JP2011119418A - Method of conveying subject to be processed in semiconductor manufacturing apparatus - Google Patents

Method of conveying subject to be processed in semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2011119418A
JP2011119418A JP2009275086A JP2009275086A JP2011119418A JP 2011119418 A JP2011119418 A JP 2011119418A JP 2009275086 A JP2009275086 A JP 2009275086A JP 2009275086 A JP2009275086 A JP 2009275086A JP 2011119418 A JP2011119418 A JP 2011119418A
Authority
JP
Japan
Prior art keywords
processed
gate valve
chamber
processing chamber
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009275086A
Other languages
Japanese (ja)
Inventor
Minoru Yatomi
実 矢富
Kazuyuki Hiromi
一幸 廣實
Takahiro Sakuragi
崇弘 櫻木
Takamasa Ichino
貴雅 一野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009275086A priority Critical patent/JP2011119418A/en
Publication of JP2011119418A publication Critical patent/JP2011119418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing apparatus that reduces the number of foreign particles adhering to the subject to be processed during, before and after the conveying of the subject to be processed. <P>SOLUTION: A method of conveying the subject 207 to be processed in the semiconductor manufacturing apparatus 100 having a vacuum conveyance chamber 110, a plurality of interconnected process chambers, a process chamber evacuation unit, a first gate valve 214, a second gate valve 215, and a vertical drive mechanism 209 of a sample stand 208 disposed inside the process chamber is disclosed. During the opening and closing movements of the first and second gate valves 214, 215 upon the conveying of the subject 207 to be processed between the vacuum conveyance chamber 110 and the process chamber, and during fluctuations of pressure in the conveyance chamber and the process chamber, the height of the sample stand 208 is such that the position of the upper surface of the sample stand is at a position higher than the upper surface of the second gate valve 215 to convey the subject to be processed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体処理装置における被処理体の搬送方法、特に真空搬送室と処理室間の搬送方法に関する。   The present invention relates to a method for transferring an object to be processed in a semiconductor processing apparatus, and more particularly, to a method for transferring between a vacuum transfer chamber and a processing chamber.

半導体デバイスの微細化、多層化の進展とともに、高精度加工が求められ、プロセス処理の均一性を阻害する要因を最小限に抑えることが必要となる。その課題の1つに、ウエハ等の被処理体に付着する異物数を低減することが挙げられる。例えば、エッチング処理中や処理前に被処理体の微細パターン上に異物粒子が落下すると、その部位は局所的にエッチングが阻害される。その結果、被処理体の微細パターンには断線などの不良が生じ、歩留まり低下を引き起こす。そのため、ガス粘性力や熱泳動力、クーロン力などを用いて異物粒子の輸送を制御し、被処理体に付着する異物数を低減する方法が多数考案されている。   With the progress of miniaturization and multilayering of semiconductor devices, high-precision processing is required, and it is necessary to minimize the factors that hinder the uniformity of process processing. One of the problems is to reduce the number of foreign substances adhering to a target object such as a wafer. For example, if foreign particles fall on the fine pattern of the object to be processed during or before the etching process, the etching is locally inhibited at that part. As a result, a defect such as disconnection occurs in the fine pattern of the object to be processed, resulting in a decrease in yield. Therefore, many methods have been devised to control the transport of foreign particles using gas viscous force, thermophoretic force, Coulomb force, etc., and reduce the number of foreign matters adhering to the object to be processed.

例えば特許文献1では、搬送室と処理室の間でガスの往来を完全に遮断できる第1のゲートバルブと、該ゲートバルブよりも処理室側に第2のゲートバルブを配置し、搬送室と処理室のガスの流量や圧力を最適に調整してガスの流れを調整することにより、被処理体の搬送時に付着する異物数を少なくすることが述べられている。   For example, in Patent Document 1, a first gate valve that can completely block the passage of gas between a transfer chamber and a processing chamber, and a second gate valve disposed closer to the processing chamber than the gate valve, It has been described that the number of foreign matters adhered during conveyance of the object to be processed can be reduced by adjusting the gas flow by optimally adjusting the gas flow rate and pressure in the processing chamber.

特開2009−64873号公報JP 2009-64873 A

従来の半導体処理装置では、真空搬送室と処理室間の被処理体の搬送中、もしくは搬送前後に被処理体に付着する異物粒子数を低減させること、また前記処理室内を構成するインナーカバーの搬送口へのプラズマ・反応生成物等の回り込みによる汚染、異物の要因になることに関しての配慮が十分でなかった。   In the conventional semiconductor processing apparatus, the number of foreign particles adhering to the object to be processed is reduced during the transfer of the object to be processed between the vacuum transfer chamber and the process chamber, or before and after the transfer, and the inner cover of the process chamber is formed. There was not enough consideration for contamination and foreign matter caused by circulated plasma and reaction products to the transport port.

本発明は上記課題を解決するため、次のような手段を採用した。被処理体が搬送される真空搬送室と、真空搬送室の内部に配置された真空ロボットにより搬送された被処理体を処理するための複数の連結された処理室と、前記処理室を減圧する処理室排気手段と、前記真空搬送室と前記処理室間を接続する被処理体の搬送経路を連通・閉止する第1のゲートバルブと、第1のゲートバルブに対して前記処理室側に設けられた第2のゲートバルブとで構成され、前記処理室の内部に配置された試料台は上下駆動機構を備えており、前記処理室に対して前記真空搬送室を陽圧とした状態で、第1のゲートバルブを開け、その後、第2のゲートバルブを開けて、前記真空搬送室と前記処理室を連通状態として前記被処理体を搬送し、前記処理室の内部に配置された試料台上に前記被処理体を載置する被処理体の搬送方法であって、前記真空搬送室と前記処理室間で前記被処理体を搬送する際の第1、第2のゲートバルブ開閉動作中および、搬送室・処理室の圧力変動中においては、試料台の高さは試料台の上面位置が第2のゲートバルブの上面より高い位置とし、被処理体の搬送を行うことを特徴とする。   In order to solve the above problems, the present invention employs the following means. A vacuum transfer chamber in which the object to be processed is transferred, a plurality of connected processing chambers for processing the object to be processed transferred by a vacuum robot disposed inside the vacuum transfer chamber, and the pressure in the process chamber is reduced. Provided on the processing chamber side with respect to the processing chamber exhaust means, a first gate valve for communicating and closing the transfer path of the object to be processed that connects the vacuum transfer chamber and the processing chamber, and the first gate valve A sample stage arranged inside the processing chamber is provided with a vertical drive mechanism, and the vacuum transfer chamber is in a positive pressure with respect to the processing chamber, The first gate valve is opened, and then the second gate valve is opened to transfer the object to be processed while the vacuum transfer chamber and the processing chamber are in communication with each other, and a sample table disposed inside the processing chamber Carrying a target object on which the target object is placed In the method, during the first and second gate valve opening and closing operations when the object to be processed is transferred between the vacuum transfer chamber and the processing chamber, and during pressure fluctuations in the transfer chamber and the processing chamber, The height of the stage is such that the position of the upper surface of the sample stage is higher than the upper surface of the second gate valve, and the object to be processed is transported.

本発明によれば、前記手段により、処理室内における被処理体上の圧力変動を抑制でき、その結果、圧力変動による被処理体上への異物拡散および異物落下を抑制でき、さらに、試料台の上面位置が第2のゲートバルブの上面より高い位置に配置することで、被処理体の搬送中、もしくは搬送前後に被処理体に付着する異物粒子数を最小限に抑えることができ、製品の歩留まりを向上させることができる。   According to the present invention, the means can suppress the pressure fluctuation on the object to be processed in the processing chamber, and as a result, can suppress the foreign substance diffusion and the foreign substance falling on the object to be processed due to the pressure fluctuation. By disposing the upper surface at a position higher than the upper surface of the second gate valve, the number of foreign particles adhering to the object to be processed can be minimized during the transfer of the object to be processed or before and after the transfer. Yield can be improved.

図1は実施例1の処理室の主要部を説明する図である。FIG. 1 is a diagram illustrating a main part of a processing chamber according to the first embodiment. 図2は実施例1の半導体処理装置全体を上方から見た概略図である。FIG. 2 is a schematic view of the entire semiconductor processing apparatus according to the first embodiment as viewed from above. 図3は試料台を処理室上部の温調された領域に配置した図である。FIG. 3 is a diagram in which the sample stage is arranged in a temperature-controlled region at the top of the processing chamber. 図4はウエハの入れ替え時の試料台とゲートバルブの搬送シーケンスの概要を説明する図である。FIG. 4 is a diagram for explaining the outline of the transfer sequence of the sample stage and the gate valve when the wafer is replaced. 図5は本発明の実施例であるゲートバルブ(プロセスバルブ)弁体部の拡大図である。FIG. 5 is an enlarged view of a gate valve (process valve) valve body according to an embodiment of the present invention. 図6は本発明の実施例である真空搬送室から流れ込むガスの排気方法を説明する図である。FIG. 6 is a view for explaining a method of exhausting gas flowing from the vacuum transfer chamber according to the embodiment of the present invention.

以下、本発明の実施形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例であるプラズマ処理装置の処理室の主要部を示す。プラズマ処理室200は、外側の容器である真空チャンバー201とその内側の容器の二重構造となっており、内側の容器として処理室の上部側壁を構成し温調機能を有するインナーケース202と、処理室の下部側壁等を構成するインナーカバー203とハイキカバー204を備えている。   FIG. 1 shows a main part of a processing chamber of a plasma processing apparatus which is an embodiment of the present invention. The plasma processing chamber 200 has a double structure of a vacuum chamber 201 that is an outer container and an inner container, and an inner case 202 that constitutes an upper side wall of the processing chamber as an inner container and has a temperature control function; An inner cover 203 and a hiki cover 204 are provided that constitute the lower side wall and the like of the processing chamber.

さらに、真空チャンバー201の上部に配置されプラズマ生成用の高周波電力を供給するためのアンテナ205と処理ガスをプラズマ処理室200に分散供給するための分散板を有するシャワープレート206、このプラズマ処理室200内に配置された載置面に被処理体(ウエハ)207を載置して処理するための試料台208、及び試料台208に上下駆動機構209を備えている。インナーケース202は、処理室の外側の容器である真空チャンバー201の内部に交換可能に配置され、装置の定期的な分解洗浄を効率的に行うための交換用パーツである。   Furthermore, the antenna 205 for supplying high-frequency power for generating plasma, the shower plate 206 having a dispersion plate for distributing and supplying the processing gas to the plasma processing chamber 200, and the plasma processing chamber 200. A sample stage 208 for processing an object to be processed (wafer) 207 placed on a placement surface disposed therein, and a vertical drive mechanism 209 are provided on the sample stage 208. The inner case 202 is a replacement part for efficiently replacing the inside of the vacuum chamber 201, which is a container outside the processing chamber, so as to efficiently perform periodic disassembly and cleaning of the apparatus.

さらに、プラズマ処理室200には処理室内を減圧にするための排気手段としてターボ分子ポンプ210が取り付けられている。また、処理室内の圧力を制御するため、バタフライバルブ211がターボ分子ポンプ210の上部に取り付けられている。さらに、プラズマ処理室200には、磁場を形成するためのコイル212とヨーク213が取り付けられている。   Further, a turbo molecular pump 210 is attached to the plasma processing chamber 200 as exhaust means for reducing the pressure in the processing chamber. Further, a butterfly valve 211 is attached to the upper part of the turbo molecular pump 210 in order to control the pressure in the processing chamber. Furthermore, a coil 212 and a yoke 213 for forming a magnetic field are attached to the plasma processing chamber 200.

真空チャンバー201と真空搬送室110の間に被処理体207の搬送経路の連通・閉止を行う第1のゲートバルブ214が取り付けられている。さらに、この第1のゲートバルブ214に対して処理室側に第2のゲートバルブ(プロセスバルブ)215が設置されている。   A first gate valve 214 is connected between the vacuum chamber 201 and the vacuum transfer chamber 110 to communicate and close the transfer path of the workpiece 207. Further, a second gate valve (process valve) 215 is installed on the processing chamber side with respect to the first gate valve 214.

第1のゲートバルブ214は、真空を封じきる機能があり、該第1のゲートバルブを閉じることにより搬送室と処理室の間でガスの往来を完全に遮断できる。対して、第2のゲートバルブ215は、プラズマが偏心しないように、電磁波に対して側壁が軸対象に見えるようにする目的と、第1のゲートバルブが開いたとき、搬送室と処理室の差圧によって生じるガスの急激な流れによる異物の拡散を抑制する目的とがある。   The first gate valve 214 has a function of completely closing the vacuum, and by closing the first gate valve, the gas can be completely blocked between the transfer chamber and the processing chamber. On the other hand, the second gate valve 215 is provided so that the side wall can be seen as an axial object with respect to electromagnetic waves so that the plasma is not decentered, and when the first gate valve is opened, the transfer chamber and the processing chamber are opened. The purpose is to suppress the diffusion of foreign matter due to the rapid flow of gas caused by the differential pressure.

そこで、被処理体207を処理室へ搬入する際は、先に第1のゲートバルブ214を開放し、次に第2のゲートバルブ215を開く。第1のゲートバルブ214を開くことにより、第2のゲートバルブ215の周りの隙間を通じて搬送室と処理室とが連通状態になり、両室間の圧力差が徐々に縮小するため、処理室内での異物の拡散を抑制するという効果を得ることができる。   Therefore, when the object to be processed 207 is carried into the processing chamber, the first gate valve 214 is opened first, and then the second gate valve 215 is opened. By opening the first gate valve 214, the transfer chamber and the processing chamber are in communication with each other through the gap around the second gate valve 215, and the pressure difference between both chambers gradually decreases. The effect of suppressing the diffusion of foreign matter can be obtained.

図2に本発明の実施例である半導体処理装置100の全体を上方から見た時の概要を示す。半導体処理装置100は、複数(4個)の処理室101,102,103,104と、複数(3個)のカセット載置台105との間で大気搬送ロボット108と真空搬送ロボット111によりウエハ等の被処理体を移送することができる。   FIG. 2 shows an outline of the entire semiconductor processing apparatus 100 according to the embodiment of the present invention as viewed from above. The semiconductor processing apparatus 100 includes a plurality of (four) processing chambers 101, 102, 103, 104 and a plurality (three) of cassette mounting tables 105, such as wafers by an atmospheric transfer robot 108 and a vacuum transfer robot 111. The object to be processed can be transferred.

これら処理室101,102,103,104は、所定の圧力(真空圧)に減圧可能な内部の空間に被処理体が載置される試料台を有した真空処理容器から構成され、その内部の空間に処理用のガスを供給しつつ、図示しない電界または磁界の供給手段から電界または磁界を印加して処理室の被処理体上方の空間にプラズマを形成し、試料の表面を処理する処理容器となっている。   These processing chambers 101, 102, 103, and 104 are constituted by a vacuum processing container having a sample stage on which an object to be processed is placed in an internal space that can be depressurized to a predetermined pressure (vacuum pressure). A processing vessel for processing the surface of a sample by supplying a processing gas to the space and applying an electric field or a magnetic field from an electric field or magnetic field supply means (not shown) to form plasma in the space above the object to be processed in the processing chamber. It has become.

真空処理装置である半導体処理装置100の真空搬送室110は、内部が前記処理室101等の内部と同等の圧力に調節可能な真空容器から構成され、被処理体を真空側に導入するために実装された複数のロードロック室106,107が接続されている。なお、処理室101,102,103,104、真空搬送室110、ロック室106,107は、減圧された条件で試料を搬送、処理を行う真空側ブロックを構成している。   The vacuum transfer chamber 110 of the semiconductor processing apparatus 100, which is a vacuum processing apparatus, is composed of a vacuum container whose inside can be adjusted to the same pressure as the inside of the processing chamber 101 or the like, and for introducing the object to be processed to the vacuum side. A plurality of mounted load lock chambers 106 and 107 are connected. Note that the processing chambers 101, 102, 103, and 104, the vacuum transfer chamber 110, and the lock chambers 106 and 107 constitute a vacuum block that transfers and processes the sample under reduced pressure conditions.

複数のロック室106,107は、大気搬送ロボット108が内部の空間に配置された大気搬送室109に接続され、この大気搬送室109は、被処理体が収納されるカセットがその上面に載置されるカセット載置台105を前面側に備えている。   The plurality of lock chambers 106 and 107 are connected to an atmospheric transfer chamber 109 in which an atmospheric transfer robot 108 is disposed in an internal space. The atmospheric transfer chamber 109 has a cassette on which an object to be processed is placed on the upper surface. A cassette mounting table 105 is provided on the front side.

ロック室106,107は、カセットが連結される大気搬送室109と真空側ブロックとの間での被処理体の取り出しや受け渡しのための開閉機構であるとともに、可変圧インタフェースとして機能する。   The lock chambers 106 and 107 are opening / closing mechanisms for taking out and delivering the object to be processed between the atmospheric transfer chamber 109 to which the cassette is connected and the vacuum side block, and also function as a variable pressure interface.

真空搬送室110と処理室間で被処理体207の搬入出を行う際、真空搬送室110と処理室の差圧により、第1のゲートバルブ214を開放した直後に発生する圧力変動による処理室内での異物舞い上げ、側壁からの異物剥がれ等を最小限に抑えるために、試料台208の上面位置(ウエハ載置面)が第2のゲートバルブ215の上面より高い位置に配置して前記ゲートバルブの開閉を行うことで、被処理体上に付着する異物粒子数を抑えるのに効果的である。   When loading / unloading the workpiece 207 between the vacuum transfer chamber 110 and the processing chamber, due to the pressure difference between the vacuum transfer chamber 110 and the processing chamber, the processing chamber is caused by pressure fluctuations generated immediately after the first gate valve 214 is opened. In order to minimize the rise of foreign matter and the separation of foreign matter from the side wall, the upper surface position (wafer placement surface) of the sample stage 208 is arranged at a position higher than the upper surface of the second gate valve 215, and the gate By opening and closing the valve, it is effective to suppress the number of foreign particles adhering to the object to be processed.

図3に、試料台208の上面位置が第2のゲートバルブ215の上面より高い位置に配置した図を示す。試料台208の上昇位置は、処理室上部の温調されたインナーケース202内壁の領域に配置することで、温調された壁環境によりインナーケース202の側壁はデポが少ない状態となり、側壁からの異物剥がれも軽減する。   FIG. 3 is a view in which the upper surface position of the sample stage 208 is arranged at a position higher than the upper surface of the second gate valve 215. The rising position of the sample stage 208 is arranged in the region of the inner wall of the temperature-controlled inner case 202 at the upper part of the processing chamber, so that the side wall of the inner case 202 has less deposits due to the temperature-controlled wall environment. Foreign matter peeling is also reduced.

本発明において、前記試料台の高さ位置については、前記第1のゲートバルブ214と第2のゲートバルブ(プロセスバルブ)215の開閉動作と連動して運用することを特徴とする。   In the present invention, the height position of the sample stage is operated in conjunction with the opening / closing operation of the first gate valve 214 and the second gate valve (process valve) 215.

図4を例に、被処理体(ウエハ)の入れ替え時の試料台208と第1、第2のゲートバルブ214、215の搬送シーケンスの概略を以下に説明する。図4の(a)は試料台位置、(b)は第1のゲートバルブ開閉状態、(c)は第2のゲートバルブ開閉状態を示している。   The outline of the transfer sequence of the sample stage 208 and the first and second gate valves 214 and 215 when replacing the object to be processed (wafer) will be described below using FIG. 4 as an example. 4A shows the sample stage position, FIG. 4B shows the first gate valve open / closed state, and FIG. 4C shows the second gate valve open / closed state.

タイミングA1は、ウエハ搬出前に試料台の高さを試料台の上面位置が第2のゲートバルブ215の上面より高い位置(以下、待機位置という。)に配置した状態である。タイミングA1の詳細は、試料台208を待機位置まで上昇させた後、第1のゲートバルブを開け、その後、第2のゲートバルブを開けた後、試料台208を搬送面まで下降した状態である。   Timing A1 is a state in which the height of the sample stage is arranged at a position where the upper surface position of the sample stage is higher than the upper surface of the second gate valve 215 (hereinafter referred to as a standby position) before carrying out the wafer. The details of the timing A1 are a state in which the sample stage 208 is raised to the standby position, the first gate valve is opened, and then the second gate valve is opened, and then the sample stage 208 is lowered to the transport surface. .

タイミングB1は、ウエハの入れ替えを行っている状態である。タイミングB1の第1、第2のゲートバルブ214,215は共に、開いた状態を保っている。タイミングA2は、ウエハの入れ替えを終えた直後で、試料台208は待機位置の状態である。タイミングA2の詳細は、試料台208が待機位置で、第2のゲートバルブを閉じ、その後、第1のゲートバルブを閉じた後、試料台208は待機位置を保った状態である。   Timing B1 is a state in which wafers are replaced. Both the first and second gate valves 214 and 215 at the timing B1 are kept open. Timing A2 is immediately after the replacement of the wafer, and the sample stage 208 is in the standby position. The details of the timing A2 are a state in which the sample stage 208 is kept in the standby position after the sample gate 208 is in the standby position, the second gate valve is closed, and then the first gate valve is closed.

タイミングC1は入れ替え後の次のウエハを処理している状態である。タイミングC1の詳細は、試料台208を処理面まで移動させ、第1、第2のゲートバルブ214,215は共に、閉じた状態を保っている。上記、第1のゲートバルブ214を開けたとき第2のゲートバルブ215が閉まっていれば、処理室内への差圧による圧力変動の影響を直接受けることなく、さらに、試料台208を待機位置に配置することで、よりウエハ上に付着する異物粒子数を低減することができる。   Timing C1 is a state in which the next wafer after the replacement is processed. For details of the timing C1, the sample stage 208 is moved to the processing surface, and the first and second gate valves 214 and 215 are both kept closed. If the second gate valve 215 is closed when the first gate valve 214 is opened, the sample stage 208 is further moved to the standby position without being directly affected by the pressure fluctuation due to the differential pressure into the processing chamber. By arranging, the number of foreign particles adhering to the wafer can be further reduced.

図5に、第2のゲートバルブ(プロセスバルブ)弁体部215の拡大図を示す。前記弁体は、インナーカバー203の内壁と面一に配置可能な弁体形状を有し、図5に示す、ガスの流れに対し、ガスの流れを封じきるためのOリング216を備え、インナーカバー203と弁体215の隙間へのプラズマの回り込みや反応生成物の堆積を抑制する目的がある。   FIG. 5 shows an enlarged view of the second gate valve (process valve) valve body 215. The valve body has a valve body shape that can be arranged flush with the inner wall of the inner cover 203, and includes an O-ring 216 for sealing the gas flow against the gas flow, as shown in FIG. The purpose is to suppress the plasma from flowing into the gap between the cover 203 and the valve body 215 and the deposition of reaction products.

図6は、真空搬送室から流れ込むガスの排気方法を示す概略図である。前記真空搬送室側の第1のゲートバルブ214を開き、前記処理室側に設けられた第2のゲートバルブ215が閉じている状態で、前記真空搬送室から流れ込むガスは、処理室内を経由せずに、処理室の内側の容器であるインナーカバー203と前記第1のゲートバルブ214の間に設けられた排気配管217とフィルタ218を経由してターボ分子ポンプ210により排気される。そのため、処理室内の急激なガスの流れの発生を抑制することができる。   FIG. 6 is a schematic view showing a method of exhausting gas flowing from the vacuum transfer chamber. When the first gate valve 214 on the vacuum transfer chamber side is opened and the second gate valve 215 provided on the process chamber side is closed, the gas flowing from the vacuum transfer chamber passes through the process chamber. Instead, the gas is exhausted by the turbo molecular pump 210 via the exhaust pipe 217 and the filter 218 provided between the inner cover 203 which is a container inside the processing chamber and the first gate valve 214. Therefore, generation of a rapid gas flow in the processing chamber can be suppressed.

100 半導体処理装置
101 処理室1
102 処理室2
103 処理室3
104 処理室4
105 カセット戴置台
106 ロック室1
107 ロック室2
108 大気搬送ロボット
109 大気搬送室
110 真空搬送室
111 真空搬送ロボット
200 プラズマ処理室
201 真空チャンバー
202 インナーケース
203 インナーカバー
204 ハイキカバー
205 アンテナ
206 シャワープレート
207 被処理体(ウエハ)
208 試料台
209 上下駆動機構
210 ターボ分子ポンプ
211 バタフライバルブ
212 コイル
213 ヨーク
214 第1のゲートバルブ
215 第2のゲートバルブ(プロセスバルブ)
216 弁体Oリング
217 排気配管
218 フィルタ
100 Semiconductor processing apparatus 101 Processing chamber 1
102 Processing chamber 2
103 Processing chamber 3
104 Processing chamber 4
105 Cassette stand 106 Lock room 1
107 Lock room 2
108 atmospheric transfer robot 109 atmospheric transfer chamber 110 vacuum transfer chamber 111 vacuum transfer robot 200 plasma processing chamber 201 vacuum chamber 202 inner case 203 inner cover 204 hiki cover 205 antenna 206 shower plate 207 target object (wafer)
208 Sample stage 209 Vertical drive mechanism 210 Turbo molecular pump 211 Butterfly valve 212 Coil 213 Yoke 214 First gate valve 215 Second gate valve (process valve)
216 Valve body O-ring 217 Exhaust piping 218 Filter

Claims (4)

半導体製造装置において被処理体が搬送される真空搬送室と、真空搬送室の内部に配置された真空ロボットにより搬送された被処理体を処理するための複数の連結された処理室と、前記処理室を減圧する処理室排気手段と、前記真空搬送室と前記処理室間を接続する被処理体の搬送経路を連通・閉止する第1のゲートバルブと、第1のゲートバルブに対して前記処理室側に設けられた第2のゲートバルブとで構成され、前記処理室の内部に配置された試料台は上下駆動機構を備えており、前記処理室に対して前記真空搬送室を陽圧とした状態で、第1のゲートバルブを開け、その後、第2のゲートバルブを開けて、前記真空搬送室と前記処理室を連通状態として前記被処理体を搬送し、前記処理室の内部に配置された試料台上に前記被処理体を載置する被処理体の搬送方法であって、
前記真空搬送室と前記処理室間で前記被処理体を搬送する際の第1、第2のゲートバルブ開閉動作中および、搬送室・処理室の圧力変動中においては、試料台の高さは試料台の上面位置が第2のゲートバルブの上面より高い位置とし、被処理体の搬送を行うことを特徴とする半導体製造装置における被処理体の搬送方法。
In a semiconductor manufacturing apparatus, a vacuum transfer chamber in which a target object is transferred, a plurality of connected processing chambers for processing a target object transferred by a vacuum robot disposed inside the vacuum transfer chamber, and the processing A processing chamber exhaust means for depressurizing the chamber, a first gate valve for communicating and closing a transfer path of the workpiece to be connected between the vacuum transfer chamber and the processing chamber, and the processing with respect to the first gate valve. A sample stage provided with a vertical drive mechanism, and the vacuum transfer chamber is set to a positive pressure with respect to the processing chamber. In this state, the first gate valve is opened, and then the second gate valve is opened, and the object to be processed is transported with the vacuum transport chamber and the processing chamber in communication with each other, and is disposed inside the processing chamber. The object to be processed is placed on the sample stage A transfer method of the object to be placed,
During the opening and closing operation of the first and second gate valves when the object to be processed is transferred between the vacuum transfer chamber and the processing chamber, and during pressure fluctuations in the transfer chamber and the processing chamber, the height of the sample stage is A method for transporting an object to be processed in a semiconductor manufacturing apparatus, wherein the upper surface of the sample stage is positioned higher than the upper surface of the second gate valve and the object to be processed is transported.
請求項1に記載の半導体製造装置における被処理体の搬送方法であって、
前記真空搬送室と前記処理室間で前記被処理体を搬送する際の第1、第2のゲートバルブ開閉動作中および、搬送室・処理室の圧力変動中においては、試料台の高さは試料台の上面位置が第2のゲートバルブの上面より高い位置とし、さらに、温調された内壁の領域に配置して被処理体の搬送を行うことを特徴とする半導体製造装置における被処理体の搬送方法。
A method for transporting an object to be processed in the semiconductor manufacturing apparatus according to claim 1,
During the opening and closing operation of the first and second gate valves when transferring the object to be processed between the vacuum transfer chamber and the processing chamber, and during pressure fluctuations in the transfer chamber and the processing chamber, the height of the sample stage is An object to be processed in a semiconductor manufacturing apparatus, wherein the upper surface of the sample stage is positioned higher than the upper surface of the second gate valve, and the object to be processed is transported by being disposed in a temperature-controlled inner wall region. Transport method.
請求項1に記載の半導体製造装置における被処理体の搬送方法であって、
前記処理室の内側容器として円筒形状のインナーカバーを備えており、前記インナーカバーの被処理体搬入口は、前記第2のゲートバルブの弁体により開閉され、前記第2のゲートバルブは、インナーカバーの内壁と面一に配置された弁体形状を有し、インナーカバーと弁体の隙間へのプラズマの回り込みや反応生成物の堆積を抑制する構造を特徴とする半導体製造装置における被処理体の搬送方法。
A method for transporting an object to be processed in the semiconductor manufacturing apparatus according to claim 1,
A cylindrical inner cover is provided as an inner container of the processing chamber, and a workpiece inlet of the inner cover is opened and closed by a valve body of the second gate valve, and the second gate valve An object to be processed in a semiconductor manufacturing apparatus having a valve body shape that is flush with the inner wall of the cover, and has a structure that suppresses plasma from flowing into a gap between the inner cover and the valve body and deposition of reaction products. Transport method.
請求項1に記載の半導体製造装置における被処理体の搬送方法であって、
前記処理室は、外側の容器とその内側に交換可能に設けられた内側の容器とを備えており、前記内側の容器と前記真空搬送室側の第1のゲートバルブの間に設けられ、前記処理室内を経由せずにガスを排気するための配管とフィルタを備えており、前記真空搬送室側の第1のゲートバルブを開き、前記処理室側に設けられた第2のゲートバルブが閉じている状態で、前記真空搬送室から流れ込むガスを前記配管とフィルタを経由して排気することを特徴とする半導体製造装置における被処理体の搬送方法。
A method for transporting an object to be processed in the semiconductor manufacturing apparatus according to claim 1,
The processing chamber includes an outer container and an inner container that is exchangeable inside thereof, and is provided between the inner container and the first gate valve on the vacuum transfer chamber side, A pipe and a filter for exhausting gas without passing through the processing chamber are provided, the first gate valve on the vacuum transfer chamber side is opened, and the second gate valve provided on the processing chamber side is closed. In the semiconductor manufacturing apparatus, the gas flowing from the vacuum transfer chamber is exhausted through the pipe and the filter.
JP2009275086A 2009-12-03 2009-12-03 Method of conveying subject to be processed in semiconductor manufacturing apparatus Pending JP2011119418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275086A JP2011119418A (en) 2009-12-03 2009-12-03 Method of conveying subject to be processed in semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275086A JP2011119418A (en) 2009-12-03 2009-12-03 Method of conveying subject to be processed in semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2011119418A true JP2011119418A (en) 2011-06-16

Family

ID=44284415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275086A Pending JP2011119418A (en) 2009-12-03 2009-12-03 Method of conveying subject to be processed in semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2011119418A (en)

Similar Documents

Publication Publication Date Title
KR101731003B1 (en) Plasma processing apparatus
TWI544168B (en) A gate valve device, a substrate processing device, and a substrate processing method
JP5028193B2 (en) Method for conveying object to be processed in semiconductor manufacturing apparatus
JP2009062604A (en) Vacuum treatment system, and method for carrying substrate
US20100022093A1 (en) Vacuum processing apparatus, method of operating same and storage medium
JP4916140B2 (en) Vacuum processing system
KR101989141B1 (en) Film forming apparatus, cleaning method for film forming apparatus and recording medium
KR101447349B1 (en) Valve purge assembly for semiconductor manufacturing tools
JP2015141908A (en) vacuum processing apparatus
JP5329099B2 (en) Plasma processing apparatus and operation method thereof
JP2016136551A (en) Vacuum processing apparatus
JP4825689B2 (en) Vacuum processing equipment
JP5004614B2 (en) Vacuum processing equipment
JP2009267012A (en) Vacuum processing apparatus, and vacuum processing method
KR101116875B1 (en) Vacuum processing apparatus
JP4695936B2 (en) Plasma processing equipment
JP2009123723A (en) Vacuum treatment apparatus or method for vacuum treatment
JP2011119418A (en) Method of conveying subject to be processed in semiconductor manufacturing apparatus
US8197704B2 (en) Plasma processing apparatus and method for operating the same
JP2009212178A (en) Plasma processing device and plasma processing method
JP2004339566A (en) Substrate treatment apparatus
JP2011054764A (en) Plasma processing apparatus, and method of operating the same
JP5231903B2 (en) Plasma processing equipment
KR20090072189A (en) Apparatus for transferring wafer
KR20010067435A (en) Plasma processing apparatus for lcd substrate