JP2011121063A - Continuous casting method with soft reduction - Google Patents

Continuous casting method with soft reduction Download PDF

Info

Publication number
JP2011121063A
JP2011121063A JP2009278467A JP2009278467A JP2011121063A JP 2011121063 A JP2011121063 A JP 2011121063A JP 2009278467 A JP2009278467 A JP 2009278467A JP 2009278467 A JP2009278467 A JP 2009278467A JP 2011121063 A JP2011121063 A JP 2011121063A
Authority
JP
Japan
Prior art keywords
slab
thickness
light
solidification
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009278467A
Other languages
Japanese (ja)
Other versions
JP5476959B2 (en
JP2011121063A5 (en
Inventor
Michiya Komaki
倫哉 駒城
Koichi Tsutsumi
康一 堤
Hiroshi Awajiya
浩 淡路谷
Toru Matsuba
透 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009278467A priority Critical patent/JP5476959B2/en
Publication of JP2011121063A publication Critical patent/JP2011121063A/en
Publication of JP2011121063A5 publication Critical patent/JP2011121063A5/ja
Application granted granted Critical
Publication of JP5476959B2 publication Critical patent/JP5476959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for subjecting a slab of high internal quality having reduced center segregation and center porosities to soft reduction continuous casting only by the addition of a simple apparatus. <P>SOLUTION: In the continuous casting method with soft reduction for steel in which drawing with soft reduction is performed in such a manner that the opening degree of rolls in the middle period of solidification is made wider as it goes to the downstream side to introduce thickness expansion of a slab, and next, the opening degree of rolls in the last stage of the solidification is made narrower as it goes to the downstream side, the thickness of the slab after the soft reduction is measured at least in two parts of the edge part in the width direction of the slab and the part other than the edge part, a soft reduction evaluation value (ΔR) is obtained from the thickness Te of the slab at the edge part in the width direction and the thickness Tc of the slab other than the edge part in the width direction, and the opening degree S<SB>0</SB>of the rolls, the opening degree S<SB>1</SB>and S<SB>2</SB>of the rolls at the initial stage of the solidification, and on the basis of the soft reduction evaluation value (ΔR), the control of the opening degree of rolls is performed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、軽圧下連続鋳造方法に係り、特に、連続鋳造鋳片の厚み中心部に見られるSやP、Mnなどの不純物元素の偏析を防止し、センターポロシティの少ない良好な内部品質を有する鋳片を鋳造することのできる軽圧下連続鋳造方法に関するものである。   The present invention relates to a light pressure continuous casting method, and in particular, prevents segregation of impurity elements such as S, P, Mn, etc. found in the thickness center part of a continuous cast slab, and has good internal quality with little center porosity. The present invention relates to a light rolling continuous casting method capable of casting a slab.

溶鋼を凝固させつつ引抜いて連続的に鋳造する、いわゆる連続鋳造方法は、製品(鋼)の歩留りが良好で生産性が高いという特徴があり、溶鋼から直接、スラブやブルーム、ビレット等の鋳片を連続的に製造できる鋳造方法として広く知られている。しかし、この連続鋳造技術は、特に鋼の場合、鋳片の厚み中心部にCやP、S等の元素が濃化(中心偏析)しやすいという問題があった。   The so-called continuous casting method, in which molten steel is drawn while being solidified and continuously cast, is characterized by good product (steel) yield and high productivity. Slabs, blooms, billets, and other cast pieces directly from the molten steel Is widely known as a casting method capable of continuously producing. However, this continuous casting technique has a problem that elements such as C, P, and S tend to concentrate (center segregation) in the center of the thickness of the slab, particularly in the case of steel.

そこで、鋼を連続鋳造する際に生じる前記中心偏析を低減させるため、従来、溶鋼が凝固する収縮時の溶鋼流動に伴って発生する偏折に対し、凝固末期のロール間隔を調整し、凝固完了前の鋳片を軽圧下する技術が提案されている。   Therefore, in order to reduce the center segregation that occurs during continuous casting of steel, conventionally, the roll interval at the end of solidification is adjusted for the bending that occurs with the molten steel flow during shrinkage when the molten steel solidifies to complete solidification. A technique for lightly reducing the previous slab has been proposed.

例えば、特許文献1では、鋼を連続鋳造するに際し、モールドと鋳片の液相線クレーターエンドとの間(凝固中期)の凝固シェルの部分については、バルジング力を積極的に惹起させて、未凝固層の厚さを増大させ(厚み膨張)、次いで、液相線クレーターエンドと固相線クレーターエンドとの間(凝固末期)の鋳片に対しては、軽圧下を加えることにより、中心偏析を低減させる技術が開示されている。   For example, in Patent Document 1, when steel is continuously cast, a bulging force is positively induced in a portion of a solidified shell between a mold and a liquid phase crater end of a slab (mid-solidification stage). By increasing the thickness of the solidified layer (thickness expansion) and then applying light pressure to the slab between the liquidus crater end and the solidus crater end (end of solidification), central segregation is achieved. A technique for reducing the above is disclosed.

また、特許文献2では、セグメントの各ロール軸受部にロードセルを設置し、オフラインで上部セグメントに所定の負荷をかけ、その負荷に対する各ロールの歪みを測定して負荷−歪み量線を作成した後、オンライン上でロードセルによりロール反力を測定し、得られたロール反力と前記負荷−歪み量曲線とから歪み量を求め、この歪み量の分だけロールを移動させてロール距離(ロール開度)を一定に保持する連続鋳造方法が開示されている。   Moreover, in Patent Document 2, after installing a load cell on each roll bearing portion of a segment, applying a predetermined load to the upper segment offline, measuring strain of each roll with respect to the load, and creating a load-strain amount curve The roll reaction force is measured on-line with a load cell, the amount of strain is obtained from the obtained roll reaction force and the load-strain amount curve, and the roll is moved by the amount of the strain to roll distance (roll opening degree). ) Is kept constant.

そして、特許文献3では、連続鋳造中の未凝固溶鋼を含む状態の鋳片を多数対のロールにより軽圧下しつつ完全凝固状態に導く軽圧下連続鋳造方法において、鋳片が軽圧下によって完全に凝固状態した後に該鋳片の厚さを測定し、その測定厚さが所定の許容範囲を越える場合に、ロール圧下量を調整することによって、鋳片のひずみ速度を制御する軽圧下連続鋳造方法が開示されている。   And in patent document 3, in the light reduction continuous casting method which leads the slab containing the unsolidified molten steel in continuous casting to a completely solidified state while lightly reducing by a plurality of pairs of rolls, the slab is completely reduced by light reduction. A light rolling continuous casting method that controls the strain rate of a slab by measuring the thickness of the slab after solidification and the roll thickness is adjusted when the measured thickness exceeds a predetermined allowable range. Is disclosed.

特開昭60−6254号公報JP-A-60-6254 特開平5−131253号公報JP-A-5-131253 特開昭63−278654号公報JP-A 63-278654

特許文献1に記載された中心偏折の低減技術は、初期のロール開度を設定しておく方法であって、鋳片が実際にどの程度バルジングし、そのためにどれだけの軽圧下力を加えることが必要かという動的な制御については考慮していない。しかし、軽圧下に要する荷重は、鋳造条件(鋳造速度、溶鋼加熱度、2次冷却条件)や鋳片の化学成分などにより刻々と変化し、ロールに働く軽圧下の反力もまた刻々と変動するため、鋳片の厚みは初期設定のロール間隙どおりにはならないのが普通である。従って、所定の軽圧下が行なわれたかどうかを判断することができず、結果として、中心偏折があまり低減しない場合も多かった。   The technique for reducing the center deflection described in Patent Document 1 is a method of setting the initial roll opening, and how much the slab is actually bulged and how much light rolling force is applied. It does not consider the dynamic control of whether or not it is necessary. However, the load required for light reduction changes every moment depending on casting conditions (casting speed, molten steel heating degree, secondary cooling conditions) and chemical composition of the slab, and the light pressure reaction force acting on the roll also changes every moment. For this reason, the thickness of the slab usually does not match the default roll gap. Therefore, it has not been possible to determine whether or not a predetermined light reduction has been performed, and as a result, there have been many cases where the center deflection is not reduced so much.

特許文献2に記載された連続鋳造方法については、軽圧下を行う各ロールにそれぞれロードセルを設置する必要があり、従って、この方法については、さらなる設備投資を必要とするため費用が嵩むという問題があった。   With respect to the continuous casting method described in Patent Document 2, it is necessary to install a load cell in each roll that performs light reduction, and therefore, this method has a problem that the cost is increased because it requires further capital investment. there were.

特許文献3に開示されている鋳造技術は、鋳造後の鋳片の厚みを測定し、この厚みが所定の範囲に入っているかどうかを判定することで、ロールの圧下量を調整していく方法である。ところが、軽圧下による中心偏析の低減技術において重要なことは、中心部が最終凝固するまでの圧下勾配(単位時間あたりの圧下量)を制御することであり、最終的な鋳片厚みだけから軽圧下の良否を判断することはできない。   The casting technique disclosed in Patent Document 3 is a method of adjusting the roll reduction amount by measuring the thickness of a cast slab after casting and determining whether or not the thickness is within a predetermined range. It is. However, what is important in the technology for reducing center segregation by light reduction is to control the reduction gradient (the amount of reduction per unit time) until the center is finally solidified. It cannot be judged whether the reduction is good or bad.

そこで、本発明の目的は、これらの従来技術が抱えている上述した問題を解決し、特に、荷重測定などに必要とされる高価な設備を使用することなく、簡単な装置の追加だけで中心偏析やセンターポロシティの少ない内部品質の良好な鋳片を軽圧下連続鋳造する方法を提案することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of these conventional technologies, and in particular, by adding a simple device without using expensive equipment required for load measurement or the like. The purpose is to propose a method for continuously casting a slab of good internal quality with little segregation and center porosity under light pressure.

発明者らは、鋼片の連続鋳造に際し、凝固中期のロール開度を凝固初期(モールド直下)のロール開度Sから徐々に広げていく積極的なバルジング力を作用させることにより、鋳片内未凝固層の厚さを増大させ、次いで、凝固末期においては、ロール開度を徐々に狭めて軽圧下する実験を行った(以下、このような軽圧下パターンを「IBSR」と略記する)。そして、このような鋳造を行った後の鋳片についての幅方向における厚み分布を調査した。その結果、
a.IBSRを行った場合、鋳片の幅方向に厚み分布を生じることが多く、幅方向端部の鋳片厚みTeよりも、幅方向中央部の鋳片厚みTcの方が厚くなる場合が多いこと、
b.同じIBSR条件でも、鋳片の2次冷却を強化した場合や、成分的に硬さの硬い鋳片の場合、厚み差(Tc−Te)が大きくなること、
c.ロール開度の差(S−S)と鋳片厚み差(Tc−Te)との間には相関が認められること、
などの知見を得た。
The inventors have applied a positive bulging force that gradually increases the roll opening in the middle of solidification from the roll opening S 0 in the initial stage of solidification (directly under the mold) during continuous casting of steel slabs. The thickness of the inner non-solidified layer was increased, and then, at the end of solidification, an experiment was conducted in which the roll opening was gradually narrowed to lightly reduce the pressure (hereinafter, such a light reduction pattern is abbreviated as “IBSR”). . And the thickness distribution in the width direction about the slab after performing such casting was investigated. as a result,
a. When IBSR is performed, the thickness distribution often occurs in the width direction of the slab, and the slab thickness Tc at the center in the width direction is often thicker than the slab thickness Te at the width direction end. ,
b. Even under the same IBSR conditions, when the secondary cooling of the slab is strengthened, or in the case of a slab having a hard component, the thickness difference (Tc-Te) becomes large.
c. There is a correlation between the difference in roll opening (S 0 -S 1 ) and the slab thickness difference (Tc-Te),
We obtained knowledge such as.

本発明は、これらの知見を踏まえて、さらに検討を加えて開発した方法であって、モールド直下から機端までに複数のロールが配設された連続鋳造装置を用いて鋼の連続鋳造を行う際に、凝固中期におけるロールの開度を下流側にいくに従い広げて鋳片の厚み膨張を導き、次いで、凝固末期におけるロール開度を下流側にいくに従い狭める軽圧下引き抜きを行う連続鋳造方法において、鋳片の幅方向端部と端部以外との少なくとも2箇所で前記軽圧下後の鋳片厚みを測定し、幅方向端部鋳片厚みTeと幅方向端部以外の鋳片厚みTc、および凝固初期のロール開度Sと厚み膨張時ロール開度S、軽圧下時ロール開度Sについての情報から、軽圧下評価値(ΔR)を求め、この軽圧下評価値(ΔR)に基づいてロール開度の制御を行う、ことを特徴とする鋼の軽圧下連続鋳造方法である。 The present invention is a method developed by further study based on these findings, and performs continuous casting of steel using a continuous casting apparatus in which a plurality of rolls are arranged from directly under the mold to the machine end. In the continuous casting method, the roll opening in the middle solidification phase is expanded as it goes downstream, leading to slab thickness expansion, and then the roll opening at the end of solidification is reduced as it goes downstream The thickness of the slab after the light reduction is measured at at least two locations, ie, the width direction end and other than the end of the slab, and the width direction end slab thickness Te and the slab thickness Tc other than the width direction end, From the information on the roll opening S 0 at the initial stage of solidification, the roll opening S 1 at the time of thickness expansion, and the roll opening S 2 at the time of light reduction, a light reduction evaluation value (ΔR) is obtained, and this light reduction evaluation value (ΔR) The roll opening is controlled based on It is soft reduction continuous casting method of steel according to claim.

本発明に係る前記軽圧下連続鋳造方法においては、
(1)前記軽圧下評価値(ΔR)を、下記式(1)に基づき算出し、このΔRに基づきロール開度S、Sのいずれか少なくとも一方を修正すること、例えば、
ΔRmm=(S−S)mm−(Tc−Te)mm (1)
(2)前記凝固中期とは、モールド直下を除く鋳片の液相線クレーターエンドまでの間を意味し、前記凝固末期とは、液相線クレーターエンドと固相線クレーターエンドとの間を意味すること、
がより好ましい解決手段である。
In the light rolling continuous casting method according to the present invention,
(1) The light pressure reduction evaluation value (ΔR) is calculated based on the following formula (1), and at least one of the roll openings S 1 and S 2 is corrected based on the ΔR,
ΔRmm = (S 1 −S 0 ) mm− (Tc−Te) mm (1)
(2) The middle solidification means between the liquid phase crater end of the slab except directly under the mold, and the last solidification means between the liquid phase crater end and the solid phase crater end. To do,
Is a more preferable solution.

本発明では、鋳造後の鋳片厚みを測定し、この発明に特有の制御指標である「軽圧下評価値ΔR」を算出するという簡単な方法だけで、適正な軽圧下パターン(IBSR)での鋳片の軽圧下連続鋳造を行うことができるので、軽圧下量の過不足による中心偏析の悪化や、センターポロシティの増大を未然に防ぐことができ、内部品質の良好な鋳片を安定して製造することができる。   In the present invention, the thickness of the slab after casting is measured, and the “light reduction evaluation value ΔR”, which is a control index peculiar to the present invention, is calculated only by a simple method, with an appropriate light reduction pattern (IBSR). Since continuous slab casting of light slabs can be performed, deterioration of center segregation due to excessive or insufficient light squeezing amount and increase in center porosity can be prevented in advance, and stable slabs with good internal quality can be prevented. Can be manufactured.

連続鋳造設備の略線図である。It is a basic diagram of a continuous casting equipment. (a)、(b)はそれぞれ、軽圧下パターンI、IIを示すグラフである。(A), (b) is a graph which shows the light reduction patterns I and II, respectively. (a)、(b)、(c)はそれぞれ、鋳片のバルジングの形態とそれを軽圧下する模様を示す説明図である。(A), (b), (c) is explanatory drawing which respectively shows the form of the bulging of a slab, and the pattern which lightly reduces it. ΔRと偏析度C/Co(Mn)との関係を示すグラフである。It is a graph which shows the relationship between (DELTA) R and segregation degree C / Co (Mn).

図1は、本発明方法の実施に用いられる連続鋳造設備の概略図である。この設備を使って行われる連続鋳造では、モールドM内では、鋳片表面となる凝固シェルが急冷によって生成し、その後、上記凝固シェルは2次冷却(散水冷却)を経て、凝固厚みが次第に増加し、遂には鋳片を形造るに至る。
このような連続鋳造設備の場合、一般には、水平帯の部分において、鋳片の中心部が最終凝固するようになっている。その水平帯にはセグメントと呼ばれる、複数対のロールがひとつのフレームに支持された装置が、鋳片に面して複数台設置されている(図1では、セグメントを一つだけ図示)。そして、最終凝固時点の前後において、該当するセグメントの軽圧下ロール群で鋳片の軽圧下が行われる。この例では、セグメント単位で複数対のロール群の圧下量および圧下勾配を設定できる。
FIG. 1 is a schematic view of a continuous casting facility used for carrying out the method of the present invention. In continuous casting performed using this equipment, a solidified shell on the surface of the slab is generated by rapid cooling in the mold M, and then the solidified shell gradually increases in the solidified thickness through secondary cooling (water spray cooling). Eventually, slabs were formed.
In the case of such a continuous casting facility, generally, the center portion of the slab is finally solidified in the horizontal belt portion. In the horizontal band, a plurality of devices called a segment, each having a plurality of pairs of rolls supported by one frame, are installed facing the cast piece (only one segment is shown in FIG. 1). Then, before and after the final solidification time, the slab is lightly reduced by the light reduction roll group of the corresponding segment. In this example, the reduction amount and the reduction gradient of a plurality of pairs of roll groups can be set on a segment basis.

本発明において、前記連続鋳造設備の最下流側の位置には、鋳片の幅方向の厚み分布を測定するための厚み計4が設置されており、この厚み計4にて、鋳片の幅方向端部の厚みTeとそれ以外の部分の厚み(通常は中央部の厚み)Tcとがオンラインで測定できる。そして、その測定結果は演算装置5に送られ、演算装置5では鋳片厚み(Te、Tc)の測定値とロール開度(S、S、S)とから、後で詳しく述べる軽圧下評価値ΔRを算出し、その軽圧下評価値ΔRに基づき、ロール開度の修正量を各セグメントに出力して制御する。 In the present invention, a thickness meter 4 for measuring a thickness distribution in the width direction of the slab is installed at a position on the most downstream side of the continuous casting facility. The thickness Te of the end portion in the direction and the thickness of the other portion (usually the thickness of the central portion) Tc can be measured online. Then, the measurement result is sent to the arithmetic unit 5, and the arithmetic unit 5 uses a measured value of the slab thickness (Te, Tc) and the roll opening degree (S 0 , S 1 , S 2 ) to explain in detail later. A roll-down evaluation value ΔR is calculated, and based on the light roll-down evaluation value ΔR, a roll opening correction amount is output to each segment for control.

以下、前記ロール開度の修正量算出の方法について説明する。
まず、軽圧下パターンIBSRの一例を図2に示す。まず、図2(a)は、モールド直下の凝固初期のロール開度Sから、厚み膨張時ロール開度Sまでの位置は、その間隔を広げて鋳片の厚み膨張(バルジング)が起きるようにし、その後の凝固末期は、ロール間隔を狭くして軽圧下が行われるようにする軽圧下時ロール開度Sを狭くする圧下パターンIを示す。一方、圧下パターンIIを示す図2(b)は、バルジングを促進させたあとの圧下量を少なくし、凝固末期における軽圧下時ロール開度Sを、凝固初期のロール開度Sよりも広げる圧下パターンである。
Hereinafter, a method for calculating the correction amount of the roll opening will be described.
First, an example of the light pressure pattern IBSR is shown in FIG. First, FIG. 2A shows that the position from the roll opening degree S 0 at the initial stage of solidification directly under the mold to the roll opening degree S 1 during the thickness expansion is widened to cause the thickness expansion (bulging) of the slab. and so, the subsequent solidification end, shows a reduction pattern I to reduce the soft reduction at the roll angle S 2 to make soft reduction is carried out by reducing the roll gap. On the other hand, FIG. 2 (b) showing the rolling pattern II, to reduce the amount of reduction after to promote bulging, the soft reduction at the roll angle S 2 in the coagulation end, than the freezing initial roll opening S 0 It is a rolling reduction pattern.

両圧下パターンI、IIともバルジングを促進させたときの断面形状は、図3(a)に示すように、幅方向端部の鋳片厚みTeに対し、幅方向中央部の鋳片厚みTcが膨らんだ断面形状となる。このときの幅中央部の鋳片厚みTcは、凝固中期のロール開度Sにほぼ等しくなる。一方、鋳片の端部は、モールドを出たときにはシェル状であるが、既に凝固が完了している部分であるから、熱収縮や凝固収縮を無視すれば、このときの端部の鋳片厚みTeは、凝固初期のロール開度Sとほぼ等しくなる。以下、本発明において、Teとは完全凝固した金属片幅方向の端部の厚みを指し、鋳片幅:2100mm程度、鋳片厚:250mm程度で、端部よりほぼ100mm以内の部分、一方、Tcとは、上記の鋳片幅方向端部を除く、中央部寄り部分における厚みを言うこととする。 As shown in FIG. 3 (a), the cross-sectional shape when both bulging patterns I and II promote bulging is such that the slab thickness Tc at the center in the width direction is equal to the slab thickness Te at the width direction end. It has a bulging cross-sectional shape. Slab thickness Tc of the width center portion of this time is approximately equal to the roll angle S 1 of the coagulation medium term. On the other hand, the end of the slab is shell-like when it comes out of the mold, but is already a solidified part. Therefore, if heat shrinkage or solidification shrinkage is ignored, the end slab at this time the thickness Te is approximately equal to the solidification initial roll opening S 0. Hereinafter, in the present invention, Te refers to the thickness of the end portion in the width direction of the completely solidified metal piece, slab width: about 2100 mm, slab thickness: about 250 mm, a portion within about 100 mm from the end portion, Tc refers to the thickness in the portion near the center excluding the end portion in the slab width direction.

この点、軽圧下パターンIでは、凝固末期のロール開度Sを凝固初期のロール開度Sよりも狭くしているので、軽圧下後の最終的な断面形状は、バルジングを考慮したとしても図3(b)に示すように、ほぼ矩形となる筈である。ただし、一般に、ロール開度は圧下の反力で開いてしまうので、軽圧下するための荷重が大きすぎると、幅方向端部の鋳片厚みTeよりも幅方向中央部の鋳片厚みTcの方が厚くなる場合が多い。 In this regard, the soft reduction pattern I, since the narrower than the roll angle S 0 of the roll angle S 2 coagulation end solidification initial, final cross-sectional shape after soft reduction as considering bulging As shown in FIG. 3 (b), it should be almost rectangular. However, in general, the roll opening degree is opened by the reaction force of the reduction, so if the load for light reduction is too large, the slab thickness Tc of the width direction center part is larger than the slab thickness Te of the width direction end part. It is often thicker.

一方、軽圧下パターンIIの例では、凝固末期のロール開度Sを凝固初期のロール開度Sよりも広くしているので、軽圧下後の最終的な断面形状は図3(c)に示すように、幅方向端部の鋳片厚みTeよりも幅方向中央部の鋳片厚みTcの方はどうしても厚くなる。即ち、鋳片の厚みは、理論的にはTc−Te=S−Sという関係を満たすものになるが、実際には、ロール開度は軽圧下を加えたときの反力で開いてしまう他、凝固収縮や熱収縮の影響を受けて軽圧下後も変化するのが普通である。こうした理由により、上記関係式はむしろ、Tc−Te>S−Sとなる場合が多い。 Meanwhile, in the example of soft reduction pattern II, since wider than the roll angle S 0 of the roll angle S 2 coagulation end solidification initial, final cross-sectional shape after soft reduction Fig 3 (c) As shown, the slab thickness Tc at the center in the width direction is inevitably thicker than the slab thickness Te at the width direction end. That is, the slab thickness theoretically satisfies the relationship of Tc-Te = S 0 -S 2 , but in reality, the roll opening is opened by the reaction force when light pressure is applied. In addition, it usually changes after light pressure under the influence of coagulation shrinkage or heat shrinkage. For these reasons, the above relational expression is rather often Tc−Te> S 0 −S 2 .

以下、このことを、T>Teの場合につき、下記式(1)のように定義される軽圧下評価値ΔRを用いて、軽圧下量を修正(フィードバック制御)する方法について説明する。 Hereinafter, this will be described with reference to a method of correcting (feedback control) the light reduction amount by using the light reduction evaluation value ΔR defined as the following equation (1) in the case of T c > Te.

ΔRmm=(S−S)mm−(Tc−Te)mm (1) ΔRmm = (S 1 −S 0 ) mm− (Tc−Te) mm (1)

例えば、この軽圧下評価値ΔRの式から、Tc>Teの場合に、
a.ΔRが基準よりも小さければ、ロール開度Sを大きく(広く)するか、ロール開度Sを小さく(狭く)することにより、軽圧下量を相対的に大きくする、
b.逆に、ΔRが基準より大きければ、ロール開度Sを小さくするか、ロール開度Sを大きくすることにより、軽圧下が相対的に小さくなるようにする、
という制御を行うことで、軽圧下量を適正な範囲に修正(制御)することができるようになる。
For example, from the expression of the light rolling evaluation value ΔR, when Tc> Te,
a. If ΔR is smaller than the reference, the light reduction amount is relatively increased by increasing (widening) the roll opening S 1 or decreasing (narrowing) the roll opening S 2 .
b. On the contrary, if ΔR is larger than the reference, the roll opening S 1 is decreased or the roll opening S 2 is increased so that the light reduction is relatively reduced.
By performing this control, the light reduction amount can be corrected (controlled) within an appropriate range.

なお、この軽圧下評価値ΔRの適正値を決定する方法については、次のように考えることができる。図4は、炭素含有量が0.05mass%、マンガン含有量が1.3mass%である炭素鋼(スラブ厚250mm)について、軽圧下評価値ΔRとMnの中心偏析の度合いC/Co(Mn)との関係を示したものである。なお、鋳片の偏析度は、鋳片の厚み方向1/4位置のマンガン分析値を偏析のない基準値(Co)とし、スラブ鋳片の幅方向の1/2位置(1/2W)および1/4位置(1/4W)から鋳造方向の縦断面試料を切り出し、その断面位置から鋳片厚み方向に1mmずつスライス加工して分析試料を採取し、この分析試料中の最も高いマンガン分析値(C)と前記基準値(Co)との比(C/Co)を偏析度として評価した。偏析度が1.0に近いほど偏析は少ないことを意味している。   The method for determining the appropriate value of the light reduction evaluation value ΔR can be considered as follows. FIG. 4 shows the light rolling evaluation value ΔR and the degree of central segregation of Mn C / Co (Mn) for carbon steel (slab thickness 250 mm) having a carbon content of 0.05 mass% and a manganese content of 1.3 mass%. It shows the relationship. The segregation degree of the slab is defined as a manganese analysis value at a 1/4 position in the thickness direction of the slab as a reference value (Co) without segregation, and a ½ position (1/2 W) in the width direction of the slab slab. A longitudinal section sample in the casting direction is cut out from the 1/4 position (1/4 W), sliced by 1 mm from the section position in the thickness direction of the slab, and an analysis sample is taken. The highest manganese analysis value in this analysis sample The ratio (C / Co) between (C) and the reference value (Co) was evaluated as the degree of segregation. A segregation degree closer to 1.0 means less segregation.

図4に示すとおり、軽圧下評価値ΔRが大きくなると、偏析度C/Coが小さくなる。従って、この鋼種における偏析度C/Coの目標値が、1.05以下であれば、軽圧下評価値ΔRは4mm以上にすることが必要であることがわかる。このように、鋼種や鋳造スラブの厚みなどの鋳造条件毎に、このようなデータベースを予め作成しており、目標とする中心偏析の範囲から、そのときの軽圧下評価値ΔRの適正範囲を決定すればよい。   As shown in FIG. 4, as the light rolling evaluation value ΔR increases, the segregation degree C / Co decreases. Therefore, if the target value of the segregation degree C / Co in this steel type is 1.05 or less, it is understood that the light rolling evaluation value ΔR needs to be 4 mm or more. In this way, such a database is created in advance for each casting condition such as the steel type and the thickness of the cast slab, and the appropriate range of the light reduction evaluation value ΔR at that time is determined from the target center segregation range. do it.

また、Tc≒Teのとき、上記式(1)は実質、
ΔRmm=(S−S)mm (2)
という式になる。即ち、Tc≒Teのときは、S−Sが所定の軽圧下評価値ΔRになるように設定し、常にTc≒Teであることを確認する、という制御方法が考えられる。または、Tc>Teとなるように軽圧下条件を変更して、この状態(Tc>Te)で軽圧下評価値ΔRが所定の値になるように軽圧下制御をしてもよい。この場合、修正前の軽圧下量が過度になっていた場合には、これを適正量に軽減すれば、内部割れや負偏折を回避できる。
When Tc≈Te, the above equation (1) is substantially
ΔRmm = (S 1 −S 0 ) mm (2)
It becomes the expression. That is, when Tc≈Te, a control method is conceivable in which S 1 -S 0 is set to a predetermined light pressure evaluation value ΔR and it is always confirmed that Tc≈Te. Alternatively, the light pressure reduction condition may be changed so that Tc> Te, and light pressure reduction control may be performed so that the light pressure evaluation value ΔR becomes a predetermined value in this state (Tc> Te). In this case, if the amount of light reduction before correction is excessive, if it is reduced to an appropriate amount, internal cracks and negative deflection can be avoided.

なお、本発明に従えば、鋳片幅方向の厚み分布から前記軽圧下評価値ΔRを算出できる理由は、まず、鋳片のバルジングを促進する鋳造を行い、次いで軽圧下する適正な「IBSR」を行うからであり、この技術はIBSRを採用するときに、特に、有効な軽圧下制御方法である。   According to the present invention, the reason why the light rolling evaluation value ΔR can be calculated from the thickness distribution in the width direction of the slab is that an appropriate “IBSR” that first performs casting that promotes bulging of the slab, and then performs light rolling. This technique is an effective light pressure control method particularly when IBSR is adopted.

以上の方法により、凝固中期〜凝固末期にかけての軽圧下量を適正な範囲に制御することができるようになり、その結果、軽圧下力不足による中心偏析の悪化や、センターポロシティの増大を防ぐことができるようになり、内部品質の良好な連続鋳造鋳片を得ることができるのである。   By the above method, it becomes possible to control the amount of light reduction from the mid-coagulation phase to the end of coagulation within an appropriate range, and as a result, prevent deterioration of center segregation due to insufficient light reduction force and increase of center porosity. Thus, a continuous cast slab having good internal quality can be obtained.

(実施例1)
図1に示した軽圧下セグメント(セグメント長さ2m)を備える連続鋳造設備を用いて、炭素含有量が0.05mass%、マンガン含有量が1.3mass%である炭素鋼(スラブ厚250mm、スラブ幅2100mm)の連続鋳造を行い、中心偏析の発生状況について調査した。
この実施例において、基準の鋳造速度は、1.4m/分であり、基準となる軽圧下パターンは図2(b)に示したとおり、S=255mm、S=260mm、S=256mmとした。基準の鋳造、冷却条件でのクレーターエンド位置は、凝固・伝熱計算から、メニスカス距離で25mと算出される。凝固末期(最終凝固)付近では、鋳造方向1mあたり0.7mの軽圧下を行う設定とし、時間当たりの設定軽圧下速度は、0.98mm/分とした。
Example 1
Carbon steel with a carbon content of 0.05 mass% and a manganese content of 1.3 mass% (slab thickness 250 mm, slab) using the continuous casting equipment with the lightly pressed segment (segment length 2 m) shown in FIG. Continuous casting with a width of 2100 mm was performed, and the occurrence of center segregation was investigated.
In this example, the standard casting speed is 1.4 m / min, and the standard light reduction pattern is S 0 = 255 mm, S 1 = 260 mm, S 2 = 256 mm as shown in FIG. It was. The crater end position under the standard casting and cooling conditions is calculated as a meniscus distance of 25 m from solidification / heat transfer calculation. In the vicinity of the end of solidification (final solidification), a setting was made to lightly reduce 0.7 m per m in the casting direction, and the set light reduction speed per time was set to 0.98 mm / min.

この実施例では、連続して2チャージ、500トン分の連続鋳造を行った。機端の厚み計4では随時、鋳造されたスラブ(鋳片)の幅方向の厚み分布を測定した。その結果、鋳造の初期(凝固初期)において、中央部と端部の厚みの差(Tc−Te)は2.5mmであり中央部が厚かった。この結果から、上記式(1)で算出される、軽圧下評価値ΔRは(5mm)−(2.5mm)=2.5mmであった。   In this example, continuous casting for 2 tons and 500 tons was performed. The thickness gauge 4 at the end of the machine measured the thickness distribution in the width direction of the cast slab (slab) as needed. As a result, in the initial stage of casting (initial stage of solidification), the difference in thickness (Tc−Te) between the central part and the end part was 2.5 mm, and the central part was thick. From this result, the light reduction evaluation value ΔR calculated by the above formula (1) was (5 mm) − (2.5 mm) = 2.5 mm.

なお、この実施例では、図4に示すところに基づき、軽圧下評価値ΔRを4.0mm以下では軽圧下量を増やすという設定(基準)にしていたので、これに従い、軽圧下におけるロールの開度Sを252mmに変更した。その結果、機端で測定した中央部と端部の厚みの差(Tc−Te)を0.5mm程度にすることでき、軽圧下評価値ΔR=4.5mmとなり、偏析度C/Coが小さくなることがわかった(適合例)。一方、比較のために、2チャージ目は、ロール開度Sを256mm元に戻したところ、軽圧下評価値ΔR=2.5mmとなり、偏析度は大きくなった(比較例)。
即ち、上記適合例では、中心偏析のきわめて少ない内部品質の良好な鋳片が得られたのに対し、上記比較例では軽圧下量が不足し、C、Mnなどの中心偏析が多く、内部品質の良好な鋳片が得られなかった。
In this embodiment, since the light reduction evaluation value ΔR is set to increase the light reduction amount when the evaluation value ΔR is 4.0 mm or less (standard) based on the situation shown in FIG. It has changed the degree S 2 to 252mm. As a result, the thickness difference (Tc−Te) between the central part and the end part measured at the machine end can be reduced to about 0.5 mm, and the light rolling evaluation value ΔR = 4.5 mm, and the segregation degree C / Co is small. It was found that (applicable example). Meanwhile, for comparison, 2 charge th, was returned to the roll angle S 2 to 256mm origin, soft reduction evaluation value [Delta] R = 2.5 mm, and the segregation ratio is increased (Comparative Example).
That is, in the above-mentioned conformity example, a good slab of internal quality with very little center segregation was obtained, whereas in the above comparative example, the amount of light reduction was insufficient, and center segregation of C, Mn, etc. No good slab was obtained.

<実施例2>
図1に示した軽圧下セグメント(セグメント長さ2m)を備える連続鋳造設備を用いて、炭素含有量が0.1mass%、マンガン含有量が1.5mass%である炭素鋼(スラブ厚250mm、スラブ幅2100mm)の連続鋳造を行い、実施例1と同様に中心偏析の発生状況について調査した。
<Example 2>
Carbon steel with a carbon content of 0.1 mass% and a manganese content of 1.5 mass% (slab thickness 250 mm, slab) using the continuous casting equipment with the lightly pressed segment (segment length 2 m) shown in FIG. Continuous casting with a width of 2100 mm was performed, and the occurrence of center segregation was investigated in the same manner as in Example 1.

この実施例において、基準の鋳造速度は、1.6m/分であり、基準となる軽圧下パターンは図2(a)に示したとおりとし、ロール開度は、S=255mm、S=258mm、S=252mmとした。基準の鋳造、冷却条件でのクレーターエンド位置は、凝固・伝熱計算から、メニスカス距離で27mと算出される。凝固末期(最終凝固)付近では、鋳造方向1mあたり0.7mmの軽圧下を行う設定とし、時間当たりの設定軽圧下速度は、1.12mm/分とした。 In this example, the standard casting speed is 1.6 m / min, the standard light reduction pattern is as shown in FIG. 2A, and the roll opening is S 0 = 255 mm, S 1 = 258 mm and S 2 = 252 mm. The crater end position under the standard casting and cooling conditions is calculated to be 27 m in meniscus distance from solidification / heat transfer calculations. In the vicinity of the end of solidification (final solidification), a setting was made to lightly reduce 0.7 mm per meter in the casting direction, and the set light reduction speed per hour was set to 1.12 mm / min.

この実施例でも、連続して2チャージ、500トン分の連続鋳造を行った。機端の厚み計4では随時、鋳造されたスラブ(鋳片)の幅方向の厚み分布を測定した。その結果、鋳造の初期(凝固初期)において、中央部と端部の厚みの差(Tc−Te)はなくほぼ0.0mmであり、軽圧下評価値ΔRは上記式(1)より、3.0mmであった。この実施例では、軽圧下評価値ΔRを2.5mm以上では軽圧下量を減らすという設定(基準)にしていたので、これに従い、軽圧下におけるロールの開度Sを254mmに変更した。その結果、機端で測定した中央部と端部の厚み差(Tc−Te)を1.0mmとすることができ、軽圧下評価値ΔRが2.0mmにすることができ偏析度が小さくなることを確認した(適合例)。一方、比較のため、2チャージ目は、ロール開度Sを元の設定である252mmに戻したところ、軽圧下評価値ΔR3mmとなり、偏析度が大きくなることがわかった(比較例)。 Also in this example, continuous charging for 2 charges and 500 tons was performed. The thickness gauge 4 at the end of the machine measured the thickness distribution in the width direction of the cast slab (slab) as needed. As a result, in the initial stage of casting (initial stage of solidification), there is no difference in thickness (Tc−Te) between the central part and the end part, which is approximately 0.0 mm, and the light rolling evaluation value ΔR is obtained from the above formula (1). It was 0 mm. In this embodiment, since the soft reduction evaluation value ΔR at least 2.5mm was set of reducing the soft reduction amount (reference), which in accordance with, and changing the opening S 2 of the roll in the soft reduction to 254 mm. As a result, the thickness difference (Tc−Te) between the central portion and the end portion measured at the machine end can be set to 1.0 mm, the light rolling evaluation value ΔR can be set to 2.0 mm, and the segregation degree is reduced. (Conformity example). For comparison, 2 charge th, was returned to the roll angle S 2 to the original setting is 252 mm, soft reduction evaluation value ΔR3mm next, it was found that segregation ratio increases (Comparative Example).

即ち、上記適合例では、中心偏析が少なく内部割れもない内部品質の良好な鋳片が得られたのに対し、上記比較例では軽圧下量が大きすぎ、内部割れの発生およびC、Mnの負偏析が認められ、内部品質の良好な鋳片が得られなかった。   That is, in the above-mentioned conformity example, a slab of good internal quality with little center segregation and no internal cracks was obtained, whereas in the above comparative example, the amount of light reduction was too large, the occurrence of internal cracks and the occurrence of C, Mn Negative segregation was observed, and a slab having good internal quality could not be obtained.

本発明の軽圧下連続鋳造技術は、単に、鋼の連続鋳造方法の下での軽圧下パターン(IBSR)鋳造に適用されるだけでなく、他の連続鋳造技術についても、同様の考え方を適用することができる。   The light rolling continuous casting technique of the present invention is not only applied to light rolling pattern (IBSR) casting under the continuous casting method of steel, but the same concept is applied to other continuous casting techniques. be able to.

1 連続鋳造設備
2 軽圧下セグメント
3 軽圧下ロール
4 厚み計
5 演算装置
DESCRIPTION OF SYMBOLS 1 Continuous casting equipment 2 Light reduction segment 3 Light reduction roll 4 Thickness meter 5 Calculation device

Claims (3)

モールド直下から機端までに複数のロールが配設された連続鋳造装置を用いて鋼の連続鋳造を行う際に、
凝固中期におけるロールの開度を下流側にいくに従い広げて鋳片の厚み膨張を導き、
次いで、凝固末期におけるロール開度を下流側にいくに従い狭める軽圧下引き抜きを行う連続鋳造方法において、
鋳片の幅方向端部と端部以外との少なくとも2箇所で前記軽圧下後の鋳片厚みを測定し、
幅方向端部鋳片厚みTeと幅方向端部以外の鋳片厚みTc、および凝固初期のロール開度Sと厚み膨張時ロール開度S、軽圧下時ロール開度Sについての情報から、軽圧下評価値(ΔR)を求め、この軽圧下評価値(ΔR)に基づいてロール開度の制御を行う、
ことを特徴とする鋼の軽圧下連続鋳造方法である。
When performing continuous casting of steel using a continuous casting apparatus in which a plurality of rolls are arranged from directly under the mold to the machine end,
Expand the roll opening in the middle of solidification as it goes downstream, leading to slab thickness expansion,
Next, in a continuous casting method in which light pressure drawing is performed to narrow the roll opening at the end of solidification as it goes downstream,
Measure the thickness of the slab after the light reduction at least at two locations other than the end in the width direction of the slab,
Information on the width direction end slab thickness Te, the slab thickness Tc other than the width direction end, the roll opening S 0 at the initial stage of solidification, the roll opening S 1 during thickness expansion, and the roll opening S 2 during light pressure reduction From this, a light reduction evaluation value (ΔR) is obtained, and the roll opening degree is controlled based on the light reduction evaluation value (ΔR).
This is a continuous light casting method for steel.
前記軽圧下評価値(ΔR)を、下記式(1)に基づき算出し、このΔRに基づきロール開度S、Sのいずれか少なくとも一方を修正することを特徴とする請求項1記載の軽圧下連続鋳造方法。
ΔRmm=(S−S)mm−(Tc−Te)mm (1)
The light reduction evaluation value (ΔR) is calculated based on the following formula (1), and at least one of the roll openings S 1 and S 2 is corrected based on the ΔR. Continuous casting method under light pressure.
ΔRmm = (S 1 −S 0 ) mm− (Tc−Te) mm (1)
前記凝固中期とは、モールド直下を除く鋳片の液相線クレーターエンドまでの間を意味し、前記凝固末期とは、液相線クレーターエンドと固相線クレーターエンドとの間を意味することを特徴とする請求項1記載の軽圧下連続鋳造方法。 The middle solidification means between the liquid phase crater end of the slab excluding directly under the mold, and the end of solidification means between the liquid phase crater end and the solid phase crater end. The light-casting continuous casting method according to claim 1, wherein
JP2009278467A 2009-12-08 2009-12-08 Continuous casting method under light pressure Expired - Fee Related JP5476959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278467A JP5476959B2 (en) 2009-12-08 2009-12-08 Continuous casting method under light pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278467A JP5476959B2 (en) 2009-12-08 2009-12-08 Continuous casting method under light pressure

Publications (3)

Publication Number Publication Date
JP2011121063A true JP2011121063A (en) 2011-06-23
JP2011121063A5 JP2011121063A5 (en) 2012-08-09
JP5476959B2 JP5476959B2 (en) 2014-04-23

Family

ID=44285515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278467A Expired - Fee Related JP5476959B2 (en) 2009-12-08 2009-12-08 Continuous casting method under light pressure

Country Status (1)

Country Link
JP (1) JP5476959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001772A (en) * 2019-12-24 2020-04-14 中冶南方连铸技术工程有限责任公司 Method and device for controlling roll gap under light pressing or heavy pressing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000045B (en) * 2014-12-24 2019-04-26 杰富意钢铁株式会社 The continuous casing of steel

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606254A (en) * 1983-06-25 1985-01-12 Nippon Kokan Kk <Nkk> Continuous casting method
JPS63278654A (en) * 1987-05-12 1988-11-16 Nkk Corp Light rolling reduction casting method
JPH05131253A (en) * 1991-11-08 1993-05-28 Sumitomo Metal Ind Ltd Method for improving center segregation in continuously cast slab
JPH05185186A (en) * 1992-01-14 1993-07-27 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH06154980A (en) * 1992-11-26 1994-06-03 Sumitomo Heavy Ind Ltd Continuous casting machine for slab and method for continuously casting thin slab by using this machine
JPH10193063A (en) * 1997-01-08 1998-07-28 Sumitomo Metal Ind Ltd Continuous casting method
JPH10193067A (en) * 1996-12-27 1998-07-28 Nkk Corp Method for continuously casting steel
JP2000218350A (en) * 1999-01-27 2000-08-08 Sumitomo Metal Ind Ltd Continuous casting method
US6199621B1 (en) * 1997-10-11 2001-03-13 Sms Schloemann-Siemag Aktiengesellschaft Method and installation for producing slabs in a continuous casting plant
US20010020528A1 (en) * 2000-03-10 2001-09-13 Sms Demag Aktiengesellschaft Continuous casting method with soft reduction
JP2002248554A (en) * 2001-02-22 2002-09-03 Sumitomo Metal Ind Ltd Continuous-cast steel piece and casting method
JP2004009092A (en) * 2002-06-06 2004-01-15 Sumitomo Metal Ind Ltd Continuous casting method
US6880616B1 (en) * 1999-07-07 2005-04-19 Siemens Aktiengesellschaft Method and device for making a metal strand
JP2005305516A (en) * 2004-04-22 2005-11-04 Sumitomo Metal Ind Ltd Continuous casting method, and extra-thick steel plate excellent in inner quality and producing method therefor
JP2008093720A (en) * 2006-10-13 2008-04-24 Sumitomo Metal Ind Ltd Continuous casting method for metal

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606254A (en) * 1983-06-25 1985-01-12 Nippon Kokan Kk <Nkk> Continuous casting method
JPS63278654A (en) * 1987-05-12 1988-11-16 Nkk Corp Light rolling reduction casting method
JPH05131253A (en) * 1991-11-08 1993-05-28 Sumitomo Metal Ind Ltd Method for improving center segregation in continuously cast slab
JPH05185186A (en) * 1992-01-14 1993-07-27 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH06154980A (en) * 1992-11-26 1994-06-03 Sumitomo Heavy Ind Ltd Continuous casting machine for slab and method for continuously casting thin slab by using this machine
JPH10193067A (en) * 1996-12-27 1998-07-28 Nkk Corp Method for continuously casting steel
JPH10193063A (en) * 1997-01-08 1998-07-28 Sumitomo Metal Ind Ltd Continuous casting method
US6199621B1 (en) * 1997-10-11 2001-03-13 Sms Schloemann-Siemag Aktiengesellschaft Method and installation for producing slabs in a continuous casting plant
JP2000218350A (en) * 1999-01-27 2000-08-08 Sumitomo Metal Ind Ltd Continuous casting method
US6880616B1 (en) * 1999-07-07 2005-04-19 Siemens Aktiengesellschaft Method and device for making a metal strand
US20010020528A1 (en) * 2000-03-10 2001-09-13 Sms Demag Aktiengesellschaft Continuous casting method with soft reduction
JP2002248554A (en) * 2001-02-22 2002-09-03 Sumitomo Metal Ind Ltd Continuous-cast steel piece and casting method
JP2004009092A (en) * 2002-06-06 2004-01-15 Sumitomo Metal Ind Ltd Continuous casting method
JP2005305516A (en) * 2004-04-22 2005-11-04 Sumitomo Metal Ind Ltd Continuous casting method, and extra-thick steel plate excellent in inner quality and producing method therefor
JP2008093720A (en) * 2006-10-13 2008-04-24 Sumitomo Metal Ind Ltd Continuous casting method for metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001772A (en) * 2019-12-24 2020-04-14 中冶南方连铸技术工程有限责任公司 Method and device for controlling roll gap under light pressing or heavy pressing
CN111001772B (en) * 2019-12-24 2021-08-24 中冶南方连铸技术工程有限责任公司 Method and device for controlling roll gap under light pressing or heavy pressing

Also Published As

Publication number Publication date
JP5476959B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
CN105108096B (en) A kind of Properties of Heavy Rail Steel bloom continuous casting dynamic soft-reduction method for determination of amount
JP5976087B2 (en) Damage prevention device for casting roll in thin plate manufacturing equipment.
JP6115735B2 (en) Steel continuous casting method
JP5686062B2 (en) Steel continuous casting method
JP2012066303A (en) Continuous casting method and continuous casting apparatus of steel
JP5402308B2 (en) Continuous casting method of high carbon steel
JP2012011459A (en) Soft reduction method of cast slab in continuous casting
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5476959B2 (en) Continuous casting method under light pressure
JP5741213B2 (en) Continuous casting method
JP5494350B2 (en) Continuous casting method for steel slabs
JP3427794B2 (en) Continuous casting method
TWI615216B (en) Steel continuous casting method
JP2000210759A (en) Casting method using twin-drum type continuous casting machine
JP6098577B2 (en) Method for adjusting roll interval of continuous casting machine and method for continuous casting of steel slab
CN115401178A (en) Screw-down process determination method for improving internal quality of gear steel
JP3866877B2 (en) Method and apparatus for controlling plate thickness in twin drum type continuous casting equipment, recording medium
JP3090183B2 (en) Austenitic stainless steel thin cast slab and method for producing the same
JP6816523B2 (en) Continuous steel casting method
JP4461075B2 (en) Continuous casting method
JPS63278655A (en) Light rolling reduction casting method
JP7273307B2 (en) Steel continuous casting method
JP5742601B2 (en) Solidification completion position calculation method and solidification completion position calculation device
JPH08257715A (en) Continuous casting method
JPH038863B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5476959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees