JP2011113431A - Automatic dispenser - Google Patents

Automatic dispenser Download PDF

Info

Publication number
JP2011113431A
JP2011113431A JP2009271097A JP2009271097A JP2011113431A JP 2011113431 A JP2011113431 A JP 2011113431A JP 2009271097 A JP2009271097 A JP 2009271097A JP 2009271097 A JP2009271097 A JP 2009271097A JP 2011113431 A JP2011113431 A JP 2011113431A
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
solenoid valve
heat exchanger
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009271097A
Other languages
Japanese (ja)
Other versions
JP5375560B2 (en
Inventor
Tadao Watanabe
忠男 渡辺
Takeshi Tsuruha
鶴羽  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2009271097A priority Critical patent/JP5375560B2/en
Publication of JP2011113431A publication Critical patent/JP2011113431A/en
Application granted granted Critical
Publication of JP5375560B2 publication Critical patent/JP5375560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic dispenser which can suppress abnormal noise from an electromagnetic valve and which can realize operation of a compressor at low cost and with high reliability. <P>SOLUTION: In the automatic dispenser in which a cooling circulation circuit is configured with the compressor, a capacitor, a first swelling section, a distributor, an evaporator which is divided from the distributor through a first cooler entry electromagnetic valve, and an inside heat exchanger which is divided from the distributor through a second cooler entry electromagnetic valve, and a heating and cooling circulation circuit that performs heat pump operation to make the inside heat exchanger act as the capacitor is configured by connecting it to the inside heat exchanger from the compressor, a direct operated electromagnetic valve is used as the second cooler entry electromagnetic valve, while a connection pipe portion that is open to an electromagnetic valve body portion is connected to an entry side of the inside heat exchanger, and the connection pipe portion sealed in the electromagnetic valve body portion with a valve is connected to an exit side of a shunt. By providing a bypass conduit through a resistor in parallel with the first cooler entry electromagnetic valve, abnormal noise generated by the second cooler entry electromagnetic valve is prevented. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱して販売に供する自動販売機に関する。   The present invention relates to a vending machine that sells a product such as a beverage in a container such as a can, a bottle, a pack, or a plastic bottle after being cooled or heated in a refrigerant circuit.

近年の地球温暖化に対して二酸化炭素の排出量削減が課題となっており、自動販売機も省エネ型が開発されている。その1方式として従来は排熱していた凝縮器の熱を庫内の加熱に利用するヒートポンプ方式の自動販売機が注目されている(例えば、特許文献1参照)。   Reducing carbon dioxide emissions has become a challenge with recent global warming, and energy-saving vending machines have been developed. As one of the methods, a heat pump type vending machine that uses the heat of the condenser, which has been exhausted in the past, for heating in the cabinet has been attracting attention (for example, see Patent Document 1).

特許文献1に開示された自動販売機は、冷却加熱を兼用する収納庫に冷却用と加熱用のそれぞれの熱交換器を有し、また、各収納庫の蒸発器ごとに冷媒を膨張させる膨張器を設けているので、コストが嵩むという問題があった。   The vending machine disclosed in Patent Document 1 has a heat exchanger for cooling and heating in a storage that also serves as cooling and heating, and expansion that expands the refrigerant for each evaporator in each storage Since the vessel was provided, there was a problem that the cost increased.

そこで、コストの低減を図るため、図8に示すように1つの冷却加熱を兼用する収納庫には1つの冷却加熱兼用の庫内熱交換器を設け、また、膨張器を各収納庫の蒸発器ごとに設けるのでなく、冷却専用、冷却加熱兼用の2個のみに設けることでコストダウンを図る自動販売機を開発した。   Therefore, in order to reduce the cost, as shown in FIG. 8, one storage / heater combined with one cooling / heating is provided in one storage / heater as shown in FIG. We have developed a vending machine that reduces costs by providing only two units for cooling and heating only, not for each unit.

図8に示すこの冷媒回路としての冷却/加熱ユニット60は、庫内を冷却のみを行う冷却循環回路60Aと庫内の冷却加熱を同時に行う(ヒートポンプ運転を行う)加熱冷却循環回路60Bを有している。なお、図中の点線の囲いは、冷却専用の商品収納庫40aと、冷却加熱兼用の商品収納庫40b、40cを模式的に示している。   The cooling / heating unit 60 as the refrigerant circuit shown in FIG. 8 includes a cooling circulation circuit 60A that only cools the inside of the warehouse and a heating / cooling circulation circuit 60B that simultaneously performs cooling and heating inside the warehouse (performs heat pump operation). ing. In addition, the enclosure of the dotted line in a figure has shown typically the goods storage 40a only for cooling, and the goods storage 40b, 40c used also for cooling and heating.

冷却循環回路60Aは、圧縮機61、凝縮器電磁弁68、凝縮器62、第1の膨張器63を経由して、分流器64に接続し、分流器64より一方は第1の冷却器入口電磁弁70a、蒸発器65aを経由して集合器67に接続し、分流器64より他方は第2の冷却器入口電磁弁70b、70c、庫内熱交換器65b、65cを経由して集合器67に接続し、集合器67よりアキュムレータ69を経由して圧縮機61に戻る回路である。     The cooling circuit 60A is connected to the flow divider 64 via the compressor 61, the condenser solenoid valve 68, the condenser 62, and the first expander 63, one of the flow dividers 64 being the first cooler inlet. The electromagnetic valve 70a is connected to the collector 67 via the evaporator 65a, and the other of the flow divider 64 is connected to the collector via the second cooler inlet electromagnetic valves 70b and 70c and the internal heat exchangers 65b and 65c. 67 is a circuit that returns to the compressor 61 from the collector 67 via the accumulator 69.

一方、加熱冷却循環回路60Bには、冷却循環回路60Aに加えて、圧縮機61より凝縮器電磁弁68と並列接続され加熱器電磁弁68b、68cを介して、第2の冷却器入口電磁弁70b、70cと庫内熱交換器65b、65c入口側との中間点(接続点)168b、168cとそれぞれ接続し、庫内熱交換器65b、65cの出口側からそれぞれ逆止弁71,71を介して結合した後、補助熱交換器76、第2の膨張器79を経由して分配器64へ接続する管路とが設けられている。   On the other hand, in addition to the cooling circuit 60A, the heating / cooling circuit 60B is connected in parallel with the condenser solenoid valve 68 from the compressor 61 and is connected to the condenser solenoid valve 68 via the heater solenoid valves 68b and 68c. 70b and 70c are connected to intermediate points (connection points) 168b and 168c between the interior heat exchangers 65b and 65c, respectively, and check valves 71 and 71 are respectively connected from the exit sides of the interior heat exchangers 65b and 65c. Are connected to the distributor 64 via the auxiliary heat exchanger 76 and the second expander 79.

すなわち、加熱冷却循環回路60Bは、圧縮機61から加熱器電磁弁68b、68cを介し庫内熱交換器65c、65bに接続され、庫内熱交換器65c、65bから逆止弁71、71を介して補助熱交換器76、膨張器79を経由して分配器64に接続され、分流器64から第1の冷却器入口電磁弁70aを介して蒸発器65aに接続され、集合器67、アキュムレータ69を経由して圧縮機61に戻る回路である。   That is, the heating / cooling circulation circuit 60B is connected from the compressor 61 to the internal heat exchangers 65c, 65b via the heater electromagnetic valves 68b, 68c, and the check valves 71, 71 are connected to the internal heat exchangers 65c, 65b. To the distributor 64 via the auxiliary heat exchanger 76 and the expander 79, and to the evaporator 65 a via the first cooler inlet solenoid valve 70 a from the flow divider 64, the collector 67, and the accumulator 69 is a circuit that returns to the compressor 61 via 69.

また、第2の冷却器入口電磁弁70b、70cは、図9で示されるような通常の低コスト型の直動型電磁弁80が使用される。直動型電磁弁80は、同図で示すように電磁弁本体81に円筒状の本体内部81aを有し、本体内部81aの側面側に第1の接続管部81b、下面側に第2の接続管部81cが連結しており、第2の接続管部81cの上面周縁部には円錐台形状に弁座81dが形成されている。本体内部81aには、弁座81dと当接する球状の弁体82、弁体82と持着して重力およびバネ84で弁体82を付勢するスプール83が挿入されている。スプール83には、鉄製のアーマチャー85が連結され、アーマチャー85の上部周縁側にソレノイド86が取設されている。   As the second cooler inlet electromagnetic valves 70b and 70c, a normal low-cost direct acting electromagnetic valve 80 as shown in FIG. 9 is used. As shown in the figure, the direct acting solenoid valve 80 has a cylindrical body inside 81a in the solenoid valve body 81, a first connecting pipe portion 81b on the side surface side of the body inside 81a, and a second side on the bottom surface side. The connecting pipe portion 81c is connected, and a valve seat 81d is formed in a truncated cone shape on the peripheral edge of the upper surface of the second connecting pipe portion 81c. A spherical valve body 82 that comes into contact with the valve seat 81d and a spool 83 that is attached to the valve body 82 and biases the valve body 82 with gravity and a spring 84 are inserted into the main body inside 81a. An iron armature 85 is connected to the spool 83, and a solenoid 86 is provided on the upper peripheral side of the armature 85.

ソレノイド86が無通電状態のときは、図9(a)で示すようにバネ84とスプール83の重力にて弁体82を弁座81dに当接させることにより、第1の接続管部81bと第2の接続管部81cの連通を封止している。具体的には、第1の接続管部81bと本体内部81aとが連通をし、第2の接続管部81cが弁体82により本体内部81aと閉止されている。ソレノイド86が通電状態のときは、図9(b)で示すようにアーマチャー85がソレノイド86の磁力により上方へ吸引移動されるので、弁体82と弁座81dの間に隙間が形成され、第1の接続管部81bと第2の接続管部81cが連通され、冷媒が通過可能となる。   When the solenoid 86 is not energized, the valve body 82 is brought into contact with the valve seat 81d by the gravity of the spring 84 and the spool 83 as shown in FIG. The communication of the second connecting pipe portion 81c is sealed. Specifically, the first connecting pipe portion 81 b and the main body inside 81 a communicate with each other, and the second connecting pipe portion 81 c is closed with the main body inside 81 a by the valve body 82. When the solenoid 86 is energized, as shown in FIG. 9B, the armature 85 is attracted and moved upward by the magnetic force of the solenoid 86, so that a gap is formed between the valve body 82 and the valve seat 81d. The first connecting pipe portion 81b and the second connecting pipe portion 81c communicate with each other, and the refrigerant can pass therethrough.

なお、第2の冷却器入口電磁弁70b、70cの第1の接続管部81b、81bは接続点168b、168cと連結され、第2の接続管部81c、81cは分流器64側に連結されている。この接続の構成とすることにより、第2の冷却器入口電磁弁70b、70cと接続点168b、168cとの間に逆止弁を設ける必要がなくなり、コスト低減となる。   The first connection pipe portions 81b and 81b of the second cooler inlet solenoid valves 70b and 70c are connected to the connection points 168b and 168c, and the second connection pipe portions 81c and 81c are connected to the shunt 64 side. ing. By adopting this connection configuration, it is not necessary to provide a check valve between the second cooler inlet electromagnetic valves 70b and 70c and the connection points 168b and 168c, thereby reducing the cost.

かかる構成で商品収納庫40a、40b、40cをすべて冷却運転する運転モードに設定すると、凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを開成し、加熱器電磁弁68b、68cを閉止する。このとき、図8の太線で示すように圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮され液体となり、第1の膨張器63で膨張して低温の気液二相流となり、分流器64で三方に分流された後に蒸発器65a、庫内熱交換器65b、65cに流入する。流入した冷媒は、蒸発器65a、庫内熱交換器65b、65cで蒸発して商品収納庫40a、40b、40cを冷却し、蒸発した冷媒は集合器67で集合して液冷媒を貯留するアキュムレータ69を介して気液分離させて圧縮機61に戻る。この冷却運転は、庫内温度センサTa,Tb,Tcよりの庫内温度を検知してサーモサイクル運転にて庫内が適温に維持される。   When the product storage 40a, 40b, 40c is set to the operation mode in which the cooling operation is performed in such a configuration, the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, the second cooler inlet solenoid valve 70b, 70c, The cooler outlet solenoid valves 72b and 72c are opened, and the heater solenoid valves 68b and 68c are closed. At this time, as shown by the thick line in FIG. 8, the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62 to become a liquid, and expands by the first expander 63 to become a low-temperature gas-liquid two-phase flow. After being divided in three directions by the flow divider 64, it flows into the evaporator 65a and the internal heat exchangers 65b and 65c. The refrigerant that has flowed in is evaporated by the evaporator 65a and the internal heat exchangers 65b and 65c to cool the product storages 40a, 40b, and 40c, and the evaporated refrigerant is collected by the collector 67 to store the liquid refrigerant. Gas-liquid separation is performed via 69 and the flow returns to the compressor 61. In this cooling operation, the internal temperature from the internal temperature sensors Ta, Tb, Tc is detected, and the internal temperature is maintained at an appropriate temperature by the thermocycle operation.

なお、66b、66cは、庫内熱交換器65b、65cの前方に取設され、
商品収納庫40b、40cの加熱の補助を行うヒータである。
66b and 66c are installed in front of the internal heat exchangers 65b and 65c,
It is a heater which assists heating of the product storages 40b and 40c.

特開2005−227833号公報JP 2005-227833 A

しかしながら、この種の自動販売機は、この冷却運転モードの運転を停止するときに、すなわち、圧縮機61を停止させ、第2の冷却器入口電磁弁70b、70cを閉止すると、第2の冷却器入口電磁弁70b、70cの両端に過大な圧力が印加する。このとき、第2の冷却器入口電磁弁70b、70cの第2の接続部81cからの圧力により図9(b)と同じ態様で弁体82を押し上げ、弁座81dとの間に隙間が形成される。隙間が形成されると出口側と入口側が連通をして冷媒が流動すると電磁弁の出入口間がほぼ同圧となるため、再び弁体82が弁座81と当接をして通路を閉鎖する。すると、再び、第2の接続部81cからの圧力により弁体82を押し上げ、押し戻すという振動が繰りかえされる。この現象は、第2の接続部81cと第1の接続部81bとの間の圧力差が小さくなるまで継続し、弁体82が弁座81に衝突する際に生じる耳障りな音(以下、異音という)を発生続けるという虞があった。これを防ぐために逆圧に強い大型の電磁弁を使用することが考えられるが、それではコストの上昇を招来することになる。   However, when this type of vending machine stops the operation in the cooling operation mode, that is, when the compressor 61 is stopped and the second cooler inlet solenoid valves 70b and 70c are closed, the second cooling is performed. Excessive pressure is applied to both ends of the vessel inlet solenoid valves 70b and 70c. At this time, the pressure from the second connection part 81c of the second cooler inlet electromagnetic valves 70b and 70c is pushed up in the same manner as in FIG. 9B, and a gap is formed between the valve seat 81d and the valve seat 81d. Is done. When the gap is formed, the outlet side and the inlet side communicate with each other, and when the refrigerant flows, the pressure between the inlet and outlet of the solenoid valve becomes almost the same pressure. Therefore, the valve body 82 comes into contact with the valve seat 81 again to close the passage. . Then, the vibration of pushing up and pushing back the valve body 82 again by the pressure from the second connection portion 81c is repeated. This phenomenon continues until the pressure difference between the second connection portion 81c and the first connection portion 81b becomes small, and an harsh sound (hereinafter referred to as an abnormal sound) generated when the valve body 82 collides with the valve seat 81. There was a concern that it would continue to generate sound. In order to prevent this, it is conceivable to use a large solenoid valve that is resistant to back pressure, but this leads to an increase in cost.

なお、同様な現象が、商品収納庫40aが適温に達して商品収納庫40aを休止し商品収納庫40b、40cを冷却運転する場合でも第2冷却器入口電磁弁70b、70cに同様の異音の発生の虞があった。また、商品収納庫40a、40bを冷却し、商品収納庫40cを加熱する場合にも、第2冷却器入口電磁弁70bに異音の発生の虞があり、商品収納庫40a、40cを冷却し、商品収納庫40bを加熱する場合にも、第2冷却器入口電磁弁70cに異音の発生の虞があった。   A similar phenomenon occurs when the product storage 40a reaches an appropriate temperature, the product storage 40a is stopped, and the product storages 40b and 40c are cooled. There was a possibility of the occurrence of. In addition, when the product storage cases 40a and 40b are cooled and the product storage case 40c is heated, there is a possibility that abnormal noise may occur in the second cooler inlet electromagnetic valve 70b, and the product storage cases 40a and 40c are cooled. Even when the product storage case 40b is heated, there is a possibility that abnormal noise may be generated in the second cooler inlet electromagnetic valve 70c.

本発明は、上記実情に鑑みて、上記の課題を解決して、電磁弁より発生する異音を抑制し、低コストで信頼性の高い圧縮機の運転ができる自動販売機を提供することを目的とする。   In view of the above circumstances, the present invention provides a vending machine that solves the above-described problems, suppresses noise generated from the electromagnetic valve, and can operate a compressor at low cost and high reliability. Objective.

上記の目的を達成するために、本発明の請求項1に係る自動販売機は、少なくとも1つの冷却専用の商品収納庫と冷却加熱兼用の商品収納庫を有し、冷却加熱の運転モードにより選択的に商品収納庫を冷却もしくは加熱する自動販売機であって、冷媒を圧縮する圧縮機と、冷媒を凝縮する凝縮器と、冷媒を膨張させる第1の膨張手段と、膨張した冷媒を分配する分配器と、当該分配器より一方は第1の冷却器入口電磁弁を介して冷媒を蒸発させる、冷却専用の商品収納庫に設けた蒸発器と、前記分配器より他方は第2の冷却器入口電磁弁を介して冷媒を蒸発させる、冷却加熱兼用の商品収納庫に設けた庫内熱交換器と、該庫内熱交換器より冷却器出口電磁弁を介して流れる冷媒と前記蒸発器より流れる冷媒とを合流する集合器と、にて冷却循環回路を構成するとともに、前記冷却循環回路に、前記圧縮機より前記庫内熱交換器入口側と前記の第2の冷却器入口電磁弁との間を加熱器電磁弁を介して配管接続し、かつ、前記庫内熱交換器出口側と前記分配器との間を第2の膨張手段を介して配管接続することにより、前記庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う加熱冷却循環回路を構成し、前記第2の冷却器入口電磁弁は、直動型電磁弁により構成され、無通電時には電磁弁本体内部に開通する第1の接続管部と、電磁弁本体内部に弁にて封止されている第2の接続管部とを有し、かつ、前記第1の接続管部が前記庫内熱交換器の入口側に接続され、前記第2の接続管部が前記分流器の出口側に接続された自動販売機において
前記第1の冷却器入口電磁弁と並列に抵抗器を介してバイパス管路を設けたことを特徴とする。
In order to achieve the above object, a vending machine according to claim 1 of the present invention has at least one product storage dedicated to cooling and a product storage combined with cooling and heating, and is selected according to an operation mode of cooling and heating. A vending machine that cools or heats the product storage, and compresses the refrigerant, the condenser that condenses the refrigerant, the first expansion means that expands the refrigerant, and distributes the expanded refrigerant A distributor, one of the distributors evaporates the refrigerant via a first cooler inlet solenoid valve, an evaporator provided in a product storage dedicated for cooling, and the other of the distributors is a second cooler From the internal heat exchanger provided in the product storage for cooling and heating that evaporates the refrigerant via the inlet electromagnetic valve, the refrigerant flowing from the internal heat exchanger via the cooler outlet electromagnetic valve, and the evaporator Cooling circulation with an aggregator that merges the flowing refrigerant And a pipe connected between the compressor heat exchanger inlet side and the second cooler inlet solenoid valve from the compressor via a heater solenoid valve. In addition, by connecting a pipe between the outlet side of the internal heat exchanger and the distributor via a second expansion means, the internal heat exchanger acts as a condenser to perform a heat pump operation. A cooling circulation circuit is configured, and the second cooler inlet solenoid valve is constituted by a direct acting solenoid valve, and when there is no energization, a first connection pipe portion opened inside the solenoid valve body, and a solenoid valve body A second connecting pipe portion sealed by a valve, the first connecting pipe portion is connected to an inlet side of the internal heat exchanger, and the second connecting pipe portion is Resistor in parallel with the first cooler inlet solenoid valve in the vending machine connected to the outlet side of the shunt A bypass line is provided through a vessel.

本発明に係る請求項1の自動販売機は、第2の冷却器入口電磁弁は、直動型電磁弁により構成され、無通電時には電磁弁本体内部に開通する第1の接続管部と、電磁弁本体内部に弁にて封止されている第2の接続管部とを有し、かつ、第1の接続管部が庫内熱交換器の入口側に接続され、第2の接続管部が分流器の出口側に接続され、前記第1の冷却器入口電磁弁と並列に抵抗器を介してバイパス管路を設けたことにより、圧縮機を停止したときに回路内の冷媒が前記バイパス管路より流出するので、第2の冷却器入口電磁弁間に発生する圧力差を低減させ、第2の冷却器入口電磁弁の異音発生を抑制することができる。   The vending machine according to claim 1 of the present invention is characterized in that the second cooler inlet solenoid valve is constituted by a direct acting solenoid valve, and is opened to the inside of the solenoid valve body when not energized, A second connecting pipe part sealed with a valve inside the solenoid valve body, and the first connecting pipe part is connected to the inlet side of the internal heat exchanger, and the second connecting pipe Part is connected to the outlet side of the shunt, and a bypass line is provided through a resistor in parallel with the first cooler inlet solenoid valve, so that the refrigerant in the circuit when the compressor is stopped is Since it flows out from a bypass line, the pressure difference which generate | occur | produces between 2nd cooler inlet solenoid valves can be reduced, and generation | occurrence | production of the noise of a 2nd cooler inlet solenoid valve can be suppressed.

本発明の実施例に係る自動販売機を示す斜視図。1 is a perspective view showing a vending machine according to an embodiment of the present invention. 図1に示した自動販売機の断面図。Sectional drawing of the vending machine shown in FIG. 本発明の実施例に係る冷媒回路図。The refrigerant circuit figure which concerns on the Example of this invention. 制御装置のブロック図。The block diagram of a control apparatus. 3室を全て冷却する冷却単独運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the cooling single operation which cools all three chambers. 配管内の圧力を示し、(a)は従来例に係る冷媒回路での圧力チャート図、(b)は図6での運転時の圧力チャート図。The pressure in piping is shown, (a) is a pressure chart figure in the refrigerant circuit which concerns on a prior art example, (b) is a pressure chart figure at the time of the driving | operation in FIG. 2室を冷却し、1室を加熱するヒートポンプ運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heat pump driving | operation which cools 2 chambers and heats 1 chamber. 従来例に係る冷媒回路図。The refrigerant circuit figure concerning a prior art example. 直動型電磁弁の構成を示す断面図で、(a)はソレノイドの無通電時の断面図、(b)はソレノイドの通電時の断面図。It is sectional drawing which shows the structure of a direct acting type solenoid valve, (a) is sectional drawing at the time of no energization of a solenoid, (b) is sectional drawing at the time of energization of a solenoid.

以下に添付図面を参照して、本発明に係る自動販売機の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
図1の斜視図、図2の断面図、図3の冷媒回路図において、自動販売機は、前面が開口した直方状の断熱体として形成された本体キャビネット10と、その前面に設けられた外扉20および内扉30と、本体キャビネット10の内部を上下2段に底板11にて区画形成し、上部を例えば2つの断熱仕切板40wによって仕切られた3つの独立した商品収納庫40a、40b、40cと、下部に商品収納庫40a、40b、40cを冷却もしくは加熱する冷却/加熱ユニット60を収納する機械室50と、外扉20の内側に配設され、商品収納庫40a、40b、40c内の庫内温度センサTa、Tb、Tcにより自動販売機の冷却、加熱運転などを制御する制御手段90と、を有して構成されている。
Exemplary embodiments of a vending machine according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
In the perspective view of FIG. 1, the cross-sectional view of FIG. 2, and the refrigerant circuit diagram of FIG. 3, the vending machine includes a main body cabinet 10 formed as a rectangular heat insulator having an open front surface, and an exterior provided on the front surface thereof. The door 20 and the inner door 30 and the inside of the main body cabinet 10 are partitioned and formed by the bottom plate 11 in two upper and lower stages, and the upper part is partitioned by, for example, two heat-insulating partition plates 40w, three independent product storage boxes 40a and 40b, 40 c, a machine room 50 for storing the cooling / heating unit 60 for cooling or heating the product storage units 40 a, 40 b, and 40 c at the lower part, and the inside of the outer door 20, and in the product storage units 40 a, 40 b, 40 c And a control means 90 for controlling cooling, heating operation, etc. of the vending machine by the internal temperature sensors Ta, Tb, Tc.

より詳細に説明すると、外扉20は、本体キャビネット10の前面開口を開閉するためのものであり、図には明示していないが、この外扉20の前面には、販売する商品の見本を展示する商品展示室、販売する商品を選択するための選択ボタン、貨幣を投入するための貨幣投入口、払い出された商品を取り出すための商品取出口21等々、商品の販売に必要となる構成他、下部に吸排気口22が配置してある。   More specifically, the outer door 20 is used to open and close the front opening of the main body cabinet 10 and is not shown in the figure. Product display room, selection button for selecting the product to be sold, money slot for inserting money, product outlet 21 for taking out the paid-out product, etc. In addition, an intake / exhaust port 22 is arranged in the lower part.

内扉30は、商品収納庫40a、40b、40cの前面を開閉し、内部の商品を保温するものであり、上下2段に分割され内部に断熱体を有する箱型形状の構造体である。上側の内扉30aは、一端を外扉20に軸支し、他端を外扉20に係着して、外扉20の開放と同時に上側の内扉30aを開放させて、商品の補充を容易にするものである。下側の内扉30bは、一端を本体キャビネット10に軸支し、他端を本体キャビネット10に不図示の掛金にて掛着して、外扉20を開放したときには、閉止した状態であり、商品収納庫40a、40b、40c内の冷却もしくは加熱した空気が流出することを防ぎ、メンテナンス時など必要に応じて開放できるものである。   The inner door 30 opens and closes the front surfaces of the product storage units 40a, 40b, and 40c to keep the products in the interior warm. The inner door 30 is a box-shaped structure that is divided into upper and lower stages and has a heat insulator inside. The upper inner door 30a is pivotally supported by the outer door 20 at one end and engaged with the outer door 20 at the other end, and the upper inner door 30a is opened simultaneously with the opening of the outer door 20 to replenish the goods. To make it easier. The lower inner door 30b is in a closed state when one end is pivotally supported on the main body cabinet 10 and the other end is hooked on the main body cabinet 10 with a latch (not shown) and the outer door 20 is opened. This prevents the cooled or heated air in the product storage boxes 40a, 40b, and 40c from flowing out, and can be opened as needed during maintenance.

商品収納庫40a、40b、40cは、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものであり、その収納庫の容量は商品収納庫40a、40c、40bの順番に大きな態様で配分されている。本実施例は、商品収納庫40aを冷却専用とし、商品収納庫40b、40cを冷却加熱兼用としている。その商品収納庫40a、40b、40cには、それぞれ、商品を上下方向に沿って並ぶ態様で収納し、販売信号により1個ずつ商品を排出するための商品搬出機構を備えた商品収納ラックR、排出された商品Sを内扉30bに取設された搬出扉31を介して外扉の商品取出口21へ搬出する商品搬出シュート42を有している。   The product storage units 40a, 40b, and 40c are for storing products such as canned beverages and beverages containing plastic bottles at a desired temperature, and the capacity of the storage units is the product storage units 40a, 40c. , 40b in a large manner. In this embodiment, the product storage 40a is exclusively used for cooling, and the product storages 40b and 40c are also used for cooling and heating. The product storage racks 40a, 40b, and 40c store the products in a manner that they are arranged in the vertical direction, and are provided with a product storage rack R that includes a product delivery mechanism for discharging the products one by one in response to a sales signal. There is a product carry-out chute 42 for carrying out the discharged product S to the product take-out port 21 of the outer door via a carry-out door 31 installed in the inner door 30b.

冷却/加熱ユニット60は、機械室50内に圧縮機61、凝縮器62、膨張器(膨張手段)63、第2の膨張器79、アキュムレータ69、補助熱交換器76を取設し、底板11を跨いで庫内に蒸発器65a、庫内熱交換器65b、65cを有して各機器を冷媒配管で接続されることにより構成されている。冷却/加熱ユニット60は、冷却加熱の運転モードに応じて、庫内に冷風または温風を循環させて商品収納ラックR内の商品Sを冷却または加熱するものである。   The cooling / heating unit 60 includes a compressor 61, a condenser 62, an expander (expansion means) 63, a second expander 79, an accumulator 69, and an auxiliary heat exchanger 76 in the machine room 50. It has the evaporator 65a and the internal heat exchangers 65b and 65c in the store, and each device is connected by refrigerant piping. The cooling / heating unit 60 cools or heats the product S in the product storage rack R by circulating cold air or warm air in the cabinet according to the cooling / heating operation mode.

冷却加熱用の圧縮機61は、冷媒を圧縮して回路内を循環させるためのもので、冷却運転時には、蒸発温度が約−10℃、凝縮温度が約40℃で使用され、加熱運転時には、蒸発温度が約−10℃、凝縮温度が約70℃で使用される。   The compressor 61 for cooling and heating is for compressing the refrigerant and circulating it in the circuit. During the cooling operation, the evaporation temperature is about −10 ° C., the condensation temperature is about 40 ° C., and during the heating operation, An evaporation temperature of about −10 ° C. and a condensation temperature of about 70 ° C. are used.

凝縮器62は、フィンチューブ型の熱交換器であり、冷却運転時に不要な凝縮熱を排出するためのものである。凝縮器62の後部にはファン62fが取設され、ファン62fは機械室50の前面開口部より空気を吸入し、凝縮器62による凝縮熱を吸入するとともに、圧縮機61の排熱を吸収して、機械室50の背面開口部へ排気するためのものである。   The condenser 62 is a fin tube type heat exchanger, and discharges unnecessary condensation heat during the cooling operation. A fan 62f is installed at the rear of the condenser 62. The fan 62f sucks air from the front opening of the machine chamber 50, sucks heat of condensation by the condenser 62, and absorbs exhaust heat of the compressor 61. Thus, the air is exhausted to the rear opening of the machine room 50.

第1の膨張器63は、冷却運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。
分流器64は、膨張器63で断熱膨張させられた冷媒を蒸発器65a,庫内熱交換器65b、65cに分配するためのものである。
The first expander 63 decompresses the refrigerant passing during the cooling operation and adiabatically expands, and is, for example, a capillary, a temperature expansion valve, or an electronic expansion valve.
The flow divider 64 is for distributing the refrigerant adiabatically expanded by the expander 63 to the evaporator 65a and the internal heat exchangers 65b and 65c.

蒸発器65aは、商品収納庫40aを冷却するためのものであり、庫内熱交換器65b、65cは、商品収納庫40b、40cを冷却もしくは加熱するためのものである。また、蒸発器65a、庫内熱交換器65b、65cは、各商品収納庫の下部に取設され、風胴67で囲繞され、その後方にファン65fが取設され、その後方にダクト67dが取設されている。商品収納庫内の冷却と加熱は、蒸発器65a、庫内熱交換器65b、65cにより冷却もしくは加熱された空気を商品収納庫内の商品Sに送風し、図2中の矢印で示すようにダクト67dより循環回収することで行われる。   The evaporator 65a is for cooling the product storage 40a, and the internal heat exchangers 65b and 65c are for cooling or heating the product storage 40b and 40c. Further, the evaporator 65a and the internal heat exchangers 65b and 65c are installed at the lower part of each product storage, surrounded by a wind tunnel 67, a fan 65f is installed behind them, and a duct 67d is installed behind them. It has been installed. As for cooling and heating in the product storage, the air cooled or heated by the evaporator 65a and the internal heat exchangers 65b and 65c is blown to the product S in the product storage, as shown by the arrows in FIG. It is performed by circulating and collecting from the duct 67d.

アキュムレータ69は、蒸発器65a,庫内熱交換器65b、65cから蒸発された冷媒を流入し、気液分離させて液冷媒を貯留し、気体冷媒を圧縮機61に戻すための密閉した容器である。また、アキュムレータ69は、回路の冷媒循環に余った冷媒を貯留するための容器でもある。   The accumulator 69 is a sealed container for allowing the refrigerant evaporated from the evaporator 65a and the internal heat exchangers 65b and 65c to flow in, separating the gas and liquid, storing the liquid refrigerant, and returning the gaseous refrigerant to the compressor 61. is there. The accumulator 69 is also a container for storing the refrigerant remaining in the refrigerant circulation of the circuit.

補助熱交換器76は、フィンチューブ型の熱交換器であり、加熱運転時に不要な凝縮熱を排出するためのものである。
第2の膨張器79は、加熱運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。
The auxiliary heat exchanger 76 is a fin tube type heat exchanger, and discharges unnecessary condensation heat during heating operation.
The second expander 79 decompresses the refrigerant passing during the heating operation and adiabatically expands, and is, for example, a capillary, a temperature expansion valve, or an electronic expansion valve.

ヒータ66b、66cは庫内熱交換器65b、65cの前方に取設され、商品収納庫40b、40cの加熱の補助を行うものである。
庫内温度センサTa、Tb、Tcは、商品収納庫40a、40b、40c内の風胴67の上面に取設され、商品収納庫40a、40b、40cの庫内温度を検知するためのものである。
The heaters 66b and 66c are installed in front of the internal heat exchangers 65b and 65c, and assist heating of the product storages 40b and 40c.
The chamber temperature sensors Ta, Tb, Tc are installed on the upper surface of the wind tunnel 67 in the product storage 40a, 40b, 40c, and are used to detect the temperature in the product storage 40a, 40b, 40c. is there.

凝縮器電磁弁68は、圧縮機61と凝縮器62間の冷媒通路を開閉するものであり、加熱器電磁弁68b、68cは、圧縮機61と庫内熱交換器65b、65c間の圧縮された冷媒の通路を開閉するものである。第1の冷却器入口電磁弁70a,第2の冷却器入口電磁弁70b,70cは分流器64と蒸発器65a、庫内熱交換器65b、65c間の膨張された冷媒の通路を開閉するものであり、冷却器出口電磁弁72b,72cは、庫内熱交換器65b、65cと圧縮機61と間の蒸発された冷媒の通路を開閉するものである。これらの電磁弁は、すべて図9に示されるような直動型電磁弁の構造である。   The condenser solenoid valve 68 opens and closes the refrigerant passage between the compressor 61 and the condenser 62, and the heater solenoid valves 68b and 68c are compressed between the compressor 61 and the internal heat exchangers 65b and 65c. It opens and closes the refrigerant passage. The first cooler inlet solenoid valve 70a and the second cooler inlet solenoid valves 70b and 70c open and close the expanded refrigerant passage between the flow divider 64 and the evaporator 65a and the internal heat exchangers 65b and 65c. The cooler outlet solenoid valves 72b and 72c open and close the passage of the evaporated refrigerant between the internal heat exchangers 65b and 65c and the compressor 61. All of these solenoid valves have the structure of a direct acting solenoid valve as shown in FIG.

バイパス管路77は、第1の冷却入口電磁弁70aと並列に接続され、具体的には第1の膨張器63と分流器64との間から第1の冷却入口電磁弁70aと蒸発器65aとの間を結合する配管である。   The bypass conduit 77 is connected in parallel with the first cooling inlet electromagnetic valve 70a. Specifically, the first cooling inlet electromagnetic valve 70a and the evaporator 65a are interposed between the first expander 63 and the flow divider 64. It is the piping which connects between.

抵抗器78は、バイパス管路77の中間に接続され、第1の膨張器63から流れる冷媒を減圧するものであって、具体的にはキャピラリであり、膨張弁であっても良い。
冷却/加熱ユニット60の冷媒回路構成について図3を参照にしつつ詳述する。冷媒回路は、庫内を冷却のみを行う冷却循環回路60Aと庫内の冷却加熱を同時に行う(ヒートポンプ運転を行う)加熱冷却循環回路60Bを有している。なお、図中の点線の囲いは、冷却専用の商品収納庫40aと、冷却加熱兼用の商品収納庫40b、40cを模式的に示している。
The resistor 78 is connected to the middle of the bypass pipeline 77 and depressurizes the refrigerant flowing from the first expander 63. Specifically, the resistor 78 is a capillary and may be an expansion valve.
The refrigerant circuit configuration of the cooling / heating unit 60 will be described in detail with reference to FIG. The refrigerant circuit includes a cooling circulation circuit 60A that only cools the inside of the warehouse and a heating and cooling circulation circuit 60B that simultaneously performs cooling and heating inside the warehouse (performs a heat pump operation). In addition, the enclosure of the dotted line in a figure has shown typically the goods storage 40a only for cooling, and the goods storage 40b, 40c used also for cooling and heating.

冷却循環回路60Aは、圧縮機61、凝縮器電磁弁68、凝縮器62、第1の膨張器63を経由して、分流器64に接続し、分流器64より一方は第1の冷却器入口電磁弁70a、蒸発器65aを経由して集合器67に接続し、分流器64より他方は第2の冷却器入口電磁弁70b、70c、庫内熱交換器65b、65cを経由して集合器67に接続し、集合器67よりアキュムレータ69を経由して圧縮機61に戻る回路である。また、第1の冷却器入口電磁弁70aと並列に抵抗器78を介してバイパス管路77が設けられている。   The cooling circuit 60A is connected to the flow divider 64 via the compressor 61, the condenser solenoid valve 68, the condenser 62, and the first expander 63, one of the flow dividers 64 being the first cooler inlet. The electromagnetic valve 70a is connected to the collector 67 via the evaporator 65a, and the other of the flow divider 64 is connected to the collector via the second cooler inlet electromagnetic valves 70b and 70c and the internal heat exchangers 65b and 65c. 67 is a circuit that returns to the compressor 61 from the collector 67 via the accumulator 69. In addition, a bypass line 77 is provided via a resistor 78 in parallel with the first cooler inlet electromagnetic valve 70a.

一方、加熱冷却循環回路60Bには、冷却循環回路60Aに加えて、圧縮機61より凝縮器電磁弁68と並列接続され加熱器電磁弁68b、68cを介して、第2の冷却器入口電磁弁70b、70cと庫内熱交換器65b、65c入口側との中間点(接続点)168b、168cとそれぞれ接続し、庫内熱交換器65b、65cの出口側からそれぞれ逆止弁71,71を介して結合した後、補助熱交換器76、第2の膨張器79を経由して分配器64へ接続する配路とが設けられている。   On the other hand, in addition to the cooling circuit 60A, the heating / cooling circuit 60B is connected in parallel with the condenser solenoid valve 68 from the compressor 61 and is connected to the condenser solenoid valve 68 via the heater solenoid valves 68b and 68c. 70b and 70c are connected to intermediate points (connection points) 168b and 168c between the interior heat exchangers 65b and 65c, respectively, and check valves 71 and 71 are respectively connected from the exit sides of the interior heat exchangers 65b and 65c. And a distribution path that connects to the distributor 64 via the auxiliary heat exchanger 76 and the second expander 79 is provided.

なお、第2の冷却器入口電磁弁70b、70cの第1の接続管部81b、81b(図9参照)は接続点168b、168cと連結され、第2の接続管部81c、81c(図9参照)は分流器64側に連結されている。   The first connection pipe portions 81b and 81b (see FIG. 9) of the second cooler inlet solenoid valves 70b and 70c are connected to the connection points 168b and 168c, and the second connection pipe portions 81c and 81c (FIG. 9) are connected. Is connected to the shunt 64 side.

しかして、加熱冷却循環回路60Bは、圧縮機61から加熱器電磁弁68b、68cを介し庫内熱交換器65c、65bに接続され、庫内熱交換器65c、65bから逆止弁71、71を介して補助熱交換器76、第2の膨張器79を経由して分配器64に接続され、分流器64から第1の冷却器入口電磁弁70aを介して蒸発器65aに接続され、集合器67、アキュムレータ69を経由して圧縮機61に戻る回路である。   Thus, the heating / cooling circulation circuit 60B is connected from the compressor 61 to the internal heat exchangers 65c, 65b via the heater electromagnetic valves 68b, 68c, and from the internal heat exchangers 65c, 65b to the check valves 71, 71. Are connected to the distributor 64 via the auxiliary heat exchanger 76 and the second expander 79, and are connected to the evaporator 65a via the first cooler inlet solenoid valve 70a from the flow divider 64. This is a circuit that returns to the compressor 61 via the unit 67 and the accumulator 69.

制御手段90は、商品収納庫40a、40b、40cを冷却加熱の運転モードにより冷却もしくは加熱の制御をするものである。図4に示すように内部にCPU、メモリを有し、運転モード設定SW91の設定により決まる冷却加熱の運転モードに応じて冷媒回路の圧縮機運転、電磁弁開閉などの制御を行う。運転モードは、商品収納庫40a、40b、40cの冷却もしくは加熱の運転をC、Hで示すものであり、商品収納庫の左側から(40a、40b、40c)順に、例えば、すべてが冷却の場合にはCCCモード、右の商品収納庫のみが加熱の場合にはCCHモードなどと記す。また、制御手段90は、庫内温度センサTa、Tb、Tcにより検知した温度により、圧縮機61、凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、加熱器電磁弁68b、68cなどを制御し、庫内を一定温度範囲内でON・OFF制御するサーモサイクル運転により庫内温度を適温に維持する。   The control means 90 controls the cooling or heating of the product storage boxes 40a, 40b, and 40c by the cooling and heating operation mode. As shown in FIG. 4, a CPU and a memory are provided inside, and control such as compressor operation of the refrigerant circuit and opening / closing of the solenoid valve is performed according to the cooling heating operation mode determined by the setting of the operation mode setting SW91. The operation mode indicates the cooling or heating operation of the product storage units 40a, 40b, and 40c by C and H, and in the order of (40a, 40b, 40c) from the left side of the product storage unit, for example, all are cooling Is described as CCC mode, and when only the right product storage is heated, it is described as CCH mode. Further, the control means 90 includes a compressor 61, a condenser solenoid valve 68, a first cooler inlet solenoid valve 70a, and a second cooler inlet solenoid valve depending on the temperatures detected by the internal temperature sensors Ta, Tb, and Tc. 70b, 70c, cooler outlet solenoid valves 72b, 72c, heater solenoid valves 68b, 68c, etc. are controlled, and the interior temperature is maintained at an appropriate temperature by thermocycle operation in which the interior is controlled to be ON / OFF within a certain temperature range. .

かかる構成で運転モード設定SW91の操作により運転モードをCCCモードに設定すると、制御手段90は凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを開成し、加熱器電磁弁68b、68cを閉止する。図5の太線で示すように圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮され液体となり、膨張器63で膨張して低温の気液二相流となり、分流器64で三方に分流された後に蒸発器65a、庫内熱交換器65b、65cに流入する。流入した冷媒は、蒸発器65a、庫内熱交換器65b、65cで蒸発し、商品収納庫40a、40b、40cを冷却し、蒸発した冷媒は集合器67で集合して液冷媒を貯留するアキュムレータ69を介して気液分離させて圧縮機61に戻る。なお、バイパス管路77にも冷媒が流れるが、抵抗器78の抵抗が第1の冷却入口電磁弁70aの開成時の抵抗よりも格段に大きいので、冷却性能に影響が出るほど流れることはない。また、この冷却は、制御手段90にて庫内温度センサTa、Tb、Tcによるサーモサイクル運転により庫内温度が適温に制御される。   When the operation mode is set to the CCC mode by operating the operation mode setting SW 91 in such a configuration, the control unit 90 causes the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, and the second cooler inlet solenoid valves 70b, 70c. The cooler outlet solenoid valves 72b and 72c are opened, and the heater solenoid valves 68b and 68c are closed. As shown by the thick line in FIG. 5, the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62 to become a liquid, expands by the expander 63, and becomes a low-temperature gas-liquid two-phase flow. And then flows into the evaporator 65a and the internal heat exchangers 65b and 65c. The refrigerant that flows in evaporates in the evaporator 65a and the internal heat exchangers 65b and 65c, cools the product storages 40a, 40b, and 40c, and the evaporated refrigerant collects in the collector 67 to store the liquid refrigerant. Gas-liquid separation is performed via 69 and the flow returns to the compressor 61. Although the refrigerant also flows through the bypass pipe 77, since the resistance of the resistor 78 is much larger than the resistance when the first cooling inlet solenoid valve 70a is opened, it does not flow so as to affect the cooling performance. . In this cooling, the control unit 90 controls the internal temperature to an appropriate temperature by the thermocycle operation by the internal temperature sensors Ta, Tb, Tc.

庫内温度が適温に達すると、圧縮機61を停止し、すべての電磁弁を閉止する。このとき、バイパス管路77より抵抗器78を介して蒸発器65aに流れるので、第2の冷却入口電磁弁70b、70cの両端での圧力上昇が抑制される結果、第2の冷却入口電磁弁70b、70cによる異音の発生を防ぐことが出来る。   When the inside temperature reaches an appropriate temperature, the compressor 61 is stopped and all the solenoid valves are closed. At this time, since it flows from the bypass line 77 to the evaporator 65a via the resistor 78, the rise in pressure at both ends of the second cooling inlet electromagnetic valves 70b and 70c is suppressed. As a result, the second cooling inlet electromagnetic valve Generation of abnormal noise due to 70b and 70c can be prevented.

この圧力状況を発明者らの行った試験結果によりバイパス管路77の有無による効果を比較して各配管箇所での圧力測定結果を図6のタイムチャートに示す。圧力の測定箇所は、第2の冷却入口電磁弁70cと庫内熱交換器65cとの間の圧力点P1、第1の膨張器63と分流器64との間の圧力点P2、第1の冷却入口電磁弁70aと蒸発器65aとの間の圧力点P3である。従来例に係る冷媒回路での圧力チャート図である図6(a)では、圧縮機61の停止後数分間は第2の冷却入口電磁弁70cの両端での圧力差(P2−P1)が大きくなり、異音が発生をした。一方、抵抗器78を介したバイパス管路77を設けた場合の実施例1の圧力チャート図である図6(b)では、圧縮機61の停止後P1,P2,P3ともに上昇するが、第2の冷却入口電磁弁70cの両端での圧力差(P2−P1)は小さくなり、異音の発生は起こらなかった。   The pressure measurement results at each piping location are shown in the time chart of FIG. 6 by comparing the effects of the presence or absence of the bypass pipeline 77 with the test results conducted by the inventors on this pressure situation. The pressure is measured at the pressure point P1 between the second cooling inlet electromagnetic valve 70c and the internal heat exchanger 65c, the pressure point P2 between the first expander 63 and the flow divider 64, the first This is a pressure point P3 between the cooling inlet electromagnetic valve 70a and the evaporator 65a. In FIG. 6A, which is a pressure chart diagram in the refrigerant circuit according to the conventional example, the pressure difference (P2-P1) at both ends of the second cooling inlet electromagnetic valve 70c is large for several minutes after the compressor 61 is stopped. An abnormal noise was generated. On the other hand, in FIG. 6B, which is a pressure chart diagram of the first embodiment in the case where the bypass line 77 via the resistor 78 is provided, all of P1, P2, and P3 rise after the compressor 61 is stopped. The pressure difference (P2−P1) between both ends of the cooling inlet electromagnetic valve 70c of the second cooling valve became small, and no abnormal noise occurred.

次に、商品収納庫40a、40bを冷却し、商品収納庫40cを加熱するモードに設定すると、自動販売機の制御手段は、加熱器電磁弁68c、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、冷却器出口電磁弁72bを開成し、凝縮器電磁弁68、加熱器電磁弁68b、第2の冷却器入口電磁弁70c、冷却器出口電磁弁72cを閉止する。このとき圧縮機61で圧縮された高温冷媒は、図7の太線で示すように加熱器電磁弁68c、接続点168cを経由して庫内熱交換器65cに流入する。庫内熱交換器65cに流入した冷媒は凝縮して商品収納庫40cを加熱し、逆止弁71を介して補助熱交換器76でさらに凝縮して第2の膨張器79に流入する。第2の膨張器79に流入した冷媒は、膨張して低温低圧の気液二相流となり分流器64、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70bを経由して蒸発器65a、庫内熱交換器65bに流入する。蒸発器65a、庫内熱交換器65bに流入した冷媒は、蒸発して商品収納庫40a、庫内熱交換器65bを冷却し、集合器67、アキュムレータ69を経由して圧縮機61に戻る。なお、バイパス管路77にも冷媒が流れるが、抵抗器78の抵抗が第1の冷却入口電磁弁70aの開成時の抵抗よりも格段に大きいので、冷却性能に影響が出るほど流れることはない。このヒートポンプ運転は、庫内温度センサTa,Tb,Tcよりの庫内温度を検知してサーモサイクル運転にて庫内が適温に維持される。   Next, when the product storage units 40a and 40b are cooled and the product storage unit 40c is set to a heating mode, the control means of the vending machine includes the heater solenoid valve 68c, the first cooler inlet solenoid valve 70a, the first The second condenser inlet solenoid valve 70b and the condenser outlet solenoid valve 72b are opened, and the condenser solenoid valve 68, the heater solenoid valve 68b, the second condenser inlet solenoid valve 70c, and the condenser outlet solenoid valve 72c are closed. . At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the internal heat exchanger 65c via the heater electromagnetic valve 68c and the connection point 168c as shown by the thick line in FIG. The refrigerant flowing into the internal heat exchanger 65c condenses and heats the product storage 40c, further condenses in the auxiliary heat exchanger 76 via the check valve 71, and flows into the second expander 79. The refrigerant flowing into the second expander 79 expands into a low-temperature and low-pressure gas-liquid two-phase flow, passes through the flow divider 64, the first cooler inlet solenoid valve 70a, and the second cooler inlet solenoid valve 70b. Flow into the evaporator 65a and the internal heat exchanger 65b. The refrigerant that has flowed into the evaporator 65a and the internal heat exchanger 65b evaporates, cools the product storage 40a and the internal heat exchanger 65b, and returns to the compressor 61 via the collector 67 and the accumulator 69. Although the refrigerant also flows through the bypass pipe 77, since the resistance of the resistor 78 is much larger than the resistance when the first cooling inlet solenoid valve 70a is opened, it does not flow so as to affect the cooling performance. . In this heat pump operation, the interior temperature from the interior temperature sensors Ta, Tb, Tc is detected, and the interior is maintained at an appropriate temperature by the thermocycle operation.

庫内温度が適温に達すると、圧縮機61を停止し、すべての電磁弁を閉止する。このとき、バイパス管路77より抵抗器78を介して蒸発器65aに流れるので、第2の冷却入口電磁弁70bの両端での圧力上昇が抑制される結果、第2の冷却入口電磁弁70bによる異音の発生を防ぐことが出来る。なお、第2の冷却入口電磁弁70cの両端の圧力はどちらも高圧側に保持されているので、その圧力差は小さく異音の発生する虞はない。   When the inside temperature reaches an appropriate temperature, the compressor 61 is stopped and all the solenoid valves are closed. At this time, since it flows from the bypass line 77 to the evaporator 65a via the resistor 78, a rise in pressure at both ends of the second cooling inlet electromagnetic valve 70b is suppressed, and as a result, the second cooling inlet electromagnetic valve 70b Generation of abnormal noise can be prevented. Note that the pressures at both ends of the second cooling inlet solenoid valve 70c are both held on the high pressure side, so that the pressure difference is small and there is no possibility of abnormal noise.

なお、上述の説明は、冷却加熱の運転モードをCCCモード、CCHモードで説明をしたが、加熱する商品収納庫が適温となり、加熱する商品収納庫を休止し2室を冷却運転するCC−モード、または、真ん中の商品収納庫を加熱するCHCモードでも同様な効果が得られる。また、上述の説明は、2室の商品収納庫を冷却加熱専用とした自動販売機で説明をしたが、1室のみの商品収納庫を冷却加熱専用とした自動販売機でも同様な効果が得られる。   In the above description, the cooling heating operation mode has been described as the CCC mode and the CCH mode. However, the product storage to be heated is at an appropriate temperature, the product storage to be heated is stopped, and the CC-mode in which the two rooms are cooled is operated. Alternatively, the same effect can be obtained in the CHC mode in which the middle product storage is heated. In the above description, the vending machine dedicated to cooling and heating is used for the two-chamber product storage, but the same effect can be obtained by using a vending machine dedicated to cooling and heating the single-product storage. It is done.

以上のように、本発明に係る自動販売機は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷媒回路にて冷却または加熱するのに適している。   As described above, the vending machine according to the present invention is suitable for cooling or heating a product such as a beverage contained in a container such as a can, a bottle, a pack, or a plastic bottle in a refrigerant circuit.

10 本体キャビネット
20 外扉
30 内扉
40a、40b、40c 商品収納庫
60 冷却/加熱ユニット
61 圧縮機
62 凝縮器
63 第1の膨張器
64 分流器
65a 蒸発器
65b、65c 庫内熱交換器
68 凝縮器電磁弁
68a、68b 加熱器電磁弁
70a 第1の冷却器入口電磁弁
70b、70c 第2の冷却器入口電磁弁
72b、72c 冷却器出口電磁弁
77 バイパス管路
78 抵抗器
79 第2の膨張器
80 直動型電磁弁
81a 本体内部
81b 第1の接続管部
81c 第2の接続管部
82 弁体
83 スプール
84 バネ
90 制御手段
91 運転モード選択SW
168b、168c 接続点


DESCRIPTION OF SYMBOLS 10 Main body cabinet 20 Outer door 30 Inner door 40a, 40b, 40c Product storage 60 Cooling / heating unit 61 Compressor 62 Condenser 63 First expander 64 Shunt 65a Evaporator 65b, 65c Inner heat exchanger 68 Condensation Solenoid valve 68a, 68b Heater solenoid valve 70a First cooler inlet solenoid valve 70b, 70c Second cooler inlet solenoid valve 72b, 72c Cooler outlet solenoid valve 77 Bypass line 78 Resistor 79 Second expansion 80 Direct-acting solenoid valve 81a Inside of the main body 81b First connecting pipe part 81c Second connecting pipe part 82 Valve body 83 Spool 84 Spring 90 Control means 91 Operation mode selection SW
168b, 168c connection point


Claims (1)

少なくとも1つの冷却専用の商品収納庫と冷却加熱兼用の商品収納庫を有し、冷却加熱の運転モードにより選択的に商品収納庫を冷却もしくは加熱する自動販売機であって、
冷媒を圧縮する圧縮機と、冷媒を凝縮する凝縮器と、冷媒を膨張させる第1の膨張手段と、膨張した冷媒を分配する分配器と、当該分配器より一方は第1の冷却器入口電磁弁を介して冷媒を蒸発させる、冷却専用の商品収納庫に設けた蒸発器と、前記分配器より他方は第2の冷却器入口電磁弁を介して冷媒を蒸発させる、冷却加熱兼用の商品収納庫に設けた庫内熱交換器と、該庫内熱交換器より冷却器出口電磁弁を介して流れる冷媒と前記蒸発器より流れる冷媒とを合流する集合器と、にて冷却循環回路を構成するとともに、
前記冷却循環回路に、前記圧縮機より前記庫内熱交換器入口側と前記の第2の冷却器入口電磁弁との間を加熱器電磁弁を介して配管接続し、かつ、前記庫内熱交換器出口側と前記分配器との間を第2の膨張手段を介して配管接続することにより、前記庫内熱交換器を凝縮器として作用させてヒートポンプ運転を行う加熱冷却循環回路を構成し、
前記第2の冷却器入口電磁弁は、直動型電磁弁により構成され、無通電時には電磁弁本体内部に開通する第1の接続管部と、電磁弁本体内部に弁にて封止されている第2の接続管部とを有し、かつ、前記第1の接続管部が前記庫内熱交換器の入口側に接続され、前記第2の接続管部が前記分流器の出口側に接続された自動販売機において
前記第1の冷却器入口電磁弁と並列に抵抗器を介してバイパス管路を設けたことを特徴とする自動販売機。
A vending machine having at least one product storage dedicated to cooling and a product storage combined with cooling and heating, and selectively cooling or heating the product storage according to an operation mode of cooling and heating,
A compressor that compresses the refrigerant, a condenser that condenses the refrigerant, a first expansion means that expands the refrigerant, a distributor that distributes the expanded refrigerant, and one of the distributors is the first cooler inlet electromagnetic An evaporator provided in a product storage dedicated to cooling that evaporates the refrigerant through a valve, and a product storage for cooling and heating that evaporates the refrigerant through the second cooler inlet electromagnetic valve on the other side of the distributor. A cooling circulation circuit is configured by the internal heat exchanger provided in the storage, and the collector that combines the refrigerant flowing from the internal heat exchanger via the cooler outlet solenoid valve and the refrigerant flowing from the evaporator And
Connected to the cooling circuit from the compressor between the inlet side of the internal heat exchanger and the second electromagnetic inlet solenoid valve through a heater electromagnetic valve, and the internal heat By connecting a pipe between the outlet side of the exchanger and the distributor via a second expansion means, a heating / cooling circulation circuit is configured to perform the heat pump operation by causing the internal heat exchanger to act as a condenser. ,
The second cooler inlet solenoid valve is constituted by a direct acting solenoid valve, and is sealed with a first connecting pipe portion opened inside the solenoid valve body when no power is supplied, and a valve inside the solenoid valve body. And the second connecting pipe portion is connected to the inlet side of the internal heat exchanger, and the second connecting pipe portion is connected to the outlet side of the flow divider. In the connected vending machine, a bypass pipe is provided via a resistor in parallel with the first cooler inlet solenoid valve.
JP2009271097A 2009-11-30 2009-11-30 vending machine Expired - Fee Related JP5375560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271097A JP5375560B2 (en) 2009-11-30 2009-11-30 vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271097A JP5375560B2 (en) 2009-11-30 2009-11-30 vending machine

Publications (2)

Publication Number Publication Date
JP2011113431A true JP2011113431A (en) 2011-06-09
JP5375560B2 JP5375560B2 (en) 2013-12-25

Family

ID=44235694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271097A Expired - Fee Related JP5375560B2 (en) 2009-11-30 2009-11-30 vending machine

Country Status (1)

Country Link
JP (1) JP5375560B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513299A (en) * 2003-11-28 2007-05-24 クム スー ジン Flow control valve
JP2009277080A (en) * 2008-05-15 2009-11-26 Fuji Electric Retail Systems Co Ltd Vending machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513299A (en) * 2003-11-28 2007-05-24 クム スー ジン Flow control valve
JP2009277080A (en) * 2008-05-15 2009-11-26 Fuji Electric Retail Systems Co Ltd Vending machine

Also Published As

Publication number Publication date
JP5375560B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2010035512A1 (en) Vending machine
JP5169282B2 (en) vending machine
JP5375342B2 (en) vending machine
JP5407621B2 (en) Cooling and heating device
JP4924535B2 (en) vending machine
JP5375560B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP5272475B2 (en) vending machine
JP2010152673A (en) Vending machine
JP2010129014A (en) Vending machine
JP5056426B2 (en) vending machine
JP5407692B2 (en) vending machine
JP4911105B2 (en) vending machine
JP5169383B2 (en) vending machine
JP5228965B2 (en) vending machine
JP4548540B2 (en) vending machine
JP5434423B2 (en) vending machine
JP5240017B2 (en) vending machine
JP5229057B2 (en) vending machine
JP5240030B2 (en) vending machine
JP5056425B2 (en) vending machine
JP2011127848A (en) Refrigerant circuit
JP5240016B2 (en) vending machine
JP2009271740A (en) Vending machine
JP5267216B2 (en) vending machine

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees