JP2013258219A - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP2013258219A
JP2013258219A JP2012132509A JP2012132509A JP2013258219A JP 2013258219 A JP2013258219 A JP 2013258219A JP 2012132509 A JP2012132509 A JP 2012132509A JP 2012132509 A JP2012132509 A JP 2012132509A JP 2013258219 A JP2013258219 A JP 2013258219A
Authority
JP
Japan
Prior art keywords
cooling plate
cooling
cooler
heat
overlapping part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012132509A
Other languages
Japanese (ja)
Other versions
JP5977091B2 (en
Inventor
Kimiharu Nakatani
公治 中谷
Takumi Tanizaki
巧 谷崎
Masahiro Fukuda
真弘 福田
Masaki Ueda
真己 上田
Tatsuya Murakami
達也 村上
Seiichi Fujishima
誠一 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saijo INX Co Ltd
Original Assignee
Saijo INX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saijo INX Co Ltd filed Critical Saijo INX Co Ltd
Priority to JP2012132509A priority Critical patent/JP5977091B2/en
Publication of JP2013258219A publication Critical patent/JP2013258219A/en
Application granted granted Critical
Publication of JP5977091B2 publication Critical patent/JP5977091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a structure that is low cost and small in directivity of heat radiation, satisfying daily advancing requests from small communication terminal devices, home electric appliances, portable medical equipment, etc. in the recent years, because in the field of a relatively low power consumption-type heat sink, an extrusion molding-type heat sink, a corrugated fin, and the like are used, but the structure that is low cost and small in directivity of heat radiation does not exist.SOLUTION: A radiator is formed by stacking and integrating a plurality of cooling plates with the same shape. The cooling plates are stacked and fixed with rotating them by a constant angle centered on one point defined on the cooling plates, and thereby forming an overlapping part and a non-overlapping part between one cooling plate and its adjacent cooling plate. This overlapping part functions as a heat collection part, and the non-overlapping part as a heat radiation part.

Description

本発明は、主に電子装置のプリント配線板等に実装される半導体部品などを冷却するための冷却器の構造に関するものである。
The present invention mainly relates to a structure of a cooler for cooling a semiconductor component or the like mounted on a printed wiring board or the like of an electronic device.

電子装置などに使用する半導体部品においては、近年その集積度が飛躍的に向上し、また一方では装置のコンパクト化や軽量化、更には低コスト化が以前にも増して厳しく要求されてきている。
こうした状況の中で、比較的低消費電力型ヒートシンクの分野では、押出し成型タイプのヒートシンクが現在主流となっているが、引き抜き型のものも多く、近時は薄板をコルゲート状に繰り返し折り曲げ形成しベースプレートと接合させたいわゆるコルゲートフィンも多く使われるようになってきている。また、切削加工しか製造方法がないが故にコスト高であることから敬遠されているが、丸棒金属材料から、薄い円盤を何層にも切り出した、いわゆるディスク型フィンも採用されている。いずれのものも放熱の原理は、フィンを外気に接触させることによるものであるため、限られたスペースの中で、大きな表面積のものをどのような形態で配置するのかが基本テーマであると言える。
In recent years, the degree of integration of semiconductor components used in electronic devices has improved dramatically. On the other hand, downsizing and weight reduction of devices and further cost reduction have been demanded more severely than before. .
Under these circumstances, in the field of relatively low power consumption heat sinks, extrusion-type heat sinks are currently the mainstream, but many are drawn-type heat sinks, and recently, a thin plate is repeatedly bent into a corrugated shape. So-called corrugated fins joined to a base plate are also increasingly used. In addition, since it is costly because there is only a manufacturing method for cutting, so-called disk-type fins in which a thin disk is cut into several layers from a round bar metal material are also employed. In both cases, the principle of heat dissipation is by bringing the fins into contact with the outside air, so it can be said that the basic theme is how to arrange a large surface area in a limited space. .

特許第3158983号公報Japanese Patent No. 3158893 特開2009−283672公報JP 2009-283672 A 特開2003−031743公報JP 2003-031743 A

即ち、元来が熱に対して脆弱である電子部品でありながら自身が発熱体であるという現実、そして、これを冷却するに当たって許容される設置位置やその容積が、加速するコンパクト化や軽量化の要求に応じて次第に制限されてきているという環境から、旧来構造が淘汰され、時代の要求に適うと謳う構造が提案され、その一部が実施され、やがてそれも淘汰される、という循環にあるのが現状である。   In other words, it is an electronic component that is inherently vulnerable to heat, but it itself is a heating element, and the installation position and its volume that are allowed to cool this are accelerated and made compact and lightweight. From the environment that has been gradually restricted according to the demands of the past, the old structure has been deceived, a structure that meets the needs of the times has been proposed, a part of it has been implemented, and eventually it will also be deceived There is the present situation.

例えば主流である押出し成型タイプのヒートシンクの場合、その製造方法に由来し基本的に一種類の断面が連続したもの(これに切削加工を付加することで、一部を切除したものがある)となるため、フィンの形状に沿った一定方向に設置したときだけしか効率の良い放熱ができない、一定方向に設置される装置ではその放熱特性が有効であるが、近年の小形通信端末装置や家電製品、可搬型医療機器等においては、ユーザー設置条件の多様化に伴いその設置方向をメーカー側が制約することが非常に困難になってきている。加えてどうしても軽量化が難しい、という課題があるため次世代を担う構造足り得ない。
また、薄板をコルゲート状に繰り返し折り曲げ形成しベースプレートと接合させたコルゲートフィンや、コルゲートの一部をオフセット曲げして放熱性を高めたオフセットフィンなどが開発された。これらは軽量化は果たすものとなったが、前記押出し型フィンなどと同様、一定方向に対して放熱性が高まるような指向性を有しており採用し得る箇所が制限される。
更に、外気と接触する部分の表面積を大きくしてゆくという意味においては、薄い放熱板が僅かな隙間を以て多数積層されているという構造は非常に好適であるが、この隙間距離を小さくしてゆくと、隙間内の空気が循環しにくくなり、かえって十分な冷却効果が得られないということもあり得る。
For example, in the case of the extrusion-type heat sink that is the mainstream, one that is derived from the manufacturing method and basically has one kind of cross-section (there is a part that has been cut off by adding cutting) Therefore, efficient heat dissipation is only possible when installed in a certain direction along the shape of the fin, and the heat dissipation characteristics are effective in devices installed in a certain direction, but recent small communication terminal devices and household appliances In portable medical devices and the like, it has become very difficult for manufacturers to constrain their installation direction with the diversification of user installation conditions. In addition, there is a problem that it is difficult to reduce the weight, so the structure for the next generation is insufficient.
In addition, corrugated fins that have been repeatedly bent into a corrugated shape and joined to the base plate, and offset fins that have been partly offset bent to improve heat dissipation have been developed. Although these have been reduced in weight, like the extruded fins and the like, they have directivity that increases heat dissipation with respect to a certain direction, and places where they can be used are limited.
Furthermore, in the sense of increasing the surface area of the portion in contact with the outside air, a structure in which a large number of thin heat sinks are stacked with a slight gap is very suitable, but this gap distance will be reduced. Then, the air in the gap becomes difficult to circulate, and on the contrary, a sufficient cooling effect may not be obtained.

そのほか種々の構造(例えばこの指向性が顕著でないピン型フィン)が市場に投入されているが、設置条件を制限してしまう放熱指向性、熱放出に十分な空間の確保、等々の全ての課題が解消された理想的な構造が全く存在せず、提案すらなされていないというのが現状であった。
Various other structures (for example, pin-type fins where this directivity is not remarkable) have been put on the market, but all issues such as heat radiation directivity that restricts installation conditions, securing sufficient space for heat release, etc. The current situation is that there is no ideal structure that has solved this problem, and no proposal has been made.

そこで本発明者らは上記諸点に鑑み鋭意研究の結果、遂に本発明を完成させたものであり、その特徴とするところは、同形である冷却板複数枚を積層一体化してなる冷却器であって、該冷却板を、該冷却板上の定められた一点を中心に一定角度ずつ回転させながら積層固定することで、一の冷却板とこれに隣接する冷却板とに重複部分と非重複部分を形成させた点にある。
即ち本発明は、薄い放熱板を僅かな隙間を以て多数積層させるという従来構造が持っていた種々の利点は残しながら、隙間内の空気が循環しにくくなるという欠点は解消するものであると言える。
Accordingly, the present inventors have finally completed the present invention as a result of diligent research in view of the above-mentioned points, and the feature thereof is a cooler formed by stacking and integrating a plurality of cooling plates having the same shape. Then, the cooling plate is stacked and fixed while rotating by a predetermined angle around a predetermined point on the cooling plate, so that an overlapping portion and a non-overlapping portion are provided on one cooling plate and a cooling plate adjacent thereto. Is the point that was formed.
That is, it can be said that the present invention eliminates the disadvantage that the air in the gap is difficult to circulate while retaining the various advantages of the conventional structure in which a large number of thin heat sinks are stacked with a small gap.

ここで「冷却板」は、本発明冷却器の構成単位であってこれが複数枚積層され製品となる。積層される冷却板は全て同形でありこれを、定められた一点を中心に一定角度ずつ回転させながら積層してゆく。この冷却板は、積層に際しては平板であっても良いが、放熱効率を考慮してその一部を折曲或いは湾曲させても良い。折曲或いは湾曲という変形をさせる場合、全ての冷却板を同形状で変形しても良いが、例えば積層最上段のみを湾曲させる、全ての冷却板が折曲部分を有しているが上段にゆくに従ってその傾斜が直角に近づくよう傾斜角度が変わる、といったものであっても、変形前の形状が同じであれば、「同形」の範疇に属するものとする。   Here, the “cooling plate” is a structural unit of the cooler of the present invention, and a plurality of these are stacked to form a product. All the cooling plates to be stacked have the same shape, and are stacked while being rotated by a fixed angle around a predetermined point. The cooling plate may be a flat plate when stacked, but a part thereof may be bent or curved in consideration of heat dissipation efficiency. In the case of deformation such as bending or bending, all the cooling plates may be deformed in the same shape, but for example, all the cooling plates that bend only the uppermost layer of the stack have bent portions, but in the upper stage Even if the inclination angle changes so that the inclination approaches a right angle as the time goes, if the shape before the deformation is the same, it belongs to the category of “isomorphic”.

この回転の中心は、冷却板上に設けるものとする。回転させると、隣接する冷却板と重複する部分が必ず存在することになる。更に本発明においては重複しない部分(非重複部分)の存在を必須とする。即ち本発明は、冷却板の全体形状について、或いは回転の中心点について特に限定しないが、重複部分と非重複部分が共に存在している必要はある。従って例えば、冷却板が正三角形であり、この正三角形の中心を回転の中心としこれを120度ずつ回転させながら積層するといったもの、或いは円をその中心を軸に回転させたもの、等々は非重複部分が存在しないため本発明の権利範囲から除外する。なお、回転角度(隣接する冷却板とのズレの大きさ)に関しては何ら限定しない。45度、60度、90度、等々、360を整数で除した大きさであると、何枚か積層した状態で元の位置に戻ることになり美観上、或いは放熱効果面で多少有利であるが、何枚か積層した状態で元の位置に戻るようにする特段の必要性はない。   The center of rotation is provided on the cooling plate. When it is rotated, there is always a portion that overlaps the adjacent cooling plate. Furthermore, in the present invention, it is essential to have a non-overlapping part (non-overlapping part). That is, the present invention is not particularly limited with respect to the overall shape of the cooling plate or the center point of rotation, but it is necessary that both overlapping and non-overlapping portions exist. Therefore, for example, the cooling plate is an equilateral triangle, and the center of the equilateral triangle is set as the center of rotation and the layers are rotated while being rotated by 120 degrees, or the circle is rotated about the center, etc. Since there is no overlapping part, it is excluded from the scope of rights of the present invention. Note that there is no limitation on the rotation angle (the amount of deviation from the adjacent cooling plate). When the size is obtained by dividing 360 by an integer such as 45 degrees, 60 degrees, 90 degrees, etc., it will return to the original position in a state where several sheets are laminated, which is somewhat advantageous in terms of aesthetics or heat dissipation effect. However, there is no special need to return to the original position in a state where several sheets are stacked.

積層して重複する部分は、冷却器として主に集熱部として機能し、重複しない部分は放熱部として機能する。冷却機能全般で言うと、集熱能力・放熱能力のいずれも大きいものが当然ながら好ましい。
集熱能力に関しては、発熱体との密着面積を大きくする、重複部分の体積を大きくする、積層の際に冷却板同士の密着性を上げる、といったことで対応できる。
放熱能力に関しては、放熱部自体を大きくする、放熱部先端側に向けてその厚みを減少させてゆく、先端にジグザグの切り込みを入れる等して表面積を拡大する、等々の方策がある。
The overlapping part overlaps mainly as a heat collecting part as a cooler, and the non-overlapping part functions as a heat dissipation part. In terms of the cooling function as a whole, it is naturally preferable that both the heat collecting ability and the heat releasing ability are large.
Regarding the heat collecting ability, it can be dealt with by increasing the contact area with the heating element, increasing the volume of the overlapping portion, and increasing the adhesion between the cooling plates during lamination.
Regarding the heat dissipation capability, there are various measures such as enlarging the heat dissipation part itself, decreasing the thickness toward the front end side of the heat dissipation part, and increasing the surface area by making a zigzag cut at the front end.

冷却板の材質は、本発明者が試作実験した範囲では、アルミニウム、銅、チタン、が好適であったが冷却器の目的に適うものであれば適宜選択して良く本発明において限定はしない。
冷却板の厚さは、0.15mm乃至1.50mm程度が現実的であるが、上述したように一定厚としない場合もあり得る。そこで、厚さに関しても本発明において限定はしない。
The material of the cooling plate is preferably aluminum, copper, or titanium as long as the inventor made a prototype experiment. However, the cooling plate may be appropriately selected as long as it meets the purpose of the cooler, and is not limited in the present invention.
The thickness of the cooling plate is practically about 0.15 mm to 1.50 mm, but it may not be a constant thickness as described above. Therefore, the thickness is not limited in the present invention.

冷却板の連結方法についても特に限定しない。本発明者が試作実験した範囲で言うと、ロウ付け、或いはカシメ加工によって連結するのが好適であった。特に、バーリングカシメ法にて一体化するという連結方法は、熱伝導性を損なわない確実な一体化、作業能率、ハトメやリベット等の別部品を使用しないことによる製造コストの低減、等々を総合的に勘案した結果最適であると思われた。   There is no particular limitation on the method of connecting the cooling plates. As far as the inventor has made a prototype experiment, it is preferable to connect them by brazing or caulking. In particular, the linking method of integrating by the burring caulking method comprehensively integrates reliable integration without impairing thermal conductivity, work efficiency, reduction of manufacturing costs by not using separate parts such as eyelets and rivets, etc. As a result, it seemed optimal.

バーリングカシメ法は元々、「孔のあいた部品」の孔に、「バーリング処理のなされた部品」の円筒状突出部を通した後加圧変形させて接合するという方法である。
これを本発明に適用する場合、冷却板には上記「孔」と「突出部」の双方を設けておく必要がある。そして、仮に冷却板を回転させずにそのまま積層すると、「孔」同士、「突出部」同士が対向することになるため、「孔」と「突出部」の配置が逆であるものと合わせ、二種類の冷却板必要となる。しかし本発明において各冷却板は、一定角度ずつ回転させて積層することを必須要件としているので、「孔」と「突出部」の設置位置を、この角度に合致するよう設計することで冷却板は一種類で済み好都合である。
The burring caulking method is originally a method in which the cylindrical projecting portion of the “part subjected to burring treatment” is passed through the hole of the “part with hole” and then subjected to pressure deformation and joined.
When this is applied to the present invention, it is necessary to provide both the above-mentioned “hole” and “projection” on the cooling plate. And, if it is stacked as it is without rotating the cooling plate, the `` holes '' and `` projections '' will be opposed to each other, so that the arrangement of `` holes '' and `` projections '' is reversed, Two types of cooling plates are required. However, in the present invention, each cooling plate is required to be rotated by a certain angle and stacked. Therefore, the installation position of the “hole” and the “projection” is designed so as to match this angle. Is one kind and convenient.

本発明に係る冷却器は、同形である冷却板複数枚を積層一体化してなる冷却器であって、該冷却板を、該冷却板上の定められた一点を中心に一定角度ずつ回転させながら積層固定することで、一の冷却板とこれに隣接する冷却板とに重複部分と非重複部分を形成させたものであることを特徴とするものであり、以下述べる如き効果を有する極めて高度な発明である。
(1) 切削して放熱フィンを形成させるという方法ではなく、複数の同形冷却板を積層固定して冷却器となすものであるので、製造コストが小さい。
(2) 放熱効率を向上させるために、放熱部を折曲させることが容易にできる。
The cooler according to the present invention is a cooler formed by laminating and integrating a plurality of cooling plates having the same shape, and rotating the cooling plate by a predetermined angle around a predetermined point on the cooling plate. By laminating and fixing, one cooling plate and a cooling plate adjacent to it are characterized in that overlapping portions and non-overlapping portions are formed. It is an invention.
(1) It is not a method of cutting and forming heat radiation fins, but a plurality of identical cooling plates are stacked and fixed to form a cooler, so that the manufacturing cost is low.
(2) In order to improve the heat dissipation efficiency, the heat dissipation portion can be easily bent.

本発明に係る冷却器の一例を概略的に示す概略斜視図である。It is a schematic perspective view which shows roughly an example of the cooler concerning this invention. 図1で示した冷却器の構成単位である冷却板を示す概略平面図である。It is a schematic plan view which shows the cooling plate which is a structural unit of the cooler shown in FIG. (a)(b)は、図2で示した冷却板を積層しようとしている状態を示すものであり、同図(a)は斜視図、同図(b)は概略断面図である。(A) (b) shows the state which is going to laminate | stack the cooling plate shown in FIG. 2, (a) is a perspective view, (b) is a schematic sectional drawing. (a)乃至(d)は、冷却器の形状についての他の例を示すいずれも概略平面図である。(A) thru | or (d) are all schematic plan views which show the other example about the shape of a cooler. (a)(b)は、冷却板の形状についての更に他の例を示すいずれも概略斜視図である。(A) and (b) are all schematic perspective views showing still other examples of the shape of the cooling plate. (a)は、冷却板の形状についての更に他の例を示す平面図であり、(b)はそれを積層して成る冷却器を示す概略斜視図である。(A) is a top view which shows the further another example about the shape of a cooling plate, (b) is a schematic perspective view which shows the cooler formed by laminating | stacking it. (a)乃至(c)は、冷却器の形状についての更に他の例を示すものであり、同図(a)(b)は一部分解概略斜視図、同図(c)は概略斜視図である。(A) thru | or (c) shows the further another example about the shape of a cooler, The figure (a) (b) is a partially exploded schematic perspective view, The figure (c) is a schematic perspective view. is there.

図1は、本発明に係る冷却器1(以下「本発明冷却器1」という)の一例を示すものである。図より明らかなように本例の本発明冷却器1は、平面的に観察すると、正六角形の各辺に、該各辺を一辺とする正方形(本例の場合正確には正方形ではなく最外辺は円弧である)を延出させた形状のものである。
本発明冷却器1はまた、冷却板2を複数枚(図示した例では9枚)積層してなるものであり、各冷却板2は図2に示す形状のものである。本例の冷却板2は、正方形部分を二つ、点対称位置に配置したという形状のものであるが、一つだけ設けても良いし、三つを等間隔(120度間隔)で設けるようにしても良い(図示略)。
なお本例の冷却板2には、厚さ約1.0mmのアルミニウム板を用いたので、本発明冷却器1の厚さは、約9.0mmとなっている。
FIG. 1 shows an example of a cooler 1 according to the present invention (hereinafter referred to as “the present invention cooler 1”). As is apparent from the figure, the cooler 1 of the present example, when observed in a plan view, has a square with each side as one side (in the case of this example, not the square, but the outermost side). The side is an arc).
The cooler 1 of the present invention is formed by laminating a plurality of cooling plates 2 (9 in the illustrated example), and each cooling plate 2 has a shape shown in FIG. The cooling plate 2 of this example has a shape in which two square portions are arranged at point-symmetrical positions, but only one may be provided, or three may be provided at equal intervals (120 degree intervals). It may be (not shown).
In addition, since the aluminum plate about 1.0 mm thick was used for the cooling plate 2 of this example, the thickness of this invention cooler 1 is about 9.0 mm.

本例の冷却板2は、図2に示すようにその正六角形部分内に二つの円孔21と、バーリング加工による二つの円筒状突出22が設けられている。そしてこれに次の冷却板2を積層してゆくのであるが、その際60度だけずれる位置関係となるようにする。これによって正方形状部分は、隣の辺に移るような形となる。即ち、円孔21と円筒状突出22とは中心角60度ずれた位置関係にあると言える。
また本例では、円孔21を突出した円筒状突出22を加圧変形させる加工が加えられるので、この変形が冷却板2の実質厚さを変更することがないよう円孔21には図3に示すような皿穴加工を施している。これによって冷却板2同士の密着性が保持される。
なお、冷却板同士の連結方法は、これ以外にも種々あり状況が要求するものを適宜採用して良い。また、以下の図面においては、円孔21、円筒状突出22、その他連結のための構造部分についての描出を省略するものとする。
As shown in FIG. 2, the cooling plate 2 of this example is provided with two circular holes 21 and two cylindrical protrusions 22 formed by burring in its regular hexagonal portion. And the next cooling plate 2 is laminated | stacked on this, but it is made to become the positional relationship shifted | deviated only 60 degree | times in that case. As a result, the square portion is shaped to move to the adjacent side. That is, it can be said that the circular hole 21 and the cylindrical protrusion 22 are in a positional relationship shifted by a central angle of 60 degrees.
Moreover, in this example, since the process which pressurizes and deforms the cylindrical protrusion 22 which protruded the circular hole 21 is added, in order to prevent this deformation | transformation from changing the substantial thickness of the cooling plate 2, FIG. The countersunk holes shown in are applied. Thereby, the adhesion between the cooling plates 2 is maintained.
In addition, there are various methods for connecting the cooling plates to each other, and a method required by the situation may be adopted as appropriate. In the following drawings, the depiction of the circular hole 21, the cylindrical protrusion 22, and other structural parts for connection is omitted.

このように、隣接する冷却板を一定角度(60度)ずつずらして積層すると、正六角形部分は相互に密着して重複部分Aとなり、正方形部分は非重複部分Bとなる。これは、三枚目以降を積層する場合も同様であり、九枚積層した段階で、非重複部分Bの厚さはどこも1mmであるが、重複部分Aの厚さは9mmというものになる。これを冷却の対象である発熱電子部品に設置すると、重複部分Aは集熱部として、非重複部分Bは放熱部として機能することになる。
In this way, when adjacent cooling plates are stacked while being shifted by a certain angle (60 degrees), the regular hexagonal portions are in close contact with each other to become an overlapping portion A, and the square portion becomes a non-overlapping portion B. The same applies to the case where the third and subsequent sheets are laminated. At the stage where nine sheets are laminated, the thickness of the non-overlapping portion B is 1 mm everywhere, but the thickness of the overlapping portion A is 9 mm. When this is installed in a heat generating electronic component that is a cooling target, the overlapping portion A functions as a heat collecting portion, and the non-overlapping portion B functions as a heat radiating portion.

前例の冷却板2は、正六角形の二辺に各辺を一辺とする正方形を延出させた形状のものであった。しかし本発明はこれに限定するものではない。発熱体の性状、設置空間の制約、等々によって、正方形ではなく長方形にしたり、或いは図4(a)乃至(d)の如き形状のものとしても良い。   The cooling plate 2 of the previous example had a shape in which a square having each side as one side was extended to two sides of a regular hexagon. However, the present invention is not limited to this. Depending on the properties of the heating element, restrictions on the installation space, etc., it may be rectangular instead of square, or it may have a shape as shown in FIGS.

同図(a)(b)は、円弧上から二本の接線を延ばし、この円と同心で径の大きい円とこの接線で形成される図形の例であり、同図(a)の場合には二接線はほぼ平行(交差角度が小さい)、(b)の場合には交差角度が大きい例である。どちらも積層後の形状は、平面的に見て該径の大きい円に収まっておりデザイン的に好ましいものとなっているが、集熱・放熱の形態に関しては差異がある。またいずれも、60度ずつずらして積層するよう設計されているが、回転させる角度を大きくすれば(例えば90度)非重複部分Bの小さい冷却器になり、小さくすれば(例えば30度)非重複部分Bの大きい冷却器になる。   The figure (a) (b) is an example of a figure formed by extending two tangent lines from an arc and concentric with this circle and having a large diameter and this tangent line. Is an example in which the two tangents are almost parallel (the intersection angle is small), and in the case of (b), the intersection angle is large. In both cases, the shape after stacking is contained in a circle having a large diameter when viewed in plan, which is preferable in terms of design, but there is a difference in the form of heat collection and heat dissipation. Both are designed to be stacked by shifting by 60 degrees, but if the rotation angle is increased (for example, 90 degrees), the cooler has a small non-overlapping portion B, and if the angle is decreased (for example, 30 degrees), it is not It becomes a cooler with a large overlapping part B.

同図(c)は、冷却板2の形状が長方形である例である。これを90度ずつ回転させて冷却器1とするものである。本例では長方形の辺長さの比を2:1とし、重複部分A、非重複部分Bとも正方形となっている例である。
同じ長方形でも、回転の中心位置を変えると冷却器の全体形状は違ってくる。その一例を同図(d)に示す。
FIG. 3C shows an example in which the shape of the cooling plate 2 is a rectangle. This is rotated by 90 degrees to form the cooler 1. In this example, the ratio of the side lengths of the rectangles is 2: 1, and the overlapping portion A and the non-overlapping portion B are both square.
Even if the same rectangle is used, the overall shape of the cooler will change if the center of rotation is changed. An example thereof is shown in FIG.

放熱能力を向上させるためには、上述したように積層したときに非重複部分Bの面積が大きくなるように設計するのが基本であるが、これ以外に例えば図5(a)(b)のような方法を用いても良い。
同図(a)は非重複部分Bの先端側をジグザグ状に切欠した例、(b)は非重複部分Bの厚さを先端側に向けて薄くした例、を示すものである。いずれの場合も、放熱能力は向上する。
In order to improve the heat dissipation capability, it is fundamental to design so that the area of the non-overlapping portion B becomes large when laminated as described above, but other than this, for example, as shown in FIGS. Such a method may be used.
FIG. 4A shows an example in which the front end side of the non-overlapping portion B is cut out in a zigzag shape, and FIG. 5B shows an example in which the thickness of the non-overlapping portion B is reduced toward the front end side. In either case, the heat dissipation capability is improved.

以上冷却板2が平板(厳密には図5(b)は平板ではないが)の例を示してきた。冷却板2が放熱するということは、接触する空気に熱エネルギーを伝達することであり、その空気が暖められていない空気と連続的に入れ替わることで放熱が図れるということになる。
一方、暖められた空気は上方に移動しようとする。
従って、放熱部分を折曲或いは湾曲させ、空気の上方への移動が案内されるようにすると、空気の循環は円滑になり放熱効果が増大する。
The cooling plate 2 has been shown as an example of a flat plate (strictly, FIG. 5B is not a flat plate). When the cooling plate 2 radiates heat, it means that heat energy is transmitted to the contacting air, and heat can be radiated by continuously replacing the air with unwarmed air.
On the other hand, the warmed air tends to move upward.
Therefore, if the heat dissipating part is bent or curved so that the upward movement of air is guided, the air circulation becomes smooth and the heat dissipating effect is increased.

図6(a)(b)はその一例を示すものである。冷却板2の全体形状は、図2で示したものと同形であるが、図2(a)で示した正六角形部分と正方形部分との分画線を稜線として折り曲げられている点で構造が異なっている。そしてこれを図3で示した手法で積層固定してゆく。すると、図2(b)のような冷却器1となる。   FIGS. 6A and 6B show an example. The overall shape of the cooling plate 2 is the same as that shown in FIG. 2, but the structure is such that the dividing line between the regular hexagonal part and the square part shown in FIG. Is different. Then, this is laminated and fixed by the method shown in FIG. Then, the cooler 1 as shown in FIG.

図7(a)は、稜線が一本ではなく、折曲によってV字形部分が形成された例を示す。暖められた空気が上昇散逸しやすくなることで更なる放熱効果の向上が期待される。
図7(b)は、集熱部の平面形状を円形とした例であり、これに起因することになるが非重複部分を湾曲させた例である。放熱部分の大きさ・形状、湾曲の程度については設計上の要求に従って適宜調整すれば良く、図示した形状に限られるものではない。
図7(c)は、冷却板2の形状は図1或いは図6と同形であり、積層枚数も同じく九枚であるが、折曲稜線位置並びに傾斜角度が3種である例を示すものである。これを、非重複部分Bの傾斜は下層三枚では緩く(水平に近く)、上層三枚ではきつく(直角に近く)、中層三枚はその間の傾斜となるよう折曲した例である。
FIG. 7A shows an example in which a V-shaped portion is formed by bending instead of a single ridgeline. It is expected that the heat dissipation effect will be further improved by the warmed air being easily dissipated and dissipated.
FIG. 7B is an example in which the planar shape of the heat collecting portion is circular, and this is an example in which a non-overlapping portion is curved although this is due to this. The size and shape of the heat radiating portion and the degree of curvature may be appropriately adjusted according to design requirements, and are not limited to the illustrated shapes.
FIG. 7C shows an example in which the shape of the cooling plate 2 is the same as that in FIG. 1 or FIG. 6 and the number of stacked layers is also nine, but there are three types of bending ridge line positions and inclination angles. is there. This is an example in which the non-overlapping portion B is bent so that the three lower layers have a gentle slope (nearly horizontal), the upper three layers have a tight slope (near a right angle), and the middle three layers have a slope therebetween.

1 本発明に係る冷却器
2 冷却板
21 円孔
22 円筒状突出
A 重複部分
B 非重複部分
DESCRIPTION OF SYMBOLS 1 Cooler based on this invention 2 Cooling plate 21 Circular hole 22 Cylindrical protrusion A Overlapping part B Non-overlapping part

Claims (1)

同形である冷却板複数枚を積層一体化してなる冷却器であって、該冷却板を、該冷却板上の定められた一点を中心に一定角度ずつ回転させながら積層固定することで、一の冷却板とこれに隣接する冷却板とに重複部分と非重複部分を形成させたものであることを特徴とする冷却器。   A cooler in which a plurality of cooling plates having the same shape are laminated and integrated, and the cooling plate is laminated and fixed while rotating by a predetermined angle around a predetermined point on the cooling plate, A cooler characterized in that an overlapping portion and a non-overlapping portion are formed on a cooling plate and a cooling plate adjacent thereto.
JP2012132509A 2012-06-12 2012-06-12 Cooler Expired - Fee Related JP5977091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132509A JP5977091B2 (en) 2012-06-12 2012-06-12 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132509A JP5977091B2 (en) 2012-06-12 2012-06-12 Cooler

Publications (2)

Publication Number Publication Date
JP2013258219A true JP2013258219A (en) 2013-12-26
JP5977091B2 JP5977091B2 (en) 2016-08-24

Family

ID=49954423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132509A Expired - Fee Related JP5977091B2 (en) 2012-06-12 2012-06-12 Cooler

Country Status (1)

Country Link
JP (1) JP5977091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190014664A (en) * 2017-08-03 2019-02-13 주식회사 알파머티리얼즈 Multi heat spreader

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120057U (en) * 1984-07-10 1986-02-05 日本電気株式会社 Heat sink for semiconductor devices
JP2008170060A (en) * 2007-01-11 2008-07-24 T Rad Co Ltd Herringbone type liquid cooled heat sink
JP2009024933A (en) * 2007-07-19 2009-02-05 Sony Corp Thermal diffusion device and manufacturing method for it
JP3148593U (en) * 2008-12-08 2009-02-19 奇▲こう▼科技股▲ふん▼有限公司 Structure of heat dissipation fin set with reduced pressure loss of heat dissipation fluid and heat dissipation module using the heat dissipation fin set
JP2009283672A (en) * 2008-05-22 2009-12-03 Yaskawa Electric Corp Electronic apparatus cooling device
US20110114301A1 (en) * 2009-11-19 2011-05-19 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation apparatus and method for manufacturing the same
JP2011163622A (en) * 2010-02-08 2011-08-25 Furukawa Electric Co Ltd:The Jointed part of heat dissipation fin and heat pipe and method of jointing the heat dissipation fin and the heat pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120057U (en) * 1984-07-10 1986-02-05 日本電気株式会社 Heat sink for semiconductor devices
JP2008170060A (en) * 2007-01-11 2008-07-24 T Rad Co Ltd Herringbone type liquid cooled heat sink
JP2009024933A (en) * 2007-07-19 2009-02-05 Sony Corp Thermal diffusion device and manufacturing method for it
JP2009283672A (en) * 2008-05-22 2009-12-03 Yaskawa Electric Corp Electronic apparatus cooling device
JP3148593U (en) * 2008-12-08 2009-02-19 奇▲こう▼科技股▲ふん▼有限公司 Structure of heat dissipation fin set with reduced pressure loss of heat dissipation fluid and heat dissipation module using the heat dissipation fin set
US20110114301A1 (en) * 2009-11-19 2011-05-19 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation apparatus and method for manufacturing the same
JP2011163622A (en) * 2010-02-08 2011-08-25 Furukawa Electric Co Ltd:The Jointed part of heat dissipation fin and heat pipe and method of jointing the heat dissipation fin and the heat pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190014664A (en) * 2017-08-03 2019-02-13 주식회사 알파머티리얼즈 Multi heat spreader
KR102008227B1 (en) * 2017-08-03 2019-10-21 주식회사 알파머티리얼즈 Multi heat spreader

Also Published As

Publication number Publication date
JP5977091B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP4996332B2 (en) Heat sink and manufacturing method thereof
TWI523167B (en) Paper sheet radiator
WO2020137569A1 (en) Heatsink
EP2128522A1 (en) Illuminating device and heat-dissipating structure thereof
JP2009245916A (en) Lighting system, and heat-dissipating structure thereof
TW201144737A (en) Heat sink
KR101194029B1 (en) Heatsink for LED light
JP2006279004A (en) Heat sink with heat pipe
JP2010272861A (en) Heat dissipation device
EP2299488B1 (en) Heat-dissipating fin assembly with heat-conducting structure
US20120103573A1 (en) Heat dissipating apparatus with vortex generator
JP2009099740A (en) Cooling device for housing
KR101117304B1 (en) Led lamp having radiant heat structure
JP2011049553A (en) Heat dissipation device
JP5977091B2 (en) Cooler
CN201726633U (en) Hollow laminar type cooling plate unit structure
CN112020268B (en) Heat dissipation device
JP4948462B2 (en) Thin heat sink
JP2013172047A (en) Radiator with radiation fin
JP6071299B2 (en) Heat sink device and lighting device
JP6316399B2 (en) Lighting device
JP4948461B2 (en) heatsink
US20100139905A1 (en) Combination Heat Sink Formed of a Stack of Heat Spreader Sheet Members
US20100079950A1 (en) Radiating Fin and Thermal Module Formed Therefrom
TWI437202B (en) Array type porous media heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5977091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees