JP2011122789A - Flat plate type heat pipe - Google Patents

Flat plate type heat pipe Download PDF

Info

Publication number
JP2011122789A
JP2011122789A JP2009281919A JP2009281919A JP2011122789A JP 2011122789 A JP2011122789 A JP 2011122789A JP 2009281919 A JP2009281919 A JP 2009281919A JP 2009281919 A JP2009281919 A JP 2009281919A JP 2011122789 A JP2011122789 A JP 2011122789A
Authority
JP
Japan
Prior art keywords
heat
graphite
sheet
heat pipe
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009281919A
Other languages
Japanese (ja)
Inventor
Takao Saito
貴夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009281919A priority Critical patent/JP2011122789A/en
Publication of JP2011122789A publication Critical patent/JP2011122789A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat plate type heat pipe which achieves a sufficient heat diffusing performance even at a temperature lower than the lower limit of a temperature region where an operating fluid circulating motion of the heat pipe is available. <P>SOLUTION: In this heat pipe having a flat metallic member 1 having an internal space, and the operating fluid enclosed in the internal space, a sheet-like graphite 4 having heat conductivity in the main plane direction higher than that of a metallic member 1, is fixed to the inner wall in the main plane direction of the flat plate-shaped metallic member 1. A surface of the sheet-like graphite 4 is unevenly formed to provide the operating fluid with capillary action. Thus, the heat from a heat generation source can be diffused by the sheet-like graphite at the temperature lower than the temperature where the circulating motion of the operating fluid is available. The condensed operating fluid can be moved by the unevenness of the sheet-like graphite surface. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートパイプに関し、特に、熱拡散部材(ヒートスプレッダ)として好適な、外形が平板型のヒートパイプに関する。   The present invention relates to a heat pipe, and more particularly to a heat pipe having an outer shape that is suitable as a heat diffusion member (heat spreader).

一般的なヒートパイプは、銅管の内壁にウィックと称する毛細管現象を引き起こす微細構造(網目や焼結体による凹凸)を形成し、作動液を封入して端部をカシメなどによって封止したものである。その外形は、熱輸送を主目的とするために円柱形状をしている。これに対し、CPUなどの発熱密度の大きい発熱源を効率よく冷却する手段として、外形が平板状のヒートパイプを用い、熱を拡散させてから冷却する方法が用いられる。   A general heat pipe has a fine structure (unevenness due to a mesh or sintered body) that causes capillary action called a wick on the inner wall of a copper tube, encloses the working fluid, and seals the end with caulking etc. It is. Its outer shape is cylindrical in order to mainly use heat transport. On the other hand, as a means for efficiently cooling a heat source having a large heat generation density such as a CPU, a heat pipe having a flat outer shape is used, and a method of cooling after diffusing heat is used.

平板状のヒートパイプは、例えば特許文献1および2のように、スリットを有する薄板からなる仕切板等を複数重ね合わせて配置し、その重ね合わせたものの上下に外壁部材を重ねてコンテナを構成している。コンテナ内空間には作動液が封入されている。特許文献1の構成では、重ね合わせられた複数の仕切り板の間隙が毛細管流路を構成している。特許文献2の構成では、外壁部材の内側の側面には毛細管現象を引き起こすための微細形状が形成されている。   For example, as in Patent Documents 1 and 2, a flat heat pipe is formed by stacking a plurality of partition plates made of thin plates having slits, and constructing a container by stacking outer wall members on top of each other. ing. The working fluid is sealed in the space in the container. In the configuration of Patent Document 1, a gap between a plurality of overlapping partition plates constitutes a capillary channel. In the configuration of Patent Document 2, a fine shape for causing capillary action is formed on the inner side surface of the outer wall member.

熱源は平板状ヒートパイプの上面または下面の中央部に配置される。作動液は、熱源からの熱によって内部空間の中央で蒸発し、蒸気は仕切り板のスリットを通って外周部に向かう。蒸気は外周部で冷却されて凝縮され、液体となって仕切り板の間の毛細管流路や、外壁部材の内側の微細管形状で構成された毛細管流路を通って中央に回帰する。このような平板状のヒートパイプは、全体が薄い板材で構成されているため、薄型の形状を提供できる。   A heat source is arrange | positioned in the center part of the upper surface or lower surface of a flat heat pipe. The hydraulic fluid evaporates at the center of the internal space due to heat from the heat source, and the vapor passes through the slit of the partition plate toward the outer peripheral portion. The vapor is cooled and condensed at the outer peripheral portion, and returns to the center through a capillary channel between the partition plates and a capillary channel configured in a fine tube shape inside the outer wall member. Since such a flat plate-like heat pipe is entirely made of a thin plate material, it can provide a thin shape.

また、グラファイト材を使って熱拡散を促進させる技術については、近年数多くの特許文献が公開されている。例えば特許文献3では、熱伝導性膜としてグラファイト製の部材を用いて、既存の放熱構造を覆った放熱構造が開示されている。   In addition, many patent documents have been published in recent years regarding techniques for promoting thermal diffusion using a graphite material. For example, Patent Document 3 discloses a heat dissipation structure that covers an existing heat dissipation structure using a graphite member as a thermally conductive film.

特開2002−039693号公報JP 2002-039693 A 特許4047918号公報Japanese Patent No. 4047918 特開平11−95871号公報(段落「0015」等)JP 11-95871 A (paragraph “0015” etc.)

ヒートパイプの動作温度領域は作動液の蒸気圧によって決定される。一般的に、ヒートパイプは作動液を蒸発させやすくするため、減圧状態で封入される。しかしながら円柱型に比べて平板型は構造的に弱く、作動液の減圧度を低くせざるを得ない。減圧度が低いと作動液が蒸発しにくく、動作温度領域の下限が律則される(例えば、円柱型:20℃に比べて平型:60℃程度)。下限に満たない低温度領域では作動液の蒸発が著しく少なくなり、ヒートパイプ特有の高い等価熱伝導率(数千[W/mK])が得られず、外壁材料の熱伝導率(例えば銅:約380[W/mK])に支配され、ヒートスプレッダとしての熱拡散性能が低下してしまう。   The operating temperature range of the heat pipe is determined by the vapor pressure of the working fluid. Generally, the heat pipe is sealed in a reduced pressure state in order to facilitate the evaporation of the working fluid. However, the flat plate type is structurally weaker than the cylindrical type, and the pressure reduction of the hydraulic fluid has to be lowered. When the degree of decompression is low, the working fluid is difficult to evaporate, and the lower limit of the operating temperature range is regulated (for example, flat type: about 60 ° C compared to 20 ° C). In the low temperature range below the lower limit, the evaporation of the hydraulic fluid is remarkably reduced, the high equivalent thermal conductivity (several thousands [W / mK]) unique to heat pipes cannot be obtained, and the thermal conductivity of the outer wall material (for example, copper: Controlled by about 380 [W / mK]), the heat diffusion performance as a heat spreader is degraded.

動作温度領域の下限を拡張するためには、減圧度を大きくすることが考えられるが、その減圧状態に耐えるためには構造を工夫して強度を高めることが必要である。強度を高める手段としては、外壁だけでなくコンテナ内部に支柱を多数設けて補強するといった方法が考えられるが、スリット構造の邪魔になるため作動液の回帰性が悪化し、結果として熱拡散性能の低下につながる。すなわち、強度と熱拡散性能の両立は困難である。   In order to extend the lower limit of the operating temperature range, it is conceivable to increase the degree of decompression, but in order to withstand the decompressed state, it is necessary to devise the structure and increase the strength. As a means to increase the strength, a method of reinforcing by providing a large number of support pillars inside the container as well as the outer wall is conceivable, but since it interferes with the slit structure, the returnability of the hydraulic fluid deteriorates, resulting in a decrease in heat diffusion performance. Leading to a decline. That is, it is difficult to achieve both strength and thermal diffusion performance.

また、平板状のヒートパイプの内壁の凹凸構造(ウィック)に、特許文献3のグラファイト材を膜状にしたものを貼り付けることも考えられるが、ウィックのピッチは1mm以下と緻密なため、凹凸形状に沿ってグラファイト材が折れ曲がることによりグラファイト中の炭素結合が乱れ、グラファイト材の高熱伝導率という特性を害する恐れがある。   It is also possible to apply the graphite material of Patent Document 3 to the uneven structure (wick) on the inner wall of the flat plate-like heat pipe, but the pitch of the wick is as fine as 1 mm or less. If the graphite material bends along the shape, carbon bonds in the graphite are disturbed, which may impair the high thermal conductivity characteristic of the graphite material.

本発明の目的は、ヒートパイプの作動液循環動作が生じる温度領域の下限未満の温度であっても十分な熱拡散性能を得ることができる平板型ヒートパイプを提供することである。   An object of the present invention is to provide a flat plate heat pipe capable of obtaining sufficient heat diffusion performance even at a temperature below the lower limit of the temperature range in which the working fluid circulation operation of the heat pipe occurs.

上記目的を達成するために、本発明の第1の態様によれば、以下のような平板型ヒートパイプが提供される。すなわち、内部空間を有する平板状の金属部材と、内部空間に封入された作動液とを有する平板型ヒートパイプであって、平板状の金属部材の主平面方向の内壁には、金属部材よりも主平面方向の熱伝導率の大きいシート状のグラファイトが固定されている。シート状グラファイトの表面には、作動液に毛細管現象を生じさせる凹凸形状が形成されている。これにより、作動液の循環動作が生じる温度未満においては、シート状グラファイトの熱伝導率で熱拡散を生じさせることができる。シート状グラファイトの表面の凹凸は、毛細管現象による作動液の移動を生じさせるため、作動液の循環動作に寄与する。   In order to achieve the above object, according to the first aspect of the present invention, the following flat plate heat pipe is provided. That is, a flat plate-shaped heat pipe having a flat metal member having an internal space and a working fluid sealed in the internal space, the inner wall in the main plane direction of the flat metal member being more than the metal member Sheet-like graphite having a large thermal conductivity in the main plane direction is fixed. The surface of the sheet-like graphite has an uneven shape that causes capillary action in the hydraulic fluid. Accordingly, thermal diffusion can be caused by the thermal conductivity of the sheet-like graphite at a temperature lower than the temperature at which the hydraulic fluid circulates. Since the irregularities on the surface of the sheet-like graphite cause movement of the working fluid due to capillary action, it contributes to the circulating operation of the working fluid.

上記凹凸形状は、例えば、底面形状が六角形の凸部を、繰り返し並べた形状とすることができる。   The uneven shape can be, for example, a shape in which convex portions having a hexagonal bottom shape are repeatedly arranged.

シート状グラファイトは、主平面方向の熱伝導率が厚さ方向の熱伝導率よりも大きい異方性熱伝導性のものを用いることができる。この場合、金属部材の内部空間には、金属製の柱部材を配置し、柱部材がシート状グラファイトの中央に設けられた貫通孔を貫いて、両端が金属部材と接するように構成することが望ましい。これにより、異方性熱伝導性のシート状グラファイトを用いた場合であっても、発熱源の熱を内部空間に効率よく伝達することができる。   As the sheet-like graphite, those having anisotropic thermal conductivity whose thermal conductivity in the main plane direction is larger than the thermal conductivity in the thickness direction can be used. In this case, a metal column member may be disposed in the internal space of the metal member, and the column member may be configured to penetrate the through hole provided in the center of the sheet-like graphite so that both ends are in contact with the metal member. desirable. Thus, even when anisotropic heat conductive sheet-like graphite is used, the heat of the heat source can be efficiently transmitted to the internal space.

本発明によれば、発熱源からの熱を効率よく拡散し、使用温度領域に制約が少ない平板型のヒートパイプ(ヒートスプレッダ)を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat | fever from a heat-generation source can be spread | diffused efficiently, and the flat type heat pipe (heat spreader) with few restrictions in a use temperature area | region can be provided.

第1の実施形態の平板型ヒートパイプ(ヒートスプレッダ)の断面図である。It is sectional drawing of the flat plate type heat pipe (heat spreader) of 1st Embodiment. 図1のヒートスプレッダの各部材の斜視図である。It is a perspective view of each member of the heat spreader of FIG. 図1のヒートスプレッダのシート状グラファイトの表面凹凸の(a)拡大上面図、(b)拡大側面図である。It is (a) enlarged top view of the surface unevenness | corrugation of the sheet-like graphite of the heat spreader of FIG. 1, and (b) enlarged side view. 図1のヒートスプレッダにおける作動液とその蒸気の流れを示す説明図である。It is explanatory drawing which shows the flow of the working fluid and its vapor | steam in the heat spreader of FIG. 比較例の平板型ヒートパイプ(ヒートスプレッダ)の断面図である。It is sectional drawing of the flat type heat pipe (heat spreader) of a comparative example. 図5のヒートスプレッダの各部材の斜視図である。It is a perspective view of each member of the heat spreader of FIG. 図5のヒートスプレッダの外層金属板の凹部の底面の拡大した切り欠き斜視図である。FIG. 6 is an enlarged cutaway perspective view of the bottom surface of the recess of the outer layer metal plate of the heat spreader of FIG. 5. 図5のヒートスプレッダにおける作動液とその蒸気の流れを示す説明図である。It is explanatory drawing which shows the flow of the working fluid and its vapor | steam in the heat spreader of FIG. 実施例および比較例の評価実験に用いた装置構成を示す説明図である。It is explanatory drawing which shows the apparatus structure used for the evaluation experiment of an Example and a comparative example. 実施例および比較例のヒートスプレッダについて図9の装置で測定した、発熱源5の温度変化を示すグラフである。It is a graph which shows the temperature change of the heat-generation source 5 measured with the apparatus of FIG. 9 about the heat spreader of the Example and the comparative example. 実施例および比較例のヒートスプレッダについて図9の装置で測定した、ヒートスプレッダの外周部の温度変化を示すグラフである。It is a graph which shows the temperature change of the outer peripheral part of a heat spreader measured with the apparatus of FIG. 9 about the heat spreader of the Example and the comparative example.

本発明の一実施の形態について図面を用いて説明する。なお、本発明は、以下の実施形態に限定されるものではない。   An embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.

図1および図2を用いて本実施形態の平板状ヒートパイプ(以下、ヒートスプレッダと称す)の構成について説明する。図1はヒートスプレッダの断面図であり、図2は、各部品の斜視図である。ヒートスプレッダは、対向面に凹部1aが形成された一対の外層金属板1を外縁部で接合した構造である。外層金属板1のそれぞれの凹部1aの底面はシート状グラファイト4で覆われている。接合された外層金属板1の内部空間には、複数枚の内層スリット板2が重ねて配置されている。また、外層金属板1の内部空間には、所定の圧力まで減圧され、所定の作動液が封入されている。   A configuration of a flat plate heat pipe (hereinafter referred to as a heat spreader) according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of a heat spreader, and FIG. 2 is a perspective view of each component. The heat spreader has a structure in which a pair of outer layer metal plates 1 having recesses 1a formed on opposite surfaces are joined at outer edges. The bottom surface of each recess 1 a of the outer metal plate 1 is covered with a sheet-like graphite 4. In the inner space of the joined outer layer metal plate 1, a plurality of inner layer slit plates 2 are arranged in an overlapping manner. Further, the inner space of the outer metal plate 1 is depressurized to a predetermined pressure, and a predetermined working fluid is sealed therein.

内層スリット板2は、微細な貫通孔が厚さ方向に多数設けられたメッシュ構造の板状部材を微小な高さ(振幅)で波打たせた構造である。主平面には、中央から外周部に向かって放射状に延びるスリット2aが設けられている。重ねられた複数の内層スリット板3の間隙および放射状のスリット2aは、作動液の蒸気が中央から外周部に向かって流れる流路となる。メッシュ構造は、外周部で凝縮されて液体状態に戻った作動液が、毛細管現象で中央へ回帰する毛細管流路となる。   The inner-layer slit plate 2 has a structure in which a plate-like member having a mesh structure in which a large number of fine through holes are provided in the thickness direction is corrugated with a minute height (amplitude). The main plane is provided with slits 2a extending radially from the center toward the outer periphery. The gaps between the plurality of stacked inner layer slit plates 3 and the radial slits 2a serve as a flow path through which the vapor of the working fluid flows from the center toward the outer peripheral portion. The mesh structure becomes a capillary flow path in which the working liquid condensed in the outer peripheral portion and returned to the liquid state returns to the center by capillary action.

外層金属板1および内層スリット板2は、熱伝導性の良い金属、例えば銅で構成されている。シート状グラファイト4は、外層金属板1および内層スリット板2よりも主平面方向の熱伝導率が大きい。ここでは、主平面方向の熱伝導率が、厚み方向の熱伝導率よりも数倍大きい(主平面方向1200W/mK、厚み方向20W/mK)、異方性熱伝導性を有するグラファイトシートを用いる。   The outer layer metal plate 1 and the inner layer slit plate 2 are made of a metal having good thermal conductivity, for example, copper. The sheet-like graphite 4 has a larger thermal conductivity in the main plane direction than the outer metal plate 1 and the inner slit plate 2. Here, a graphite sheet having an anisotropic thermal conductivity that has a thermal conductivity in the main plane direction several times larger than that in the thickness direction (main plane direction 1200 W / mK, thickness direction 20 W / mK) is used. .

シート状グラファイト4および内層スリット板2の中央には、円形の貫通孔が設けられており、同径の円柱3が貫通孔の側面と接触するように貫通している。円柱3の両端は、外層金属板1に固定されている。また、円柱3は、外層金属板1の一方と一体成形された構成とすることも可能である。   A circular through-hole is provided in the center of the sheet-like graphite 4 and the inner layer slit plate 2, and the cylinder 3 having the same diameter penetrates so as to contact the side surface of the through-hole. Both ends of the cylinder 3 are fixed to the outer metal plate 1. Further, the column 3 can be formed integrally with one of the outer metal plates 1.

また、シート状グラファイト4の表面には、液体状態の作動液の毛細管流路となる凹凸構造が形成されている。図3(a)および(b)に、シート状グラファイト4の凹凸構造の上面図および側面図を示す。図3(a)、(b)から明らかなように、シート状グラファイト4の表面は六角錐が隙間なく繰り返し並べられた形状である。このように六角錐の凹凸構造を設けることにより、中央から外周に向かって6方向に放射状に延びる凹凸が形成されるため、外周部で凝縮された作動液を毛細管現象により効率よく中央へ回帰させることができる。   The surface of the sheet-like graphite 4 is formed with a concavo-convex structure serving as a capillary channel for the liquid working fluid. 3A and 3B are a top view and a side view of the concavo-convex structure of the sheet-like graphite 4. 3A and 3B, the surface of the sheet-like graphite 4 has a shape in which hexagonal pyramids are repeatedly arranged without gaps. By providing a hexagonal pyramid uneven structure in this way, unevenness extending radially in six directions from the center toward the outer periphery is formed, so that the hydraulic fluid condensed at the outer periphery is efficiently returned to the center by capillary action. be able to.

表面に六角錐が繰り返し並べられた形状の凹凸構造を備えるシート状グラファイト4を製造する方法を説明する。材料としてポリイミド等の高分子フィルムを用いる。あらかじめ蜂の巣状にパンチングで六角形の孔を空けた高分子フィルムを複数枚(孔位置は同じで孔形のみ異なるもの)用意する。これら複数間の高分子フィルムを、孔径が徐々に変化するように積層し、不活性雰囲気中で、2000〜3000℃で高温焼成する。さらに片側の表面を六角錐状の凹凸を形成したローラーで圧延する。これにより、表面に六角錐の凹凸が形成されたシート状グラファイトを生成できる。なお、外層金属板1に固定される逆側の面は、平坦なローラーで圧延し、平坦な面とする。   A method for producing a sheet-like graphite 4 having a concavo-convex structure in which hexagonal pyramids are repeatedly arranged on the surface will be described. A polymer film such as polyimide is used as the material. Prepare a plurality of polymer films (having the same hole position but different hole shapes) with hexagonal holes punched in a honeycomb shape beforehand. These polymer films are laminated so that the pore diameter gradually changes, and fired at a high temperature at 2000 to 3000 ° C. in an inert atmosphere. Furthermore, the surface of one side is rolled with the roller which formed the hexagonal pyramid-shaped unevenness | corrugation. Thereby, a sheet-like graphite having hexagonal pyramid irregularities formed on the surface can be generated. In addition, the surface on the opposite side fixed to the outer metal plate 1 is rolled with a flat roller to be a flat surface.

なお、内層スリット板2の枚数は、図1では3枚の例を示しているが、1枚以上であればよく、所望の枚数にすることができる。   In addition, although the number of the inner layer slit plates 2 is three in FIG. 1, it may be one or more and can be a desired number.

次に、本実施形態のヒートスプレッダの動作について説明する。   Next, the operation of the heat spreader of this embodiment will be described.

図4のように、ヒートスプレッダの上面中央に発熱源5を配置すると、発熱源5からの熱は、外層金属板1および円柱3を通って、シート状グラファイト4および内層スリット板2に熱伝導し、内部空間の中央付近の作動液を加熱する。これにより作動液は蒸発し、蒸気は内層スリット板2の間隙およびスリット2aを通って外周部に向かう。蒸気は外周部で冷却されて凝縮され、液体となってシート状グラファイト4の表面の凹凸構造および内層スリット板2のメッシュ構造を毛細管現象で移動し、中央に回帰する。これにより、中央の発熱源5の熱を外周部まで効率よく拡散することができる。   As shown in FIG. 4, when the heat source 5 is arranged at the center of the upper surface of the heat spreader, the heat from the heat source 5 passes through the outer metal plate 1 and the cylinder 3 to the sheet graphite 4 and the inner slit plate 2. The hydraulic fluid near the center of the internal space is heated. As a result, the working fluid evaporates, and the vapor passes through the gap between the inner layer slit plate 2 and the slit 2a toward the outer peripheral portion. The steam is cooled and condensed at the outer peripheral portion, becomes a liquid, moves through the uneven structure on the surface of the sheet-like graphite 4 and the mesh structure of the inner slit plate 2 by capillary action, and returns to the center. Thereby, the heat of the central heat source 5 can be efficiently diffused to the outer peripheral portion.

一方、発熱源5の温度が低く、作動液が蒸発しない温度領域である場合には、発熱源5の熱は、外層金属板1に伝導するとともに、円柱3を介してシート状グラファイト4および内層スリット板3に伝導し、これらによって主平面方向に伝導し、外周部まで拡散される。シート状グラファイト4は、主平面方向の熱伝導率が、金属と比較して数倍大きいため、発熱源5の熱を外周部に効率よく伝導することができる。   On the other hand, when the temperature of the heat generating source 5 is low and the temperature range is such that the hydraulic fluid does not evaporate, the heat of the heat generating source 5 is conducted to the outer metal plate 1 and the sheet-like graphite 4 and the inner layer via the column 3. Conducted to the slit plate 3 and thereby conducted in the main plane direction and diffused to the outer peripheral portion. Since the sheet-like graphite 4 has a thermal conductivity in the main plane direction several times larger than that of metal, the heat of the heat source 5 can be efficiently conducted to the outer peripheral portion.

このように、本実施形態では、平型ヒートパイプ(ヒートスプレッダ)の外層金属板1の内側に、凹凸形状を有する高熱伝導率のグラファイトシートを使用することにより、ヒートパイプの作動液循環動作が生じる温度領域の下限未満でも十分な熱拡散性能を確保することができる。   As described above, in the present embodiment, the use of the graphite sheet with a high thermal conductivity having a concavo-convex shape on the inner side of the outer metal plate 1 of the flat heat pipe (heat spreader) causes the working fluid circulation operation of the heat pipe to occur. Even if it is less than the lower limit of the temperature range, sufficient thermal diffusion performance can be ensured.

また、シート状グラファイト4の表面の凹凸形状は、一般的にウィックと称されるヒートパイプの作動液の循環に不可欠な毛細管構造と同機能を果たすため、作動液の回帰に寄与する。   Further, the uneven shape on the surface of the sheet-like graphite 4 serves the same function as a capillary structure that is indispensable for the circulation of the working fluid in a heat pipe, generally called a wick, and thus contributes to the return of the working fluid.

シート状グラファイト4の中央には貫通孔を設け、円柱3により、外層金属板1とシート状グラファイト4と内層スリット板2とが熱伝導率の高い円柱3によって直に接するため、厚み方向の熱伝導率が小さい異方性のシート状グラファイト4を用いた場合であっても、発熱源5の熱を内層スリット板2に効率よく伝導することができる。   A through-hole is provided in the center of the sheet-like graphite 4, and the outer layer metal plate 1, the sheet-like graphite 4, and the inner-layer slit plate 2 are in direct contact with each other by the column 3 having high thermal conductivity. Even when anisotropic sheet-like graphite 4 having a low conductivity is used, the heat of the heat source 5 can be efficiently conducted to the inner slit plate 2.

また、本実施形態では、シート状のグラファイト4を直接凹凸形状に加工しているため、シート状のグラファイト中の炭素結合が乱れず、高熱伝導特性を維持したまま毛細管構造を実現できる。   Further, in the present embodiment, since the sheet-like graphite 4 is directly processed into a concavo-convex shape, the carbon bond in the sheet-like graphite is not disturbed, and a capillary structure can be realized while maintaining high heat conduction characteristics.

また、本実施形態では、シート状グラファイト4を外層金属板1の内壁に固定したことにより、外壁に固定した場合と比較して、発熱源5からの熱を外層金属板1の内部空間に容易に伝達できる。すなわち、内壁に固定したことにより、シート状のグラファイト4を円柱3で貫通した構造をとることができる。これにより、シート状のグラファイト4として主平面方向の熱伝導率が厚み方向の熱伝導率よりも大きい異方性熱伝導性のグラファイトを用いた場合であっても、円柱3により厚み方向の熱伝導性を容易に確保でき、発熱源5の熱を作動液や内層スリット板2に高熱伝導率で伝達することができる。また、グラファイトシートを内壁に配置したことにより、ヒートスプレッダの外壁は外層金属板1の滑らかな面であり、発熱源5を固定する際に制約が少なく、汎用性の高いヒートスプレッダを提供できる。   In the present embodiment, the sheet-like graphite 4 is fixed to the inner wall of the outer metal plate 1 so that heat from the heat source 5 can be easily transferred to the inner space of the outer metal plate 1 as compared with the case where the sheet-like graphite 4 is fixed to the outer wall. Can communicate to. That is, by fixing to the inner wall, a structure in which the sheet-like graphite 4 is penetrated by the column 3 can be taken. As a result, even when anisotropic thermal conductive graphite having a thermal conductivity in the main plane direction larger than the thermal conductivity in the thickness direction is used as the sheet-like graphite 4, heat in the thickness direction is obtained by the column 3. The conductivity can be easily secured, and the heat of the heat source 5 can be transmitted to the hydraulic fluid and the inner layer slit plate 2 with high thermal conductivity. Further, by arranging the graphite sheet on the inner wall, the outer wall of the heat spreader is a smooth surface of the outer metal plate 1, and there are few restrictions when fixing the heat source 5, and a highly versatile heat spreader can be provided.

(実施例)
実施例として図1の構造の平板型ヒートパイプ(ヒートスプレッダ)を作製した。
(Example)
As an example, a flat plate heat pipe (heat spreader) having the structure of FIG. 1 was produced.

まず、外層金属板1として、外形が50mm角・厚さ1.5mmの外層銅板を用意し、片面に45mm角・深さ0.5mmの窪みを設けた。シート状グラファイト4として、厚さ0.1mm・面方向の熱伝導率1200[W/mK]・厚み方向の熱伝導率20[W/mK]のグラファイトシートを上述した製造方法により製造し、これを外層金属板1の凹部の底面に貼り合わせた。なお、グラファイトシート4の表面は、図3(a),(b)のように六角錐が隙間なく繰り返し並べられた形状の凹凸形状を備えている。六角錐の底面の径は0.5mm、高さは0.3〜0.5mm程度とした。   First, an outer layer copper plate having an outer shape of 50 mm square and a thickness of 1.5 mm was prepared as the outer layer metal plate 1, and a recess having a 45 mm square and a depth of 0.5 mm was provided on one side. As the sheet-like graphite 4, a graphite sheet having a thickness of 0.1 mm, a thermal conductivity of 1200 [W / mK] in the plane direction, and a thermal conductivity of 20 [W / mK] in the thickness direction is manufactured by the above-described manufacturing method. It bonded together on the bottom face of the recessed part of the outer layer metal plate 1. In addition, the surface of the graphite sheet 4 is provided with the uneven | corrugated shape of the shape where the hexagonal pyramid was repeatedly arranged without gap like FIG. 3 (a), (b). The diameter of the base of the hexagonal pyramid was 0.5 mm, and the height was about 0.3 to 0.5 mm.

内層スリット板2としては、0.5mmピッチのメッシュ構造を有する厚さ0.1mmの薄銅板を用意し、高さ(振幅)0.1〜0.2mmで波打たせた形状に加工したものを3枚積層とした。円柱3は銅製であり、直径は5mmとした。   As the inner layer slit plate 2, a thin copper plate with a thickness of 0.1 mm having a mesh structure with a pitch of 0.5 mm is prepared, and three sheets processed into a corrugated shape with a height (amplitude) of 0.1 to 0.2 mm are laminated. did. The cylinder 3 was made of copper and had a diameter of 5 mm.

2枚の外層銅板1を、グラファイトシート4を貼った面がそれぞれ内側になるように合わせ、外縁部を加圧加熱することで接合した。なお、図示していないが、外層金属板1には作動液を封入するための穴が設けられており、この孔から内部空間を減圧し、作動液として、所定量の純水を封入した。作動液の循環開始温度は60℃程度になるように、減圧度を設定した。   The two outer layer copper plates 1 were joined so that the surfaces on which the graphite sheet 4 was stuck were inside, and the outer edge portions were joined by pressurizing and heating. Although not shown, the outer metal plate 1 is provided with a hole for enclosing the working fluid, and the internal space is decompressed through this hole, and a predetermined amount of pure water is enclosed as the working fluid. The degree of vacuum was set so that the circulation start temperature of the hydraulic fluid was about 60 ° C.

(比較例)
比較例のヒートスプレッダを作製した。比較例のヒートスプレッダは、図5に断面図を、図6に各部材の斜視図を示すように、実施例のヒートスプレッダのシート状グラファイトを備えていない。外層金属板1の内壁面には、図7のように四角錐を隙間なく繰り返し並べた構造の凹凸構造が形成されている。また、円柱3は比較例では配置されていない。内層スリット板2を支持するために、外層金属板1の内側に1mm角の銅角柱が計16本接合されている(不図示)。この角柱による熱拡散性能への寄与は、無視できるレベルである。他の構造は、実施例と同様である。
(Comparative example)
A heat spreader of a comparative example was produced. The heat spreader of the comparative example does not include the sheet-like graphite of the heat spreader of the example, as shown in the sectional view in FIG. 5 and the perspective view of each member in FIG. On the inner wall surface of the outer metal plate 1, a concavo-convex structure having a structure in which square pyramids are repeatedly arranged without gaps as shown in FIG. 7 is formed. Further, the column 3 is not arranged in the comparative example. In order to support the inner layer slit plate 2, a total of 16 1 mm square copper prisms are joined to the inner side of the outer layer metal plate 1 (not shown). The contribution to the thermal diffusion performance by this prism is at a negligible level. Other structures are the same as in the embodiment.

比較例のヒートスプレッダでは、図8のようにヒートスプレッダの上面中央に発熱源5を配置すると、発熱源5からの熱は、外層金属板1を伝導して、内部空間の中央付近の作動液を加熱する。これにより作動液は蒸発し、蒸気は内層スリット板2の間隙およびスリット2aを通って外周部に向かう。蒸気は外周部で冷却されて凝縮され、液体となって外層金属板1の表面の凹凸構造および内層スリット板2のメッシュ構造を毛細管現象で移動し、中央に回帰する。これにより、中央の発熱源5の熱を外周部まで拡散する。   In the heat spreader of the comparative example, when the heat generating source 5 is arranged in the center of the upper surface of the heat spreader as shown in FIG. 8, the heat from the heat generating source 5 is conducted through the outer metal plate 1 to heat the working fluid near the center of the internal space. To do. As a result, the working fluid evaporates, and the vapor passes through the gap between the inner layer slit plate 2 and the slit 2a toward the outer peripheral portion. The steam is cooled and condensed at the outer peripheral portion, becomes a liquid, moves through the uneven structure on the surface of the outer metal plate 1 and the mesh structure of the inner slit plate 2 by capillary action, and returns to the center. Thereby, the heat of the heat source 5 at the center is diffused to the outer periphery.

発熱源5の温度が、作動液が蒸発しない温度領域の場合には、発熱源5の熱は、外層金属板1の熱伝導によって主平面方向に拡散される。   When the temperature of the heat generating source 5 is in a temperature region where the working fluid does not evaporate, the heat of the heat generating source 5 is diffused in the main plane direction by the heat conduction of the outer metal plate 1.

(評価実験)
実施例と比較例のヒートスプレッダの性能を評価する実験を行った。図9に評価に用いた装置構成を示す。実施例または比較例のヒートスプレッダ11の片面中央に、発熱源5として5mm角のセラミックヒーター5を、熱伝導グリス(不図示)を介して接着した。さらにヒートスプレッダ11の表面温度分布を放射温度計で一括測定するため、放射率が既知のセラミックシートをヒーター部をくり貫いて貼り付けた。もう一方の面には放熱のために50mm角・高さ30mmのアルミ(JIS規格:A6063)製ヒートシンク14を、熱伝導グリスを介して接着した。
(Evaluation experiment)
An experiment was conducted to evaluate the performance of the heat spreader of the example and the comparative example. FIG. 9 shows the apparatus configuration used for the evaluation. A 5 mm square ceramic heater 5 as a heat source 5 was bonded to the center of one surface of the heat spreader 11 of the example or the comparative example via heat conductive grease (not shown). Furthermore, in order to collectively measure the surface temperature distribution of the heat spreader 11 with a radiation thermometer, a ceramic sheet with a known emissivity was stuck through the heater portion. On the other side, a heat sink 14 made of aluminum (JIS standard: A6063) having a size of 50 mm square and a height of 30 mm was bonded to the other surface via heat conductive grease.

実施例・比較例ともに作動液の循環開始温度は60℃程度に設定されている。   In both the examples and comparative examples, the working fluid circulation start temperature is set to about 60 ° C.

発熱源5のセラミックヒーターに15Wを印加し、放射温度計を用いてヒートスプレッダ11の中央部と外周部の温度上昇の様子を経時記録した。図10に発熱源5の温度変化を、図11にヒートスプレッダ11の端部(外周部)の温度変化を示す。   15 W was applied to the ceramic heater of the heat source 5, and the state of the temperature rise at the center and the outer periphery of the heat spreader 11 was recorded over time using a radiation thermometer. FIG. 10 shows the temperature change of the heat source 5, and FIG. 11 shows the temperature change of the end (outer peripheral part) of the heat spreader 11.

図10より、発熱源5の温度は、実施例および比較例ともに作動液の循環が始まる60℃付近を境にして、温度上昇の傾きが低減していることがわかる。これは、実施例および比較例ともに、作動液の循環が開始される60℃付近で、ヒートスプレッダ11の等価熱伝導率が上昇し、熱拡散が促進され、発熱源5の熱を効果的に拡散でき、ヒートシンク14から放熱されるためである。   From FIG. 10, it can be seen that the temperature rise of the heat source 5 decreases in the vicinity of 60 ° C., where the working fluid begins to circulate, in both the example and the comparative example. This is because, in both the example and the comparative example, the equivalent thermal conductivity of the heat spreader 11 is increased near 60 ° C. where the circulation of the hydraulic fluid is started, the heat diffusion is promoted, and the heat of the heat source 5 is effectively diffused. This is because heat is radiated from the heat sink 14.

図11より、ヒートスプレッダ11の端部の温度については、比較例では60℃付近を境にして、温度上昇の傾きが大きくなる。これは、作動液の循環が開始され、より多くの熱が運ばれてくるためである。実施例では、60℃付近での温度上昇の勾配に顕著な変化は見られない。   From FIG. 11, regarding the temperature of the end portion of the heat spreader 11, in the comparative example, the gradient of temperature rise increases around 60 ° C. This is because the circulation of the hydraulic fluid is started and more heat is carried. In the examples, there is no significant change in the gradient of temperature rise around 60 ° C.

一方、図10より、60℃未満の温度領域において、発熱源5の温度上昇の傾きは、実施例の方が比較例より小さく、発熱源5の温度は実施例の方が低かった。逆に、ヒートスプレッダ11の外周部の温度上昇の傾きは、図11のように、60℃未満の温度領域においては、実施例の方が比較例よりも大きく、外周部の温度は実施例の方が高かった。このことから、60℃未満の温度領域では、実施例の方が比較例よりも、等価熱伝導率が大きく、効果的に熱拡散が実現されていることが確認できた。   On the other hand, from FIG. 10, in the temperature region below 60 ° C., the slope of the temperature rise of the heat source 5 was smaller in the example than in the comparative example, and the temperature of the heat source 5 was lower in the example. Conversely, as shown in FIG. 11, the slope of the temperature rise at the outer periphery of the heat spreader 11 is higher in the example than in the comparative example in the temperature region below 60 ° C., and the temperature at the outer periphery is higher than that in the example. Was expensive. From this, in the temperature range below 60 ° C., it was confirmed that the example had a larger equivalent thermal conductivity than the comparative example, and that effective thermal diffusion was realized.

このように60℃未満の温度領域で、実施例のヒートスプレッダが、比較例よりも等価熱伝導率が大きいのは、シート状グラファイト4を備えているためである。   The reason why the heat spreader of the example has a larger equivalent thermal conductivity than the comparative example in the temperature range below 60 ° C. is because it has the sheet-like graphite 4.

60℃以上の温度領域においては、実施例・比較例ともに作動液の蒸発・凝縮による高い熱伝導率が支配的となり、温度上昇率はほぼ等しくなる(図10、図11の比較例、実施例のグラフを時間軸に対して平行移動するとほぼ重なる)。   In the temperature range of 60 ° C. or higher, the high thermal conductivity due to the evaporation / condensation of the hydraulic fluid is dominant in both the examples and the comparative examples, and the rate of temperature increase is almost equal (the comparative examples and examples in FIGS. 10 and 11). If you move the graph in parallel with respect to the time axis, they almost overlap).

本評価実験における、実施例と比較例の発熱源5の温度の差は、作動液の循環が始まる直前の60℃付近において最も大きく、20℃程度も差があった。このことから、本実施例の構造を用いることにより、発熱源5の熱を効果的に放熱できることが確認された。なお、発熱源5の温度は、印加電力とヒートシンクの冷却能力によって左右される。一般的に、発熱源の印加電力が大きく、ヒートシンクの冷却能力が低い場合に、ヒートスプレッダの効果を大きく得ることができる。   In this evaluation experiment, the temperature difference between the heat source 5 between the example and the comparative example was the largest near 60 ° C. just before the start of the circulation of the hydraulic fluid, and there was a difference of about 20 ° C. From this, it was confirmed that the heat of the heat source 5 can be effectively dissipated by using the structure of the present embodiment. The temperature of the heat source 5 depends on the applied power and the cooling capacity of the heat sink. In general, when the power applied to the heat source is large and the cooling capacity of the heat sink is low, the effect of the heat spreader can be greatly obtained.

本実施例のヒートスプレッダは、約60℃以下の温度領域で効果的に熱拡散を行うことができるため、例えば人間が手で触る可能性がある装置のヒートスプレッダとして用いるのに好適である。例えば、製品例としては、LEDデスクライトが挙げられる。ハイパワーLEDを用いたデスクライトは、一般的に筐体面に熱を拡散する構成であるが、筐体面は点灯中に人間が手で触れる可能性があるため、60℃以下においても効果的に熱拡散を行い、放熱を促進することが望まれる。本実施例のヒートスプレッダは、約60℃以下の温度領域においても効果的に熱拡散を行うことができるため、好適である。   Since the heat spreader of the present embodiment can effectively perform heat diffusion in a temperature range of about 60 ° C. or lower, it is suitable for use as a heat spreader of a device that may be touched by a human hand, for example. For example, an LED desk light is an example of a product. Desk lights using high-power LEDs are generally configured to diffuse heat to the housing surface, but the housing surface can be touched by humans while it is lit, so it is effective even at temperatures below 60 ° C. It is desirable to perform heat diffusion and promote heat dissipation. The heat spreader of the present embodiment is preferable because it can effectively perform heat diffusion even in a temperature range of about 60 ° C. or less.

1…外層金属板、1a…凹部、2…内層スリット板、2a…スリット、3…円柱、4…シート状グラファイト、5…発熱源、11…ヒートスプレッダ、12…セラミックシート、14…ヒートシンク DESCRIPTION OF SYMBOLS 1 ... Outer metal plate, 1a ... Recessed part, 2 ... Inner layer slit board, 2a ... Slit, 3 ... Column, 4 ... Sheet graphite, 5 ... Heat source, 11 ... Heat spreader, 12 ... Ceramic sheet, 14 ... Heat sink

Claims (3)

内部空間を有する平板状の金属部材と、前記内部空間に封入された作動液とを有し、
前記平板状の金属部材の主平面方向の内壁には、前記金属部材よりも主平面方向の熱伝導率の大きいシート状のグラファイトが固定され、
前記シート状グラファイトの表面には、前記作動液に毛細管現象を生じさせる凹凸形状が形成されていることを特徴とする平板型ヒートパイプ。
A flat metal member having an internal space, and a working fluid sealed in the internal space,
On the inner wall in the main plane direction of the flat metal member, sheet-like graphite having a larger thermal conductivity in the main plane direction than the metal member is fixed,
A flat plate-type heat pipe, wherein the surface of the sheet-like graphite has an uneven shape that causes capillary action in the hydraulic fluid.
請求項1に記載の平板型ヒートパイプにおいて、前記凹凸形状は、底面形状が六角形の凸部を繰り返し並べた形状であることを特徴とする平板型ヒートパイプ。   2. The flat plate heat pipe according to claim 1, wherein the concave-convex shape is a shape in which convex portions having hexagonal bottom shapes are repeatedly arranged. 請求項1または2に記載の平板型ヒートパイプにおいて、前記シート状グラファイトは、主平面方向の熱伝導率が厚さ方向の熱伝導率よりも大きい異方性熱伝導性であり、
前記金属部材の内部空間には、金属製の柱部材が配置され、該柱部材は、前記シート状グラファイトの中央設けられた貫通孔を貫いて、両端が金属部材と接していることを特徴とする平板型ヒートパイプ。
The flat plate-type heat pipe according to claim 1 or 2, wherein the sheet-like graphite has anisotropic thermal conductivity in which the thermal conductivity in the main plane direction is larger than the thermal conductivity in the thickness direction,
A metal column member is disposed in the internal space of the metal member, and the column member penetrates a through hole provided in the center of the sheet-like graphite, and both ends thereof are in contact with the metal member. Flat plate heat pipe.
JP2009281919A 2009-12-11 2009-12-11 Flat plate type heat pipe Withdrawn JP2011122789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281919A JP2011122789A (en) 2009-12-11 2009-12-11 Flat plate type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281919A JP2011122789A (en) 2009-12-11 2009-12-11 Flat plate type heat pipe

Publications (1)

Publication Number Publication Date
JP2011122789A true JP2011122789A (en) 2011-06-23

Family

ID=44286845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281919A Withdrawn JP2011122789A (en) 2009-12-11 2009-12-11 Flat plate type heat pipe

Country Status (1)

Country Link
JP (1) JP2011122789A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542751A (en) * 2012-07-09 2014-01-29 富瑞精密组件(昆山)有限公司 Heat pipe
CN106643244A (en) * 2017-01-23 2017-05-10 中车大连机车研究所有限公司 Air-cooled plate-fin type composite capillary groove phase transition radiator
CN109608884A (en) * 2018-11-29 2019-04-12 深圳先进技术研究院 Thermally conductive shielding organosilicon material of one kind and preparation method thereof
JP2021014928A (en) * 2019-07-10 2021-02-12 株式会社フジクラ Vapor chamber
WO2021045211A1 (en) * 2019-09-06 2021-03-11 大日本印刷株式会社 Vapor chamber, electronic apparatus, vapor chamber sheet, sheet having multiple faces of vapor chamber intermediary body, roll having multiple faces of vapor chamber intermediary body wound thereon, and vapor chamber intermediary body
US11125508B2 (en) * 2014-11-12 2021-09-21 Asia Vital Components Co., Ltd. Thin heat pipe structure
JP7543832B2 (en) 2020-10-20 2024-09-03 住友ベークライト株式会社 Vapor chamber and method for manufacturing the vapor chamber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542751A (en) * 2012-07-09 2014-01-29 富瑞精密组件(昆山)有限公司 Heat pipe
US11125508B2 (en) * 2014-11-12 2021-09-21 Asia Vital Components Co., Ltd. Thin heat pipe structure
CN106643244A (en) * 2017-01-23 2017-05-10 中车大连机车研究所有限公司 Air-cooled plate-fin type composite capillary groove phase transition radiator
CN109608884A (en) * 2018-11-29 2019-04-12 深圳先进技术研究院 Thermally conductive shielding organosilicon material of one kind and preparation method thereof
CN109608884B (en) * 2018-11-29 2020-09-04 深圳先进技术研究院 Heat-conducting shielding organic silicon material and preparation method thereof
JP2021014928A (en) * 2019-07-10 2021-02-12 株式会社フジクラ Vapor chamber
JP7244375B2 (en) 2019-07-10 2023-03-22 株式会社フジクラ vapor chamber
WO2021045211A1 (en) * 2019-09-06 2021-03-11 大日本印刷株式会社 Vapor chamber, electronic apparatus, vapor chamber sheet, sheet having multiple faces of vapor chamber intermediary body, roll having multiple faces of vapor chamber intermediary body wound thereon, and vapor chamber intermediary body
JP7543832B2 (en) 2020-10-20 2024-09-03 住友ベークライト株式会社 Vapor chamber and method for manufacturing the vapor chamber

Similar Documents

Publication Publication Date Title
JP2011122789A (en) Flat plate type heat pipe
JP6741142B2 (en) Vapor chamber
JPWO2018003957A1 (en) Vapor chamber
CN108882644B (en) Heat radiation unit
TW201240587A (en) Vapor chamber
JP2009024933A (en) Thermal diffusion device and manufacturing method for it
TWI702372B (en) Vapor chamber and manufacturing method for the same
US12085344B2 (en) Boiling enhancement device
TWI804784B (en) Three-dimensional heat transmission device
KR102407157B1 (en) Vapor chamber with efficient heat dissipation
TWI773145B (en) Vapor chamber
JP2009076622A (en) Heat sink and electronic apparatus using the same
TWI597466B (en) Heat dissipation device and heat dissipation device manufacturing method
WO2007124652A1 (en) Micro-slot group integrated heat-pipe radiator
TW201032696A (en) Superconducting element structure
CN214095677U (en) Three-dimensional heat transfer device
TWI652443B (en) Heat dissipation unit
JP5485450B1 (en) Heat spreader
JP2021156517A (en) Heat dissipating structure and electronic device
TW202212763A (en) A vapor chamber
JP2010036251A (en) Method of flatly joining evaporation part of heat pipe arranged in parallel to fixing member, and its structure
WO2018181933A1 (en) Heat sink
TWM498303U (en) Vapor chamber
CN117500244B (en) Heat transfer structure for strengthening activation of porous capillary structure, radiator and server
JP2019054218A (en) Heat sink

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305