JP2011120226A - Elastic-wave device, and method of manufacturing the same - Google Patents

Elastic-wave device, and method of manufacturing the same Download PDF

Info

Publication number
JP2011120226A
JP2011120226A JP2010240415A JP2010240415A JP2011120226A JP 2011120226 A JP2011120226 A JP 2011120226A JP 2010240415 A JP2010240415 A JP 2010240415A JP 2010240415 A JP2010240415 A JP 2010240415A JP 2011120226 A JP2011120226 A JP 2011120226A
Authority
JP
Japan
Prior art keywords
substrate
wave device
piezoelectric substrate
acoustic wave
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010240415A
Other languages
Japanese (ja)
Other versions
JP5677030B2 (en
Inventor
Hirotoshi Kobayashi
弘季 小林
Yuji Hori
裕二 堀
Yasunori Iwasaki
康範 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010240415A priority Critical patent/JP5677030B2/en
Publication of JP2011120226A publication Critical patent/JP2011120226A/en
Application granted granted Critical
Publication of JP5677030B2 publication Critical patent/JP5677030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further suppress occurrence of trouble caused by heating, in an elastic-wave device composed, by sticking a piezoelectric substrate onto a support substrate via an adhesive layer. <P>SOLUTION: The elastic-wave device 30 includes the piezoelectric substrate 42 formed with electrodes; the support substrate 44; and the adhesive layer 46 for sticking the piezoelectric substrate 42 to the support substrate 44, wherein a swollen part 43 is formed on the piezoelectric substrate 42 to be formed into a projecting shape from the piezoelectric substrate 42 side toward the support substrate 44 side. The elastic-wave device 30 is formed with bent parts 48 on the support substrate 44, and is formed so as to have the outer peripheries from a surface 41 of the piezoelectric substrate 42 reduce, toward the bent parts 48 of the support substrate 44 and to set the sizes of the outer peripheries equal to one another from the bent parts 48 toward the back face 45. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、弾性波デバイス及びその製造方法に関する。   The present invention relates to an acoustic wave device and a manufacturing method thereof.

従来、弾性波デバイスの製造方法としては、圧電基板とそれを支持する支持基板とを接合した接合体の分割工程において、分割後の圧電基板の幅が支持基板の幅より小さくなるように切断するものが提案されている(例えば、特許文献1参照)。この製造方法では、最初に圧電基板の切断に適した材質の回転刃で圧電基板の表面側から圧電基板のみを分割し、その後、支持基板の分割に適した材質で圧電基板用の回転刃よりも幅の狭い回転刃で、支持基板の裏面側から支持基板のみを分割することにより、弾性波デバイスを作製する。   Conventionally, as a method for manufacturing an acoustic wave device, in a division process of a joined body in which a piezoelectric substrate and a support substrate that supports the piezoelectric substrate are joined, cutting is performed so that the width of the divided piezoelectric substrate is smaller than the width of the support substrate. The thing is proposed (for example, refer patent document 1). In this manufacturing method, first, only the piezoelectric substrate is divided from the surface side of the piezoelectric substrate with a rotary blade made of a material suitable for cutting the piezoelectric substrate, and then the piezoelectric substrate rotary blade is made of a material suitable for dividing the support substrate. The elastic wave device is manufactured by dividing only the support substrate from the back surface side of the support substrate with a narrow rotary blade.

特開2009−94661号公報JP 2009-94661 A

ところで、こうした弾性波デバイスは、切断されたあと、高温プロセス工程を行うことがある。しかしながら、この特許文献1に記載された弾性波デバイスでは、圧電基板の幅が支持基板の幅より小さく形成されているが、加熱による膨張・収縮の影響により圧電基板の端部でクラックなどが発生することがあった。   By the way, such an acoustic wave device may be subjected to a high-temperature process step after being cut. However, in the acoustic wave device described in Patent Document 1, the width of the piezoelectric substrate is smaller than the width of the support substrate. However, cracks and the like are generated at the end of the piezoelectric substrate due to the expansion and contraction due to heating. There was something to do.

本発明は、このような課題に鑑みなされたものであり、圧電基板と支持基板とを接着層を介して貼り合わせたものにおいて、加熱により生じる不具合の発生をより抑制することができる弾性波デバイス及びその製造方法を提供することを主目的とする。   The present invention has been made in view of such problems, and an acoustic wave device that can further suppress the occurrence of defects caused by heating in the case where a piezoelectric substrate and a support substrate are bonded together via an adhesive layer. And a manufacturing method thereof.

上述した主目的を達成するために鋭意研究したところ、本発明者らは、圧電基板側から支持基板側に向かって凸形状となるよう圧電基板に膨出部を形成したところ、加熱により生じる不具合の発生をより抑制することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described main object, the present inventors formed a bulging portion on the piezoelectric substrate so as to have a convex shape from the piezoelectric substrate side toward the support substrate side. It has been found that the occurrence of the above can be further suppressed, and the present invention has been completed.

即ち、本発明の弾性波デバイスは、
電極が形成されている圧電基板と、
前記圧電基板と直接又は間接的に接着されている支持基板と、を備え、
前記圧電基板側から前記支持基板側に向かって凸形状となるよう前記圧電基板には膨出部が形成されているものである。
That is, the acoustic wave device of the present invention is
A piezoelectric substrate on which electrodes are formed;
A support substrate bonded directly or indirectly to the piezoelectric substrate,
A bulging portion is formed on the piezoelectric substrate so as to have a convex shape from the piezoelectric substrate side toward the support substrate side.

本発明の弾性波デバイスの製造方法は、
電極が形成されている圧電基板と、前記圧電基板と直接又は間接的に接着されている支持基板と、を備えた複合基板を用いた弾性波デバイスの製造方法であって、
前記圧電基板側から前記支持基板側に向かって弾性波デバイスが凸形状となる膨出部を形成する切断面が得られる切断部材を用いて、前記複合基板から前記弾性波デバイスを切り出す切出工程、を含むものである。
The method for producing an acoustic wave device of the present invention includes:
An acoustic wave device manufacturing method using a composite substrate comprising: a piezoelectric substrate on which an electrode is formed; and a support substrate bonded directly or indirectly to the piezoelectric substrate,
A cutting step of cutting out the acoustic wave device from the composite substrate using a cutting member capable of obtaining a cut surface that forms a bulging portion in which the acoustic wave device has a convex shape from the piezoelectric substrate side toward the support substrate side , Including.

この弾性波デバイスの製造方法では、圧電基板側から支持基板側に向かって凸形状となるよう圧電基板に膨出部を形成する。このような、本発明の弾性波デバイス及びその製造方法では、加熱により生じる不具合の発生をより抑制することができる。この理由は、以下のように推察される。例えば、圧電基板には膨出部が形成されており、接着層により支持基板に接着されている圧電基板の面に比して、接着されていない圧電基板の表面側の方が大きく形成されており、自由度の高い表面側のボリュームが比較的大きくなっている。この膨出部の存在により、加熱された際など支持基板及び圧電基板の膨張・収縮により生じる端部での応力を緩和可能であるものと推察される。   In this method of manufacturing an acoustic wave device, the bulging portion is formed on the piezoelectric substrate so as to have a convex shape from the piezoelectric substrate side toward the support substrate side. In such an acoustic wave device and a manufacturing method thereof according to the present invention, it is possible to further suppress the occurrence of problems caused by heating. The reason is presumed as follows. For example, a bulging portion is formed on the piezoelectric substrate, and the surface side of the unbonded piezoelectric substrate is formed larger than the surface of the piezoelectric substrate bonded to the support substrate by the adhesive layer. The volume on the surface side with a high degree of freedom is relatively large. Due to the presence of the bulging portion, it is presumed that the stress at the end caused by the expansion / contraction of the support substrate and the piezoelectric substrate, such as when heated, can be relieved.

複合基板10及び弾性波デバイス30の構成の概略を示す説明図。FIG. 3 is an explanatory diagram showing an outline of the configuration of a composite substrate 10 and an acoustic wave device 30. 弾性波デバイス30の製造プロセスの一例を模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing an example of a manufacturing process of the acoustic wave device 30. 弾性波デバイス30の製造プロセスの一例を模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing an example of a manufacturing process of the acoustic wave device 30. 弾性波デバイス30Bの製造プロセスの一例を模式的に示す断面図。Sectional drawing which shows typically an example of the manufacturing process of the elastic wave device 30B. 弾性波デバイス30の構成の概略を示す構成図。FIG. 2 is a configuration diagram showing an outline of the configuration of an acoustic wave device 30. 弾性波デバイス30Cの構成の概略を示す構成図。The block diagram which shows the outline of a structure of the elastic wave device 30C. 比較例1の弾性波デバイス130の構成の概略を示す断面図。Sectional drawing which shows the outline of a structure of the elastic wave device 130 of the comparative example 1. FIG. 比較例2の弾性波デバイス230の構成の概略を示す断面図。Sectional drawing which shows the outline of a structure of the elastic wave device 230 of the comparative example 2. FIG. 実施例1〜3及び比較例1〜3の評価結果の模式図。The schematic diagram of the evaluation result of Examples 1-3 and Comparative Examples 1-3.

次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の一実施形態である複合基板10及び弾性波デバイス30の構成の概略を示す説明図である。図2は、弾性波デバイス30の製造プロセスの一例を模式的に示す断面図である。本発明の弾性波デバイス30の製造方法は、(a)圧電基板と支持基板とを貼り合わせ電極を形成した複合基板を作製する複合基板作製工程と、(b)圧電基板側から支持基板側に向かって弾性波デバイスが凸形状となる膨出部を形成する切断面が得られる切断部材を用いて複合基板から弾性波デバイスを切り出す切出工程と、を含むものとしてもよい。本発明の弾性波デバイス30としては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などとしてもよい。例えば、弾性表面波デバイスは、圧電基板の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電基板上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。   Next, modes for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the configuration of a composite substrate 10 and an acoustic wave device 30 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an example of the manufacturing process of the acoustic wave device 30. The method for manufacturing the acoustic wave device 30 of the present invention includes: (a) a composite substrate manufacturing step of manufacturing a composite substrate in which a piezoelectric substrate and a support substrate are bonded together to form an electrode; and (b) from the piezoelectric substrate side to the support substrate side. A cutting step of cutting out the acoustic wave device from the composite substrate using a cutting member from which a cut surface that forms a bulging portion in which the elastic wave device has a convex shape may be obtained. The acoustic wave device 30 of the present invention may be a surface acoustic wave device, a Lamb wave element, a thin film resonator (FBAR), or the like. For example, a surface acoustic wave device has an IDT (Interdigital Transducer) electrode (also referred to as a comb-shaped electrode or an interdigital electrode) for exciting surface acoustic waves and an IDT on the output side for receiving surface acoustic waves on the surface of a piezoelectric substrate. And an electrode. When a high frequency signal is applied to the IDT electrode on the input side, an electric field is generated between the electrodes, and a surface acoustic wave is excited and propagates on the piezoelectric substrate. Then, the propagated surface acoustic wave can be taken out as an electric signal from the IDT electrode on the output side provided in the propagation direction.

(a)複合基板作製工程
まず、この工程では、圧電基板12と支持基板14とを貼り合わせて貼り合わせ基板を形成し、貼り合わせ基板の外周面を研削し、圧電基板の厚みを薄くすると共に、圧電基板の表面を鏡面研磨してもよい。ここで、圧電基板12と支持基板14とは、直接接着してもよいし、例えば接着層16を介して間接的に接着してもよい。ここでは、図2に示すように、接着層16を介して接着する場合について主として説明する。圧電基板12としては、例えば、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶などのうち1以上を用いることができる。支持基板14としては、シリコン製のものを用いることができる。この支持基板14の熱膨張係数は、圧電基板12の熱膨張係数が13〜20ppm/Kの場合には、2〜7ppm/Kのものを用いるのが好ましい。接着層16としては、耐熱性を有する有機接着剤により形成されることが好ましく、例えば、エポキシ系接着剤やアクリル系接着剤などを用いることができる。次に、圧電基板12の表面に電極を形成する。電極の形成は、例えば、フォトリソグラフィ技術を用いて、図1に示すように、圧電基板12の表面にIDT電極32、34と反射電極36とを形成するものとしてもよい。
(A) Composite substrate manufacturing step First, in this step, the piezoelectric substrate 12 and the support substrate 14 are bonded together to form a bonded substrate, the outer peripheral surface of the bonded substrate is ground, and the thickness of the piezoelectric substrate is reduced. The surface of the piezoelectric substrate may be mirror-polished. Here, the piezoelectric substrate 12 and the support substrate 14 may be directly bonded, or may be indirectly bonded, for example, via the adhesive layer 16. Here, as shown in FIG. 2, a case where bonding is performed through the bonding layer 16 will be mainly described. As the piezoelectric substrate 12, for example, one or more of lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution, lithium borate, langasite, crystal, and the like can be used. As the support substrate 14, a silicon substrate can be used. The support substrate 14 preferably has a thermal expansion coefficient of 2 to 7 ppm / K when the piezoelectric substrate 12 has a thermal expansion coefficient of 13 to 20 ppm / K. The adhesive layer 16 is preferably formed of an organic adhesive having heat resistance, and for example, an epoxy adhesive or an acrylic adhesive can be used. Next, an electrode is formed on the surface of the piezoelectric substrate 12. The electrodes may be formed by, for example, forming the IDT electrodes 32 and 34 and the reflective electrode 36 on the surface of the piezoelectric substrate 12 as shown in FIG.

(b)切出工程
この工程では、図2に示すように、多数の弾性表面波デバイスの集合体である複合基板10をダイシングして、1つ1つの弾性波デバイス30に切り出す処理を行う。なお、ここでは、ダイシング前のものをそれぞれ圧電基板12、支持基板14、接着層16と称し、ダイシング後のものをそれぞれ圧電基板42、支持基板44及び接着層46と称する。この工程では、圧電基板12側から支持基板14側に向かって弾性波デバイスが凸形状となる膨出部43を圧電基板42に形成する切断面が得られる切断部材50を用いるものとする。ここで、凸形状には、例えば、弾性波デバイス30の表面41から裏面45に向かうと外形が小さくなるような形状を含む。この切出工程では、図2に示すように、先端側に向けて尖った形状を有する回転刃である切断部材50を用い、この切断部材50の先端を圧電基板の表面11側に配置して、複合基板10から弾性波デバイス30を切り出すものとしてもよい。こうすれば、先細りになった先端側を利用して、比較的容易に膨出部43を圧電基板42に形成することができる。また、この切出工程では、図2に示すように、支持基板14と圧電基板12とを切断する一つの切断部材を用いて、複合基板10から弾性波デバイスを切り出すものとしてもよい。こうすれば、1回の切断処置により支持基板14と圧電基板12とを切断することができるため、作業効率がよい。あるいは、この切出工程では、図3に示すように、支持基板14を切断可能な支持基板切断部材52を用いて支持基板14を切削したあと、圧電基板12を切断する圧電基板切断部材54を用いて、この切削した支持基板14側から圧電基板12を切断するものとしてもよい。こうすれば、切断処理を2回必要とするが、支持基板14及び圧電基板12の端部の破損をより抑制することができる。また、支持基板や圧電基板の破損などをより抑制することができる。この支持基板切断部材52での切削処理では、接着層46まで切削してもよいし、支持基板44の表面近傍まで切削してもよい。切断部材の材質としては、例えば、電鋳系砥石、レジン系砥石などのうち1以上を用いることができる。また、図4に示すように、先端側に向けて尖った形状で且つ先端に厚さが変わらない平板部51Bを設けた切断部材50Bを用いるものとしてもよい。この切断部材50Bの先端を圧電基板の表面11側に配置して、複合基板10から弾性波デバイス30Bを切り出すものとしてもよい。こうすれば、ダイシングすると共に、膨出部43Bの端部を平面に形成することができ、圧電基板42Bの端部の破損などをより抑制することができる。このように、切断部材を用いて所定の間隔で複合基板10を切断すると、膨出部43が形成されており、圧電基板42側から支持基板44側に向かって凸形状である弾性波デバイス30を作製することができる。なお、図2〜6では、圧電基板42上に形成されている電極は省略した。
(B) Cutting process In this process, as shown in FIG. 2, the composite substrate 10 which is an aggregate | assembly of many surface acoustic wave devices is diced, and the process cut | disconnected to each elastic wave device 30 is performed. Here, those before dicing are referred to as the piezoelectric substrate 12, the support substrate 14, and the adhesive layer 16, respectively, and those after dicing are referred to as the piezoelectric substrate 42, the support substrate 44, and the adhesive layer 46, respectively. In this step, it is assumed that the cutting member 50 is used which provides a cut surface for forming the bulging portion 43 on the piezoelectric substrate 42 in which the elastic wave device has a convex shape from the piezoelectric substrate 12 side toward the support substrate 14 side. Here, the convex shape includes, for example, a shape in which the outer shape becomes smaller from the front surface 41 to the back surface 45 of the acoustic wave device 30. In this cutting process, as shown in FIG. 2, a cutting member 50 which is a rotary blade having a sharp shape toward the tip side is used, and the tip of the cutting member 50 is arranged on the surface 11 side of the piezoelectric substrate. The acoustic wave device 30 may be cut out from the composite substrate 10. In this way, the bulging portion 43 can be formed on the piezoelectric substrate 42 relatively easily by using the tapered tip end side. In this cutting process, as shown in FIG. 2, the acoustic wave device may be cut out from the composite substrate 10 using one cutting member that cuts the support substrate 14 and the piezoelectric substrate 12. By doing so, the support substrate 14 and the piezoelectric substrate 12 can be cut by a single cutting treatment, and thus the work efficiency is good. Alternatively, in this cutting process, as shown in FIG. 3, after the support substrate 14 is cut using the support substrate cutting member 52 capable of cutting the support substrate 14, the piezoelectric substrate cutting member 54 that cuts the piezoelectric substrate 12 is used. The piezoelectric substrate 12 may be cut from the cut support substrate 14 side. In this case, although the cutting process is required twice, damage to the end portions of the support substrate 14 and the piezoelectric substrate 12 can be further suppressed. Further, damage to the support substrate and the piezoelectric substrate can be further suppressed. In the cutting process by the support substrate cutting member 52, the adhesive layer 46 may be cut, or the support substrate 44 may be cut to the vicinity of the surface. As a material of the cutting member, for example, one or more of an electroforming grindstone and a resin grindstone can be used. Moreover, as shown in FIG. 4, it is good also as what uses the cutting member 50B which provided the flat plate part 51B which was a pointed shape toward the front end side, and the thickness does not change at the front end. The tip of the cutting member 50B may be disposed on the surface 11 side of the piezoelectric substrate, and the acoustic wave device 30B may be cut out from the composite substrate 10. In this case, dicing can be performed, and the end portion of the bulging portion 43B can be formed in a flat surface, and damage to the end portion of the piezoelectric substrate 42B can be further suppressed. As described above, when the composite substrate 10 is cut at a predetermined interval using the cutting member, the bulging portion 43 is formed, and the elastic wave device 30 having a convex shape from the piezoelectric substrate 42 side toward the support substrate 44 side. Can be produced. 2 to 6, the electrodes formed on the piezoelectric substrate 42 are omitted.

次に、このようにして作製した弾性波デバイス30について説明する。図5は、弾性波デバイス30の構成の概略を示す構成図であり、図6は、弾性波デバイス30Cの構成の概略を示す構成図である。本発明の弾性波デバイスは、電極が形成されている圧電基板と、支持基板と、圧電基板と支持基板とを接着する接着層と、を備え、圧電基板側から支持基板側に向かって凸形状となるよう、圧電基板には外周側に膨出した膨出部が形成されているものである。弾性波デバイス30は、図5に示すように、支持基板44に屈曲部48が形成されており、圧電基板42の表面41から支持基板44の屈曲部48に向かって外周が小さくなるよう形成され屈曲部48から裏面45に向かって外周の大きさが同じになるよう形成されている。また、弾性波デバイス30は、圧電基板42から接着層46を通り支持基板44まで連続な外周面を有している。こうすれば、外周側での接着層の剥離などをより抑制することができる。また、弾性波デバイス30において、圧電基板42は、支持基板44に接着されている側を接着面49とし、接着面49の反対側の面を表面41としたときに、接着面49を表面41に対して垂直方向に表面41に投影すると、接着面49が表面41の内側に入るように、膨出部43が形成されているものとしてもよい。こうすれば、膨出部43により加熱した際に生じる不具合(例えばクラックなど)の発生をより抑制することができる。また、弾性波デバイス30では、接着面49に対して垂直であり弾性波デバイス30の中心を通る断面において、接着面49の延長面と膨出部43の表面とがなす最大角である角度θが鋭角であるものとしてもよい。こうすれば、比較的大きなボリュームの膨出部43を圧電基板42に形成することができ好ましい。この角度θは、90°未満であり、80°以下であることがより好ましく、75°以下であることが更に好ましい。また、この角度θは、0°を超えることが好ましく、20°以上であることがより好ましく、45°以上であることが更に好ましい。この角度θが75°以下45°以上では、圧電基板42の端部での機械的強度をより確保することができ好ましい。なお、角度θを45°以上とすることにより膨出部43が小さくなり、生産効率が上がる。   Next, the acoustic wave device 30 manufactured in this way will be described. FIG. 5 is a configuration diagram showing an outline of the configuration of the acoustic wave device 30, and FIG. 6 is a configuration diagram showing an outline of the configuration of the acoustic wave device 30C. An acoustic wave device of the present invention includes a piezoelectric substrate on which electrodes are formed, a support substrate, and an adhesive layer that bonds the piezoelectric substrate and the support substrate, and has a convex shape from the piezoelectric substrate side toward the support substrate side. Thus, the piezoelectric substrate is formed with a bulging portion that bulges to the outer peripheral side. As shown in FIG. 5, the elastic wave device 30 has a bent portion 48 formed on the support substrate 44, and the outer periphery decreases from the surface 41 of the piezoelectric substrate 42 toward the bent portion 48 of the support substrate 44. The outer periphery is formed so as to have the same size from the bent portion 48 toward the back surface 45. The acoustic wave device 30 has a continuous outer peripheral surface from the piezoelectric substrate 42 to the support substrate 44 through the adhesive layer 46. In this way, peeling of the adhesive layer on the outer peripheral side can be further suppressed. In the acoustic wave device 30, the piezoelectric substrate 42 has the bonding surface 49 as the surface 41 when the bonding surface 49 is the bonding surface 49 and the surface 41 is the surface opposite to the bonding surface 49. The bulging portion 43 may be formed so that the adhesive surface 49 enters the inside of the surface 41 when projected onto the surface 41 in a direction perpendicular to the surface. If it carries out like this, generation | occurrence | production of the malfunction (for example, crack etc.) which arises when it heats with the bulging part 43 can be suppressed more. In the acoustic wave device 30, an angle θ that is the maximum angle formed by the extended surface of the adhesive surface 49 and the surface of the bulging portion 43 in a cross section that is perpendicular to the adhesive surface 49 and passes through the center of the acoustic wave device 30. May be an acute angle. This is preferable because the bulging portion 43 having a relatively large volume can be formed on the piezoelectric substrate 42. This angle θ is less than 90 °, more preferably 80 ° or less, and further preferably 75 ° or less. Further, the angle θ is preferably more than 0 °, more preferably 20 ° or more, and further preferably 45 ° or more. When the angle θ is 75 ° or less and 45 ° or more, it is preferable because the mechanical strength at the end of the piezoelectric substrate 42 can be further secured. In addition, when the angle θ is set to 45 ° or more, the bulging portion 43 is reduced and the production efficiency is increased.

また、図6に示すように、圧電基板42Cに屈曲部48Cが形成されていてもよい。この弾性波デバイス30Cは、上述の切断部材50の先端をより深い位置として複合基板10を切り出すことにより作製することができる。この弾性波デバイス30Cにおいても、圧電基板42Cから接着層46Cを通り支持基板44Cまで連続な外周面を有している。なお、接着層に屈曲部が形成されているものとしてもよいし、圧電基板から接着層を通り支持基板まで連続な外周面を有していなくてもよい。また、図4に示すように、膨出部43Bの端部が平面に形成されている弾性波デバイス30Bとしてもよい。この弾性波デバイス30Bにおいても、圧電基板42Bから接着層46Bを通り支持基板44Bまで連続な外周面を有している。   Further, as shown in FIG. 6, a bent portion 48C may be formed on the piezoelectric substrate 42C. The elastic wave device 30C can be manufactured by cutting out the composite substrate 10 with the tip of the cutting member 50 described above at a deeper position. The acoustic wave device 30C also has a continuous outer peripheral surface from the piezoelectric substrate 42C through the adhesive layer 46C to the support substrate 44C. The adhesive layer may be formed with a bent portion, or may not have a continuous outer peripheral surface from the piezoelectric substrate through the adhesive layer to the support substrate. Moreover, as shown in FIG. 4, it is good also as the elastic wave device 30B by which the edge part of the bulging part 43B is formed in the plane. The acoustic wave device 30B also has a continuous outer peripheral surface from the piezoelectric substrate 42B through the adhesive layer 46B to the support substrate 44B.

以上説明した実施例の弾性波デバイス及びその製造方法によれば、圧電基板側から支持基板側に向かって凸形状となるよう圧電基板に膨出部が形成されており、加熱により生じる不具合の発生をより抑制することができる。この理由は、以下のように推察される。例えば、接着層により支持基板に接着されている圧電基板の面に比して、接着されていない圧電基板の表面側の方が大きく形成されており、自由度の高い表面側のボリュームが比較的大きくなっている。この膨出部の存在により、加熱された際など支持基板及び圧電基板の膨張・収縮により生じる端部での応力を緩和可能であるものと推察される。   According to the acoustic wave device and the manufacturing method thereof according to the embodiments described above, the bulging portion is formed on the piezoelectric substrate so as to have a convex shape from the piezoelectric substrate side toward the support substrate side. Can be further suppressed. The reason is presumed as follows. For example, the surface side of the non-bonded piezoelectric substrate is formed larger than the surface of the piezoelectric substrate bonded to the support substrate by the adhesive layer, and the volume on the surface side with a high degree of freedom is relatively high. It is getting bigger. Due to the presence of the bulging portion, it is presumed that the stress at the end caused by the expansion / contraction of the support substrate and the piezoelectric substrate, such as when heated, can be relieved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、複合基板作製工程を含むものとしたが、作製済みの複合基板10を用意し、この複合基板作製工程を省略してもよい。   For example, in the above-described embodiment, the composite substrate manufacturing process is included. However, the composite substrate 10 that has been manufactured may be prepared and the composite substrate manufacturing process may be omitted.

以下には、弾性波デバイスを具体的に製造した例を実施例として説明する。   Hereinafter, an example in which an acoustic wave device is specifically manufactured will be described as an example.

[複合基板の作製]
まず、圧電基板として、オリエンテーションフラット部(OF部)を有し、直径が100mm、厚さが250μmのタンタル酸リチウム基板(LT基板)を用意した。また、支持基板として、OF部を有し、直径が100mm、厚さが350μmの支持基板としてのシリコン基板を用意した。ここで、LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である42°YカットX伝搬LT基板を用いた。次いで、シリコン基板にスピンコートによりエポキシ系接着剤を塗布し、LT基板を貼付けて180℃に加熱し、接着層(エポキシ系接着剤が固化した層)の厚さが0.3μmの貼り合わせ基板を形成した。次いで、研磨機にてLT基板の厚さが30μmとなるまで研磨した。研磨機としては、以下のように厚みを薄くしたあと鏡面研磨を行うものを用いた。即ち、厚みを薄くするときには、研磨定盤とプレッシャープレートとの間に貼り合わせ基板を挟み込み、その基板と研磨定盤との間に研磨砥粒を含むスラリーを供給し、このプレッシャープレートにより研削後基板を定盤面に押し付けながらプレッシャープレートに自転運動を与えて行うものを用いた。続いて、鏡面研磨を行うときには、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、プレッシャープレートに自転運動及び公転運動を与えることによって、圧電基板の表面を鏡面研磨するものを用いた。まず、研削後基板のLT基板の表面を定盤面に押し付け、自転運動の回転速度を100rpm、研磨を継続する時間を60分として研磨した。続いて、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、研削後基板を定盤面に押し付ける圧力を0.2MPa、自転運動の回転速度を100rpm、公転運動の回転速度を100rpm、研磨を継続する時間を60分として鏡面研磨した。なお、本実施例では、圧電基板の表面上に電極を形成する工程は省略した。
[Production of composite substrate]
First, a lithium tantalate substrate (LT substrate) having an orientation flat part (OF part), a diameter of 100 mm, and a thickness of 250 μm was prepared as a piezoelectric substrate. In addition, a silicon substrate was prepared as a support substrate having an OF portion, a diameter of 100 mm, and a thickness of 350 μm. Here, as the LT substrate, a 42 ° Y-cut X-propagation LT substrate in which the propagation direction of the surface acoustic wave (SAW) is X and the cutting angle is a rotating Y-cut plate is used. Next, an epoxy adhesive is applied to the silicon substrate by spin coating, the LT substrate is attached, heated to 180 ° C., and an adhesive layer (layer in which the epoxy adhesive is solidified) has a thickness of 0.3 μm. Formed. Subsequently, it grind | polished until the thickness of LT board was set to 30 micrometers with the grinder. As the polishing machine, a machine that performs mirror polishing after reducing the thickness as follows was used. That is, when reducing the thickness, a bonded substrate is sandwiched between a polishing platen and a pressure plate, and a slurry containing abrasive grains is supplied between the substrate and the polishing platen. A pressure plate that rotates while pressing the substrate against the surface plate was used. Subsequently, when performing mirror polishing, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a high count, and by giving rotation and revolution motion to the pressure plate, A piezoelectric substrate whose surface was mirror-polished was used. First, the surface of the LT substrate after grinding was pressed against the surface of the platen, and the rotation speed of the rotation motion was 100 rpm, and polishing was continued for 60 minutes. Subsequently, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a higher one, the pressure for pressing the substrate against the surface plate after grinding is 0.2 MPa, the rotational speed of the rotation motion Was polished at 100 rpm, the revolution speed was 100 rpm, and the polishing time was 60 minutes. In this embodiment, the step of forming electrodes on the surface of the piezoelectric substrate is omitted.

[実施例1]
上記作製した複合基板をダイシングし、弾性波デバイスを作製した。ダイシングは、図2に示す、先端の尖った形状の切断部材50を用いて行った。ダイシングの条件は、切断部材の幅が0.5mm、回転数29000rpmで同一速度にて行った。なお、切断部材50としては、接着面49の外周から圧電基板42の膨出部43に向けた接線と接着面49の延長線とがなす角度θが45°となるものを用いた。得られた弾性波デバイスを実施例1とした。この実施例1の弾性波デバイス30を1600個作製した。
[Example 1]
The composite substrate produced above was diced to produce an acoustic wave device. Dicing was performed using a cutting member 50 having a sharp tip as shown in FIG. The dicing was carried out at the same speed with a cutting member width of 0.5 mm and a rotational speed of 29000 rpm. As the cutting member 50, one having an angle θ formed by a tangent line from the outer periphery of the bonding surface 49 toward the bulging portion 43 of the piezoelectric substrate 42 and an extension line of the bonding surface 49 is 45 °. The obtained acoustic wave device was defined as Example 1. 1600 elastic wave devices 30 of Example 1 were produced.

[実施例2,3]
切断部材50として接着面49の外周から圧電基板42の膨出部43に向けた接線と接着面49の延長線とがなす角度θが60°,75°となるものを用いた以外は実施例1と同様の工程を経て、得られた弾性波デバイスをそれぞれ実施例2,3とした。この実施例2,3の弾性波デバイス30を50個作製した。
[Examples 2 and 3]
Example in which the cutting member 50 is such that the angle θ formed by the tangent line from the outer periphery of the bonding surface 49 toward the bulging portion 43 of the piezoelectric substrate 42 and the extension line of the bonding surface 49 is 60 ° or 75 °. The elastic wave devices obtained through the same steps as in Example 1 were referred to as Examples 2 and 3, respectively. Fifty acoustic wave devices 30 of Examples 2 and 3 were produced.

[比較例1]
上記作製した複合基板を図7に示す形状、即ち、表面側の面積が小さい形状にダイシングして得られた弾性波デバイスを比較例1とした。図7は、比較例1の弾性波デバイス130の構成の概略を示す断面図である。ダイシングは、切断部材の幅が0.5mm、回転数29000rpmで表面141側から圧電基板142を切削したのち、回転数29000rpmで裏面145側から支持基板144を切断した。ここでは、圧電基板142の接着面149の外周から圧電基板142の外周面に向けた接線と接着面149の延長線とがなす角度θが135°となるように圧電基板142を切削した。この比較例1の弾性波デバイス130を1600個作製した。
[Comparative Example 1]
An elastic wave device obtained by dicing the composite substrate produced as described above into a shape shown in FIG. FIG. 7 is a cross-sectional view schematically illustrating the configuration of the acoustic wave device 130 of the first comparative example. In dicing, the width of the cutting member was 0.5 mm, the piezoelectric substrate 142 was cut from the front surface 141 side at a rotation speed of 29000 rpm, and then the support substrate 144 was cut from the back surface 145 side at a rotation speed of 29000 rpm. Here, the piezoelectric substrate 142 was cut so that the angle θ formed by the tangent line from the outer periphery of the adhesive surface 149 of the piezoelectric substrate 142 to the outer peripheral surface of the piezoelectric substrate 142 and the extended line of the adhesive surface 149 was 135 °. 1600 acoustic wave devices 130 of Comparative Example 1 were produced.

[比較例2]
圧電基板142の接着面149の外周から圧電基板142の外周面に向けた接線と接着面149の延長線とがなす角度θが120°となるように圧電基板142を切削した以外は比較例1と同様の工程を経て、得られた弾性波デバイスを比較例2とした。この比較例2の弾性波デバイス130を50個作製した。
[Comparative Example 2]
Comparative Example 1 except that the piezoelectric substrate 142 was cut so that the angle θ formed by the tangent line from the outer periphery of the adhesive surface 149 of the piezoelectric substrate 142 to the outer peripheral surface of the piezoelectric substrate 142 and the extended line of the adhesive surface 149 was 120 °. The elastic wave device obtained through the same steps as in Example 2 was designated as Comparative Example 2. Fifty acoustic wave devices 130 of Comparative Example 2 were produced.

[比較例3]
上記作製した複合基板を図8に示す形状、即ち、表面側の面積と裏面側の面積とが同じ形状にダイシングして得られた弾性波デバイスを比較例3とした。図8は、比較例3の弾性波デバイス230の構成の概略を示す断面図である。ダイシングは、比較例1と同様の条件で、表面241側から圧電基板242を切削したのち、裏面245側から支持基板244を切断した。ここでは、圧電基板242の接着面249の外周から圧電基板242の外周面に向けた接線と接着面249の延長線とがなす角度θが90°となるように圧電基板242を切削した。この比較例3の弾性波デバイス230を1600個作製した。
[Comparative Example 3]
An elastic wave device obtained by dicing the composite substrate produced above into a shape shown in FIG. 8, that is, an area on the front surface side and an area on the back surface side, was used as Comparative Example 3. FIG. 8 is a cross-sectional view illustrating a schematic configuration of the acoustic wave device 230 of the third comparative example. In dicing, the piezoelectric substrate 242 was cut from the front surface 241 side under the same conditions as in Comparative Example 1, and then the support substrate 244 was cut from the back surface 245 side. Here, the piezoelectric substrate 242 was cut so that the angle θ formed by the tangent line from the outer periphery of the adhesive surface 249 of the piezoelectric substrate 242 to the outer peripheral surface of the piezoelectric substrate 242 and the extended line of the adhesive surface 249 was 90 °. 1600 elastic wave devices 230 of Comparative Example 3 were produced.

次に、得られた実施例1〜3及び比較例1〜3の複合基板のチップを空気中、260℃で加熱処理した。図9は、加熱処理後の実施例1〜3及び比較例1〜3の弾性波デバイスの評価結果の模式図である。また、加熱処理実験の評価結果を表1に示す。図9及び表1に示すように、実施例1〜3では、熱処理を行ったあとに弾性波デバイスの端部での欠けやクラックなどの不具合はみられなかった。一方、比較例1,2では、作製したもののうちそれぞれ90%,84%で、熱処理を行ったあとに圧電基板の表面に細かなクラックの発生が確認された。また、比較例3では、作製したもののうち70%で、熱処理を行ったあとに圧電基板の表面に細かなクラックの発生が確認された。したがって、圧電基板側から支持基板側に向かって凸形状となるよう圧電基板に膨出部を形成すると、加熱により生じる不具合の発生をより抑制することができることが明らかになった。   Next, the chip | tip of the obtained composite substrate of Examples 1-3 and Comparative Examples 1-3 was heat-processed at 260 degreeC in the air. FIG. 9 is a schematic diagram of evaluation results of the acoustic wave devices of Examples 1 to 3 and Comparative Examples 1 to 3 after the heat treatment. Table 1 shows the evaluation results of the heat treatment experiment. As shown in FIG. 9 and Table 1, in Examples 1 to 3, defects such as chipping and cracks at the end of the acoustic wave device were not observed after the heat treatment. On the other hand, in Comparative Examples 1 and 2, it was confirmed that fine cracks were generated on the surface of the piezoelectric substrate after heat treatment in 90% and 84% of the fabricated ones, respectively. Further, in Comparative Example 3, it was confirmed that fine cracks were generated on the surface of the piezoelectric substrate after heat treatment in 70% of the manufactured ones. Therefore, it has been clarified that when the bulging portion is formed on the piezoelectric substrate so as to have a convex shape from the piezoelectric substrate side toward the support substrate side, it is possible to further suppress the occurrence of problems caused by heating.

Figure 2011120226
Figure 2011120226

10 複合基板、12 圧電基板、14 支持基板、16 接着層、30,30B,30C,130,230 弾性波デバイス、32,34 IDT電極、36 反射電極、41,141,241 表面、42,42B,42C,142,242 圧電基板、43,43B,43C 膨出部、44,44B,44C,144,244 支持基板、45,145,245 裏面、46,46B,46C,146,246 接着層、48,48B,48C,148 屈曲部、49,149,249 接着面、50,50B 切断部材、51B 平板部、52 支持基板切断部材、54 圧電基板切断部材。 DESCRIPTION OF SYMBOLS 10 Composite substrate, 12 Piezoelectric substrate, 14 Support substrate, 16 Adhesive layer, 30, 30B, 30C, 130, 230 Elastic wave device, 32, 34 IDT electrode, 36 Reflective electrode, 41, 141, 241 Surface, 42, 42B, 42C, 142, 242 Piezoelectric substrate, 43, 43B, 43C bulge, 44, 44B, 44C, 144, 244 Support substrate, 45, 145, 245 Back surface, 46, 46B, 46C, 146, 246 Adhesive layer, 48, 48B, 48C, 148 Bent part, 49, 149, 249 Adhesive surface, 50, 50B Cutting member, 51B Flat plate part, 52 Support substrate cutting member, 54 Piezoelectric substrate cutting member.

Claims (9)

電極が形成されている圧電基板と、
前記圧電基板と直接又は間接的に接着されている支持基板と、を備え、
前記圧電基板側から前記支持基板側に向かって凸形状となるよう前記圧電基板には膨出部が形成されている、弾性波デバイス。
A piezoelectric substrate on which electrodes are formed;
A support substrate bonded directly or indirectly to the piezoelectric substrate,
An elastic wave device in which a bulging portion is formed in the piezoelectric substrate so as to have a convex shape from the piezoelectric substrate side toward the support substrate side.
前記圧電基板は、前記支持基板と接着されている側を接着面とし、該接着面の反対側の面を表面としたときに、該接着面を該表面に対して垂直方向に該表面に投影すると、該接着面が該表面の内側に入るように、前記膨出部が形成されている、請求項1に記載の弾性波デバイス。   The piezoelectric substrate is projected onto the surface in a direction perpendicular to the surface when the side bonded to the support substrate is an adhesive surface and the surface opposite to the adhesive surface is the surface. The elastic wave device according to claim 1, wherein the bulging portion is formed so that the adhesive surface enters the inside of the surface. 前記接着面に対して垂直であり前記弾性波デバイスの中心を通る断面において、前記接着面の延長面と膨出部の表面とがなす最大角である角度θが鋭角である、請求項1又は2に記載の弾性波デバイス。   The angle θ, which is the maximum angle formed by the extended surface of the adhesive surface and the surface of the bulging portion, is an acute angle in a cross section perpendicular to the adhesive surface and passing through the center of the acoustic wave device. 2. The acoustic wave device according to 2. 前記角度θが、45°≦θ≦75°の範囲である、請求項3に記載の弾性波デバイス。   The acoustic wave device according to claim 3, wherein the angle θ is in a range of 45 ° ≦ θ ≦ 75 °. 請求項1〜4のいずれか1項に記載の弾性波デバイスであって、
前記圧電基板と前記支持基板とを接着する接着層、を備えた、弾性波デバイス。
It is an elastic wave device given in any 1 paragraph of Claims 1-4,
An acoustic wave device comprising: an adhesive layer that bonds the piezoelectric substrate and the support substrate.
電極が形成されている圧電基板と、前記圧電基板と直接又は間接的に接着されている支持基板と、を備えた複合基板を用いた弾性波デバイスの製造方法であって、
前記圧電基板側から前記支持基板側に向かって弾性波デバイスが凸形状となる膨出部を形成する切断面が得られる切断部材を用いて、前記複合基板から前記弾性波デバイスを切り出す切出工程、を含む弾性波デバイスの製造方法。
An acoustic wave device manufacturing method using a composite substrate comprising: a piezoelectric substrate on which an electrode is formed; and a support substrate bonded directly or indirectly to the piezoelectric substrate,
A cutting step of cutting out the acoustic wave device from the composite substrate using a cutting member capable of obtaining a cut surface that forms a bulging portion in which the acoustic wave device has a convex shape from the piezoelectric substrate side toward the support substrate side A method for manufacturing an acoustic wave device.
前記切出工程では、先端側に向けて尖った形状を有する前記切断部材を用い、該切断部材の先端を前記圧電基板の表面側に配置して、前記複合基板から前記弾性波デバイスを切り出す、請求項6に記載の弾性波デバイスの製造方法。   In the cutting step, the cutting member having a sharp shape toward the tip side is used, the tip of the cutting member is disposed on the surface side of the piezoelectric substrate, and the acoustic wave device is cut out from the composite substrate. A method for manufacturing an acoustic wave device according to claim 6. 前記切出工程では、前記支持基板と前記圧電基板とを切断する一つの前記切断部材を用いて、前記複合基板から前記弾性波デバイスを切り出す、請求項6又は7に記載の弾性波デバイスの製造方法。   8. The acoustic wave device according to claim 6, wherein, in the cutting step, the acoustic wave device is cut out from the composite substrate using one cutting member that cuts the support substrate and the piezoelectric substrate. Method. 前記切出工程では、前記支持基板を切断可能な支持基板切断部材を用いて該支持基板を切削したあと、前記圧電基板を切断する圧電基板切断部材を用いて該切削した支持基板側から前記圧電基板を切断する、請求項6〜8のいずれか1項に記載の弾性波デバイスの製造方法。   In the cutting step, the support substrate cutting member capable of cutting the support substrate is used to cut the support substrate, and then the piezoelectric substrate cutting member that cuts the piezoelectric substrate is used to cut the piezoelectric substrate from the cut support substrate side. The method for manufacturing an acoustic wave device according to any one of claims 6 to 8, wherein the substrate is cut.
JP2010240415A 2009-10-27 2010-10-27 Elastic wave device and manufacturing method thereof Active JP5677030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240415A JP5677030B2 (en) 2009-10-27 2010-10-27 Elastic wave device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009246132 2009-10-27
JP2009246132 2009-10-27
JP2010240415A JP5677030B2 (en) 2009-10-27 2010-10-27 Elastic wave device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011120226A true JP2011120226A (en) 2011-06-16
JP5677030B2 JP5677030B2 (en) 2015-02-25

Family

ID=44284928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240415A Active JP5677030B2 (en) 2009-10-27 2010-10-27 Elastic wave device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5677030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641945B (en) * 2012-05-02 2015-05-20 南京雷尔伟新技术有限公司 Flat hole punching mould of round pin
CN103691806B (en) * 2013-11-22 2016-04-06 桐乡市凯盛精密机械有限公司 The technique of aluminium cup machine-shaping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109916A (en) * 1983-11-18 1985-06-15 Pioneer Electronic Corp Surface acoustic wave element and its manufacture
JPH0514099A (en) * 1991-06-28 1993-01-22 Kyocera Corp Manufacture of surface acoustic wave device
JP2001053036A (en) * 1999-08-16 2001-02-23 Toyo Commun Equip Co Ltd Dicing blade and piezoelectric element plate
JP2008286521A (en) * 2007-05-15 2008-11-27 Epson Toyocom Corp Rotational speed detecting unit, and rotational speed sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109916A (en) * 1983-11-18 1985-06-15 Pioneer Electronic Corp Surface acoustic wave element and its manufacture
JPH0514099A (en) * 1991-06-28 1993-01-22 Kyocera Corp Manufacture of surface acoustic wave device
JP2001053036A (en) * 1999-08-16 2001-02-23 Toyo Commun Equip Co Ltd Dicing blade and piezoelectric element plate
JP2008286521A (en) * 2007-05-15 2008-11-27 Epson Toyocom Corp Rotational speed detecting unit, and rotational speed sensor

Also Published As

Publication number Publication date
JP5677030B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5591240B2 (en) Composite substrate and manufacturing method thereof
JP5814774B2 (en) Composite substrate and method for manufacturing composite substrate
JP3187231U (en) Composite board
JP5539602B1 (en) Composite substrate, surface acoustic wave device, and method of manufacturing composite substrate
KR101766487B1 (en) Composite substrate manufacturing method and composite substrate
JP2010187373A (en) Composite substrate and elastic wave device using the same
JP5668179B1 (en) Composite substrate for acoustic wave device and acoustic wave device
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP3184763U (en) Composite board
JP2010171955A (en) Method for manufacturing composite substrate and composite substrate
JP5180104B2 (en) Surface acoustic wave device
JP2011071967A (en) Method for manufacturing composite substrate
CN105978520B (en) A kind of SAW device of multilayered structure and preparation method thereof
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP2007214902A (en) Surface acoustic wave device
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
JP2007134889A (en) Composite piezoelectric substrate
WO2015001900A1 (en) Acoustic wave device
WO2014188842A1 (en) Method for manufacturing piezoelectric device, piezoelectric device, and piezoelectric free-standing substrate
JP2009094661A (en) Surface acoustic wave apparatus and mobile communication terminal mounted with apparatus
JP6247054B2 (en) Elastic wave device and manufacturing method thereof
JP5677030B2 (en) Elastic wave device and manufacturing method thereof
JP2003124767A (en) Surface acoustic wave element and production method therefor
JP5234780B2 (en) Composite substrate manufacturing method and composite substrate
JP2011019043A (en) Composite substrate and method for manufacturing composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5677030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150