JP2000210759A - Casting method using twin-drum type continuous casting machine - Google Patents

Casting method using twin-drum type continuous casting machine

Info

Publication number
JP2000210759A
JP2000210759A JP11016940A JP1694099A JP2000210759A JP 2000210759 A JP2000210759 A JP 2000210759A JP 11016940 A JP11016940 A JP 11016940A JP 1694099 A JP1694099 A JP 1694099A JP 2000210759 A JP2000210759 A JP 2000210759A
Authority
JP
Japan
Prior art keywords
molten steel
drum
temperature
twin
drums
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11016940A
Other languages
Japanese (ja)
Inventor
Takashi Oda
高士 小田
Masafumi Miyazaki
雅文 宮嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11016940A priority Critical patent/JP2000210759A/en
Publication of JP2000210759A publication Critical patent/JP2000210759A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce a cast metal by controlling drum reaction force based on molten steel temp. and molten steel height varied during casting, thereby preventing the occurrence of thickness variation and breakout of the cast metal. SOLUTION: In this method for producing the cast metal by a twin-drum type continuous casting machine having a pair of counter drums 1, 1' and side weirs pushed to both end surfaces thereof, the target drum reaction force value is corrected from the difference between a reference molten steel temp. and the actual molten steel temp. measured by a thermometer 5. Further, a molten steel static pressure value is calculated from the actual value of the molten steel surface height measured by a molten steel surface level meter 8 to correct the target drum reaction force, then the practical rolling reduction force applied on a solidified shell at a drum kissing point is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、双ドラム式連続鋳
造機により所定の板厚を有する薄鋳片を鋳造する方法に
おいて、鋳造中に変動する溶鋼温度や湯面高さを基に、
溶鋼プール内での過凝固及び未凝固状態を発生させない
様に、目標とするドラム反力をダイナミックに変化させ
ながら、常に一定板厚の薄鋳片を鋳造する方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a method of casting a thin slab having a predetermined plate thickness by a twin-drum continuous casting machine, based on a molten steel temperature and a molten metal level which fluctuate during casting.
The present invention relates to a method of constantly casting a thin slab having a constant thickness while dynamically changing a target drum reaction force so as not to generate an over-solidified state and an unsolidified state in a molten steel pool.

【0002】[0002]

【従来の技術】双ドラム式連続鋳造機による薄鋳片の製
造方法、通称双ドラム式ストリップキャスターにおける
鋳造の特徴は、ドラム周面に生成された凝固シェルが、
ドラムキス点(ドラム間の最小ギャップ位置)で圧着さ
れる時に発生する「ドラム反力」に基づきシェルの凝固
状態を制御することにある。しかしながら、このドラム
反力は鋳造中に様々な要因により変動し、鋳造された薄
鋳片厚みが鋳造長手方向で変動し目標とする所定板厚が
得られないことや、ドラム間ギャップの変動によりブレ
ークアウトが発生するという問題を抱えている。
2. Description of the Related Art A method of manufacturing a thin slab by a twin-drum continuous caster, a characteristic of casting in a so-called twin-drum strip caster, is that a solidified shell formed on a drum peripheral surface is
An object of the present invention is to control the solidification state of the shell based on the "drum reaction force" generated when the shell is pressed at the drum kiss point (the minimum gap position between the drums). However, this drum reaction force fluctuates due to various factors during casting, and the thickness of the cast thin slab fluctuates in the longitudinal direction of casting, and a target predetermined plate thickness cannot be obtained, or the gap between drums fluctuates. There is a problem that breakout occurs.

【0003】この問題を解決する方法として、例えば、
特開昭58−176063号公報では、ドラム間にスタ
ータ栓を挿入し、このスタータ栓上に貯溜する溶湯の湯
面高さが連続鋳造時における所定高さに達する前にドラ
ムを回転させて鋳片を引き抜く方法が提案されている。
また、特開昭61−140361号公報では、ロール
(ドラム)の反力を検出して、この検出値に基づいて浸
漬ノズルを上下させてロール間の溶湯レベルを適正に制
御する方法が提案されている。しかしながら、これらの
提案においてもドラム間ギャップの変動によるブレーク
アウトの発生およびホットバンド発生の問題は依然とし
て解決されていない現状であり、後述するドラムキス点
でのシェルの圧着に付随して発生している溶鋼プール内
の熱バランスを制御することを目的とした鋳造方法につ
いての提案はなかった。
[0003] To solve this problem, for example,
In Japanese Patent Application Laid-Open No. 58-176063, a starter plug is inserted between drums, and the drum is rotated before the level of molten metal stored on the starter plug reaches a predetermined height during continuous casting. A method of pulling out a piece has been proposed.
Japanese Patent Application Laid-Open No. SHO 61-140361 proposes a method of detecting the reaction force of a roll (drum) and moving the immersion nozzle up and down based on the detected value to appropriately control the level of molten metal between the rolls. ing. However, even in these proposals, the problem of the occurrence of breakout and the generation of hot bands due to the fluctuation of the gap between the drums has not yet been solved, and it has occurred accompanying the crimping of the shell at the drum kiss point described later. There was no proposal for a casting method aimed at controlling the heat balance in the molten steel pool.

【0004】[0004]

【発明が解決しようとする課題】双ドラム式ストリップ
キャスターにおける鋳造のシェルの凝固状態は、ドラム
と溶鋼界面との伝熱と熱力学的平衡条件から決まる凝固
状態に加え、凝固シェルの変形挙動に基づく「ドラム反
力」が上記双ドラム式ストリップキャスターでの凝固状
態を支配している。通常の連続鋳造機のモールド内で起
きている溶鋼の凝固形態との相違は、まさにこの凝固状
態をドラム反力で制御している点に尽きると言える。換
言すれば、通常の連続鋳造機ではモールド内で凝固した
全ての溶鋼が鋳片として排出されるのに対して、双ドラ
ム式ストリップキャスターにおける鋳造では鋳片として
ドラムから排出されるメタルの量は溶鋼プール内で凝固
したもの全てではなく、圧縮強度が或る一定以上になっ
た部分だけが凝固したものと見做され、ドラムキス点で
の半凝固圧延現象を経て鋳片としてドラム間から排出さ
れるのである。このことは、双ドラム式ストリップキャ
スターにおける鋳造において、半凝固圧延過程の中で凝
固されたとは見做されない低固相率の半凝固状態の溶鋼
が、常に一定速度で溶鋼プール内に取り残されていくこ
と(所謂スクイーズ現象)を意味し、同時に、この残存
し蓄積されていく溶鋼がプール内の熱的平衡状態に影響
を与えていることを意味している。更に、取り残された
半凝固層が溶鋼プール内で再溶解されなければ、時間経
過と共にプール内に残存・蓄積されて、長時間鋳造を行
った場合、プール全体の温度が低下し、いずれ溶鋼全体
が凝固してしまうことを意味している。
The solidification state of the casting shell in the twin-drum strip caster is determined not only by the solidification state determined by the heat transfer and thermodynamic equilibrium conditions between the drum and the molten steel interface, but also by the deformation behavior of the solidified shell. The “drum reaction force” governs the solidification state of the twin-drum strip caster. It can be said that the difference from the solidification form of molten steel occurring in the mold of a normal continuous casting machine is exactly that the solidification state is controlled by the drum reaction force. In other words, in a normal continuous casting machine, all molten steel solidified in the mold is discharged as a slab, whereas in the casting with the twin-drum strip caster, the amount of metal discharged from the drum as a slab is Not all of the solidified material in the molten steel pool, only the part where the compressive strength has reached a certain level or more is regarded as solidified, and it is discharged from the space between the drums as a slab through a semi-solid rolling phenomenon at the drum kiss point. Because This means that, in casting on a twin-drum strip caster, the molten steel in a semi-solid state with a low solid fraction that is not considered to be solidified in the semi-solid rolling process is always left in the molten steel pool at a constant speed. Means the so-called squeeze phenomenon, and at the same time means that the remaining and accumulated molten steel affects the thermal equilibrium state in the pool. Furthermore, if the remaining semi-solid layer is not re-melted in the molten steel pool, it will remain and accumulate in the pool with the passage of time, and if casting is performed for a long time, the temperature of the entire pool will decrease, and eventually the entire molten steel will decrease. Means to solidify.

【0005】本発明者らは、双ドラム式ストリップキャ
スターにおける鋳造において、半凝固圧延過程の中で凝
固されたとは見做されない低固相率の半凝固状態の溶鋼
が常に一定速度で溶鋼プール内に取り残されているこ
と、この残存し蓄積されていく溶鋼がプール内の熱的平
衡状態に影響を与えていること、更に、取り残された半
凝固層が溶鋼プール内で再溶解されなければ時間経過と
共にプール内に残存・蓄積されて長時間鋳造を行った場
合、プール全体の温度が低下し、いずれ溶鋼全体が凝固
してしまうことについて、上述の蓄積されていく溶鋼の
量と鋳造条件の関係を調査した。その結果、鋳造板厚が
厚くなるほどプール内に残存する半凝固状態の溶鋼は少
なく、したがって、これを再溶解させて鋳造を継続する
ためにプール内に供給すべき溶鋼の温度は相対的に低く
てもよいという事実を見いだした。これは、逆の見方と
してプール内に供給される溶鋼温度が一定(勿論、液相
線温度TL 以上)の場合、キス点近傍でのスクイーズに
よる溶鋼プール内の温度低下が小さいため、ともすれば
ドラム幅方向全域での凝固均一性が確保し難く、特に鋳
片エッジ部での凝固不良(半凝固溶鋼のしみ出し現象)
が発生し易い傾向にあるとも言えることが分かった。従
って、安定した凝固状態を実現するためには、厳密には
ドラムに供給される溶鋼の温度は鋳造板厚が薄い場合に
は高めとし、一方、鋳造板厚が厚い場合には低めに数℃
の範囲で制御される必要があることも分かった。
[0005] In the casting of a twin-drum strip caster, the present inventors have found that a semi-solid state molten steel having a low solid phase ratio, which is not considered to have been solidified in a semi-solid rolling process, is always kept at a constant speed in a molten steel pool. That the remaining and accumulating molten steel is affecting the thermal equilibrium state in the pool, and that if the remaining semi-solidified layer is not re-melted in the molten steel pool, If casting and remaining for a long time in the pool as the process progresses, the temperature of the entire pool will decrease and eventually the entire molten steel will solidify. The relationship was investigated. As a result, the thicker the cast plate thickness, the less the molten steel in the semi-solid state remaining in the pool, and therefore, the temperature of the molten steel to be supplied into the pool to re-melt it and continue casting is relatively low. I found the fact that I could. In other words, when the temperature of the molten steel supplied into the pool is constant (of course, the liquidus temperature TL or more), the temperature drop in the molten steel pool due to squeezing near the kiss point is small. For example, it is difficult to ensure solidification uniformity in the entire width direction of the drum, especially poor solidification at the slab edge (semi-solidified molten steel seepage).
It can be said that it can be said that there is a tendency to easily occur. Therefore, in order to realize a stable solidification state, the temperature of the molten steel supplied to the drum is strictly set to be higher when the casting plate thickness is small, and to be lower by several degrees Celsius when the casting plate thickness is large.
It was also found that it was necessary to control within the range.

【0006】更に、本発明者らは調査を継続した結果、
ドラム反力を上げるとスループット(ドラム速度×鋳造
厚×鋳造幅から導き出されるドラムを通過する鋳片の質
量速度を云い、また、別の言い方としてはマスフロー
(質量速度)とも言う。)に対するスクイーズされる半
凝固状態の溶鋼の発生比率は大きくなることが分かっ
た。従って、ドラム反力を上げた場合、プール内の温度
バランスを取るためには、浸漬ノズルから供給される溶
鋼温度を高くする必要がある。このことは換言すれば、
プール内に供給される溶鋼の温度が一定の場合、ドラム
反力を上げるとスクイーズされる半凝固状態の溶鋼の発
生が大きくなるためプール内の溶鋼温度を下げることを
意味している。また、精錬の負荷を考え、極力溶鋼温度
を低めに出鋼しようとすれば、ドラム反力は極力低めが
良いと言える。しかし、低反力鋳造(例えば、2000
kg/m以下)のためには、ドラム圧下系のヒステリシ
スを小さくする工夫や、ドラムキス点でのシェル圧着の
幅方向均一性を維持するためのドラム熱膨張(サーマル
クラウン)量の経時変化を小さくする対策、更にドラム
反力検出回路に溶鋼静圧の補償機能を付加するなどの対
策が必要となる。
[0006] Further, the present inventors have continued the investigation,
Increasing the drum reaction force squeezes the throughput (the mass velocity of the slab passing through the drum, derived from the drum velocity x casting thickness x casting width, or, in other words, mass flow (mass velocity)). It has been found that the rate of occurrence of molten steel in a semi-solid state becomes large. Therefore, when the reaction force of the drum is increased, it is necessary to increase the temperature of the molten steel supplied from the immersion nozzle in order to balance the temperature in the pool. This means, in other words,
When the temperature of the molten steel supplied into the pool is constant, increasing the reaction force of the drum increases the occurrence of semi-solidified molten steel that is squeezed, which means that the temperature of the molten steel in the pool is reduced. In addition, considering the load of refining, if it is attempted to make the molten steel temperature as low as possible, it can be said that the drum reaction force should be as low as possible. However, low reaction force casting (for example, 2000
(kg / m or less) to reduce the hysteresis of the drum pressure reduction system, and to reduce the temporal change in the amount of thermal expansion (thermal crown) of the drum to maintain the widthwise uniformity of shell pressure bonding at the drum kiss point. It is necessary to take measures such as adding a function of compensating for the static pressure of the molten steel to the drum reaction force detection circuit.

【0007】[0007]

【課題を解決するための手段】本発明は、以上のような
実験結果およびそれを裏付ける理論解析の結果、双ドラ
ム式ストリップキャスターにおける鋳造安定化を実現す
るために、鋳造中にドラム反力値の溶鋼静圧分を補正し
てドラムキス点での凝固シェルの圧着反力を求めなが
ら、供給される溶鋼の温度レベルに応じて目標反力を変
化させ、溶鋼温度のバラツキを補償する鋳造制御方法を
見いだしたものであり、その要旨は次の通りである。
SUMMARY OF THE INVENTION According to the present invention, as a result of the above experimental results and theoretical analysis supporting the results, it has been found that, in order to realize casting stabilization in a twin-drum strip caster, the drum reaction force value during casting is reduced. Casting control method that compensates for the variation in molten steel temperature by correcting the static pressure component of molten steel to obtain the pressure reaction force of the solidified shell at the drum kiss point, and changing the target reaction force according to the temperature level of the supplied molten steel. The gist is as follows.

【0008】1)相対する一対のドラムとその両端面に
押し付けたサイド堰を有する双ドラム式連続鋳造機によ
る薄鋳片の製造方法において、タンディッシュ内の溶鋼
温度または相対する一対のドラム間プール内の溶鋼温度
の変化に応じてドラム反力を変更することを特徴とする
双ドラム式連続鋳造機による鋳造方法。 2)相対する一対のドラムとその両端面に押し付けたサ
イド堰を有する双ドラム式連続鋳造機による薄鋳片の製
造方法において、タンディッシュ内の溶鋼温度または相
対する一対のドラム間プール内の溶鋼温度を計測し、前
記溶鋼の温度変化に応じてドラムキス点で凝固シェルに
かかる実質的な圧下力を制御することを特徴とする双ド
ラム式連続鋳造機による鋳造方法。
1) In a method of producing thin cast slabs using a twin-drum continuous caster having a pair of opposed drums and side dams pressed against both end surfaces thereof, a temperature of molten steel in a tundish or a pool between a pair of opposed drums. A casting method using a twin-drum continuous casting machine, wherein a drum reaction force is changed according to a change in molten steel temperature in the inside. 2) In a method for producing thin cast slabs using a twin-drum continuous caster having a pair of opposed drums and side weirs pressed against both end surfaces thereof, the temperature of molten steel in a tundish or the molten steel in a pool between a pair of opposed drums. A casting method using a twin-drum continuous casting machine, comprising measuring a temperature and controlling a substantial rolling force applied to a solidified shell at a drum kiss point in accordance with a change in temperature of the molten steel.

【0009】3)相対する一対のドラムとその両端面に
押し付けたサイド堰を有する双ドラム式連続鋳造機によ
る薄鋳片の製造に際し、タンディッシュ内の溶鋼温度ま
たは相対する一対のドラム間プール内の溶鋼温度を計測
し、前記溶鋼の温度変化に応じてドラムキス点で凝固シ
ェルにかかる実質的な圧下力を制御する方法において、
前記溶鋼温度の計測値を目標値と比較し、計測した溶鋼
の温度が目標値より高い場合は前記圧下力が大きくなる
ように変更し、計測した溶鋼の温度が目標値より低い場
合は前記圧下力が小さくなるように変更することによっ
て一対のドラム間プール内の溶鋼温度が所定範囲となる
ように制御することを特徴とする双ドラム式連続鋳造機
による鋳造方法。
3) When producing thin cast slabs using a twin-drum continuous caster having a pair of opposed drums and side weirs pressed against both end surfaces thereof, the temperature of molten steel in a tundish or the inside of a pool between a pair of opposed drums. In the method of measuring the molten steel temperature of, and controlling the substantial rolling force applied to the solidified shell at the drum kiss point according to the temperature change of the molten steel,
The measured value of the molten steel temperature is compared with a target value, and if the measured temperature of the molten steel is higher than the target value, the rolling force is changed to be larger.If the measured temperature of the molten steel is lower than the target value, the reduction is performed. A casting method using a twin-drum type continuous casting machine, wherein the molten steel temperature in the pool between the pair of drums is controlled to be within a predetermined range by changing the force so as to be small.

【0010】4)前記ドラムの少なくとも一方のドラム
が受けるドラム両端の軸箱に接触するロードセルで計測
したドラム反力から、相対する一対のドラム間プールの
溶鋼湯面高さの計測値からもとめた溶鋼静圧分を差し引
いて、凝固シェルにかかる実質的な圧下力を求めること
を特徴とする上記2)または3)記載の双ドラム式連続
鋳造機による鋳造方法。
[0010] 4) At least one of the drums receives a drum reaction force measured by a load cell in contact with an axle box at both ends of the drum. The casting method using a twin-drum continuous caster according to the above 2) or 3), wherein a substantial rolling force applied to the solidified shell is obtained by subtracting a static pressure of molten steel.

【0011】5)凝固シェルにかかる実質的な圧下力を
変更するとともに鋳造速度を変更して鋳造板厚を一定に
制御することを特徴とする上記2)〜4)のいずれか1
項に記載の双ドラム式連続鋳造機による鋳造方法。 6)凝固シェルにかかる実質的な圧下力を変更する装置
として圧力制御シリンダー及び位置制御用のサーボバル
ブを用いることを特徴とする上記2)〜5)のいずれか
1項に記載の双ロール式連続鋳造機による鋳造方法。
5) Any one of the above 2) to 4), wherein the substantial reduction force applied to the solidified shell is changed and the casting speed is changed to control the thickness of the cast plate to be constant.
The casting method using the twin-drum continuous casting machine described in the paragraph. 6) The twin-roll type as described in any one of 2) to 5) above, wherein a pressure control cylinder and a servo valve for position control are used as a device for changing a substantial rolling force applied to the solidified shell. A casting method using a continuous casting machine.

【0012】[0012]

【発明の実施の形態・実施例】次に、本発明の実施の形
態について詳細に説明する。本発明者による実操業の経
験からも、双ドラム式ストリップキャスターにおける鋳
造安定性を確保するためには、溶鋼温度を許容範囲内に
確実に入れるように厳しく管理するか、許容範囲そのも
のを拡大する必要がある。次に、この溶鋼温度の許容範
囲の拡大をドラム反力制御で行う方法について述べる。
Next, embodiments of the present invention will be described in detail. From the experience of actual operation by the present inventor, in order to ensure casting stability in a twin-drum strip caster, the molten steel temperature must be strictly controlled to be surely within an allowable range, or the allowable range itself should be expanded. There is a need. Next, a method of expanding the allowable range of the molten steel temperature by controlling the drum reaction force will be described.

【0013】鋳造される薄手鋳片厚が4.5mmの場合
を例に説明ずる。図1は溶鋼過剰温度とドラム反力およ
びドラム回転速度との関係を示す図で、横軸は溶鋼の過
剰温度(溶鋼プール内に残存した半凝固溶鋼を供給する
溶鋼で再溶解させるために必要な温度分)Δt、縦軸は
ドラム反力およびドラム回転速度を表すものである。操
業実績より目標ドラム反力が2500kg/mであると
き、鋳片エッジのしみ出しもなく、ホットバンドの発生
も少ないプール内の最適温度条件が、タンディシュ内溶
鋼温度で1520℃(A)点であるとする。しかし、現
実には、溶鋼準備段階での温度工程能力のバラツキや、
鋳造の進行に伴って、或いは連々鋳の際の取鍋交換を行
う時に溶鋼温度が変化するため、溶鋼温度の変化に合わ
せてプール内温度を一定温度に維持する必要がある。前
記プール内の溶鋼温度は、ドラムキス点での圧延現象に
伴う半凝固溶鋼のスクイーズで常に冷却方向に影響を受
けており、かつその冷却量の大きさ、すなわちスクイー
ズ体積速度はドラム反力の大小に連動しているため、目
標ドラム反力をタンディシュ内溶鋼温度または一対のド
ラム間プール内の溶鋼温度の変化に合わせて変更するこ
とで、プールの溶鋼温度を一定に保持する操作を行って
いる。
The case where the thickness of the thin cast slab to be cast is 4.5 mm will be described as an example. Fig. 1 shows the relationship between the excess temperature of molten steel and the drum reaction force and drum rotation speed. The horizontal axis indicates the excess temperature of molten steel (necessary for re-melting with the molten steel that supplies the semi-solidified molten steel remaining in the molten steel pool. The vertical axis represents the drum reaction force and the drum rotation speed. When the target drum reaction force is 2500 kg / m based on the operation results, the optimum temperature condition in the pool where the slab edge does not exude and the generation of hot bands is small is at the temperature of the molten steel in the tundish at 1520 ° C. (A). Suppose there is. However, in reality, the temperature process capability at the molten steel preparation stage varies,
Since the temperature of the molten steel changes as the casting progresses or when the ladle is replaced during continuous casting, the temperature in the pool must be maintained at a constant temperature in accordance with the change in the molten steel temperature. The temperature of the molten steel in the pool is always affected by the cooling direction due to the squeeze of the semi-solidified molten steel due to the rolling phenomenon at the drum kiss point, and the magnitude of the cooling amount, that is, the squeeze volume velocity is the magnitude of the drum reaction force. Because the target drum reaction force is changed according to the change in the molten steel temperature in the tundish or the molten steel temperature in the pool between the pair of drums, the operation to maintain the molten steel temperature in the pool is performed. .

【0014】因みに、安定鋳造状態が図1に示すA点、
すなわちタンディシュ内溶鋼温度で1250℃、目標ド
ラム反力で2500kg/mで操業するとした場合、こ
の状態でタンディッシュ内溶鋼温度が+5℃高めになっ
た時は、プール内の溶鋼温度も上昇し、エッジでの凝固
不良による溶鋼のしみ出しの発生を誘発することが懸念
される。そして、実際にしみ出し状態になれば、目標ド
ラム反力を図1に示すB点(3250kg/m)まで上
昇させる。この時のドラム速度は31.5mpmから3
0.5mpmに低下する。このような操作を行うこと
で、溶鋼温度の+5℃分はドラム反力の上昇に伴う半凝
固溶鋼のスクイーズ量の増加で相殺され、プール内の溶
鋼温度は一定に保持されることになる。また、溶鋼温度
が−5℃低めになって、サイド堰への地金付着に伴うホ
ットバンド発生の恐れがある時は、目標ドラム反力を図
1に示すC点(1500kg/m)まで下降させる。こ
の時、鋳造速度は31.5mpmから32.4mpmま
で上昇する。このような操作を行うことで、溶鋼温度の
−5℃分はドラム反力の低下に伴う半凝固溶鋼のスクイ
ーズ量の減少で相殺され、プール内の溶鋼温度は一定に
保持されることになる。
Incidentally, the stable casting state is point A shown in FIG.
That is, if it is assumed that the operation is performed at 1250 ° C. in the molten steel temperature in the tundish and 2500 kg / m in the target drum reaction force, when the molten steel temperature in the tundish rises by + 5 ° C. in this state, the molten steel temperature in the pool also increases. There is a concern that molten steel may ooze due to poor solidification at the edge. Then, when it actually comes out, the target drum reaction force is raised to the point B (3250 kg / m) shown in FIG. The drum speed at this time is 31.5 mpm to 3
It drops to 0.5 mpm. By performing such an operation, + 5 ° C. of the molten steel temperature is offset by an increase in the squeeze amount of the semi-solidified molten steel due to an increase in the drum reaction force, and the molten steel temperature in the pool is kept constant. In addition, when the molten steel temperature is lowered by -5 ° C and there is a risk of hot bands occurring due to the adhesion of metal to the side dam, the target drum reaction force is lowered to point C (1500 kg / m) shown in Fig. 1. Let it. At this time, the casting speed increases from 31.5 mpm to 32.4 mpm. By performing such an operation, the −5 ° C. portion of the molten steel temperature is offset by the decrease in the squeeze amount of the semi-solidified molten steel due to the decrease in the drum reaction force, and the molten steel temperature in the pool is kept constant. .

【0015】このように、ドラム反力を変化させること
で、プール内に供給される溶鋼温度のバラツキを相殺さ
せることができる。その範囲は、鋳造される薄手鋳片厚
が4.5mmの場合で、ドラム反力を±1000kg/
mの範囲で変化させることで、溶鋼温度のバラツキを約
+7℃から−5℃程度補償できるものと考えられる。た
だし、ドラム反力を下げる側の操作は前述の通り、ブレ
ークアウト等の発生防止の対策を採った上で行う必要が
ある。
As described above, by changing the reaction force of the drum, the variation in the temperature of the molten steel supplied into the pool can be offset. The range is when the thickness of the thin slab to be cast is 4.5 mm and the drum reaction force is ± 1000 kg /
It is considered that the variation in the temperature of the molten steel can be compensated from about + 7 ° C. to about −5 ° C. by changing the range of m. However, the operation for lowering the drum reaction force needs to be performed after taking measures to prevent the occurrence of breakout and the like, as described above.

【0016】次に、本発明による双ドラム式連続鋳造機
による鋳造方法におけるドラム反力制御の方法について
図2に基づいて説明する。図2は、ドラム反力制御の概
略構成を示す模式図である。図2の双ドラム式連続鋳造
機において、相対する一対のドラム1、1’と、この一
対のドラム1、1’のドラムキス点Kを中心とした上部
空間部の溶鋼プール2内に鋳造のための溶鋼を供給する
取鍋(図示せず)及びタンディシュ4(これはモールド
であってもよい。)が設けられている。このタンディシ
ュまたはモールド内には溶鋼温度を計測する溶鋼温度計
5が浸漬されており、溶鋼温度を連続的に計測し、計測
された溶鋼温度実績値がドラム反力変更量計算装置6に
伝達され、そして演算装置7に蓄積され、予め設定され
たドラム反力目標値との比較を行い、必要なドラム反力
変更量を算出する。また、前記溶鋼プール2内には貯溜
された溶鋼の湯面高さを測定するために、湯面レベル計
8が設置され、湯面レベル測定結果を静圧換算器9で溶
鋼プール2の湯面レベルとそれに基づく溶鋼静圧値を算
出し、前記演算装置7に伝達・蓄積される。更に、前記
ドラムの少なくとも一方のドラム両端の軸箱(チョッ
ク)(ここではドラム1)部に接触するロードセル10
でドラム反力を計測し、同様に前記演算装置7に伝達・
蓄積される。これらの情報を基に、ドラム反力修正値を
演算装置7で算出し、この値を圧下位置制御装置15に
送る。圧下位置制御装置15ではドラム反力修正値を目
標として、これを実現させるべくサーボバルブ11に連
結した圧下シリンダー13を駆動してドラム位置を変化
させる。この時、ドラム位置を変化させる事で圧下目標
位置との「ずれ」が生じるが、この「ずれ」を修正する
ために必要な駆動モーターMの回転をドラム速度制御装
置14でリアルタイムで調整・修正することにより、ド
ラム反力ならびに鋳造板厚を一定に制御するものであ
る。すなわち、例えば、タンディシュ内溶鋼温度が12
50℃で溶鋼温度が+5℃高めになった場合には、目標
ドラム反力を最適値まで上昇させ、鋳造速度(ドラムの
回転速度)を低下させて、溶鋼温度の+5℃分はドラム
反力の上昇に伴う半凝固溶鋼のスクイーズ量の増加で相
殺されるような操作を行い、一方、溶鋼温度が−5℃低
めにになった場合には、目標ドラム反力を下降させ、鋳
造速度を上昇させ、溶鋼温度の−5℃分はドラム反力の
低下に伴う半凝固溶鋼のスクイーズ量の減少で相殺させ
て、プール内の溶鋼温度を一定に保持する制御を行う。
Next, a method of controlling a drum reaction force in a casting method using a twin-drum continuous casting machine according to the present invention will be described with reference to FIG. FIG. 2 is a schematic diagram showing a schematic configuration of the drum reaction force control. In the twin-drum continuous casting machine shown in FIG. 2, a pair of opposed drums 1 and 1 'and a pair of drums 1 and 1' are cast in a molten steel pool 2 in an upper space around a drum kiss point K. A ladle (not shown) for supplying molten steel and a tundish 4 (this may be a mold) are provided. A molten steel thermometer 5 for measuring the molten steel temperature is immersed in the tundish or the mold, continuously measures the molten steel temperature, and the measured molten steel temperature actual value is transmitted to the drum reaction force change amount calculating device 6. Then, a comparison with a preset drum reaction force target value accumulated in the arithmetic unit 7 is performed to calculate a necessary drum reaction force change amount. A level gauge 8 is installed in the molten steel pool 2 to measure the level of the molten steel stored in the molten steel pool 2. The surface level and the molten steel static pressure value based on the surface level are calculated and transmitted to the arithmetic unit 7 and stored. Further, the load cell 10 is in contact with the axle box (chock) (here, the drum 1) at both ends of at least one of the drums.
To measure the drum reaction force and transmit it to the arithmetic unit 7 in the same manner.
Stored. Based on these information, the drum reaction force correction value is calculated by the arithmetic unit 7, and this value is sent to the rolling position control unit 15. The rolling position control device 15 changes the drum position by driving the rolling cylinder 13 connected to the servo valve 11 in order to achieve the drum reaction force correction value as a target. At this time, changing the drum position causes a "shift" from the rolling target position. The rotation of the drive motor M required to correct the "shift" is adjusted and corrected in real time by the drum speed control device 14. By doing so, the drum reaction force and the casting plate thickness are controlled to be constant. That is, for example, when the molten steel temperature in the tundish is 12
If the temperature of the molten steel rises by + 5 ° C at 50 ° C, the target drum reaction force is raised to the optimum value, the casting speed (drum rotation speed) is reduced, and the + 5 ° C portion of the molten steel temperature is the drum reaction force. Operation is offset by the increase in the amount of squeeze of semi-solidified molten steel accompanying the rise in temperature, while if the molten steel temperature is lowered by -5 ° C, the target drum reaction force is lowered and the casting speed is reduced. The temperature is raised to −5 ° C. of the molten steel temperature, offset by the decrease in the squeeze amount of the semi-solidified molten steel due to the decrease in the drum reaction force, and control is performed to keep the molten steel temperature in the pool constant.

【0017】[0017]

【発明の効果】以上述べたように、本発明による双ドラ
ム式連続鋳造機により所定の板厚を有する薄鋳片を鋳造
する方法では、鋳造中に変動する溶鋼温度や湯面高さに
対しドラム反力の目標値をダイナミックに変化させなが
ら鋳造することでブレークアウトの発生及び鋳造板厚の
変動を防止して薄鋳片を安定して製造することが可能に
なる。
As described above, in the method of casting a thin slab having a predetermined thickness by the twin-drum continuous caster according to the present invention, the temperature of the molten steel and the height of the molten metal that fluctuate during casting are reduced. Casting while dynamically changing the target value of the drum reaction force prevents breakouts and fluctuations in the thickness of the cast plate, and enables stable production of thin cast pieces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶鋼過剰温度とドラム反力およびドラム回転速
度との関係を示す図。
FIG. 1 is a diagram showing the relationship between molten steel excess temperature, drum reaction force, and drum rotation speed.

【図2】本発明による双ロール式薄鋳片連続鋳造機にお
けるドラム反力制御の概略構成を示す模式図。
FIG. 2 is a schematic diagram showing a schematic configuration of drum reaction force control in a twin-roll thin cast slab continuous casting machine according to the present invention.

【符号の説明】[Explanation of symbols]

1、1’…ドラム 2…溶鋼プール 4…タンディシュ(モールド) 5…溶鋼温度計 6…反力変更量計算装置 7…演算装置 8…湯面レベル計 9…静圧換算器 10…ロードセル 11…サーボバルブ 12…ドラム位置検出器 13…圧下位置制御用シリンダー 14…ドラム速度制御装置 15…圧下位置制御装置 K…ドラムキス点 1, 1 '... drum 2 ... molten steel pool 4 ... tundish (mold) 5 ... molten steel thermometer 6 ... reaction force change amount calculation device 7 ... arithmetic unit 8 ... level gauge 9 ... static pressure converter 10 ... load cell 11 ... Servo valve 12 ... Drum position detector 13 ... Cylinder for control of rolling position 14 ... Drum speed controller 15 ... Control device for rolling position K ... Drum kiss point

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 相対する一対のドラムとその両端面に押
し付けたサイド堰を有する双ドラム式連続鋳造機による
薄鋳片の製造方法において、タンディッシュ内の溶鋼温
度または相対する一対のドラム間プール内の溶鋼温度の
変化に応じてドラム反力を変更することを特徴とする双
ドラム式連続鋳造機による鋳造方法。
1. A method for producing thin cast slabs by a twin-drum continuous caster having a pair of opposed drums and side dams pressed against both end surfaces thereof, wherein a temperature of molten steel in a tundish or a pool between a pair of opposed drums is provided. A casting method using a twin-drum continuous casting machine, wherein a drum reaction force is changed according to a change in molten steel temperature in the inside.
【請求項2】 相対する一対のドラムとその両端面に押
し付けたサイド堰を有する双ドラム式連続鋳造機による
薄鋳片の製造方法において、タンディッシュ内の溶鋼温
度または相対する一対のドラム間プール内の溶鋼温度を
計測し、前記溶鋼の温度変化に応じてドラムキス点で凝
固シェルにかかる実質的な圧下力を制御することを特徴
とする双ドラム式連続鋳造機による鋳造方法。
2. A method for producing thin cast slabs using a twin-drum continuous caster having a pair of opposed drums and side dams pressed against both end surfaces thereof, wherein a temperature of molten steel in a tundish or a pool between opposed pair of drums is provided. A casting method using a twin-drum continuous caster, wherein the temperature of the molten steel in the inside is measured, and the substantial rolling force applied to the solidified shell at the drum kiss point is controlled according to the temperature change of the molten steel.
【請求項3】 相対する一対のドラムとその両端面に押
し付けたサイド堰を有する双ドラム式連続鋳造機による
薄鋳片の製造に際し、タンディッシュ内の溶鋼温度また
は相対する一対のドラム間プール内の溶鋼温度を計測
し、前記溶鋼の温度変化に応じてドラムキス点で凝固シ
ェルにかかる実質的な圧下力を制御する方法において、
前記溶鋼温度の計測値を目標値と比較し、計測した溶鋼
の温度が目標値より高い場合は前記圧下力が大きくなる
ように変更し、計測した溶鋼の温度が目標値より低い場
合は前記圧下力が小さくなるように変更することによっ
て一対のドラム間プール内の溶鋼温度が所定範囲となる
ように制御することを特徴とする双ドラム式連続鋳造機
による鋳造方法。
3. A method for manufacturing thin cast slabs using a twin-drum continuous caster having a pair of opposed drums and side dams pressed against both end surfaces thereof, the temperature of molten steel in a tundish or the inside of a pool between opposed pair of drums. In the method of measuring the molten steel temperature of, and controlling the substantial rolling force applied to the solidified shell at the drum kiss point according to the temperature change of the molten steel,
The measured value of the molten steel temperature is compared with a target value, and if the measured temperature of the molten steel is higher than the target value, the rolling force is changed to be larger.If the measured temperature of the molten steel is lower than the target value, the reduction is performed. A casting method using a twin-drum type continuous casting machine, wherein the molten steel temperature in the pool between the pair of drums is controlled to be within a predetermined range by changing the force so as to be small.
【請求項4】 前記ドラムの少なくとも一方のドラムが
受けるドラム両端の軸箱に接触するロードセルで計測し
たドラム反力から、相対する一対のドラム間プールの溶
鋼湯面高さの計測値からもとめた溶鋼静圧分を差し引い
て、凝固シェルにかかる実質的な圧下力を求めることを
特徴とする請求項2または3記載の双ドラム式連続鋳造
機による鋳造方法。
4. A molten steel surface height of a pool between a pair of opposed drums is obtained from a drum reaction force measured by a load cell in contact with an axle box at both ends of the drums, which is received by at least one of the drums. 4. The casting method using a twin-drum continuous caster according to claim 2, wherein a substantial rolling force applied to the solidified shell is obtained by subtracting a static pressure of molten steel.
【請求項5】 凝固シェルにかかる実質的な圧下力を変
更するとともに鋳造速度を変更して鋳造板厚を一定に制
御することを特徴とする請求項2〜4のいずれか1項に
記載の双ドラム式連続鋳造機による鋳造方法。
5. The method according to claim 2, wherein a substantial rolling force applied to the solidified shell is changed, and a casting speed is changed to control the thickness of the cast sheet to be constant. A casting method using a twin-drum continuous casting machine.
【請求項6】 凝固シェルにかかる実質的な圧下力を変
更する装置として圧力制御シリンダー及び位置制御用の
サーボバルブを用いることを特徴とする請求項2〜5の
いずれか1項に記載の双ドラム式連続鋳造機による鋳造
方法。
6. A dual-purpose device according to claim 2, wherein a pressure control cylinder and a servo valve for position control are used as a device for changing a substantial rolling force applied to the solidified shell. Casting method using a drum type continuous casting machine.
JP11016940A 1999-01-26 1999-01-26 Casting method using twin-drum type continuous casting machine Withdrawn JP2000210759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11016940A JP2000210759A (en) 1999-01-26 1999-01-26 Casting method using twin-drum type continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11016940A JP2000210759A (en) 1999-01-26 1999-01-26 Casting method using twin-drum type continuous casting machine

Publications (1)

Publication Number Publication Date
JP2000210759A true JP2000210759A (en) 2000-08-02

Family

ID=11930136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11016940A Withdrawn JP2000210759A (en) 1999-01-26 1999-01-26 Casting method using twin-drum type continuous casting machine

Country Status (1)

Country Link
JP (1) JP2000210759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568350B1 (en) * 2001-12-21 2006-04-05 주식회사 포스코 Method to produce duplex stainless steel by strip caster
KR100945607B1 (en) * 2001-11-30 2010-03-04 지멘스 브이에이아이 메탈스 테크놀로지스 게엠베하 앤드 컴퍼니 Method of continuous casting
WO2016194037A1 (en) * 2015-05-29 2016-12-08 日産自動車株式会社 Twin roll-type vertical casting device and twin roll-type vertical casting method
JP2016221567A (en) * 2015-06-03 2016-12-28 日産自動車株式会社 Twin roll type vertical casting apparatus and twin roll type vertical casting method
CN108335605A (en) * 2018-02-11 2018-07-27 河海大学 A kind of multipurpose weir flow device suitable for teaching experiment
CN112222392A (en) * 2020-09-07 2021-01-15 东北大学 Cloth bag with continuous temperature measurement function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945607B1 (en) * 2001-11-30 2010-03-04 지멘스 브이에이아이 메탈스 테크놀로지스 게엠베하 앤드 컴퍼니 Method of continuous casting
KR100568350B1 (en) * 2001-12-21 2006-04-05 주식회사 포스코 Method to produce duplex stainless steel by strip caster
WO2016194037A1 (en) * 2015-05-29 2016-12-08 日産自動車株式会社 Twin roll-type vertical casting device and twin roll-type vertical casting method
JP2016221567A (en) * 2015-06-03 2016-12-28 日産自動車株式会社 Twin roll type vertical casting apparatus and twin roll type vertical casting method
CN108335605A (en) * 2018-02-11 2018-07-27 河海大学 A kind of multipurpose weir flow device suitable for teaching experiment
CN108335605B (en) * 2018-02-11 2020-05-05 河海大学 Multipurpose weir flow device suitable for teaching experiment
CN112222392A (en) * 2020-09-07 2021-01-15 东北大学 Cloth bag with continuous temperature measurement function

Similar Documents

Publication Publication Date Title
KR100333070B1 (en) Method for controlling position of edge dams in twin roll type strip caster
US5706882A (en) Control process for twin-roll continuous casting
JP5976087B2 (en) Damage prevention device for casting roll in thin plate manufacturing equipment.
JP2697908B2 (en) Control device of twin roll continuous casting machine
JP2010536580A (en) Strip edge shape control apparatus and method in strip casting process
JPS6017625B2 (en) Twin-roll quenched ribbon manufacturing method and device
JP2000210759A (en) Casting method using twin-drum type continuous casting machine
JP5779978B2 (en) Light reduction method of slab in continuous casting
JPH10305352A (en) Control of continuous casting machine with twin rolls
JPH07108435B2 (en) Twin roll type continuous casting machine
JP5476959B2 (en) Continuous casting method under light pressure
KR100851195B1 (en) Control method for roll separation force and roll gap in twin roll strip casting process
KR101500102B1 (en) Apparatus and method of controlling wear of edgedam in twin roll strip casting process
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
CN112839754B (en) Method for casting cast plate
KR20080022806A (en) Method for controlling a strip thickness in strip casting process
JP3217638B2 (en) Continuous casting method and belt type continuous casting method
KR100689152B1 (en) Method for controlling strip thickness of twin-roll strip casting process
JP3506195B2 (en) Continuous casting method
JPS60148B2 (en) Bulging control continuous casting method
KR100848650B1 (en) Method of Roll Gap Control of the Coil in Accordance with Temperature and Casting Speed Variation
JPS63303655A (en) Device for controlling roll gap in continuous casting equipment
JP3478263B2 (en) Control method of continuous casting
KR101568491B1 (en) Apparatus and method for controlling edge dam in twin roll strip casting process
JPH04266463A (en) Method for continuously casting steel strip

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404