JP2011117721A - ヒートポンプ式給湯装置 - Google Patents

ヒートポンプ式給湯装置 Download PDF

Info

Publication number
JP2011117721A
JP2011117721A JP2011025676A JP2011025676A JP2011117721A JP 2011117721 A JP2011117721 A JP 2011117721A JP 2011025676 A JP2011025676 A JP 2011025676A JP 2011025676 A JP2011025676 A JP 2011025676A JP 2011117721 A JP2011117721 A JP 2011117721A
Authority
JP
Japan
Prior art keywords
hot water
outside air
compressor
water supply
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011025676A
Other languages
English (en)
Other versions
JP5119341B2 (ja
Inventor
Sadahiro Takizawa
禎大 滝澤
Kiyoshi Koyama
清 小山
Shigeo Tsukue
重男 机
Satoshi Hoshino
聡 星野
Kazuaki Shikichi
千明 式地
Shigeya Ishigaki
茂弥 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011025676A priority Critical patent/JP5119341B2/ja
Publication of JP2011117721A publication Critical patent/JP2011117721A/ja
Application granted granted Critical
Publication of JP5119341B2 publication Critical patent/JP5119341B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】 外気温度の短時間の上下動変化に対し圧縮機能力の制御及び電動膨張弁の開度制御を安定させたヒートポンプ式給湯装置を提供すること。
【解決手段】
インバータ駆動式圧縮機、高圧側熱交換器、冷媒膨張装置、蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置のヒートポンプ作用により加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度に対して設定されている目標焚き上げ温度とから前記圧縮機の予め設定されている目標吐出温度となるように前記インバータ駆動式圧縮機の運転周波数及び前記電動膨張弁の開度を制御する。
【選択図】 図2

Description

本発明は、ヒートポンプ式給湯装置、特に圧縮機能力及び電動膨張弁の開度を制御する制御装置を備えたヒートポンプ式給湯装置に関する。
一般にヒートポンプ式給湯装置は、圧縮機、高圧側熱交換器、冷媒膨張装置、
蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置を備え、この冷凍サイクル装置のヒートポンプ作用により、外気から汲み上げた熱量を高圧側熱交換器で給湯用水に放出して給湯用水を加熱している。
また、ヒートポンプ式給湯装置は、一般的に年間を通じて運転されるが、外気温度の変化により給湯用水加熱能力が変化する。例えば、外気温度が低下すると、蒸発圧力が低下し、圧縮機の能力が低下し、高圧圧力が低下する。このため、給湯用水加熱能力が低下するという問題や、加熱された給湯用水の温度も低くなるという問題があった。このため、従来のヒートポンプ式給湯装置では、一般的に外気温度の低下に対し圧縮機能力を向上させて、給湯用水の加熱能力の維持と給湯用水の温度の維持とを図っていた(例えば特許文献1参照)。
特開昭61-186756号公報
しかしながら、従来のものでは常時外気温度を検出しており、この外気温度の変化に追随して圧縮機の能力を変化させていた。また、外気温度は、一般的には急激に変化するものではないが、据付条件により、また、雲の移動による日射の変化、風雨の発生又は変化等により、蒸発器周辺の空気温度が短時間に上下動することがある。この場合、従来の給湯装置においては、外気温度の上下変化に追随して圧縮機能力が上下に変化していた。このため、膨張弁は、その開度を安定的に変化させることができず、開度の縮小拡大を起すという問題があった。また、この結果、圧縮機に液戻りを生じ、圧縮機の寿命が短くなるという問題があった。
本発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的とするところは、外気温度の短時間の上下動変化に対し圧縮機能力の制御及び電動膨張弁の開度制御を安定させたヒートポンプ式給湯装置を提供することにある。
上記のような目的を達成するために、本発明は、インバータ駆動式圧縮機、高圧側熱交換器、冷媒膨張装置、蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置のヒートポンプ作用により加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度に対して設定されている目標焚き上げ温度とから前記圧縮機の予め設定されている前記給湯用水の目標吐出温度となるように前記インバータ駆動式圧縮機の運転周波数及び前記電動膨張弁の開度を制御する制御装置とを有するものである。
このように構成することにより、外気温度の短時間の上下動変化に対し、圧縮機能力の制御及び電動膨張弁の開度制御を安定的に行うことができ、圧縮機の寿命低下を回避することができる。
又、インバータ駆動式圧縮機、高圧側熱交換器、冷媒膨張装置、蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置のヒートポンプ作用により加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度及び使用者により選定された給湯用水の使用予定量に対して設定されている目標焚き上げ温度とから前記圧縮機の予め設定されている目標吐出温度となるように前記インバータ駆動式圧縮機の運転周波数及び前記電動膨張弁の開度を制御する制御装置とを有するものである。そして前記制御装置は、外気温度の検出を約30分毎に行う。更に前記冷凍サイクル装置は、冷媒として二酸化炭素を充填した超臨界冷凍サイクル装置である。又前記インバータ駆動式圧縮機は、密閉ハウジング内に低段側圧縮機と高段側圧縮機とを内蔵し、この密閉ハウジング内空間を低段側圧縮機の吐出ガスで充満させたインバータ駆動式2段圧縮機である。
これらのことにより、給湯用水を外気温度と無関係に常に一定温度に加熱するのではなく、一般的な需要ニーズに見合った温度とすることにより(例えば、夏季では貯湯タンクに貯留する給湯用水の焚き上げ温度は低くてもよい)、必要以上に給湯用水を加熱することを防止し、無駄の少ない運転を行うことができる。
本発明によれば、インバータ駆動式圧縮機、高圧側熱交換器、冷媒膨張装置、蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置のヒートポンプ作用により加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度(及び使用者)により選定されたに対して設定されている目標焚き上げ温度とから前記圧縮機の予め設定されている前記給湯用水の目標吐出温度となるように前記インバータ駆動式圧縮機の運転周波数及び前記電動膨張弁の開度を制御するようにしたので、外気温度の短時間の上下動変化に対し、圧縮機能力の制御及び電動膨張弁の開度制御を安定的に行うことができ、圧縮機の寿命低下を回避することができる。
そして外気温度の検出を約30分毎に行う。更に前記冷凍サイクル装置は、冷媒として二酸化炭素を充填した超臨界冷凍サイクル装置である。又前記インバータ駆動式圧縮機は、密閉ハウジング内に低段側圧縮機と高段側圧縮機とを内蔵し、この密閉ハウジング内空間を低段側圧縮機の吐出ガスで充満させたインバータ駆動式2段圧縮機である。
これらのことにより、給湯用水を外気温度と無関係に常に一定温度に加熱するのではなく、一般的な需要ニーズに見合った温度とすることにより(例えば、夏季では貯湯タンクに貯留する給湯用水の焚き上げ温度は低くてもよい)、必要以上に給湯用水を加熱することを防止し、無駄の少ない運転を行うことができる。
本発明の実施の形態1に係るヒートポンプ式給湯装置の回路図である。 本発明の実施の形態1に係り、初期設定運転完了後の定常運転時におけるインバータ駆動式2段圧縮機の制御フローチャートである。 本発明の実施の形態1に係り、初期設定運転完了後の定常運転時における電動膨張弁の開度の制御フローチャートである。 本発明の実施の形態2に係り、初期設定運転完了後の定常運転時におけるインバータ駆動式2段圧縮機の運転周波数及び電動膨張弁の開度制御のフローチャートである。 本発明の実施の形態2における外気温度及び目標焚き上げ温度に対する圧縮機の運転周波数の設定例を示す図である。 本発明の実施の形態2における外気温度及び目標焚き上げ温度に対する圧縮機吐出ガスの目標吐出ガス温度の設定例を示す図である。
実施の形態1.
以下、本発明の実施の形態1を、図面を参照しながら詳細に説明する。なお、図1は本発明の実施の形態1に係るヒートポンプ式給湯装置の回路図であり、図1中実線矢印は冷媒の流れを示し、破線矢印は温水の流れを示す。
図1に示すように、実施の形態1に係る給湯装置は、冷凍サイクル装置1、給湯ユニット2及び制御装置3とを備えたものである。なお、この実施の形態においては、制御装置3は冷凍サイクル装置1内に設置されている。また、冷凍サイクル装置1と給湯ユニット2とは連絡水用配管5、6により接続されている。
冷凍サイクル装置1は、2段圧縮機11、高圧側熱交換器12、電動膨張弁13、蒸発器14、アキュムレータ15を順次接続した冷媒回路(閉回路)を備えた超臨界冷凍サイクル装置である。この冷媒回路の内部には、超臨界冷凍サイクルで運転されるような代替冷媒として二酸化炭素(CO2)が充填されている。冷凍・空調用の代表的な自然冷媒としては、ハイドロカーボン(HC:プロパンやイソブタンなど)、アンモニア、空気そしてCO2等が挙げられる。しかしながら、冷媒特性として、ハイドロカーボンとアンモニアはエネルギー効率が良いという反面可燃性や毒性の問題があり、空気は超低温域以外でエネルギー効率が劣るなどといった問題がある。これに対し二酸化炭素は、可燃性や毒性がなく安全である。
2段圧縮機は、密閉ハウジング内に低段側圧縮機11a、高段側圧縮機11b、これら圧縮機11a及び11bを駆動する共用の圧縮機用電動機11cを内蔵したものであり、低段側圧縮機11aの吐出側と高段側圧縮機11bの吸入側とを配管11dにより連結している。また、密閉ハウジング内空間は、中間圧力ガス、つまり低段側圧縮機の吐出ガスにより満たされている。なお、このように密閉ハウジング内を中間圧力とした理由は、各圧縮機の各部に作用する力、及び密閉ハウジングの内外間の圧力差を適切な範囲内に保持し、大きな力が作用することを回避したものであり、これにより高信頼性、低振動、低騒音、高効率な圧縮機とすることができる。
また、この2段圧縮機11の圧縮機用電動機はインバータ制御されるインバータ駆動式2段圧縮機である。また、後述する制御装置3により、外気温度の変化に対し所定の基準に従い圧縮機能力が制御される。なお、高段側圧縮機11bの吐出配管には、高段側圧縮機11bから吐出される吐出ガス温度を検出するための吐出ガス温度検出器31が設けられている。
高圧側熱交換器12は、高段側圧縮機11bから吐出された高圧冷媒を導入する冷媒用熱交換チューブ12aと、給湯ユニット2内に配置されている貯湯タンク21から送水される給湯用水を導入する水用熱交換チューブ12bとからなり、両者が熱交換関係に形成されたものである。したがって、高段側圧縮機11bから吐出された高温高圧の冷媒ガスは貯湯タンク21から送水される給湯用水により冷却され、この給湯用水は高温高圧冷媒が発生する熱により加熱される。
電動膨張弁13は、高圧側熱交換器12で冷却された高圧ガス冷媒を減圧するもので、パルスモータにより駆動される。また、後述する制御装置3により、所定の基準に従い制御される。
蒸発器14は、電動膨張弁13により減圧された低圧の気液混合冷媒を熱源媒体としての外気と熱交換させ、この冷媒を気化させるものである。なお、この蒸発器14には外気温度を検出するための外気温度検出器32が付設されている。
給湯ユニット2は、貯湯タンク21、温水循環ポンプ22、給湯配管23、給水配管24を備えて構成されている。
そして、貯湯タンク21の上部及び下部を前記水用熱交換チューブ12bに対し、連絡水用配管5、6を含む温水循環回路Pにより接続されている。また、貯湯タンク21では比重の差により上部になるほど温水温度が高くなる。このため、貯湯タンク21下部の温度の低い水を水用熱交換チューブ12bに送水し、水用熱交換チューブ12bで加熱された温度の高い水を貯湯タンク21の上部に導くように、温水循環回路Pが形成されるとともに、この温水循環回路P中に温水循環ポンプ22が取り付けられている。なお、貯湯タンク21内上部の温水温度、すなわち焚き上げ温度は、貯湯タンク21上部に設けられた焚き上げ温度検出器33により測定されている。
給湯配管23は、温水蛇口、浴槽などに温水を供給するためのものであり、貯湯タンク21中の高い温度の温水を供給できるように、貯湯タンク21の上部に接続されている。なお、この給湯回路には開閉弁25が取り付けられている。
給水配管24は、貯湯タンク21内に常時水道水を供給可能とするものであり、逆止弁26、減圧弁27を介し貯湯タンク21の底部に接続されている。
制御装置3は、前述のように、外気温度の変化に対し所定の圧縮機能力が得られるように所定の基準に従い圧縮機用電動機11cの運転周波数を設定してインバータ駆動式2段圧縮機11を運転するとともに、電動膨張弁13の開度を所定の基準に基づき制御するものである。
次に、この制御装置3によるインバータ駆動式2段圧縮機11の運転周波数の制御について図面に基づき説明する。なお、図2は、実施の形態1に係り、初期設定運転完了後の定常運転時におけるインバータ駆動式2段圧縮機11の制御フローチャートである。
この図に示すように、インバータ駆動式2段圧縮機11を初期設定条件で運転し、定常運転に入った後に外気温度検出器32により外気温度が測定される(ステップS1)。そして、前回測定時の外気温度と比較される(ステップS2)。比較した結果、両者に温度差が有る場合は、所定の基準に従いこの温度差に基づく圧縮機用電動機11cの運転周波数を決定し(ステップS3)、インバータ駆動式2段圧縮機11をこの周波数で運転する(ステップS5)。なお、この場合、外気温度の低下に対し圧縮機能力が略所定値となるように、又は、略一定となるようにインバータ駆動式2段圧縮機11の運転周波数を決定している。また、比較した結果、両者に温度差が無い場合は、圧縮機用電動機11cの運転周波数を変更しないものとし(ステップS4)、そのままの運転周波数でインバータ駆動式2段圧縮機11を運転する(ステップS5)。そして、所定時間待機した後(ステップS6)上述のステップを繰り返す。なお、この所定時間としては、外気温度変化の状況把握の緻密さと、外気温度が短時間に上下動変化することによる弊害を除去する必要性とのバランスから、約30分が適切であると考えられる。
次に、この制御装置3による電動膨張弁13の開度制御について図3に基づき説明する。なお、図3は、実施の形態1に係り、初期設定運転完了後の定常運転時における電動膨張弁13の開度の制御フローチャートである。
この図3に示すように、吐出ガス温度検出器31により高段側圧縮機11bの吐出ガス温度が測定され(ステップS11)、予め設定されている目標吐出ガス温度との温度差を算出する(ステップS12)。そして、所定の基準に従いこの温度差に基づく電動膨張弁13の開度(操作パルス数)を決定し(ステップS13)、電動膨張弁13をこの開度に操作する(ステップS14)。なお、この場合において、目標吐出ガス温度を、使用者が任意に設定するのでなく、装置の設計仕様として外気温度に対して予め設定しておくことも可能である。ただし、この場合は前のステップで外気温度を測定しておくことが必要となる。そして、所定時間待機した後(ステップS15)上述のステップが繰り返される。なお、この所定時間は、通常の電動膨張弁の制御に対し行われる程度の短い時間とすればよく、外気温度検出の場合の所定時間と関係付ける必要はない。
以上のように構成された実施の形態1によれば、外気温度検出器32により外気温度を一定時間毎に検出し、検出された外気温度の変化に対し所定の基準に従って圧縮機能力を制御するとともに、所定の基準に従って電動膨張弁13の開度を制御するので、外気温度が短時間に上下動するようなことがあっても、外気温度検出器32はこのような変動を検出しない。したがって、短時間のうちに圧縮機能力が大小変動するようなことが無く、電動膨張弁13の開度制御が安定的に行われる。このため、電動膨張弁13の開度制御が不安定になることによる圧縮機への液戻りを防止することができ、インバータ駆動式2段圧縮機11を長寿命化することができる。
また、外気温度は約30分ごとに検出されるので、短時間の外気温度の変化を検出することが無く、しかも、外気温度の変化状況を適切に把握することもできる。
また、制御装置3は、検出された外気温度の低下に対し圧縮機能力を略一定値又は略所定値になるようにインバータ駆動式圧縮機11の回転数を増大するので、外気温度の低下に対し、圧縮機能力を略一定値又は略所定値に維持することができ、給湯用水の加熱能力及び給湯用水の温度が外気温度に追随して低下することを防止し、略一定値又略所定値にすることができる。
また、冷凍サイクル装置1は、冷媒として二酸化炭素を充填した超臨界冷凍サイクル装置としているので、可燃性や毒性のない自然冷媒を使用しながら、冬季においても十分に高温の給湯用水を供給することができる。
また、冷凍サイクル装置1に用いられる圧縮機を、密閉ハウジング内に低段側圧縮機11aと高段側圧縮機11bとを内蔵し、この密閉ハウジング内空間を低段側圧縮機11aの吐出ガスで充満させたインバータ駆動式2段圧縮機11としているので、高低圧力差が大きくなるヒートポンプ式給湯装置に使用される冷凍サイクル装置では、各段の圧縮比が小さくなり、圧縮機の運転効率を上昇させることができる。また、低段側圧縮機11a及び高段側圧縮機11bの周囲が中間圧力である低段側圧縮機11aの吐出ガスとなるため、各段圧縮機の各部に大きな力が作用せず、高信頼性、低振動、低騒音、高効率な圧縮機とすることができる。
実施の形態2.
次に、実施の形態2について、図4〜図6に基づき説明する。なお、図4は、実施の形態2に係り、初期設定運転完了後の定常運転時におけるインバータ駆動式2段圧縮機の運転周波数及び電動膨張弁の開度の制御フローチャートであり、図5は、実施の形態2における外気温度及び目標焚き上げ温度に対する圧縮機の運転周波数の設定例を示す図であり、図6は、実施の形態2における外気温度及び目標焚き上げ温度に対する圧縮機吐出ガスの目標吐出ガス温度の設定例を示す図である。
実施の形態2では、冷凍サイクル装置1及び給湯ユニット2の構成は実施の形態1と同一であり、制御装置3によるインバータ駆動式2段圧縮機11の運転周波数制御及び電動膨張弁13の開度制御を、需要ニーズに対しよりマッチするようにしたものであって、次のように制御される。
図4に示すように、初期設定条件の下に電動膨張弁13が所定の開度に設定され、インバータ駆動式2段圧縮機11が所定の周波数で運転された後に、外気温度検出器32により外気温度が測定される(ステップS21)。そして、この外気温度と、外気温度に対し設定されている目標焚き上げ温度とから、所定の基準に従いインバータ駆動式2段圧縮機11の運転周波数を決定する(ステップS22)。また、測定された外気温度と、外気温度に対し設定されている目標焚き上げ温度とから、所定の基準に従い高段側圧縮機11bの目標吐出ガス温度を決定する(ステップS23)。また、吐出ガス温度検出器31により高段側圧縮機11bの吐出ガス温度を測定する(ステップS24)。そして、この吐出ガス温度とステップS23により決定された目標吐出ガス温度との温度差を算出し(ステップS25)、この温度差に基づき所定の基準に従い電動膨張弁13の開度(つまり、操作パルス数)を決定する(ステップS26)。そして、ステップS22で決定された運転周波数でインバータ駆動式2段圧縮機11を運転し、ステップS26で決定された開度に電動膨張弁13を操作する(ステップS27)。そして、所定時間経過後(ステップS28)、上記手順を繰り返す。
上記制御において、ステップ23で使用される目標焚き上げ温度は、測定される外気温度と使用者が選択する目標使用量とから予め設定しておくものである。
また、目標使用量は、表1に示される「たっぷり」、「ふつう」、「節約」の3段階の中から、使用者の予測に基づき、使用者により選択される。なお、「たっぷり」は「ふつう」より多め、「節約」は「ふつう」より少なめに設定されていることを意味する。
そして、目標使用量が上記により選択されると、目標焚き上げ温度が表1のテーブルに従って設定される。
次に、前記スッテプ22におけるインバータ駆動式2段圧縮機11の運転周波数の決定は、図5に従って行われる。例えば、目標焚き上げ温度が60℃、外気温度が30℃であれば、図5から導かれるように、インバータ駆動式2段圧縮機11の運転周波数は約88Hzと決定される。
また、ステップ23における、測定された外気温度と予め使用者により選択された目標焚き上げ温度とからの目標吐出ガス温度の決定は、図6のように設定される。例えば、目標焚き上げ温度が60℃、外気温度が30℃であれば、図6から導かれるように、目標吐出ガス温度は約97℃である。
また、ステップ28における所定時間は、外気温度変化の状況把握の緻密さと、外気温度が短時間に上下動変化することによる弊害を除去する観点から、約30分が適切である。
このように実施の形態2によれば、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度に対して設定されている目標焚き上げ温度とから、所定の基準に従ってインバータ駆動式2段圧縮機11の運転周波数及び電動膨張弁13の開度を制御するので、外気温度の変化に対し需要ニーズが変化することに対応した運転制御が行われ、必要以上に給湯用水を加熱することが無く、無駄の少ない運転を行うことができる。
また、この実施の形態2によれば、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度及び使用者により選定された給湯用水の使用予定量に対して設定されている目標焚き上げ温度とから、所定の基準に従いインバータ駆動式2段圧縮機11の運転周波数及び電動膨張弁13の開度を制御するので、外気温度の変化に対する需要ニーズのより詳細な変化を把握した運転制御が行われ、より必要以上に給湯用水を加熱することを防止し、より一層無駄の少ない運転を行うことができる。
以上説明した実施の形態1及び2において、冷凍サイクル装置1は、超臨界冷凍サイクル装置であったが、このような冷凍サイクル装置に限らず通常の冷凍サイクル装置とすることができるのはいうまでもない。
また、前記実施の形態1及び2においては、圧縮機はインバータ駆動式2段圧縮機11とされているが、この圧縮機をインバータ駆動式単段圧縮機とした場合にも本発明を適用できることはいうまでもない。
1 冷凍サイクル装置
2 給湯ユニット
3 制御装置
11 インバータ駆動式圧縮機
11a 低段側圧縮機
11b 高段側圧縮機
11c 圧縮機用電動機
12 高圧側熱交換器
13 電動膨張弁
14 蒸発器
21 貯湯タンク
22 温水循環ポンプ
31 吐出ガス温度検出器
32 外気温度検出器
33 焚き上げ温度検出器33

Claims (5)

  1. インバータ駆動式圧縮機、高圧側熱交換器、冷媒膨張装置、蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置のヒートポンプ作用により加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度に対して設定されている前記給湯用水の目標焚き上げ温度とから前記圧縮機の予め設定されている目標吐出温度となるように前記インバータ駆動式圧縮機の運転周波数及び前記電動膨張弁の開度を制御する制御装置とを有するヒートポンプ式給湯装置。
  2. インバータ駆動式圧縮機、高圧側熱交換器、冷媒膨張装置、
    蒸発器を直列に接続した冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置のヒートポンプ作用により加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、この検出された外気温度と、外気温度及び使用者により選定された給湯用水の使用予定量に対して設定されている目標焚き上げ温度とから前記圧縮機の予め設定されている目標吐出温度となるように前記インバータ駆動式圧縮機の運転周波数及び前記電動膨張弁の開度を制御する制御装置とを有するヒートポンプ式給湯装置。
  3. 前記制御装置は、外気温度の検出を約30分毎に行う請求項2又は3記載のヒートポンプ式給湯装置。
  4. 前記冷凍サイクル装置は、冷媒として二酸化炭素を充填した超臨界冷凍サイクル装置である請求項1〜3のいずれか1項記載のヒートポンプ式給湯装置。
  5. 前記インバータ駆動式圧縮機は、密閉ハウジング内に低段側圧縮機と高段側圧縮機とを内蔵し、この密閉ハウジング内空間を低段側圧縮機の吐出ガスで充満させたインバータ駆動式2段圧縮機である請求項1〜4のいずれか1項記載のヒートポンプ式給湯装置。
JP2011025676A 2011-02-09 2011-02-09 ヒートポンプ式給湯装置 Expired - Fee Related JP5119341B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025676A JP5119341B2 (ja) 2011-02-09 2011-02-09 ヒートポンプ式給湯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025676A JP5119341B2 (ja) 2011-02-09 2011-02-09 ヒートポンプ式給湯装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001267607A Division JP4737892B2 (ja) 2001-09-04 2001-09-04 ヒートポンプ式給湯装置

Publications (2)

Publication Number Publication Date
JP2011117721A true JP2011117721A (ja) 2011-06-16
JP5119341B2 JP5119341B2 (ja) 2013-01-16

Family

ID=44283243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025676A Expired - Fee Related JP5119341B2 (ja) 2011-02-09 2011-02-09 ヒートポンプ式給湯装置

Country Status (1)

Country Link
JP (1) JP5119341B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912990A (zh) * 2012-12-31 2014-07-09 广东美的暖通设备有限公司 一种热泵热水器的控制方法
JP2014145517A (ja) * 2013-01-29 2014-08-14 Panasonic Corp ヒートポンプ給湯機
CN104456963A (zh) * 2013-09-25 2015-03-25 珠海格力电器股份有限公司 压缩机工作频率的控制方法及装置
WO2015092845A1 (ja) * 2013-12-16 2015-06-25 三菱電機株式会社 ヒートポンプ給湯装置
CN104930713A (zh) * 2015-05-26 2015-09-23 珠海格力电器股份有限公司 热泵热水器变频压缩机初始频率控制方法及控制装置
CN105299974A (zh) * 2015-11-02 2016-02-03 青岛海尔空调器有限总公司 一种空调电子膨胀阀的控制方法
CN105352239A (zh) * 2015-11-02 2016-02-24 青岛海尔空调器有限总公司 空调电子膨胀阀的控制方法
CN112146247A (zh) * 2020-08-18 2020-12-29 同济大学 多台同型号变频冷冻水泵并联的控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217160A (ja) * 1982-06-10 1983-12-17 松下電器産業株式会社 ヒ−トポンプ温水装置
JPS61186756A (ja) * 1985-02-15 1986-08-20 Sharp Corp 太陽熱集熱装置
JP2000105005A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 回転式圧縮機
JP2000304329A (ja) * 1999-04-19 2000-11-02 Sanyo Electric Co Ltd 空気調和機
JP2000346449A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2001082803A (ja) * 1999-09-09 2001-03-30 Denso Corp ヒートポンプ式給湯器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217160A (ja) * 1982-06-10 1983-12-17 松下電器産業株式会社 ヒ−トポンプ温水装置
JPS61186756A (ja) * 1985-02-15 1986-08-20 Sharp Corp 太陽熱集熱装置
JP2000105005A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 回転式圧縮機
JP2000304329A (ja) * 1999-04-19 2000-11-02 Sanyo Electric Co Ltd 空気調和機
JP2000346449A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2001082803A (ja) * 1999-09-09 2001-03-30 Denso Corp ヒートポンプ式給湯器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912990A (zh) * 2012-12-31 2014-07-09 广东美的暖通设备有限公司 一种热泵热水器的控制方法
JP2014145517A (ja) * 2013-01-29 2014-08-14 Panasonic Corp ヒートポンプ給湯機
CN104456963A (zh) * 2013-09-25 2015-03-25 珠海格力电器股份有限公司 压缩机工作频率的控制方法及装置
WO2015043276A1 (zh) * 2013-09-25 2015-04-02 珠海格力电器股份有限公司 压缩机工作频率的控制方法及装置
WO2015092845A1 (ja) * 2013-12-16 2015-06-25 三菱電機株式会社 ヒートポンプ給湯装置
JP5985077B2 (ja) * 2013-12-16 2016-09-06 三菱電機株式会社 ヒートポンプ給湯装置
JPWO2015092845A1 (ja) * 2013-12-16 2017-03-16 三菱電機株式会社 ヒートポンプ給湯装置
CN104930713A (zh) * 2015-05-26 2015-09-23 珠海格力电器股份有限公司 热泵热水器变频压缩机初始频率控制方法及控制装置
CN105299974A (zh) * 2015-11-02 2016-02-03 青岛海尔空调器有限总公司 一种空调电子膨胀阀的控制方法
CN105352239A (zh) * 2015-11-02 2016-02-24 青岛海尔空调器有限总公司 空调电子膨胀阀的控制方法
CN112146247A (zh) * 2020-08-18 2020-12-29 同济大学 多台同型号变频冷冻水泵并联的控制方法及系统
CN112146247B (zh) * 2020-08-18 2022-02-15 同济大学 多台同型号变频冷冻水泵并联的控制方法及系统

Also Published As

Publication number Publication date
JP5119341B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5119341B2 (ja) ヒートポンプ式給湯装置
JP4737892B2 (ja) ヒートポンプ式給湯装置
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
KR101970522B1 (ko) 공기조화기 및 그 기동제어방법
JP6192806B2 (ja) 冷凍装置
JP5367100B2 (ja) 二元冷凍装置
KR100500617B1 (ko) 초임계 냉동 장치
KR100500618B1 (ko) 히트 펌프식 급탕 장치
JP2005147584A (ja) ヒートポンプ給湯装置の起動制御装置および起動制御方法
JP2013130357A (ja) 二元冷凍装置
EP3086053B1 (en) Heat pump hot water supply device
JP6351409B2 (ja) 空気調和機
JP2013164250A (ja) 冷凍装置
JP2007147211A (ja) 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
JP2007147211A5 (ja)
JP2012013290A (ja) 冷凍装置
JP2006017377A (ja) ヒートポンプ給湯機
JP2012102970A (ja) 冷凍サイクル装置
JP2003148821A (ja) 超臨界冷凍サイクル装置及び給湯装置
JP2003185308A (ja) ヒートポンプ式給湯装置
JP2018044686A (ja) 冷凍システム
JP2012013286A (ja) 冷凍装置
JP2006153455A (ja) 超臨界冷凍装置
JP2006194582A (ja) 超臨界冷凍装置
JP2012013291A (ja) 冷凍装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees