JP2009024933A - Thermal diffusion device and manufacturing method for it - Google Patents

Thermal diffusion device and manufacturing method for it Download PDF

Info

Publication number
JP2009024933A
JP2009024933A JP2007188373A JP2007188373A JP2009024933A JP 2009024933 A JP2009024933 A JP 2009024933A JP 2007188373 A JP2007188373 A JP 2007188373A JP 2007188373 A JP2007188373 A JP 2007188373A JP 2009024933 A JP2009024933 A JP 2009024933A
Authority
JP
Japan
Prior art keywords
metal thin
groove
thin plates
thin plate
sealed space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188373A
Other languages
Japanese (ja)
Inventor
Yasuo Kawabata
康夫 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007188373A priority Critical patent/JP2009024933A/en
Priority to US12/218,434 priority patent/US20090020274A1/en
Publication of JP2009024933A publication Critical patent/JP2009024933A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal diffusion device capable of forming a groove having a steep wall surface with favorable accuracy to improve thermal diffusion. <P>SOLUTION: In this thermal diffusion device, first and second metal thin plates 22, 23 having a difference in dimension are alternately stacked and diffusion-joined to upper and lower sealing metal thin plates 25 and 26 to form a sealed space 45 inside, the groove 44 having a steep wall surface generated by a difference in dimension between the first and the second metal thin plates 22, 23 is formed on the wall surface of the sealed space 45, and liquid is sealed in the groove 44 at reduced pressure in an initial state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば電子機器、その他の機器における発熱源の熱を拡散して発熱源の温度を所要温度以下に抑制する熱拡散装置及びその製造方法に関する。   The present invention relates to a thermal diffusion device that diffuses heat from a heat source in, for example, electronic devices and other devices, and suppresses the temperature of the heat source to a required temperature or less, and a method for manufacturing the same.

従来、例えばパーソナルコンピュータ、プロジェクタ(表示装置)等の電子機器等では、発熱源の熱を放熱するための熱拡散装置が必要とされている。この熱拡散装置として、ヒートパイプと呼ばれるものが知られている。ヒートパイプは、例えば図23に示すように、金属パイプ2の内側に円周方向の断面が凹凸状となるように、長手方向に沿って複数の並列する溝3を形成し、さらに内面に金網で形成されたウィック4を配置して、溝3内に水4を封入して構成される。このヒートパイプ1では、一端部が発熱源に接触されると、この一端部で溝3内の水が蒸発し、瞬時に蒸気が他端側に広がる。他端側では外気に接しているので、熱交換されて蒸気が冷やされて凝縮され、水に戻る。この水はウィック4を通して一方端に還流する。この水の蒸発、凝縮、還流が繰り返えされることにより、発熱源の温度上昇が抑制される。   Conventionally, for example, electronic devices such as personal computers and projectors (display devices) require a heat diffusing device for radiating heat from a heat source. As this heat diffusion device, what is called a heat pipe is known. For example, as shown in FIG. 23, the heat pipe is formed with a plurality of parallel grooves 3 along the longitudinal direction so that the cross section in the circumferential direction is concave and convex inside the metal pipe 2, and a wire mesh on the inner surface. The wick 4 formed in the above is arranged, and the water 4 is sealed in the groove 3. In the heat pipe 1, when one end is brought into contact with the heat generation source, the water in the groove 3 evaporates at the one end, and the steam is instantly spread to the other end. Since the other end is in contact with the outside air, the heat is exchanged, the steam is cooled and condensed, and returned to water. This water flows back to one end through wick 4. By repeating the evaporation, condensation, and reflux of the water, the temperature rise of the heat source is suppressed.

文献1には、ヒートパイプの一例が開示されている。
特開2004−198098号公報
Document 1 discloses an example of a heat pipe.
JP 2004-198098 A

上述のヒートパイプ1では、図22に示すように、溝3が急峻な壁面、すなわち直角な壁面を有して形成されれば、溝3に封入された水10の壁面3aとの接触角θが小さくなり、水10の薄い部分9が蒸発し易くなり、この部分9の壁面を極低温とすることができる。同時に、毛細管作用により凝集した水10を溝3を通して蒸発部側に還流させることができる。しかし、実際には、複数本の溝3を有するパイプ2は引き抜き加工により形成されるので、壁面が急峻な溝3を形成することが出来ず、そのため、金網で形成されたウィック4が必要となる。   In the heat pipe 1 described above, as shown in FIG. 22, if the groove 3 is formed with a steep wall surface, that is, a right-angle wall surface, the contact angle θ with the wall surface 3a of the water 10 enclosed in the groove 3. And the thin portion 9 of the water 10 is likely to evaporate, and the wall surface of this portion 9 can be made extremely cold. At the same time, the water 10 aggregated by capillary action can be refluxed to the evaporation part side through the groove 3. However, in practice, the pipe 2 having a plurality of grooves 3 is formed by drawing, so that the groove 3 having a steep wall surface cannot be formed. Therefore, a wick 4 formed of a wire mesh is required. Become.

一方、図21Aに示すように、第1の金属薄板12の面にエッチングにより複数の溝13を形成し、これに蓋となる第2の金属薄板14を接合して、各溝13による密閉空間を形成し、溝13内に初期状態の減圧下で水15を封入して成る平面型の熱拡散装置11が考えられる。しかし、図21Bに示すように、エッチングにより溝13を形成した場合には、断面が曲面の溝となり、急峻な壁面の溝を形成することができない。   On the other hand, as shown in FIG. 21A, a plurality of grooves 13 are formed on the surface of the first metal thin plate 12 by etching, and a second metal thin plate 14 serving as a lid is joined to the groove 13, whereby a sealed space by each groove 13 is formed. A flat type thermal diffusion device 11 in which water 15 is sealed in the groove 13 under a reduced pressure in an initial state can be considered. However, as shown in FIG. 21B, when the groove 13 is formed by etching, the cross section becomes a groove having a curved surface, and a groove having a steep wall surface cannot be formed.

本発明は、上述の点に鑑み、急峻な壁面を有する溝を精度良く形成し、熱拡散を良好にした熱拡散装置及びその製造方法を提供するものである。   In view of the above, the present invention provides a thermal diffusion device and a manufacturing method thereof in which a groove having a steep wall surface is accurately formed and thermal diffusion is improved.

本発明に係る熱拡散装置は、寸法差を有する第1及び第2の金属薄板が交互に積層され、上下の封止用金属薄板と共に内部に密閉空間が形成されるように拡散接合され、密閉空間の壁面に、第1及び第2の金属薄板の寸法差により急峻な壁面を有する溝が形成され、初期状態の減圧下で前記溝内に液体が封止されて成ることを特徴とする。   The thermal diffusion device according to the present invention is formed by alternately laminating first and second thin metal plates having a dimensional difference and diffusion-bonding them so that a sealed space is formed inside with upper and lower sealing metal thin plates. A groove having a steep wall surface is formed on the wall surface of the space due to a dimensional difference between the first and second metal thin plates, and liquid is sealed in the groove under reduced pressure in an initial state.

本発明では、寸法差を有する第1及び第2の金属薄板が交互に積層されるので、密閉空間の壁面に、急峻な壁面を有する溝が精度よく形成される。この溝壁面に対する液体の接触角θは小さくすることができるので、水の蒸発が効率良く行われる。   In the present invention, since the first and second thin metal plates having a dimensional difference are alternately laminated, a groove having a steep wall surface is accurately formed on the wall surface of the sealed space. Since the contact angle θ of the liquid with respect to the groove wall surface can be reduced, water is efficiently evaporated.

本発明に係る熱拡散装置の製造方法は、寸法差を有する第1及び第2の金属薄板を交互に積層し、上下に封止用金属薄板を配置する工程と、第1、第2の金属薄板と封止用金属薄板とを拡散接合して一体の積層体を形成し、積層体の内部に密閉空間を形成すると共に、密閉空間の壁面に、第1及び第2の金属薄板の寸法差により急峻な壁面を有する溝を形成する工程と、密閉空間内を減圧した初期状態で前記溝内に液体を封入する工程を有することを特徴とする。   The manufacturing method of the heat diffusing device according to the present invention includes a step of alternately laminating first and second metal thin plates having a dimensional difference, and arranging sealing metal thin plates on the upper and lower sides, and the first and second metals. The thin plate and the metal thin plate for sealing are diffusion-bonded to form an integral laminate, and a sealed space is formed inside the laminate, and the dimensional difference between the first and second metal thin plates on the wall of the sealed space A step of forming a groove having a steeper wall surface, and a step of enclosing a liquid in the groove in an initial state in which the inside of the sealed space is decompressed.

本発明の熱拡散装置の製造方法では、寸法差を有する第1及び第2の金属薄板を交互に積層することにより、密閉空間の壁面に、急峻な壁面を有する溝を精度よく形成することができる。この溝に液体を封入することにより、溝壁面に対する液体の接触角θを小さくした状態で封入することができる。   In the manufacturing method of the thermal diffusion device of the present invention, a groove having a steep wall surface can be accurately formed on the wall surface of the sealed space by alternately laminating the first and second metal thin plates having a dimensional difference. it can. By enclosing the liquid in the groove, it is possible to enclose the liquid in a state in which the contact angle θ of the liquid with respect to the groove wall surface is reduced.

本発明に係る熱拡散装置によれば、急峻は壁面を有する溝が得られ、溝に封入された液体の蒸発が効率良く行うことができるので、熱拡散を良好にした熱拡散装置を提供することができる。
本発明に係る熱拡散装置の製造方法によれば、急峻な壁面を有する溝を精度よく形成することがでるので、熱拡散を良好にした熱拡散装置を製造することができる。
According to the heat diffusing device according to the present invention, a groove having a steep wall surface can be obtained, and the liquid enclosed in the groove can be efficiently evaporated. Therefore, a heat diffusing device with good heat diffusion is provided. be able to.
According to the method of manufacturing a thermal diffusion device according to the present invention, a groove having a steep wall surface can be formed with high accuracy, and thus a thermal diffusion device with good thermal diffusion can be manufactured.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図5に、本発明に係る熱拡散装置及びその製造方法の第1実施の形態を示す。本実施の形態に係る熱拡散装置21は、図1A,Bに示すように、上面からみて輪郭形状が四角形状、本例では同じ大きさの正方形を成した、第1の金属薄板22及びこの第1の金属薄板22との間で寸法差を有する第2の金属薄板23とを交互に積層した積層体24と、積層体24の上下を封止する封止用金属薄板25、26とを有して構成される。第1、第2の金属薄板22、23は、均一な膜厚の薄板で形成される。上下の封止用金属薄板25、26も均一な膜厚の薄板から形成される。   1 to 5 show a first embodiment of a thermal diffusion device and a manufacturing method thereof according to the present invention. As shown in FIGS. 1A and 1B, the thermal diffusion device 21 according to the present embodiment includes a first metal thin plate 22 having a rectangular shape when viewed from above, and a square having the same size in this example, and this A laminate 24 in which second metal plates 23 having a dimensional difference with the first metal thin plate 22 are alternately laminated, and metal thin plates 25 and 26 for sealing that seal the top and bottom of the laminate 24 are provided. It is configured. The 1st, 2nd metal thin plates 22 and 23 are formed with a thin plate with a uniform film thickness. The upper and lower sealing metal thin plates 25 and 26 are also formed from thin plates having a uniform film thickness.

第1の金属薄板22は、図3A,Bに示すように、中央部31と、正方形の枠型の周辺部32と、中央部31から周辺部32に連絡する複数の放射部、本例は4辺をそれぞれ2等分するような十字状に放射する4つの放射部33[331、332、333、334]とを有するパターンに形成される。周辺部32は全周囲にわたり同じ幅で形成され、その幅は、所要の幅w1に選定される。各放射部331〜334は、周辺部32から途中までは同じ幅d1で形成され、途中から中央部31に行くに従って漸次幅が狭くなるようなテーパ状に形成される。本例では、各放射部33[331〜334]はそれぞれ線対称に形成される。4つの放射部331〜334には、それぞれ後述する下封止用金属薄板26に一体に設けられた支柱が挿入される貫通孔35が形成される。第1の金属薄板22は、1枚の金属薄板をプレス加工して形成することができる。   As shown in FIGS. 3A and 3B, the first thin metal plate 22 includes a central portion 31, a square frame-shaped peripheral portion 32, and a plurality of radiating portions that communicate from the central portion 31 to the peripheral portion 32. It is formed in a pattern having four radiating portions 33 [331, 332, 333, 334] that radiate in a cross shape that divides the four sides into two equal parts. The peripheral portion 32 is formed with the same width over the entire periphery, and the width is selected as the required width w1. Each of the radiating portions 331 to 334 is formed with the same width d1 from the peripheral portion 32 to the middle, and is formed in a tapered shape such that the width gradually decreases from the middle toward the central portion 31. In this example, each radiation | emission part 33 [331-334] is each formed in line symmetry. Each of the four radiating portions 331 to 334 is formed with a through hole 35 into which a support column provided integrally with a lower sealing metal thin plate 26 described later is inserted. The first metal thin plate 22 can be formed by pressing one metal thin plate.

第2の金属薄板23は、図4A,Bに示すように、中央部36と、正方形の枠型の周辺部37と、中央部36から周辺部37に連絡する複数の放射部、本例では2つの対角線が交叉して十字状に放射する4つの放射部38[381、382、383、384]とを有するパターンに形成される。つまり、第2の金属薄板23のパターンは第1の金属薄板22のパターンとは、放射部の部分で異なる。周辺部37は全周囲にわたり同じ幅で形成され、その幅は、第1金属薄板22の幅w1より小さい所要の幅w2(w1>w2)に選定される。各放射部381〜384は、周辺部37から途中までは同じ幅d2で形成され、途中から中央部36に行くに従って漸次幅が狭くなるようなテーパ状に形成される。本例では、各放射部38[381〜384]はそれぞれ線対称に形成される。4つの放射部381〜384には、それぞれ後述する下封止用金属薄板26に一体に設けられた支柱が挿入される貫通孔39が形成される。第1の金属薄板23は、1枚の金属薄板をプレス加工して形成することができる。   As shown in FIGS. 4A and 4B, the second thin metal plate 23 includes a central portion 36, a square frame-shaped peripheral portion 37, and a plurality of radiating portions communicating from the central portion 36 to the peripheral portion 37, in this example. Two diagonal lines intersect to form a pattern having four radiation portions 38 [381, 382, 383, 384] that radiate in a cross shape. That is, the pattern of the second metal thin plate 23 is different from the pattern of the first metal thin plate 22 in the radiation portion. The peripheral portion 37 is formed with the same width over the entire periphery, and the width is selected as a required width w2 (w1> w2) smaller than the width w1 of the first metal thin plate 22. Each of the radiating portions 381 to 384 is formed with the same width d2 from the peripheral portion 37 to the middle, and is formed in a tapered shape such that the width gradually decreases from the middle toward the central portion 36. In this example, each radiation part 38 [381-384] is formed in line symmetry, respectively. Each of the four radiating portions 381 to 384 is formed with a through hole 39 into which a support column provided integrally with the lower sealing metal thin plate 26 described later is inserted. The first metal thin plate 23 can be formed by pressing one metal thin plate.

第1の金属薄板22の放射部33の幅d1と、第2の金属薄板23の放射部38の幅d2とは、同じ寸法としてもよく(d1=d2)、あるいは異なる寸法としてもよい(d1≠d2)。第1及び第2の金属薄板22、23の放射部33、38に形成される貫通孔35、39は、互いに同じ孔径を有することが好ましい。   The width d1 of the radiating portion 33 of the first thin metal plate 22 and the width d2 of the radiating portion 38 of the second thin metal plate 23 may be the same dimension (d1 = d2) or may be different dimensions (d1). ≠ d2). The through holes 35 and 39 formed in the radiation portions 33 and 38 of the first and second thin metal plates 22 and 23 preferably have the same diameter.

第1及び第2の金属薄板22及び23は、その周辺部32及び37の幅w1,w2が異なることから、積層したときに内側では、周辺部32、37において寸法差Δw=w1−w2が生じるようになる。   Since the widths w1 and w2 of the peripheral portions 32 and 37 of the first and second thin metal plates 22 and 23 are different from each other, there is a dimensional difference Δw = w1−w2 in the peripheral portions 32 and 37 when stacked. It comes to occur.

上封止用金属薄板25は、図2に示すように、正方形をなし、第1、第2の金属薄板22、23における各放射部33、38に対応した位置、すなわち下封止用金属薄板26と一体の支柱に対応した位置に、支柱の先端が挿入される貫通孔41が形成される。この貫通孔41は、本例では8つ形成される。   As shown in FIG. 2, the upper sealing metal thin plate 25 has a square shape, and corresponds to the radiating portions 33 and 38 in the first and second metal thin plates 22 and 23, that is, the lower sealing metal thin plate. A through hole 41 into which the tip of the column is inserted is formed at a position corresponding to the column that is integral with the column 26. In this example, eight through holes 41 are formed.

下封止用金属薄板26は、図5に示すように、正方形をなし、第1、第2の金属薄板22、23における各放射部33、38の各貫通孔35、39及び上封止用金属薄板25の貫通孔41に対応した位置に、支柱42が一体に植立して形成される。本例では8個の支柱42が形成される。支柱42は、第1及び第2の金属薄板22、23の放射部33、38に設けられた貫通孔35、39に挿入される径大部42aと、その先端の上封止用金属薄板25の貫通孔41に挿入される径小部42bとを有して形成される。この支柱42は、内圧に耐えて下封止用金属薄板26と上封止用金属薄板25間の間隔を維持するためのものである。支柱42は、放射部33、38に接合する必要はなく、放射部33、38を貫通するようになされる。支柱42b部は省略可能であり、8本の支柱は積層構造体と同時に拡散接合されることにより、上下の平面を連結する。図では強度確保の為にカシメ構造を併用出来る可能性を示している。   As shown in FIG. 5, the lower sealing metal thin plate 26 has a square shape, and each of the through holes 35 and 39 of the radiation portions 33 and 38 in the first and second metal thin plates 22 and 23 and the upper sealing metal. A column 42 is integrally planted and formed at a position corresponding to the through hole 41 of the metal thin plate 25. In this example, eight struts 42 are formed. The support column 42 has a large-diameter portion 42a inserted into the through holes 35 and 39 provided in the radiation portions 33 and 38 of the first and second thin metal plates 22 and 23, and the upper sealing thin metal plate 25 at the tip thereof. The small-diameter portion 42b inserted into the through-hole 41 is formed. The struts 42 are for enduring internal pressure and maintaining the distance between the lower sealing metal thin plate 26 and the upper sealing metal thin plate 25. The support column 42 does not need to be joined to the radiating portions 33 and 38, and penetrates the radiating portions 33 and 38. The column 42b can be omitted, and the eight columns are connected to the upper and lower planes by diffusion bonding simultaneously with the laminated structure. The figure shows the possibility that a caulking structure can be used together to ensure strength.

第1及び第2の金属薄板22及び23、上下封止用金属薄板25及び26は、拡散接合できる金属、例えば銅、ベリリウム銅などの金属、本例では銅を用いて形成される。   The first and second metal thin plates 22 and 23 and the upper and lower sealing metal thin plates 25 and 26 are formed using a metal that can be diffusion bonded, for example, a metal such as copper or beryllium copper, in this example, copper.

本実施の形態では、第1の金属薄板22と第2の金属薄板23とを、最上層及び最下層が第1の金属薄膜となるように、交互に複数枚、例えば21枚積層して積層体24を形成し、この積層体24を下封止用金属薄板26上に配置する。すなわち、積層体24は、その各放射部33、38の貫通孔35、39に下封止用金属薄板26における支柱42の径大部42aが挿入するように、下封止用金属薄板26上に配置される。この積層体24の上に上封止用金属薄板25が配置される。上封止用金属薄板25は、その各貫通孔41に下封止用金属薄板26と一体の支柱42の先端の径小部42bが挿入されるように、積層体24上に配置される。   In the present embodiment, the first metal thin plate 22 and the second metal thin plate 23 are stacked by alternately laminating a plurality of, for example, 21 sheets so that the uppermost layer and the lowermost layer are the first metal thin film. A body 24 is formed, and this laminated body 24 is disposed on the lower sealing metal thin plate 26. That is, the laminated body 24 is arranged on the lower sealing metal thin plate 26 so that the large-diameter portion 42a of the column 42 of the lower sealing metal thin plate 26 is inserted into the through holes 35 and 39 of the radiation portions 33 and 38, respectively. Placed in. An upper sealing metal thin plate 25 is disposed on the laminate 24. The upper sealing metal thin plate 25 is disposed on the laminated body 24 so that the small diameter portion 42b at the tip of the column 42 integral with the lower sealing metal thin plate 26 is inserted into each through hole 41 thereof.

そして、本実施の形態では、上下に封止用金属薄板25及び26を配置した積層体24が、この状態で真空中で加圧、加熱により拡散接合で一体化され、気密的、液密的に封止される。支柱42は、その先端の段差面が上封止用金属薄板25の裏面に当接した状態で、上封止用金属薄板と拡散接合される。同時に積層体24内の密閉空間内の側壁面に形成された、後述する溝内に、初期状態の減圧下で冷媒となる液体が封入され、熱拡散装置21が構成される。   And in this Embodiment, the laminated body 24 which has arrange | positioned the metal thin plates 25 and 26 for sealing up and down is integrated by diffusion joining by pressurization and heating in a vacuum in this state, and is airtight and liquidtight Sealed. The column 42 is diffusion-bonded to the upper sealing metal thin plate in a state where the stepped surface at the tip thereof is in contact with the back surface of the upper sealing metal thin plate 25. At the same time, a liquid serving as a refrigerant under reduced pressure in an initial state is sealed in a groove, which will be described later, formed on the side wall surface in the sealed space in the laminated body 24, thereby configuring the heat diffusion device 21.

第1実施の形態に係る熱拡散装置21は、図1における密閉空間45内の周辺部28において、その側壁面に図6に示すように、第1及び第2の金属薄膜22及び23の寸法差Δwにより、急峻な壁面を有する溝44が形成される。つまり、溝断面で見ると奥壁面に対して直角の上下壁面を有するコ字型の溝44が形成される。また、密閉空間45内の中央部27においては、その側壁面に図7A,Bに示すように、第1及び第2の金属薄膜22及び23の寸法差Δwにより、急峻な壁面を有する溝44が形成される。つまり、溝断面で見ると奥壁面に対して直角の上下壁面を有するコ字型の溝44が形成される。この中央部27では、溝44は上面から見て鎖線29で示すように、中央部27の星型に沿って形成される。   The thermal diffusion device 21 according to the first embodiment has dimensions of the first and second metal thin films 22 and 23 on the side wall surface of the peripheral portion 28 in the sealed space 45 in FIG. Due to the difference Δw, a groove 44 having a steep wall surface is formed. That is, when viewed in the cross section of the groove, a U-shaped groove 44 having upper and lower wall surfaces perpendicular to the inner wall surface is formed. Further, in the central portion 27 in the sealed space 45, as shown in FIGS. 7A and 7B, a groove 44 having a steep wall surface due to a dimensional difference Δw between the first and second metal thin films 22 and 23 on the side wall surface. Is formed. That is, when viewed in the cross section of the groove, a U-shaped groove 44 having upper and lower wall surfaces perpendicular to the inner wall surface is formed. In the central portion 27, the groove 44 is formed along the star shape of the central portion 27 as indicated by a chain line 29 when viewed from above.

一方、第2の金属薄膜23を挟んで上下に配置された第1の金属薄膜22においては、その上下の放射部33[331〜334]間に、毛細管作用を有する間隔の狭い還流液(後述する)の流路51が形成される。また、第1の金属薄膜22を挟んで上下に配置された第2の金属薄膜23においては、その上下の放射部38[381〜384]間に、同様に毛細管作用を有する間隔の狭い還流液の流路52が形成される(図8参照)。   On the other hand, in the 1st metal thin film 22 arrange | positioned up and down on both sides of the 2nd metal thin film 23, the reflux liquid (it mentions later) which has a capillary action between the upper and lower radiation | emission parts 33 [331-334]. ) Is formed. In addition, in the second metal thin film 23 disposed above and below the first metal thin film 22, a narrowly spaced reflux liquid having a capillary action is similarly provided between the upper and lower radiation portions 38 [381 to 384]. Are formed (see FIG. 8).

冷媒となる液体としては、例えば水(純水)を用いることが好ましい。図11に示すように、溝44の溝幅t1(つまり第2の金属薄板23の板厚に相当)、及び深さΔwは、冷媒に応じて自由に設定できる。例えば、溝幅t1は、冷媒に水を用いた場合、20μm〜100μmが最適であるが、冷媒の表面張力によっては、必ずしもこの値に限らない。   For example, water (pure water) is preferably used as the liquid serving as the refrigerant. As shown in FIG. 11, the groove width t1 of the groove 44 (that is, the plate thickness of the second metal thin plate 23) and the depth Δw can be freely set according to the refrigerant. For example, when water is used as the coolant, the groove width t1 is optimally 20 μm to 100 μm, but is not necessarily limited to this value depending on the surface tension of the coolant.

次に、具体的に熱拡散装置21内へ液体を封入する作業について、図9及び図10を参照して説明する。図9に示すように、拡散接合で一体化した熱拡散装置に対して、予め対角線上の例えば相対向する隅部にそれぞれ液体供給部54と液体・気体排出部55が設けられる。液体供給部54と液体・気体排出部55は、図10A,Bに示すように、同じ構造を有して形成される。液体供給部54、液体・気体排出部55は、積層体24の最上層の第1の金属薄膜22に、例えば2か所に密閉空間45に連通する切欠部56a,56bを形成し、上封止用金属薄板25に、その下面に切欠部56a,56bと両端が連通する溝57を形成すると共に、この溝57から外部に通じる貫通孔58を形成して構成される。   Next, the operation | work which encloses a liquid specifically in the thermal-diffusion apparatus 21 is demonstrated with reference to FIG.9 and FIG.10. As shown in FIG. 9, a liquid supply unit 54 and a liquid / gas discharge unit 55 are provided in advance in, for example, opposite corners on a diagonal line with respect to the heat diffusion device integrated by diffusion bonding. As shown in FIGS. 10A and 10B, the liquid supply unit 54 and the liquid / gas discharge unit 55 are formed to have the same structure. The liquid supply unit 54 and the liquid / gas discharge unit 55 are formed by forming, for example, notches 56a and 56b communicating with the sealed space 45 in two places on the first metal thin film 22 in the uppermost layer of the laminate 24, A groove 57 is formed on the lower surface of the metal thin plate 25 to communicate with the notches 56a and 56b at both ends, and a through-hole 58 is formed from the groove 57 to the outside.

上封止用金属薄板25、積層体24及び下封止用金属薄板26を、前述のようにして積層配置し拡散接合して封止状態とした後、一方の液体供給部54の貫通孔58から溝57及び切欠部56a,56bを通じて密閉空間45内に液体、例えば水を供給する。液体は密閉空間45内を満たすように供給することができる。この状態で、一旦液体供給部54における溝57の貫通孔58を挟む両脇を例えばかしめ加工などにより押し潰して、液体供給部81を封止する。次いで、他方の液体・気体排出部55の貫通孔58から密閉空間45内の液体を吸引排出すると共に、排気し、密閉空間45内が減圧状態で、密閉空間の壁面の溝44内に一部液体が残存するようになす。この状態で、液体・気体排出部55における溝57の貫通孔58を挟む両脇を例えばかしめ加工などにより押し潰して、液体・気体排出部82を封止する。図10Aの符号59はかしめ位置を示す。この工程終了で、第1実施の形態の熱拡散装置21が完成する。   After the upper sealing metal thin plate 25, the laminate 24, and the lower sealing metal thin plate 26 are stacked and diffusion bonded as described above to obtain a sealed state, the through hole 58 of one liquid supply unit 54 is provided. A liquid such as water is supplied into the sealed space 45 through the groove 57 and the notches 56a and 56b. The liquid can be supplied so as to fill the sealed space 45. In this state, both sides of the liquid supply part 54 sandwiching the through hole 58 of the groove 57 are once crushed by caulking, for example, to seal the liquid supply part 81. Next, the liquid in the sealed space 45 is sucked and discharged from the through hole 58 of the other liquid / gas discharge portion 55 and exhausted, and the inside of the sealed space 45 is in a decompressed state, and is partially in the groove 44 on the wall surface of the sealed space. Allow the liquid to remain. In this state, both sides sandwiching the through hole 58 of the groove 57 in the liquid / gas discharge portion 55 are crushed by, for example, caulking, and the liquid / gas discharge portion 82 is sealed. Reference numeral 59 in FIG. 10A indicates a caulking position. At the end of this process, the thermal diffusion device 21 of the first embodiment is completed.

次に、第1実施の形態に係る熱拡散装置21の動作を説明する。先ず、熱拡散装置21においては、密閉空間の壁面に形成された溝44は、図11に示すように、垂直壁面を有する断面四角形状の理想的な溝形状となる。この溝44内に冷媒となる水100が封入された場合、壁面44aに対する水100の接触角θは、40°以下(θ<40°)となる。水100の接触角θが小さくなるので、水100は、開口側の薄く張り付いている部分101で蒸発し易い状態になる。   Next, the operation of the thermal diffusion device 21 according to the first embodiment will be described. First, in the heat diffusing device 21, the groove 44 formed on the wall surface of the sealed space has an ideal groove shape with a rectangular cross section having a vertical wall surface as shown in FIG. When water 100 serving as a refrigerant is sealed in the groove 44, the contact angle θ of the water 100 with respect to the wall surface 44a is 40 ° or less (θ <40 °). Since the contact angle θ of the water 100 becomes small, the water 100 is easily evaporated at the thinly attached portion 101 on the opening side.

熱拡散装置21では、その中央部27に熱源が配置される。いわゆる点熱源が配置される。熱拡散装置21の周辺部28は排熱部、すなわち冷却部として作用する。熱源により熱拡散装置21の中央部27が熱せられると、中央部27に対応する部分の溝44内の水100が蒸発し、蒸気となって広い密閉空間45(図1参照)に放射され周辺部28側に瞬時に飛散する。蒸気は周辺部28で冷やされ(すなわち蒸気熱が他端部の排熱部で排熱され)凝縮されて水に戻る。戻った水は周辺部28の溝44に入る。図11で示す断面四角形状の溝44の幅t1が20μm〜100μm程度に形成されると、線状の溝44に入った水は毛細管作用により溝44内に広がる。従って、周辺部28の溝44に入った還流液となる水は、溝44を通り、還流路として構成された放射部33及び33間、放射部38及び38間の隙間を毛細管作用により流れ、中央部27の溝44に還流される。この放射部33及び33間、放射部38及び38間の狭い空間は、水を広く拡散する所謂ウィックの働きがある。   In the heat diffusing device 21, a heat source is disposed at the central portion 27. A so-called point heat source is arranged. The peripheral part 28 of the heat diffusing device 21 acts as a heat exhausting part, that is, a cooling part. When the central portion 27 of the heat diffusing device 21 is heated by the heat source, the water 100 in the groove 44 corresponding to the central portion 27 evaporates and radiates to the wide sealed space 45 (see FIG. 1) as steam. It instantaneously scatters to the part 28 side. The steam is cooled at the peripheral portion 28 (that is, the steam heat is exhausted at the exhaust heat section at the other end) and condensed to return to water. The returned water enters the groove 44 in the peripheral portion 28. When the width t1 of the square-shaped groove 44 shown in FIG. 11 is formed to be about 20 μm to 100 μm, the water that has entered the linear groove 44 spreads into the groove 44 by capillary action. Therefore, the water as the reflux liquid that has entered the groove 44 in the peripheral portion 28 passes through the groove 44 and flows through the gap between the radiating portions 33 and 33 configured as the reflux path and between the radiating portions 38 and 38 by capillary action. It is returned to the groove 44 in the central portion 27. A narrow space between the radiating portions 33 and 33 and between the radiating portions 38 and 38 has a so-called wick function that diffuses water widely.

この熱拡散装置21によれば、上記水の蒸発、凝縮、還流が繰り返されることにより、中央部の点で熱せられた熱は、周辺に至る全域に拡散され、所要の温度以上に熱せられることがない。従って、熱源での温度上昇を抑制することができる。   According to this thermal diffusion device 21, by repeating the evaporation, condensation, and reflux of the water, the heat heated at the central point is diffused to the entire area up to the periphery and heated above the required temperature. There is no. Therefore, the temperature rise at the heat source can be suppressed.

図12〜図17に、本発明に係る熱拡散装置及びその製造方法の第2実施の形態を示す。本実施の形態に係る熱拡散装置61は、図12及び図13に示すように、上から見てそれぞれ輪郭形状が短辺より長辺が十分に長い長方形を成した、第1の金属薄板62及びこの第1の金属薄板62との間で寸法差を有する第2の金属薄板63とを交互に積層した積層体64と、積層体64の上下を封止する封止用金属薄板65、66とを有して構成される。第1、第2の金属薄板62、63は均一な膜厚の薄板で形成される。上下の封止用金属薄板65、66も均一な膜厚の薄板で形成される。   12 to 17 show a second embodiment of the thermal diffusion device and the manufacturing method thereof according to the present invention. As shown in FIGS. 12 and 13, the heat diffusing device 61 according to the present embodiment includes a first metal thin plate 62 that has a rectangular shape with a long side sufficiently longer than a short side as viewed from above. And the laminated body 64 which laminated | stacked alternately the 2nd metal thin plate 63 which has a dimensional difference between this 1st metal thin plate 62, and the metal thin plates 65 and 66 for sealing which seal the upper and lower sides of the laminated body 64 And is configured. The first and second metal thin plates 62 and 63 are formed of thin plates having a uniform film thickness. The upper and lower sealing metal thin plates 65 and 66 are also formed of thin plates having a uniform film thickness.

第1の金属薄板62は、図14A〜Cに示すように、長辺方向に沿って延長された細長い開口68が複数個、短辺方向に並列して形成されたパターンに形成される。周辺部67は、その長辺側の幅が所要の幅w3に選定され、その短辺側の幅が所要の幅w4に選定される。この場合、周辺部67の全周囲にわたり同じ幅とするときは、幅w3=幅w4となる。各開口68を仕切る仕切り部69の幅は所要の幅w5に選定される。なお、周辺部67における短辺の両側のそれぞれの幅、長辺の両側のそれぞれの幅は、必要に応じて適当な幅に選定することもできる。第1の金属薄板62は、1枚の金属薄板をプレス加工して形成することができる。   14A to 14C, the first metal thin plate 62 is formed in a pattern in which a plurality of elongated openings 68 extending along the long side direction are formed in parallel in the short side direction. In the peripheral portion 67, the width on the long side is selected as the required width w3, and the width on the short side is selected as the required width w4. In this case, when the same width is set over the entire periphery of the peripheral portion 67, the width w3 = the width w4. The width of the partition 69 that partitions each opening 68 is selected to be a required width w5. In addition, each width | variety of the both sides of the short side in the peripheral part 67 and each width | variety of both sides of a long side can also be selected as an appropriate width | variety as needed. The first metal thin plate 62 can be formed by pressing one metal thin plate.

第2の金属薄板63は、図15A〜Cに示すように、第1の金属薄板62の細長い開口68に対応する位置に、同様に長辺方向に沿って延長された細長い開口71が複数個、短辺方向に並列して形成されたパターンに形成される。この第2の金属薄板63は、第1の金属薄板62と全体的にはパターン形状が類似ではあるも、パターン寸法が異なり、正確には第1の金属薄板62と異なるパターンを有する。   As shown in FIGS. 15A to 15C, the second thin metal plate 63 has a plurality of elongated openings 71 which are similarly extended along the long side direction at positions corresponding to the elongated openings 68 of the first thin metal plate 62. The pattern is formed in parallel in the short side direction. The second metal thin plate 63 is generally similar in pattern shape to the first metal thin plate 62, but has a different pattern dimension and has a different pattern from the first metal thin plate 62.

すなわち、第2の金属薄板63は、その周辺部72、仕切り部73の幅が第1の金属薄板62の周辺部67、仕切り部69の幅より小さく形成されており、第1の金属薄板62との間で寸法差を有して構成される。   That is, the width of the peripheral portion 72 and the partition portion 73 of the second thin metal plate 63 is smaller than the width of the peripheral portion 67 and the partition portion 69 of the first thin metal plate 62. With a dimensional difference.

図15A〜Cで示すように、第2の金属薄板63において、周辺部72は、その長辺側の幅が第1の金属薄板62の幅w3より小さい所要の幅w6(w3>w6)に選定され、その短辺側の幅が第1の金属薄板62の幅w4より小さい所要の幅w7(w4>w7)に選定される。この場合、周辺部72の全周囲にわたり同じ幅とするときは、幅w6=幅w7となる。各開口71を仕切る仕切り部73の幅は第1の金属薄板62の幅w5より小さい所要の幅w8(w5>w8)に選定される。なお、周辺部72における短辺の両側のそれぞれの幅、長辺の両側のそれぞれの幅は、必要に応じて適当な幅に選定することもできる。第2の金属薄板63は、1枚の金属薄板をプレス加工して形成することができる。   As shown in FIGS. 15A to 15C, in the second metal thin plate 63, the peripheral portion 72 has a required width w6 (w3> w6) whose width on the long side is smaller than the width w3 of the first metal thin plate 62. The width of the short side is selected to be a required width w7 (w4> w7) smaller than the width w4 of the first metal thin plate 62. In this case, when the same width is set over the entire periphery of the peripheral portion 72, the width w6 = the width w7. The width of the partition 73 that partitions each opening 71 is selected to be a required width w8 (w5> w8) that is smaller than the width w5 of the first metal thin plate 62. In addition, each width | variety of the both sides of the short side in the peripheral part 72 and each width | variety of both sides of a long side can also be selected as an appropriate width | variety as needed. The second metal thin plate 63 can be formed by pressing one metal thin plate.

第1及び第2の金属薄板62及び63は、その周囲部67及び72の長辺側の幅w3,w6が異なり、短辺側の幅w4,w7が異なり、仕切り部69、73の幅w5,w8が異なることから、積層したときに内側では、細長い開口69、71の側壁面において、寸法差Δw=w3−w6、Δw=w4−w7、Δw=w5−w8が生じるようになる。つまり、細長い開口の壁面全周囲にわたり同じ寸法差Δwが生じる。   The first and second metal thin plates 62 and 63 have different widths w3 and w6 on the long sides of the peripheral portions 67 and 72, different widths w4 and w7 on the short sides, and a width w5 of the partition portions 69 and 73. , W8 are different from each other, a difference in dimension Δw = w3-w6, Δw = w4-w7, Δw = w5-w8 is generated on the side wall surfaces of the elongated openings 69, 71 when they are stacked. That is, the same dimensional difference Δw is generated over the entire circumference of the wall surface of the elongated opening.

上封止用金属薄板65は、図16に示すように、第1、第2の金属薄板62、63と同じ大きさの輪郭形状を有する長方形の薄板で形成される。上封止用金属薄板65は、1枚の金属薄板をプレス加工して形成することができる。   As shown in FIG. 16, the upper sealing metal thin plate 65 is formed of a rectangular thin plate having an outline shape having the same size as the first and second metal thin plates 62 and 63. The upper sealing metal thin plate 65 can be formed by pressing one metal thin plate.

下封止用金属薄板66は、図17A,Bに示すように、第1、第2の金属薄板62、63と同じ大きさの輪郭形状を有する長方形の薄板からなり、その上面の長方形の両端側において、上記した第1、第2の金属薄板62、63の開口68、71に連通するような複数本の横溝75有して形成される。下封止用金属薄板66は、1枚の金属薄板をプレス加工して形成することができる。   As shown in FIGS. 17A and 17B, the lower sealing metal thin plate 66 is formed of a rectangular thin plate having the same outline shape as the first and second metal thin plates 62 and 63, and both ends of the rectangle on the upper surface thereof. On the side, a plurality of lateral grooves 75 are formed so as to communicate with the openings 68 and 71 of the first and second thin metal plates 62 and 63 described above. The lower sealing metal thin plate 66 can be formed by pressing one metal thin plate.

第1及び第2の金属薄板62及び63、上下の封止用金属薄板65及び66は、拡散接合できる金属、例えば銅、ベリリウム銅などの金属、本例では銅を用いて形成される。   The first and second metal thin plates 62 and 63 and the upper and lower sealing metal thin plates 65 and 66 are formed using a metal that can be diffusion bonded, for example, a metal such as copper or beryllium copper, in this example, copper.

本実施の形態では、第1の金属薄板62と第2の金属薄板63とを、最上層及び最下層が第1の金属薄板62となるように、交互に複数枚、例えば21枚積層して積層体64を形成し、この積層体64の上下に封止用金属薄板65及び封止用金属薄板66を配置する。そして、これら上封止用金属薄板65、積層体64及び下封止用金属薄板66は、真空中で加圧、加熱により拡散接合で一体化され、気密的、液密的に封止される。同時に積層体64内の開口68、71による密閉空間77の側壁面に形成された、後述する溝内に、初期状態の減圧下で冷媒となる液体を封入され、熱拡散装置61が構成される。   In the present embodiment, the first metal thin plate 62 and the second metal thin plate 63 are stacked alternately, for example, 21 sheets so that the uppermost layer and the lowermost layer are the first metal thin plate 62. A laminated body 64 is formed, and a sealing metal thin plate 65 and a sealing metal thin plate 66 are disposed above and below the laminate 64. The upper sealing metal thin plate 65, the laminated body 64, and the lower sealing metal thin plate 66 are integrated by diffusion bonding by pressurization and heating in a vacuum, and are hermetically and liquid tightly sealed. . At the same time, a liquid serving as a refrigerant under reduced pressure in an initial state is sealed in a groove, which will be described later, formed in the side wall surface of the sealed space 77 by the openings 68 and 71 in the stacked body 64, thereby configuring the heat diffusion device 61. .

第2実施の形態に係る熱拡散装置61は、図12における細長い開口で形成された各密閉空間77の側壁面にわたり、第1及び第2の金属薄膜62及び63の寸法差Δwにより、急峻な壁面を有する溝78(図13A,B参照)が形成される。この溝78は、各密閉空間77の全周囲に連続した環状に形成され、第1実施の形態と同様に、溝断面で見ると奥壁面に対して直角の上下壁面を有するコ字型に形成される。   The heat diffusing device 61 according to the second embodiment is steep due to the dimensional difference Δw between the first and second metal thin films 62 and 63 over the side wall surface of each sealed space 77 formed by the elongated openings in FIG. A groove 78 having a wall surface (see FIGS. 13A and 13B) is formed. The groove 78 is formed in an annular shape continuously around the entire circumference of each sealed space 77, and is formed in a U-shape having upper and lower wall surfaces perpendicular to the inner wall surface when viewed in the groove cross section, as in the first embodiment. Is done.

冷媒となる液体としては、前述と同様に、例えば水(純水)を用いることが好ましい。   As the liquid serving as the refrigerant, for example, water (pure water) is preferably used, as described above.

次に、具体的に熱拡散装置61内へ液体を封入する作業について、図18〜図20を参照して説明する。本実施の形態においては、拡散接合で一体化した熱拡散装置61に対して、予め長手方向の一端部側に液体供給部81が設けられ、他端部側に液体・気体排出部82が設けられる。液体供給部81と液体・気体排出部82は同じ構造を有して構成される。液体供給部81及び液体・気体排出部82は、図18示すように、積層体64の最上層の第1の金属薄板62に、例えば2か所に密閉空間77に連通する切欠部83a,83bを形成し、上封止用金属薄板65に、その下面に切欠部83a,83bに両端が連通する溝84を形成すると共に、この溝84から外部に通じる貫通孔85を形成して構成される。   Next, the operation | work which encloses a liquid specifically in the thermal-diffusion apparatus 61 is demonstrated with reference to FIGS. In the present embodiment, with respect to the thermal diffusion device 61 integrated by diffusion bonding, a liquid supply unit 81 is provided in advance on one end side in the longitudinal direction, and a liquid / gas discharge unit 82 is provided on the other end side. It is done. The liquid supply unit 81 and the liquid / gas discharge unit 82 have the same structure. As shown in FIG. 18, the liquid supply unit 81 and the liquid / gas discharge unit 82 are provided with cutout portions 83a and 83b communicating with the first metal thin plate 62 on the uppermost layer of the laminate 64, for example, in two places with the sealed space 77. In the upper sealing metal thin plate 65, a groove 84 having both ends communicating with the notches 83a and 83b is formed on the lower surface thereof, and a through-hole 85 communicating from the groove 84 to the outside is formed. .

上封止用金属薄板65、積層体64及び下封止用金属薄板66を、前述のようにして積層配置し拡散接合して封止状態とした後、一方の液体供給部81の貫通孔85から溝84及び切欠部83a,83bを通じて密閉空間77内に液体、例えば水を供給する。水は、下封止用金属薄板の内面に形成された横溝75を通じて、仕切り部68、73で仕切られた各密閉空間77(図12参照)内の全てに供給される。水は、全ての密閉空間77内を満たすように供給することができる。この状態で、一旦、液体供給部81における溝84の貫通孔85を両脇を例えばかしめ加工などにより押し潰して、液体供給部81を封止する。次いで、他方の液体・気体排出部82の貫通孔85から密閉空間77内の液体を吸引排出すると共に、排気し、密閉空間77内が減圧状態で、密閉空間77の壁面全周の溝78内に一部液体が残存するようになす。この状態で、液体・気体排出部82における溝84の貫通孔85を挟む両脇を例えばかしめ加工などで押し潰して、液体・気体排出部82を封止する。図20の符号89は、かしめ位置を示す。この工程終了で、第2実施の形態の熱拡散装置61が完成する。   After the upper sealing metal thin plate 65, the laminate 64, and the lower sealing metal thin plate 66 are stacked and diffusion bonded as described above to obtain a sealed state, the through hole 85 of one liquid supply unit 81 is provided. A liquid such as water is supplied into the sealed space 77 through the groove 84 and the notches 83a and 83b. Water is supplied to all the sealed spaces 77 (see FIG. 12) partitioned by the partition portions 68 and 73 through the lateral grooves 75 formed on the inner surface of the lower sealing metal thin plate. Water can be supplied so as to fill all the enclosed spaces 77. In this state, the liquid supply part 81 is sealed by once crushing the through holes 85 of the groove 84 in the liquid supply part 81 by, for example, caulking. Next, the liquid in the sealed space 77 is sucked and discharged from the through hole 85 of the other liquid / gas discharge portion 82 and exhausted, and the inside of the sealed space 77 is in a reduced pressure state, and the inside of the groove 78 around the entire wall surface of the sealed space 77. So that some liquid remains on the surface. In this state, both sides sandwiching the through hole 85 of the groove 84 in the liquid / gas discharge portion 82 are crushed by, for example, caulking, and the liquid / gas discharge portion 82 is sealed. Reference numeral 89 in FIG. 20 indicates a caulking position. At the end of this process, the thermal diffusion device 61 of the second embodiment is completed.

次に、第2実施の形態に係る熱拡散装置61の動作を説明する。熱拡散装置61においては、各並列して構成された複数の密閉空間77の側壁面全周に形成された溝78は、図11で説明したと同様に、垂直壁面を有する断面四角形状の理想的な溝形状となる。この溝78に冷媒となる例えば水100がみたされた場合、溝壁面に対する水の接触角θは40°以下(θ<40°)となる(図11参照)。前述と同様に、水100の接触角θが小さくなるので、水100は、開口側の薄く張り付いている部分で蒸発し易い状態になる。   Next, the operation of the thermal diffusion device 61 according to the second embodiment will be described. In the heat diffusing device 61, the grooves 78 formed on the entire circumference of the side wall surfaces of the plurality of sealed spaces 77 configured in parallel are ideal in a quadrangular cross section having a vertical wall surface as described with reference to FIG. It becomes a typical groove shape. When, for example, water 100 serving as a coolant is seen in the groove 78, the contact angle θ of water with respect to the groove wall surface is 40 ° or less (θ <40 °) (see FIG. 11). As described above, since the contact angle θ of the water 100 is small, the water 100 is easily evaporated at the thinly attached portion on the opening side.

第2実施の形態の熱拡散装置61では、その一端側に熱源が配置される。熱拡散装置61の他端側は排熱部、すなわち冷却部として作用する。また、直線状の密閉空間77が気相流路となり、側壁面の溝78が液相還流路になる。熱源により熱拡散装置61の一端部が熱せられると、一端部側に対応する溝78内の水が蒸発し、蒸気となって広い各密閉空間77に放射され他端側に瞬時に飛散する。蒸気は他端の冷却部で冷やされ(すなわち蒸気熱が他端の排熱部で排熱され)凝縮されて水に戻る。戻った水は他端部の溝78に入る。断面四角形状の溝78の幅が20μm〜100μm程度に形成されると、溝78に入った水は、毛細管作用により短辺より長辺の溝78内に広がり、長辺の溝78で構成された還流路を通じて一端部の溝78に還流される。   In the thermal diffusion device 61 of the second embodiment, a heat source is disposed on one end side thereof. The other end side of the heat diffusing device 61 acts as a heat exhausting part, that is, a cooling part. Further, the linear sealed space 77 becomes a gas phase flow path, and the groove 78 on the side wall surface becomes a liquid phase reflux path. When one end of the heat diffusing device 61 is heated by the heat source, the water in the groove 78 corresponding to the one end side evaporates, becomes steam and is radiated to each wide sealed space 77 and instantaneously scatters to the other end side. The steam is cooled by the cooling section at the other end (that is, the steam heat is exhausted by the exhaust heat section at the other end) and condensed to return to water. The returned water enters the groove 78 at the other end. When the width of the groove 78 having a square cross section is formed to be about 20 μm to 100 μm, the water that has entered the groove 78 spreads into the groove 78 having a longer side than the short side by capillary action, and is constituted by the groove 78 having a longer side. It is returned to the groove 78 at one end through the reflux path.

この熱拡散装置61によれば、上記水の蒸発、凝縮、還流が繰り返されることにより、一端部で熱せられた熱は、他端部に至る全域に拡散され、熱拡散装置61は所要の温度以上に熱せられることがない。従って、熱源での温度上昇を抑制することができる。   According to this heat diffusing device 61, by repeating the evaporation, condensation and reflux of the water, the heat heated at one end is diffused to the entire area up to the other end, and the heat diffusing device 61 has a required temperature. No more heating. Therefore, the temperature rise at the heat source can be suppressed.

拡散装置61は、第1及び第2の金属薄板を交互に積層してなる積層構造により、壁面が急峻な溝78を形成することができる。この溝78は、水を広く拡散するウィックの機能を有する。溝78によるウィック構造は、エッチングや機械加工に比べて壁面が急峻に立ち上がるため、液体の接触角θが小さく取れることで熱輸送容量も大きく取れる。   The diffusion device 61 can form the groove 78 having a steep wall surface by a laminated structure in which the first and second metal thin plates are alternately laminated. The groove 78 has a wick function for widely diffusing water. In the wick structure by the groove 78, the wall surface rises more steeply than etching or machining, so that the heat transport capacity can be increased by reducing the liquid contact angle θ.

上述した本発明の実施の形態に係る熱拡散装置は、例えば電子機器における発熱の抑制に適用することができる。例えばパーソナルコンピュータにおける中央処理装置(CPU)の発熱、プロジェクタにおける発光ダイオードの発熱の抑制に適用して好適である。   The above-described heat diffusion device according to the embodiment of the present invention can be applied to, for example, suppression of heat generation in an electronic device. For example, the present invention is suitable for suppressing heat generation of a central processing unit (CPU) in a personal computer and light emission diodes in a projector.

A,B 本発明に係る熱拡散装置の第1実施の形態を示す一部破断した平面図及び側面図である。FIGS. 1A and 1B are a partially broken plan view and side view showing a first embodiment of a thermal diffusion device according to the present invention. FIGS. A,B 第1実施の形態の上封止用金属薄板の平面図及びそのa−a線上の断面図である。A, B It is a top view of the metal sheet for top sealing of a 1st embodiment, and its sectional view on the aa line. A,B 第1実施の形態の第1の金属薄板の平面図及びそのa−a線上の断面図である。A and B are a plan view of a first metal thin plate according to the first embodiment and a cross-sectional view taken along the line aa. A,B 第1実施の形態の第2の金属薄板の平面図及びそのa−a線上の断面図である。A and B are a plan view of a second thin metal plate of the first embodiment and a cross-sectional view taken along the line aa. A,B 第1実施の形態の下封止用金属薄板の平面図及びそのa−a線上の断面図である。A and B are a plan view of a lower sealing metal thin plate according to the first embodiment and a cross-sectional view taken along the line aa. 第1実施の形態の熱拡散装置における周辺部の拡大断面図である。It is an expanded sectional view of the peripheral part in the thermal diffusion apparatus of a 1st embodiment. A,B 第1実施の形態の熱拡散装置における中央部の拡大断面図及び拡大平面図である。FIGS. 3A and 3B are an enlarged cross-sectional view and an enlarged plan view of a central portion in the thermal diffusion device of the first embodiment. FIGS. 第1実施の形態の熱拡散装置における放射部の斜視図である。It is a perspective view of the radiation | emission part in the thermal diffusion apparatus of 1st Embodiment. 第1実施の形態の熱拡散装置の液体供給部及び液体・気体排出部を含む一部破断した平面図である。It is the partially broken top view including the liquid supply part and liquid / gas discharge part of the thermal diffusion apparatus of 1st Embodiment. A,B 液体供給部及び液体・気体排出部の一例を示す分解斜視図及びそのX−X線上の断面図である。A and B are an exploded perspective view showing an example of a liquid supply unit and a liquid / gas discharge unit, and a cross-sectional view along the line XX. 本発明で形成された壁面が急峻な溝と封止された液体の関係を示す要部の断面図である。It is sectional drawing of the principal part which shows the relationship between the groove | channel where the wall surface formed by this invention was steep, and the sealed. 本発明に係る熱拡散装置の第2実施の形態を示す一部破断した平面図である。It is the partially broken top view which shows 2nd Embodiment of the thermal-diffusion apparatus which concerns on this invention. A,B 図12のA−A線上の断面図及びB−B線上の断面図である。A and B It is sectional drawing on the AA line of FIG. 12, and sectional drawing on the BB line. A,B及びC 第2実施の形態の第1の金属薄板の斜視図、A−A線上の断面図及びB−B線上の断面図である。A, B and C It is a perspective view of the 1st metal thin plate of 2nd Embodiment, sectional drawing on the AA line, and sectional drawing on the BB line. A,B及びC 第2実施の形態の第2の金属薄板の斜視図、A−A線上の断面図及びB−B線上の断面図である。A, B and C It is a perspective view of the 2nd metal thin plate of 2nd Embodiment, sectional drawing on the AA line, and sectional drawing on the BB line. 第2実施の形態の上封止用金属薄板の斜視図である。It is a perspective view of the metal sheet for top sealing of a 2nd embodiment. A,B 第2実施の形態の下封止用金属薄板の斜視図及びD−D線上の断面図である。A and B are a perspective view and a cross-sectional view along the line DD of the lower sealing metal thin plate according to the second embodiment. 第2実施の形態の熱拡散装置における液体供給部及び液体・気体排出部の一例を示す要部の分解斜視図である。It is a disassembled perspective view of the principal part which shows an example of the liquid supply part in the thermal diffusion apparatus of 2nd Embodiment, and a liquid and gas discharge part. 第2実施の形態の熱拡散装置における液体供給部及び液体・気体排出部の要部の断面図である。It is sectional drawing of the principal part of the liquid supply part and the liquid / gas discharge part in the thermal diffusion apparatus of 2nd Embodiment. 第2実施の形態の熱拡散装置における液体供給部及び液体・気体排出部の封止後の要部の斜視図である。It is a perspective view of the principal part after sealing of the liquid supply part and liquid / gas discharge part in the thermal diffusion apparatus of 2nd Embodiment. A,B 比較例の熱拡散装置の一部破断した斜視図及びA−A線上の断面図である。A and B It is the perspective view which fractured | ruptured partially and the sectional view on the AA line of the thermal-diffusion apparatus of a comparative example. 理想の溝形状を示す断面図である。It is sectional drawing which shows an ideal groove shape. 従来例のヒートパイプを示す一部断面とする斜視図である。It is a perspective view made into the partial cross section which shows the heat pipe of a prior art example.

符号の説明Explanation of symbols

21、61・・熱拡散装置、22・・第1の金属薄板、23・・第2の金属薄板、24・・積層体、25、26・・上下の封止用金属薄板、27・・中央部、28・・周辺部、32、37・・周辺部、33〔331〜334〕、38〔381〜384〕・・放射部、31、36・・中央部、35、39、41・・貫通孔、42・・支柱、44・・溝、44a・・溝壁面、45、77・・密閉空間、51、52・・還流路、54・・液体供給部、55・・液体・気体排出部、56a,56b・・切欠き部、57・・溝、58・・貫通孔、59・・かしめ位置、62・・第1の金属薄板、63・・第2の金属薄板、65、66・・上下の封止用金属薄板、67、72・・周辺部、68、71・・長方形の開口、69、73・・仕切り部、75・・溝、78・・溝、81・・液体供給部、82・・液体・気体排出部、83a,83b・・切欠き部、84・・溝、85・・貫通孔、89・・かしめ位置、100・・水   21, 61 .. Thermal diffusion device, 22... First metal sheet, 23.. Second metal sheet, 24 .. Laminate, 25, 26 .. Upper and lower sealing metal sheets, 27. .., 28..Peripheral part, 32, 37..Peripheral part, 33 [331-334], 38 [381-384] .. Radiation part, 31, 36..Central part, 35, 39, 41..Penetration Holes 42 .. struts 44 .. grooves 44 a .. groove walls 45, 77 .. sealed spaces 51, 52 .. reflux paths 54.. Liquid supply sections 55 .. liquid and gas discharge sections, 56a, 56b, ... notches, 57, grooves, 58, through holes, 59, caulking position, 62, first metal thin plate, 63, second metal thin plate, 65, 66, upper and lower Metal thin plate for sealing, 67, 72 ... Peripheral part, 68, 71 ... Rectangular opening, 69, 73 ... Partition part, 75 ... , 78 .. Groove, 81 .. Liquid supply part, 82 .. Liquid / gas discharge part, 83 a, 83 b .. Notch part, 84 .. Groove, 85 .. Through hole, 89. ·water

Claims (10)

寸法差を有する第1及び第2の金属薄板が交互に積層され、上下の封止用金属薄板と共に内部に密閉空間が形成されるように拡散接合され、
前記密閉空間の壁面に、前記第1及び第2の金属薄板の寸法差により急峻な壁面を有する溝が形成され、
初期状態の減圧下で前記溝内に液体が封止されて成る
ことを特徴とする熱拡散装置。
First and second metal thin plates having a dimensional difference are alternately laminated, and diffusion bonded so that a sealed space is formed inside with the upper and lower metal thin plates for sealing,
A groove having a steep wall surface due to a dimensional difference between the first and second metal thin plates is formed on the wall surface of the sealed space,
A heat diffusion apparatus, wherein a liquid is sealed in the groove under reduced pressure in an initial state.
前記密閉空間が長方形に形成され、
前記溝が、前記密閉空間の全周囲にわたって連通するように形成され、
前記密閉空間の長手方向の一端部側が蒸発部となり、他端部側が排熱部として構成される
ことを特徴とする請求項1記載の熱拡散装置。
The sealed space is formed in a rectangular shape,
The groove is formed to communicate with the entire circumference of the sealed space;
The heat diffusing apparatus according to claim 1, wherein one end side in the longitudinal direction of the sealed space is an evaporation unit, and the other end side is configured as an exhaust heat unit.
前記長方形の密閉空間が複数個、並列して形成されて成る
ことを特徴とする請求項2記載の熱拡散装置。
The thermal diffusion device according to claim 2, wherein a plurality of the rectangular sealed spaces are formed in parallel.
前記第1及び第2の金属薄板が、それぞれ中央部から周辺部に連絡する複数の放射部を有し、
前記第1及び第2の金属薄板の放射部パターンが異なり、
一方の前記金属薄板を挟んで積層された他方の前記金属板の放射部間で還流液の流路が形成され、
前記中央部が蒸発部となり、前記周辺部が排熱部として構成される
ことを特徴とする請求項1記載の熱拡散装置。
Each of the first and second metal thin plates has a plurality of radiating portions communicating from the central portion to the peripheral portion,
The radiation pattern of the first and second metal thin plates is different,
A flow path of the reflux liquid is formed between the radiating portions of the other metal plate laminated with the one metal thin plate interposed therebetween,
The thermal diffusion device according to claim 1, wherein the central portion is an evaporation portion, and the peripheral portion is configured as an exhaust heat portion.
前記第1及び第2の金属薄板及び前記封止用金属薄板が、同材質で形成されて成る
ことを特徴とする請求項1記載の熱拡散装置。
The heat diffusion device according to claim 1, wherein the first and second metal thin plates and the sealing metal thin plate are formed of the same material.
寸法差を有する第1及び第2の金属薄板を交互に積層し、上下に封止用金属薄板を配置する工程と、
前記第1、第2の金属薄板と前記封止用金属薄板とを拡散接合して一体の積層体を形成し、該積層体の内部に密閉空間を形成すると共に、前記密閉空間の壁面に、前記第1及び第2の金属薄板の寸法差により急峻な壁面を有する溝を形成する工程と、
前記密閉空間内を減圧した初期状態で前記溝内に液体を封入する工程を有する
ことを特徴とする熱拡散装置の製造方法。
Alternately laminating first and second thin metal plates having a dimensional difference, and arranging sealing thin metal plates on the top and bottom;
The first and second metal thin plates and the sealing metal thin plate are diffusion bonded to form an integral laminate, forming a sealed space inside the laminate, and on the wall of the sealed space, Forming a groove having a steep wall due to a dimensional difference between the first and second metal thin plates;
A method for manufacturing a thermal diffusion device, comprising: enclosing a liquid in the groove in an initial state in which the inside of the sealed space is decompressed.
前記第1及び第2の金属薄膜として、互いに長方形の開口を有し、且つ前記開口の周辺部の幅に寸法差を有する薄板を用い、
上下の封止用金属薄板は、前記開口を塞ぐ面積を有する薄板を用い、
前記開口による密閉空間の全周囲にわたって連通する前記溝を形成する
ことを特徴とする請求項6記載の熱拡散装置の製造方法。
As the first and second metal thin films, a thin plate having a rectangular opening and a dimensional difference in the width of the periphery of the opening is used.
The upper and lower metal thin plates for sealing use thin plates having an area that closes the opening,
The method of manufacturing a heat diffusing device according to claim 6, wherein the groove communicating with the entire periphery of the sealed space by the opening is formed.
前記第1及び第2の金属薄板として、互いに長方形の開口を複数個、並列して有する薄板を用いる
ことを特徴とする請求項7記載の熱拡散装置の製造方法。
The method of manufacturing a heat diffusing apparatus according to claim 7, wherein the first and second metal thin plates are thin plates each having a plurality of rectangular openings arranged in parallel.
前記第1及び第2の金属薄板として、中央部から周辺部に連絡する複数の放射部が形成され、該放射部間に開口を有し、互いに前記放射部のパターンを異にした薄板を用い、
前記開口により密閉空間を形成し、
前記中央部と前記周辺部に前記溝を形成する
ことを特徴とする請求項6記載の熱拡散装置の製造方法。
As the first and second metal thin plates, a plurality of radiating portions communicating from the central portion to the peripheral portion are formed, openings are formed between the radiating portions, and thin plates having different radiating portion patterns are used. ,
A closed space is formed by the opening,
The method for manufacturing a thermal diffusion device according to claim 6, wherein the groove is formed in the central portion and the peripheral portion.
前記第1及び第2の金属薄板と前記封止用金属薄板を、同材質の薄板で形成する
ことを特徴とする請求項6記載の熱拡散装置。
The heat diffusion device according to claim 6, wherein the first and second metal thin plates and the sealing metal thin plate are formed of a thin plate of the same material.
JP2007188373A 2007-07-19 2007-07-19 Thermal diffusion device and manufacturing method for it Pending JP2009024933A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007188373A JP2009024933A (en) 2007-07-19 2007-07-19 Thermal diffusion device and manufacturing method for it
US12/218,434 US20090020274A1 (en) 2007-07-19 2008-07-15 Heat diffusing device and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188373A JP2009024933A (en) 2007-07-19 2007-07-19 Thermal diffusion device and manufacturing method for it

Publications (1)

Publication Number Publication Date
JP2009024933A true JP2009024933A (en) 2009-02-05

Family

ID=40263890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188373A Pending JP2009024933A (en) 2007-07-19 2007-07-19 Thermal diffusion device and manufacturing method for it

Country Status (2)

Country Link
US (1) US20090020274A1 (en)
JP (1) JP2009024933A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165006A (en) * 2010-06-09 2012-08-30 Kyocera Corp Passage member and heat exchanger and electronic component device using the passage member
JP2013007501A (en) * 2011-06-22 2013-01-10 Nec Corp Cooling device
JP2013044459A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Flat heat pipe
JP2013258219A (en) * 2012-06-12 2013-12-26 Saijo Inx Co Ltd Radiator
WO2014157147A1 (en) * 2013-03-27 2014-10-02 古河電気工業株式会社 Cooling apparatus
JP6294981B1 (en) * 2017-01-27 2018-03-14 古河電気工業株式会社 Vapor chamber
WO2018139568A1 (en) * 2017-01-27 2018-08-02 古河電気工業株式会社 Paper chamber
JP2020067241A (en) * 2018-10-25 2020-04-30 セイコーエプソン株式会社 Cooling device and projector
WO2023106285A1 (en) * 2021-12-06 2023-06-15 大日本印刷株式会社 Vapor chamber and electronic device
JP2023166314A (en) * 2022-05-09 2023-11-21 健治 大沢 Heat pipe and method of injectng/sealing refrigerant liquid into heat pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160131437A1 (en) * 2014-11-12 2016-05-12 Asia Vital Components Co., Ltd. Thin heat pipe structure
CN107809878B (en) * 2016-09-08 2020-08-04 奇鋐科技股份有限公司 Water-cooling heat dissipation row structure
CN106449558B (en) * 2016-09-10 2018-12-25 奇鋐科技股份有限公司 Water cooling arranges structure
CN106711112B (en) * 2017-01-19 2019-05-03 北京工业大学 A kind of micro-channel heat exchanger that turbulent element is added
JP7015197B2 (en) * 2018-03-26 2022-02-02 新光電気工業株式会社 Loop type heat pipe and its manufacturing method
US10816274B2 (en) * 2019-03-15 2020-10-27 Murata Manufacturing Co., Ltd. Vapor chamber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270447U (en) * 1985-10-23 1987-05-02
JPH09138083A (en) * 1995-11-14 1997-05-27 Furukawa Electric Co Ltd:The Heat guide type heat plate
JPH10122774A (en) * 1996-08-29 1998-05-15 Showa Alum Corp Radiator for portable electronic device
JP2000356485A (en) * 1999-06-15 2000-12-26 Fujikura Ltd Planar heat pipe
WO2001063195A1 (en) * 2000-02-25 2001-08-30 Fujitsu Limited Thin heat pipe and method of manufacturing the heat pipe
JP2002039693A (en) * 2000-07-21 2002-02-06 Toufuji Denki Kk Flat type heat pipe
JP2004028557A (en) * 2002-05-08 2004-01-29 Furukawa Electric Co Ltd:The Thin sheet-like heat pipe
JP2004198098A (en) * 2002-10-25 2004-07-15 Usui Kokusai Sangyo Kaisha Ltd Heat pipe, and heat exchange device using heat pipe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516632A (en) * 1982-08-31 1985-05-14 The United States Of America As Represented By The United States Deparment Of Energy Microchannel crossflow fluid heat exchanger and method for its fabrication
GB8910241D0 (en) * 1989-05-04 1989-06-21 Secretary Trade Ind Brit Heat exchangers
FR2701554B1 (en) * 1993-02-12 1995-05-12 Transcal Heat exchanger for electronic components and electro-technical equipment.
US6167952B1 (en) * 1998-03-03 2001-01-02 Hamilton Sundstrand Corporation Cooling apparatus and method of assembling same
US6827128B2 (en) * 2002-05-20 2004-12-07 The Board Of Trustees Of The University Of Illinois Flexible microchannel heat exchanger
TWI273210B (en) * 2004-12-30 2007-02-11 Delta Electronics Inc Heat-dissipation device and fabricating method thereof
US20070068657A1 (en) * 2005-09-27 2007-03-29 Kenichi Yamamoto Sheet -shaped heat pipe and method of manufacturing the same
US7447029B2 (en) * 2006-03-14 2008-11-04 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Vapor chamber for dissipation heat generated by electronic component
US7942196B2 (en) * 2007-12-27 2011-05-17 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader with vapor chamber
JP4557055B2 (en) * 2008-06-25 2010-10-06 ソニー株式会社 Heat transport device and electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270447U (en) * 1985-10-23 1987-05-02
JPH09138083A (en) * 1995-11-14 1997-05-27 Furukawa Electric Co Ltd:The Heat guide type heat plate
JPH10122774A (en) * 1996-08-29 1998-05-15 Showa Alum Corp Radiator for portable electronic device
JP2000356485A (en) * 1999-06-15 2000-12-26 Fujikura Ltd Planar heat pipe
WO2001063195A1 (en) * 2000-02-25 2001-08-30 Fujitsu Limited Thin heat pipe and method of manufacturing the heat pipe
JP2002039693A (en) * 2000-07-21 2002-02-06 Toufuji Denki Kk Flat type heat pipe
JP2004028557A (en) * 2002-05-08 2004-01-29 Furukawa Electric Co Ltd:The Thin sheet-like heat pipe
JP2004198098A (en) * 2002-10-25 2004-07-15 Usui Kokusai Sangyo Kaisha Ltd Heat pipe, and heat exchange device using heat pipe

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165006A (en) * 2010-06-09 2012-08-30 Kyocera Corp Passage member and heat exchanger and electronic component device using the passage member
JP5073104B2 (en) * 2010-06-09 2012-11-14 京セラ株式会社 Channel member, heat exchanger using the same, and electronic component device
KR101503824B1 (en) * 2010-06-09 2015-03-18 쿄세라 코포레이션 Flow channel member, heat exchanger using same, and electronic component device
JP2013007501A (en) * 2011-06-22 2013-01-10 Nec Corp Cooling device
JP2013044459A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Flat heat pipe
JP2013258219A (en) * 2012-06-12 2013-12-26 Saijo Inx Co Ltd Radiator
WO2014157147A1 (en) * 2013-03-27 2014-10-02 古河電気工業株式会社 Cooling apparatus
JPWO2014157147A1 (en) * 2013-03-27 2017-02-16 古河電気工業株式会社 Cooling system
WO2018139568A1 (en) * 2017-01-27 2018-08-02 古河電気工業株式会社 Paper chamber
JP2018119774A (en) * 2017-01-27 2018-08-02 古河電気工業株式会社 Vapor camber
JP6294981B1 (en) * 2017-01-27 2018-03-14 古河電気工業株式会社 Vapor chamber
US11079183B2 (en) 2017-01-27 2021-08-03 Furukawa Electric Co., Ltd. Vapor chamber
JP2020067241A (en) * 2018-10-25 2020-04-30 セイコーエプソン株式会社 Cooling device and projector
CN111103747A (en) * 2018-10-25 2020-05-05 精工爱普生株式会社 Cooling device and projector
US11061309B2 (en) 2018-10-25 2021-07-13 Seiko Epson Corporation Cooling device having evaporator with groove member, and projector
CN111103747B (en) * 2018-10-25 2022-05-06 精工爱普生株式会社 Cooling device and projector
WO2023106285A1 (en) * 2021-12-06 2023-06-15 大日本印刷株式会社 Vapor chamber and electronic device
JP7344481B1 (en) * 2021-12-06 2023-09-14 大日本印刷株式会社 Vapor chamber and electronics
JP7568017B2 (en) 2021-12-06 2024-10-16 大日本印刷株式会社 Vapor Chambers and Electronics
JP2023166314A (en) * 2022-05-09 2023-11-21 健治 大沢 Heat pipe and method of injectng/sealing refrigerant liquid into heat pipe
JP7428416B2 (en) 2022-05-09 2024-02-06 健治 大沢 Heat pipe, injection of refrigerant liquid into the heat pipe, and sealing method

Also Published As

Publication number Publication date
US20090020274A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP2009024933A (en) Thermal diffusion device and manufacturing method for it
US11536518B2 (en) Fabrication method for loop heat pipe
US10420253B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
US11635263B2 (en) Vapor chamber and manufacturing method of the same
JP4112602B2 (en) heat pipe
JP4557055B2 (en) Heat transport device and electronic equipment
JP4047918B2 (en) Heat pipe and manufacturing method thereof
JP6485075B2 (en) Loop heat pipe and method of manufacturing loop heat pipe
JP4119944B2 (en) heat pipe
JP2022000606A (en) Vapor chamber, electronic apparatus and metal sheet for vapor chamber
JP6648824B2 (en) Loop heat pipe, method for manufacturing the same, and electronic equipment
JP6057952B2 (en) Sheet type heat pipe
JP6799503B2 (en) Heat pipe and its manufacturing method
JP7284944B2 (en) Vapor chamber and electronics
JP7552744B2 (en) Vapor chamber, sheet for vapor chamber, and method for manufacturing vapor chamber
US20110259555A1 (en) Micro vapor chamber
JP7472947B2 (en) Vapor chambers, electronic devices and metal sheets for vapor chambers
US20190376747A1 (en) Vapor chamber and manufacturing method for the same
JP6856827B1 (en) Wick sheet for vapor chamber, vapor chamber and electronics
TWI409425B (en) Heat pipe
JP2023153819A (en) Vapor chamber, electronic apparatus and method of manufacturing vapor chamber
JP7535237B2 (en) Vapor Chambers and Electronics
JP2021092388A (en) Wick sheet for vapor chamber, vapor chamber and electronic apparatus
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus
KR102368500B1 (en) Flat Plate Type Heat Dissipation Device that Could be Separated to Cool Several Heat Sources Simultaneously

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619