極活物質である100重量部のLiCoOに対し、結着剤であるポリフッ化ビニリデン(PVDF)を4重量部添加し、適量のNMPとともに混合し、正極合剤塗料を調製した。得られた正極合剤塗料を、正極集電体である厚さ15μmのアルミニウム箔の両面に塗布し塗膜を乾燥させ、更に、圧延して正極合剤層を形成した。正極合剤層を正極集電体とともに所定形状に裁断することにより正極板6を得た。
(Creation of positive electrode plate)
4 parts by weight of polyvinylidene fluoride (PVDF) as a binder was added to 100 parts by weight of LiCoO 2 as a positive electrode active material, and mixed with an appropriate amount of NMP to prepare a positive electrode mixture paint. The obtained positive electrode mixture paint was applied to both surfaces of a 15 μm-thick aluminum foil as a positive electrode current collector, the coating film was dried, and further rolled to form a positive electrode mixture layer. A positive electrode plate 6 was obtained by cutting the positive electrode mixture layer into a predetermined shape together with the positive electrode current collector.

(電解液の調製)
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPFを溶解させて電解液を調製した。電解液には3重量%のビニレンカーボネートを含ませた。
(Preparation of electrolyte)
LiPF 6 was dissolved at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1 to obtain an electrolyte solution. Prepared. The electrolyte contained 3% by weight of vinylene carbonate.

(電池の組み立て)
図3に示すような角型リチウムイオン二次電池を作製した。
(Battery assembly)
A square lithium ion secondary battery as shown in FIG. 3 was produced.

負極板5と正極板6とを、これらの間にポリエチレン製の微多孔性フィルムからなるセパレータ7を介して捲回し、断面が略楕円形の電極群8を構成した。電極群8はアルミニウム製の角型の電池ケース9に収容した。電池ケース9は、底部と、側壁とを有し、上部は開口している。その後、電池ケース9と正極リードまたは負極リードとの短絡を防ぐための絶縁体12を電極群8の上部に配置した。次に、絶縁ガスケットで囲まれた負極端子を中央に有する矩形の封口板10を電池ケース9の開口に配置した。負極リードは負極端子と接続した。正極リードは封口板10の下面と接続した。開口の端部と封口板10とをレーザーで溶接し、電池ケース9の開口を封口した。その後、封口板10の注液孔から電解液を電池ケース9に注入した。最後に、注液孔を封栓で溶接により塞ぎ、角型リチウムイオン二次電池A1〜A9を作成した。ここで角形リチウムイオン二次電池A1〜A9は結着剤1の粒子径、添加量を(表1)に示すように変えて作成した。   The negative electrode plate 5 and the positive electrode plate 6 were wound through a separator 7 made of a polyethylene microporous film between them to form an electrode group 8 having a substantially elliptical cross section. The electrode group 8 was accommodated in a rectangular battery case 9 made of aluminum. The battery case 9 has a bottom part and a side wall, and the upper part is opened. Thereafter, an insulator 12 for preventing a short circuit between the battery case 9 and the positive electrode lead or the negative electrode lead was disposed on the electrode group 8. Next, a rectangular sealing plate 10 having a negative electrode terminal surrounded by an insulating gasket in the center was disposed in the opening of the battery case 9. The negative electrode lead was connected to the negative electrode terminal. The positive electrode lead was connected to the lower surface of the sealing plate 10. The end of the opening and the sealing plate 10 were welded with a laser to seal the opening of the battery case 9. Thereafter, an electrolytic solution was injected into the battery case 9 from the injection hole of the sealing plate 10. Finally, the injection hole was closed by welding with a sealing plug to prepare square lithium ion secondary batteries A1 to A9. Here, the prismatic lithium ion secondary batteries A1 to A9 were prepared by changing the particle diameter and addition amount of the binder 1 as shown in (Table 1).

Figure 2011198548
Figure 2011198548

(比較例1)
電池の基本構成は実施例と同じで負極板の結着剤の粒子系、添加量を(表1)に示す。0.008μm及び12μmのSBRの結着剤が0.7重量部含む負極合剤塗料に調整したこと以外は実施例と同様にして比較電池B1、B2を作製した。
(Comparative Example 1)
The basic structure of the battery is the same as that of the example, and the particle system of the binder for the negative electrode plate and the amount added are shown in Table 1. Comparative batteries B1 and B2 were produced in the same manner as in the examples except that the negative electrode mixture paint containing 0.7 parts by weight of 0.008 μm and 12 μm SBR binder was prepared.

(比較例2)
同じく結着剤の粒子径を0.1μmのSBRが4重量部含む負極合剤塗料を調整したこと以外は実施例と同様にして比較電池B3を作成した。
(Comparative Example 2)
Similarly, Comparative Battery B3 was prepared in the same manner as in Example except that a negative electrode mixture paint containing 4 parts by weight of SBR having a binder particle size of 0.1 μm was prepared.

(電池の評価)
これらの実施例及び比較例の電池を20℃環境下で以下の条件で充放電を行い、その後20℃で充電後、−10℃にて以下の条件で放電を行い、放電容量を測定した。20℃の放電容量に対する−10℃の放電容量の割合(容量維持率)を百分率で求めた。
(Battery evaluation)
The batteries of these examples and comparative examples were charged and discharged under the following conditions in a 20 ° C. environment, then charged at 20 ° C., then discharged at −10 ° C. under the following conditions, and the discharge capacity was measured. The ratio (capacity maintenance ratio) of the discharge capacity at −10 ° C. to the discharge capacity at 20 ° C. was obtained as a percentage.

<サイクル試験条件>
定電流充電:充電電流値700mA/充電終止電圧4.2V
定電圧充電:充電電圧値4.2V/充電終止電流35mA
定電流放電:放電電流値 700mA/放電終止電圧3V
下記(表2)に示すように、本発明の電池A1からA5の容量維持率において比較例の電池B1とB2に比べて、優れていることがわかる。特にA2、A3の低温特性が非常に優れており、結着剤の平均粒径は0.01〜10μmであることが好ましく、特に0.05〜0.1μmの範囲で最適であることがわかる。
<Cycle test conditions>
Constant current charging: Charging current value 700mA / end-of-charge voltage 4.2V
Constant voltage charging: Charging voltage value 4.2V / Charge termination current 35mA
Constant current discharge: discharge current value 700 mA / discharge end voltage 3 V
As shown below (Table 2), it can be seen that the capacity retention ratios of the batteries A1 to A5 of the present invention are superior to the batteries B1 and B2 of the comparative example. In particular, the low-temperature characteristics of A2 and A3 are very excellent, and the average particle size of the binder is preferably 0.01 to 10 μm, and particularly optimal in the range of 0.05 to 0.1 μm. .

これは、0.01〜10μmの範囲の粒径であれば、結着剤は加圧されても潰されず電極合剤層の表面は結着剤で被覆されることがないため、低温時でもリチウムイオンの受け入れ性が低下しないためである。   If the particle size is in the range of 0.01 to 10 μm, the binder is not crushed even when pressurized, and the surface of the electrode mixture layer is not covered with the binder, so even at low temperatures. This is because the acceptability of lithium ions does not decrease.

また、本発明の電池A6〜A9の容量維持率において比較例の電池B3に比べて、優れていることがわかる。特にA6、A7の低温特性が非常に優れていることから、結着剤の添加量は0.4重量部〜3重量部であることが好ましく、特に0.4重量部〜0.7重量部が最適であることがわかる。これは、0.4重量部〜3重量部の範囲であれば電極合剤層の表面は結着剤で完全に被覆されていないためである。   Moreover, it turns out that it is excellent in the capacity | capacitance maintenance factor of battery A6-A9 of this invention compared with battery B3 of a comparative example. In particular, since the low temperature characteristics of A6 and A7 are very excellent, the amount of the binder added is preferably 0.4 to 3 parts by weight, particularly 0.4 to 0.7 parts by weight. Is optimal. This is because the surface of the electrode mixture layer is not completely covered with the binder in the range of 0.4 to 3 parts by weight.

なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。また上記実施例はリチウムイオン二次電池に関するものであるが、本発明は電池全般に適用されるものである。   In addition, this invention is not limited to the Example described, The various combination which can be easily guessed from the meaning of invention is possible. Moreover, although the said Example is related with a lithium ion secondary battery, this invention is applied to the battery in general.

Figure 2011198548
Figure 2011198548

本発明に係る電池用電極板によれば、合剤層内における結着材が加圧されても潰されない粒径のものを用いるため電極合剤層の表面は結着剤で完全に被覆されず、しかも活物質間の密着性は維持されている電極板を提供するため、充放電サイクルで負極合剤層が膨張と収縮を繰り返す場合でも活物質粒子の脱落が低減でき、リチウムイオンの受け入れ性が向上する。よって優れた充放電サイクル特性と低温特性を有し、信頼性の高い電池が得られる。   According to the battery electrode plate of the present invention, the surface of the electrode mixture layer is completely covered with the binder because it uses a particle size that is not crushed even when the binder in the mixture layer is pressurized. In addition, in order to provide an electrode plate in which the adhesion between the active materials is maintained, even when the negative electrode mixture layer repeatedly expands and contracts in the charge / discharge cycle, the falling off of the active material particles can be reduced, and lithium ions can be received. Improves. Therefore, a highly reliable battery having excellent charge / discharge cycle characteristics and low temperature characteristics can be obtained.

1 結着剤
2 負極活物質
3 負極合剤層
4 負極集電体
5 負極板
6 正極板
7 セパレータ
8 電極群
9 電池ケース
10 封口板
11 電池
12 絶縁体
20 集電体
21 結着剤
22 活物質粒子
23 合剤層
DESCRIPTION OF SYMBOLS 1 Binder 2 Negative electrode active material 3 Negative electrode mixture layer 4 Negative electrode collector 5 Negative electrode plate 6 Positive electrode plate 7 Separator 8 Electrode group 9 Battery case 10 Sealing plate 11 Battery 12 Insulator 20 Current collector 21 Binder 22 Active Material particles 23 Mixture layer

Claims (5)

集電体の表面に少なくとも活物質、結着剤および溶媒によって構成された電極合剤塗料を塗布し、乾燥、加圧して電極合剤層を形成した電池用電極板において、前記結着剤として加圧されても潰れない粒径のものを用いたことを特徴とする電池用電極板。   In the electrode plate for a battery in which an electrode mixture coating composed of at least an active material, a binder and a solvent is applied to the surface of the current collector, and the electrode mixture layer is formed by drying and pressing. A battery electrode plate having a particle size that does not collapse even when pressed. 前記結着剤として、平均粒径0.01〜10μmのものを用いた請求項1記載の電池用電極板。   The battery electrode plate according to claim 1, wherein the binder has an average particle diameter of 0.01 to 10 μm. 前記結着剤として、前記活物質100重量部に対して0.4〜3.0重量部添加した請求項1記載の電池用電極板。   The battery electrode plate according to claim 1, wherein 0.4 to 3.0 parts by weight of the binder is added to 100 parts by weight of the active material. 前記活物質として負極活物質を用いた請求項1記載の電池用電極板。   The battery electrode plate according to claim 1, wherein a negative electrode active material is used as the active material. 集電体の表面に電極合剤層を形成した正極板と負極板とを多孔質絶縁体を介して積層または巻回して構成した電極群を電解液とともに電池外装体に封入してなる電池において、
前記正極板または負極板の少なくともいずれか一方に請求項1〜4のいずれか1つに記載の電池用電極板を用いたことを特徴とする電池。
In a battery in which an electrode group formed by laminating or winding a positive electrode plate and a negative electrode plate with an electrode mixture layer formed on the surface of a current collector through a porous insulator is enclosed in a battery outer package together with an electrolyte. ,
A battery comprising the battery electrode plate according to claim 1 as at least one of the positive electrode plate and the negative electrode plate.
JP2010062335A 2010-03-18 2010-03-18 Electrode plate for battery and battery using it Pending JP2011198548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062335A JP2011198548A (en) 2010-03-18 2010-03-18 Electrode plate for battery and battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062335A JP2011198548A (en) 2010-03-18 2010-03-18 Electrode plate for battery and battery using it

Publications (1)

Publication Number Publication Date
JP2011198548A true JP2011198548A (en) 2011-10-06

Family

ID=44876501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062335A Pending JP2011198548A (en) 2010-03-18 2010-03-18 Electrode plate for battery and battery using it

Country Status (1)

Country Link
JP (1) JP2011198548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623702A (en) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 Li-ion battery as well as cathode plate and preparation method thereof
CN111129430A (en) * 2018-10-30 2020-05-08 三洋电机株式会社 Secondary battery and method for manufacturing secondary battery
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623702A (en) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 Li-ion battery as well as cathode plate and preparation method thereof
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same
CN111129430A (en) * 2018-10-30 2020-05-08 三洋电机株式会社 Secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
JP5525599B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same
WO2010113419A1 (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
KR101862433B1 (en) Lithium-ion capacitor
US20240186510A1 (en) Positive electrode active material composition, water-based positive electrode slurry, positive electrode plate, secondary battery, and electrical device
KR20140070475A (en) Anode active material for lithium secondary battery and Lithium secondary battery comprising the same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
WO2011118144A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using same
US20130302701A1 (en) Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary battery
KR20060029747A (en) Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
JP6057644B2 (en) Lithium ion battery
JP2010186751A (en) Nonaqueous secondary battery
JP2009081067A (en) Non-aqueous secondary battery
JP2007265666A (en) Nonaqueous electrolyte secondary battery
JPWO2015146079A1 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4979049B2 (en) Non-aqueous secondary battery
JP2011198548A (en) Electrode plate for battery and battery using it
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2013131425A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and manufacturing method of the same
JP4293756B2 (en) Nonaqueous electrolyte secondary battery
KR101950706B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP4974404B2 (en) Non-aqueous secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
WO2023087168A1 (en) Electrolyte, secondary battery, battery module, battery pack, and electric device