JP2011112988A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2011112988A
JP2011112988A JP2009271190A JP2009271190A JP2011112988A JP 2011112988 A JP2011112988 A JP 2011112988A JP 2009271190 A JP2009271190 A JP 2009271190A JP 2009271190 A JP2009271190 A JP 2009271190A JP 2011112988 A JP2011112988 A JP 2011112988A
Authority
JP
Japan
Prior art keywords
image
patch
image forming
unit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009271190A
Other languages
English (en)
Other versions
JP5304618B2 (ja
Inventor
Takashi Harashima
隆 原島
Katsuya Toyofuku
克也 豊福
Takatomo Koriya
尚知 郡谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2009271190A priority Critical patent/JP5304618B2/ja
Publication of JP2011112988A publication Critical patent/JP2011112988A/ja
Application granted granted Critical
Publication of JP5304618B2 publication Critical patent/JP5304618B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】本発明の目的は、特性情報を用いて光学濃度検出手段の検出値から像担持体上の画像のトナー量を検出し、且つ光学濃度検出手段の暗電流が検出性能に影響を及ぼさないトナー量検出技術を提供すると共に、トナー量検出技術を用いて画像濃度制御を行い常に優れた画像を安定して出力できる画像形成装置を提供することにある。
【解決手段】本発明は、パッチ画像の形成に先行して受光素子の暗電流で生じるオフセット電圧を測定しオフセット電圧に適合する特性情報を取得し予め設定することにより、全濃度範囲のパッチ画像に対し高い精度でトナー量を検出する画像濃度検出制御の提供を可能にする。更に、高い確度で検出されたトナー量に基づき画像形成条件を調整することにより、高画質な画像を常に出力できる、画像安定化性能に優れる画像濃度制御部を備える画像形成装置の提供を可能にする。
【選択図】図9

Description

本発明は、複写機、プリンタ、ファクシミリ、又は、それらの複合機等の電子写真方式を用いた画像形成装置に関し、特に、最適な画質を維持するために作像特性の検出をおこなう画像形成装置に関する。
複写機などの画像形成装置は、使用環境や複写枚数などの諸条件によって画像濃度の変動が生じ易い。そのため、所定タイミングになると感光体ドラムや中間転写ベルトなどの像担持体表面に画像濃度補正のための基準のパッチ画像、例えばトナーパッチを形成し光学濃度検出手段を用いてパッチ画像のトナー量(濃度)を検出し、その結果に基づき画像形成条件を調整して画像濃度を安定化することが行われている。
パッチ画像のトナー量(濃度)を検出しその結果に基づき画像濃度を安定化する、いわゆる画像濃度制御技術として次の文献が開示されている。
特許文献1に記載の技術は、像担持体上にパッチ画像を形成するパッチ形成面を多数設定し、画像(トナー)が除去された各パッチ形成面が検出される際に光学濃度検出手段の受光部の出力を一定にするよう光学濃度検出手段の発光部の出力条件を設定するベース補正制御を実行している。更に、ベース補正制御で設定された出力条件で光学濃度検出手段の発光部を駆動して像担持体上に形成されたパッチ画像の濃度を検出している。そして、像担持体自体の表面反射度の偏差に起因するパッチ画像の濃度検出誤差の問題を解消している。
特許文献2には、光学濃度検出手段の出力を予め記憶してある対応表を参照してパッチ画像の濃度を取得しており、像担持体(中間転写体)の表面の汚れにより像担持体上に黒トナーで形成されたパッチ画像の濃度と光学濃度検出手段の出力との関係が変化し、パッチ画像の濃度検出に大きな誤差を生じるという問題及びその対策が記載されている。
その対策は、長期に使用された像担持体の場合には、次式を用いて光学濃度検出手段の出力aから補正出力Xを演算し、補正出力Xを予め記憶された対応関係に参照させてパッチ画像の濃度を取得するものである。
X=(a−c)x(b1−c)/(b2−c)+c
ここで、aは光学濃度検出手段の出力で、b1はパッチ画像が形成されていない初期の像担持体の表面を検出した際の光学濃度検出手段の出力で、b2はパッチ画像が形成されていない長期使用後の像担持体の表面を検出した際の光学濃度検出手段の出力で、cは光学濃度検出手段の暗電流値である。
特開2007−249032号公報 特開平11−133700号公報
図20(a)は特許文献1及び特許文献2のカラー画像形成装置に用いられる光学濃度検出手段の検出特性を示す。横軸はパッチ画像のトナー量(単位面積当たりのトナーの質量 g/m)であり、縦軸は光学濃度検出手段の検出出力(V)である。
図20(a)に示すように、Y色、M色、C色のパッチ画像ではトナー量に正比例して出力が増加し、広い範囲のトナー量に対して一定の感度を有する。一方、黒色(K色)のパッチ画像では相対的に感度が低く、トナー量に逆比例して出力が減少する検出特性を有する。
図20(b)はK色画像を検出する際に出力利得を増大させた場合の検出特性を示す。図示のようにトナー量の変化量に対する出力の変化量の割合が高トナー量の領域(A領域)では低トナー量の領域(B領域)に比較して著しく低下する。また、高トナー領域でトナー量を更に増大させても光学濃度検出手段の出力がC1の一定値に漸近する傾向を有する。C1は受光素子の暗電流による出力電圧である。暗電流は受光素子に入射される光量に依存しない成分である。
ところが、暗電流は、受光素子の温度及び素子自体のバラツキによって変化するものである。図20(b)に異なる暗電流が生じた場合における光学濃度検出手段の特性曲線を示す。K色(1)は暗電流がc1であるときの特性曲線であり、K色(2)は暗電流がc2であるときの特性曲線である。
図示のようにトナー量がb1であるパッチ画像を光学濃度検出手段で検出した場合、暗電流がc1であると光学濃度検出手段はK色(1)の特性曲線に従いa1を出力する。一方、暗電流がc2であると光学濃度検出手段の出力はK色(2)の特性曲線に従いa2を出力する。上記のように、光学濃度検出手段は暗電流の変化によって同一トナー量(濃度)のパッチ画像に対し異なる出力値が検出される。
特許文献1及び特許文献2に記載の技術では予め記憶された特性曲線に基づき光学濃度検出手段の出力値よりパッチ画像のトナー量を取得しているために、パッチ画像のトナー量の検出(取得)において光学濃度検出手段の暗電流による誤差が生じるという問題を有している。
例えば、K色(1)の特性曲線が予め記憶されており、且つb1のトナー量のパッチ画像を検出したと仮定する。図20(b)に示すように、暗電流がc1の場合に光学濃度検出手段はa1を出力し、K色(1)の特性曲線に基づきb1のトナー量を取得する。一方、暗電流がc2の場合に光学濃度検出手段はa2を出力する。ところが図20(c)に示すように、K色(1)の特性曲線に基づきb2のトナー量を取得することになる。つまり、暗電流が基準値のc1からc2に変化すると、本来のトナー量のb1に対し(b2−b1)の検出誤算が生じることになる。
本発明の目的は、特性情報を用いて光学濃度検出手段の検出値から像担持体上のパッチ画像のトナー量を検出し、且つ光学濃度検出手段の暗電流が検出性能に影響を及ぼさないトナー量検出技術を提供すると共に、当該トナー量検出技術を用いて画像濃度制御を行い常に優れた画像を安定して出力できる画像形成装置を提供することにある。
前記の本発明の目的は、下記の構成により達成される。
1.像担持体上に画像を形成する画像形成部と、
前記像担持体に対向して配設される発光素子と受光素子とを有し前記発光素子を予め設定された基準発光設定値で点灯して前記像担持体面の反射濃度を検出する光学濃度検出手段と、
前記光学濃度検出手段の検出値とトナー量とを対応付ける所定特性情報を格納する記憶部と、
前記画像形成部を制御して前記像担持体上にパッチ画像を形成し、前記光学濃度検出手段を制御して前記パッチ画像の検出値を検出し、前記所定特性情報を用いて前記パッチ画像の検出値に基づき前記パッチ画像のトナー量を取得する制御部と、を備え、
前記制御部は、パッチ画像の形成に先行して、前記受光素子の暗電流で生じるオフセット電圧を測定し、当該オフセット電圧に適合する特性情報を取得し、当該特性情報を前記所定特性情報として設定することを特徴とする画像形成装置。
2.前記制御部は、パッチ画像の形成に先行して前記光学濃度検出手段を制御して前記像担持体上の非画像面を検出させ、前記光学濃度検出手段の検出値が所定値に一致する前記発光素子の発光設定値を取得し、当該発光設定値を前記基準発光設定値として設定することを特徴とする前記1に記載の画像形成装置。
3.前記制御部は、前記オフセット電圧の変化に応じて前記基準発光値を変更することを特徴とする前記2に記載の画像形成装置。
4.前記制御部は、前記パッチ画像のトナー量を目標値にするよう、前記画像形成部の作像条件を調整することを特徴とする前記1から3までの何れか1項に記載の画像形成装置。
5.像担持体上に画像を形成する画像形成部と、
前記像担持体に対向して配設される発光素子と受光素子とを有し前記発光素子を予め設定された所定の発光条件で点灯し前記像担持体面の反射濃度を検出する光学濃度検出手段と、
前記光学濃度検出手段によるパッチ画像の検出値と当該パッチ画像のトナー量とを対応付ける所定特性情報を格納する記憶部と、
前記画像形成部を制御して前記像担持体上にパッチ画像を形成し、前記光学濃度検出手段に検出された前記パッチ画像の検出値が算出使用範囲にある場合に前記検出値を前記所定特性情報に参照し前記パッチ画像のトナー量を演算し前記パッチ画像のトナー量に基づき前記画像形成部の作像条件を調整し、一方前記パッチ画像の検出値が前記算出使用範囲の外にある場合に前記パッチ画像の検出値が前記算出使用範囲に収まるよう前記画像形成部の作像条件を変更する制御部と、を備え、
前記制御部は、パッチ画像の形成に先行して前記受光素子の暗電流によって生じるオフセット電圧を測定し、当該オフセット電圧に応じて前記算出使用範囲を変更することを特徴とする画像形成装置。
6.前記パッチ画像が異なる階調値を示す複数のパッチ画像であり、
前記制御部は、前記パッチ画像のトナー量に基づき前記複数のパッチ画像より高い濃度の階調値を示す仮想パッチ画像のトナー量を演算し、当該仮想パッチ画像のトナー量が目標値と一致するよう前記画像形成部の作像条件を調整することを特徴とする前記5に記載の画像形成装置。
7.前記仮想パッチ画像の階調値は、前記画像形成部に指示できる最高濃度であることを特徴とする前記5、又は6に記載の画像形成装置。
8.前記算出使用範囲は、前記パッチ画像のトナー量において許容不能なレベルのムラを生じる領域の境界である上限と、前記光学濃度検出手段の検出感度が許容不能なレベルに低下する領域の境界である下限と、で規定される前記光学濃度検出手段の検出範囲であることを特徴とする前記5から7までの何れか1項に記載の画像形成装置。
本発明は、光学濃度検出手段のオフセット電圧を測定しオフセット電圧に適合する特性情報を取得し当該特性情報を所定特性情報として設定し、当該所定特性情報を用いて光学濃度検出手段で検出されたパッチ画像の検出値に基づきパッチ画像のトナー量を取得することにより、全濃度範囲のパッチ画像に対し高い精度でトナー量を検出する、画像濃度検出制御技術の提供を可能にする。更に、画像濃度検出制御で検出されたパッチ画像のトナー量に基づき画像形成条件を調整することにより、高画質な画像を常時出力できる画像濃度検出制御と当該制御を備える画像形成装置の提供を可能にする。
本発明に係わる画像形成装置の全体構成図である。 画像形成部の拡大模式図である。 本発明に係る光学濃度検出手段の拡大模式図である。 画像形成装置の制御に関係する制御ブロック図である。 各色画像形成部の画像濃度安定化制御に関係する制御ブロック図である。 本発明に係る画像濃度検出制御に関係する制御ブロック図である。 本発明に係るVoff電圧を測定するVoff測定制御を示す制御フロー図である。 本発明の第1実施形態に係る発光量設定制御を示す制御フロー図である。 本発明に係る第1の実施形態に係る画像濃度検出制御を示す制御フロー図である。 特性テーブルTbjの一例をグラフ化した特性曲線である。 各Voffの範囲とその範囲に適合する特性テーブルTbj(Tb1、Tb2・・・TbA)とを関連付ける対応表の一例である。 オフセット電圧VoffがVoff=a1、Voff=a5、あるいはVoff=aAである場合において、S200ステップで選択された各特性テーブルTb1、Tb5、TbAを示す、特性曲線である。 第2の実施形態に係る発光量設定制御を示す制御フロー図である。 第2実施形態に係る画像濃度検出制御に用いられる補正テーブルCTbの一例である。 特性テーブルTb1、Tb5、TbAの対応関係をグラフ化した特性曲線KC1、KC5、KCAを示す。 本発明に係る第3実施形態の画像濃度検出制御、及び画像濃度安定化制御を示す、制御フロー図である。 中間転写体70上に形成された第1パッチ画像Pa1と第2パッチ画像Pa2を示す模式図である。 本発明に係る仮想パッチ濃度検出制御を示す特性図である。 オフセット電圧Voffが変化したときの光学濃度検出手段8の特性曲線KCと、オフセット電圧Voffの変化に合わせて変更する算出使用範囲ARを示す模式図である。 従来技術の光学濃度検出手段の検出特性における暗電流の影響を示す、関係図である。
以下、本発明の実施の形態を説明する。なお、本欄の記載は請求項の技術的範囲や用語の意義を限定するものではない。また、以下の、本発明の実施の形態における断定的な説明は、ベストモードを示すものであって、本発明の用語の意義や技術的範囲を限定するものではない。
[画像形成装置]
図1は、本発明の画像形成装置の実施の形態としてのカラー用の画像形成装置を示す概略構成図である。
この画像形成装置100のプリンタ部101は、タンデム構成のフルカラーの画像形成装置と称せられるものである。複数組の画像形成部10Y、10M、10C、10Kと、中間転写体ユニット7と、給紙搬送手段21及び定着器24とから成る。画像形成装置の本体部101の上部には、スキャナ部103が配置されている。
図2は、各画像形成部10Y、10M、10C、10Kの拡大図であり、各画像形成部10Y、10M、10C、10Kについて以下に説明する。
イエロー色の画像を形成する画像形成部10Yは、ドラム状の感光体1Y、該感光体1Yの周囲に配置された帯電手段2Y、像露光手段3Y、現像器4Y、ローラ状の一次転写手段5Y、クリーニング手段6Yを有する。マゼンタ色の画像を形成する画像形成部10Mは、ドラム状の感光体1M、該感光体1Mの周囲に配置された帯電手段2M、像露光手段3M、現像器4M、一次転写手段としての一次転写手段5M、クリーニング手段6Mを有する。シアン色の画像を形成する画像形成部10Cは、ドラム状の感光体1C、該感光体1Cの周囲に配置された帯電手段2C、像露光手段3C、現像器4C、一次転写手段としての一次転写手段5C、クリーニング手段6Cを有する。黒色画像を形成する画像形成部10Kは、ドラム状の感光体1K、該感光体1Kの周囲に配置された帯電手段2K、像露光手段3K、現像器4K、一次転写手段としての一次転写手段5K、クリーニング手段6Kを有する。
各画像形成部10Y、10M、10C、10Kの各感光体1Y、1M、1C、1Kの周辺の電子写真プロセス各部の実施形態について、図2に従って更に詳しく説明する。
画像形成装置100のシステムスピードは300mm/secであり、各感光体1Y、1M、1C、1Kが直径60mmのOPCであり、各帯電手段2Y、2M、2C、2Kによって負極性に帯電される。
各帯電手段2Y、2M、2C、2Kは、グリッドの電圧を切り替えることにより感光体の電圧を任意の帯電電圧に制御可能であるスコロトロンタイプのコロナ放電極であり、帯電電源2Y1、2M1、2C1、2K1に接続している。
現像器4Y、4M、4C、4Kは2成分現像装置であり、トナーとキャリアからなる2成分現像剤が装填されている。そして、トナーは、キャリアとの相互摩擦により負極性に帯電される。
各現像器4Y、4M、4C、4Kは、現像剤担持体4Y1、4M1、4C1、4K1と、攪拌手段4Y4、4M4、4C4、4K4と、トナー濃度検出手段4Y5、4M5、4C5、4K5と、現像容器4Y6、4M6、4C6、4K6と構成される。
各攪拌手段4Y4、4M4、4C4、4K4は、2本の回転軸とスクリューとで構成される。そして、攪拌手段の回転によって、図示していないトナー補給部から補給されたトナーが既に現像器内に収容された現像剤に均等に混合される共に、トナーとキャリアとの相互摩擦が促されトナー帯電量の向上が促進される。
トナー濃度検出手段4Y5、4M5、4C5、4K5は、各攪拌手段4Y4、4M4、4C4、4K4のひとつに対向するように現像容器4Y5、4M5、4C5、4K5の底部に配設されている。トナー濃度検出手段4Y5、4M5、4C5、4K5は、各現像器に収容される現像剤のトナー濃度を検出している。後述の制御によって、トナー濃度検出手段4Y5、4M5、4C5、4K5で検出されたトナー濃度が基準値以下のなると、前述のトナー補給部の機構を作動するように制御され、各現像器内の現像剤は、常に基準値付近のトナー濃度に維持されている。
各現像剤担持体4Y1、4M1、4C1、4K1上には適量に規制された2成分現像剤の層が形成されている。各現像剤担持体4Y1、4M1、4C1、4K1の回転により、適量の現像剤が感光体1Y、1M、1C、1Kと対向する現像領域へ搬送される。
各現像剤担持体4Y1、4M1、4C1、4K1は、現像バイアス電源4Y2、4M2、4C2、4K2に接続されている。現像バイアス電源4Y2、4M2、4C2、4K2は、DC電圧にAC電圧が重畳されたバイアス電圧を出力している。バイアス電圧のDC成分、AC成分を適宜に変更することにより、カブリ、画像濃度等の現像特性を調整可能にしている。
一次転写手段5Y、5M、CM、5Kは、半導電性のスポンジ(登録商標)が被覆された一次転写ローラで構成され、一次転写ローラの抵抗値は1×10Ωである。一次転写手段5Y、5M、CM、5Kは、一次転写電源5Y1、5M1、5C1、5K1に接続され、バイアス電圧が印加される。このバイアス電圧の印加により各感光体1Y、1M、1C、1K上の画像は、本発明の像担持体としての中間転写体に転写される。一次転写電源5Y1、5M1、5C1、5K1は、主に出力電流を制御する定電流方式である。
各一次転写手段5Y、5M、CM、5Kの下流側に、各感光体クリーニング手段6Y、6M、6C、6Kが配設され、一次転写手段によって無端ベルト状の中間転写体70へ転写できず各感光体1Y、1M、1C、1K上に残された残余トナーが清掃される。残余トナーは、エッジが常に当接するようにクリーニングケーシングに支持固定されるクリーニングブレード6Y1、6M1、6C1、6K1によって感光体上から除去される。除去された残余トナーは、搬送スクリュー6Y1、6M2、6C3、6K4に降下する。そして、搬送スクリュー6Y1、6M2、6C3、6K4の回転により画像形成装置本体の奥側へ搬送された後に、図示していない搬送機構を経て収容容器に収容される。
図1に戻り、中間転写体ユニットについて以下説明する。
中間転写体ユニット7は、垂直方向に縦列配置されている画像形成部10Y、10M、10C、10Kの各感光体1Y、1M、1C、1Kの図示左側方に配置されている。中間転写体ユニット7は、ローラ71、72、73、74、76、77に張架され回動可能に支持された無端ベルト状の中間転写体70(転写体であるところの)と、一次転写手段5Y、5M、5C、5K及び二次転写手段5Aと、クリーニング手段6Aと、光学濃度検出手段8とを有する。
画像形成部10Y、10M、10C、10Kより形成された各色の画像は、一次転写手段5Y、5M、5C、5Kにより、回動する中間転写体70上に逐次転写されて、合成されたカラー画像が形成される。
一次転写手段5Kは、画像形成処理中、感光体1Kに常時圧接している。他の一次転写手段5Y、5M、5Cはカラー画像形成時にのみ、それぞれ対応する感光体1Y、1M、1Cに圧接する。
後述で詳しく説明する各色のパッチ画像が一次転写手段5Y、5M、5C、5Kの領域を通過する際には、各一次転写手段に印加されるバイアス電圧は、図示していない制御部によって以下のように切替られる。
感光体の移動方向における画像領域が一次転写部を通過する時には、感光体上のトナー像が正常に中間転写体に転写させるような通常条件のバイアス電圧が印加される。
一方、感光体の移動方向における画像領域と画像領域の間にあるインターイメージ領域が通過する時は、感光体上のトナーを中間転写体70に転移させないような条件のバイアス電圧に切り替えられる。但し、感光体のインターイメージ領域に本発明に係わるパッチ画像が形成された場合には、インターイメージ領域の通過時であっても通常条件のバイアス電圧が印加される。
給紙カセット20内に収容された記録媒体として用紙等の記録材Pは、給紙手段21により給紙され、複数の中間ローラ22A、22B、22C、22D、レジストローラ23を経て、二次転写手段5Aに搬送される。そして、記録材P上にカラー画像が一括転写される。
二次転写手段5Aは、芯金に半導電性のソリッドゴムがコーティングされた二次転写ローラである。二次転写ローラとバックアップローラ74のローラ対によってベルト状の中間転写体70と記録材Pを挟持している。バックアップローラ74も、二次転写ローラと同様に芯金に半導電性のソリッドゴムがコーティングされている。
二次転写電源は、二次転写ローラの芯金と接続されており、二次転写手段5Aにバイアス電圧を印加している。主に出力電流を制御する定電流方式の電源である。一方のバックアップローラ74の芯金は接地されている。
バイアス電圧の出力により中間転写体70上のカラー画像は記録材Pに転写される。記録材Pは、転写後にバックアップローラ74の曲率によって中間転写体70から分離される。そして、定着器24で定着処理した後に、排紙ローラ25によって排紙トレイ26上に排出される。
中間転写体70に残された残余トナーは、クリーニング手段6Aにより中間転写体70から除去される。また、二次転写手段5Aとクリーニング手段6Aとの間に、中間転写体70に対向して、光学濃度検出手段8が配設されている。
図3は、各感光体1Y、1M、1C、1K上から転写された各色のパッチ画像を有する中間転写体70の光学濃度を検出する光学濃度検出手段8を示す模式図である。光学濃度検出手段8は光を照射する発光素子81と中間転写体70側から反射光を受光する受光素子82とを有する。発光素子81は中間転写体70に対し45°で光を発光し、受光素子82は中間転写体70に対し平行に対向して中間転写体70から反射される光を受光しているが、これに限定されるものではない。図示のように、NPAは画像が形成されていない中間転写体70上の領域を示し、PAは画像が形成されたトナーを有する中間転写体70上の領域を示す。
図2に戻り、以下に説明する。二次転写手段5Aは、記録材Pに画像が転写される期間には中間転写体70に圧接するが、各色のパッチ画像が通過する際には、少なくとも中間転写体70から離間するように後述の制御部によって制御される。従って、中間転写体70に転写されたパッチ画像は、二次転写手段5Aによって乱されることなく、二次転写手段5Aの下流側に設けられた光学濃度検出手段8で検出される。その後、クリーニング手段6Aによってパッチ画像は中間転写体70から除去される。
上記の帯電、露光、現像、転写(一次転写、二次転写)のサイクルを繰り返し、記録材Pにカラー像が形成される。そして、カラー画像が形成された記録材Pは、定着器24により定着処理され、排紙ローラ25に挟持されて機外の排紙トレイ26上に載置される。
[画像形成装置100の制御構成]
図4は、本発明に係わる画像形成装置100の制御部を示すブロック図である。
プリンタ部101、制御部102、スキャナ部103、画像処理部104、操作表示部105、画像パターン作成部106、記憶部107、送受信部108、プリントコントローラ部109等により構成される。各部はバス110により接続されている。
制御部102は、CPU、ROM、RAM等により構成される。制御部102のCPUは、操作表示部105の操作により、ROMに記憶されているシステムプログラムや各種制御プログラムを読み出してRAMに展開し、展開されたプログラムに従って画像形成装置100各部の動作を集中制御する。
操作表示部105は、LCD(Liquid Crystal Display)を有し、制御部102からの入力指示に従って、表示画面上に各種操作ボタンや装置の状態表示、各機能の動作状況等の表示を行う。
スキャナ部103は、原稿を載置するコンタクトガラスの下部にスキャナを備えて構成され、原稿の画像を読み取る。スキャナは、光源、CCD(Charge Coupled Device)、結像光学系、A/D変換器等により構成される。光源からの照明光は原稿を走査し、原稿面からの反射光はCCDに結像する。原稿の画像は、CCDによって光電変換されてR、G、B信号として読み取られる。読み取られた画像は、A/D変換器でアナログ信号からデジタル信号に変換されて画像処理部104に出力される。ここで、画像は、図形や写真等のイメージデータに限らず、プリントコントローラ部によって文字や記号等のテキストデータがイメージデータに変換されたものも含む。
画像処理部104では、スキャナ部103から入力したR、G、Bの画像データをプリンタ部101で処理可能なY、M、C、K色の画像データに変換し、更にプリンタ部101の出力特性に合わせてγ補正処理を行い、あるいは誤拡散方法等の2値化処理を行い、Y、M、C、K色の印刷データを生成し、プリンタ101へ出力する。
一方、ネットワーク上のパソコンから印刷ジョブは送受信部108で受信される。受信された印刷ジョブはプリントコントローラ部109へ転送される。印刷ジョブは、印刷処理に関する情報と印刷データ(ファイル)で構成されている。
プリントコントローラ部109は印刷ジョブの内容に基づき文字や記号等のテキストデータがイメージデータに変換して、Y、M、C、K色の画像データであるところの印刷データを生成し、プリンタ部101へ出力する。
画像パターン作成部106は本発明に係わる中間転写体に形成されるパッチ画像の素の電子的画像パターンを作成する。また、各色画像の位置合わせを行うためのレジスト用の電子的画像パターンも作成する。
記憶部107は、HDD等の電源を切ってもデータが消失しない、データ書き換え可能な不揮発性メモリ部と、データの消失する画像処理用等に使用されるDRAM部とで構成される。本発明に係る光学濃度検出手段の出力とパッチ画像のトナー量との対応関係(特性表)は記憶部107に予め記憶されている。
以上のように、画像処理部104及びプリントコントローラ部109で生成されたY、M、C、K色の印刷データは、制御部102の指令によって記憶部107のDRAM部にあるビットマップメモリ上に展開され、所定のタイミングになるとビットマップメモリ上から順次読み出され、各色の画像信号(ビデオ信号)としてプリンタ部101へ出力される。
制御部102は、画像形成装置100等の動作を統括的に制御し、所定タイミングに画像安定化制御を行いながら円滑な印刷動作を実行している。例えば、適宜、再現画像の階調を最適化するための階調(濃度)調整を実行している。
図5は、各色画像形成部の画像安定化制御に関係する制御ブロック図を示す。破線で示す画像形成部10Y、10M、10C、10K内の各部は色毎に複数あり、それぞれバスに接続している。
各帯電電源2Y1、2M1、2C1、2K1は各感光体1Y、1M、1C、1Kの帯電電圧を制御している。制御部102の指示に基づき帯電手段2Y、2M、2C、2Kはスコロトロン電圧を出力して、各感光体1Y、1M、1C、1Kを所望の表面電位に帯電する。
各像露光手段3Y、3M、3C、3Kは、レーザー光を感光体に移動方向と直交する主走査方向に走査する手段であり、制御部102の指示に基づき出力された前述のビデオ信号に従いレーザー光源の点灯出力(ON・OFF)を変調して各色感光体1Y、1M、1C、1K上に潜像を順次形成する。
現像バイアス電源4Y2、4M2、4C2、4K2は、制御部102の指示に基づき現像剤担持体4Y1、4M1、4C1、4K1に印加される現像バイアス電圧の出力を変更している。
一次転写電源5Y1、5M1、5C1、5K1は、制御部102の指令に従って所定のタイミングに所定の出力電流を出力して、各色感光体上に形成された各色画像を中間転写体70上に順次転写している。
二次転写電源5Aは、制御部102の指令に従って所定のタイミングに所定の出力電流を出力して、中間転写体70上に形成された画像を一括転写している。
図6は画像濃度検出制御に係る制御部を示すブロック図であり、図6に従い以下説明する。
濃度検出制御部201は制御部102内に有し、光学濃度検出手段8の動作を制御すると共に、光学濃度検出手段8から出力値に基づき中間転写体70に形成されたパッチ画像のトナー量を高い精度で検出する、画像濃度検出制御を実行している。
濃度検出制御部201は、光学濃度検出手段8の動作を制御し光学濃度検出手段8の検出値からパッチ画像のトナー量を検出する画像濃度検出制御を司るCPU202と、画像濃度検出制御に用いる各種情報を格納する不揮発メモリ203と、を有する。
光学濃度検出手段8は、中間転写体70の表面に形成されている、画像安定化制御のためのパッチ画像の反射濃度を検出して、その検出結果(アナログ)を濃度検出制御部201に出力する。
光学濃度検出手段8は、発光素子81、受光素子82、トランジスタ83、抵抗素子84、85、86、87および電源入力端子88を備えている。発光素子81は、LEDからなり、トランジスタ83のエミッタ端子と接続されている。トランジスタ83のコレクタ端子は、抵抗素子85を介して電源入力端子87と接続される。電源入力端子87は、DC8ボルト電源と接続されている。トランジスタ83のベース端子は、抵抗素子84を介してCPU202のD/Aポート202aに接続されている。受光素子82は、フォトトランジスタからなり、CPU202のA/Dポート202bと接続されている。また、A/Dポート202bは、抵抗素子86を介して電源入力端子87と接続されている。
CPU202は、不揮発メモリ203内の発光量情報格納部203aに記憶されている基準発光設定値Ir(デジタル値)を読み出し、発光設定値IとしてD/Aポート202bに出力する。発光設定値IはD/Aポート202bでD/A変換され、発光量制御のための光量制御信号(アナログ電圧)を出力する。この光量制御信号の大きさに応じた電流ieがトランジスタ83のベースに流れ、電流ieが発光素子81のコレクタ−エミッタ間に流れ、発光素子81は電流ieに応じた強度で発光する。発光素子81から発せられた光Peは、パッチ画像が形成されている中間転写体70の表面で反射して二次光Prとして放射される。そして、二次光Prの一部が受光素子82に達し受光される。
受光素子82には、二次光Prの強さに応じた大きさの電流irがアースに向かって流れる。その結果、A/Dポート202bの端子89には受光素子に流れる電流irに抵抗素子86の抵抗値を乗じた電圧(アナログ)が、二次光Prの強さに応じた信号としてA/Dポート202bに入力される。
A/Dポート202bは入力された電圧(アナログ)をA/D変換して検出値VmをCPU202に出力する。
CPU202は各色のパッチ画像が光学濃度検出手段8を通過する時点に検出された検出値Vmをパッチ画像の検出値であるところのパッチ検出値Vsとして取り込み、そのパッチ検出値Vsを不揮発メモリ203内の特性情報格納部203bに記憶されている所定の特性情報としての特性テーブルTbjと参照して、K色のパッチ画像のトナー量としてのパッチ濃度T(単位面積あたりの質量 g/m)を算出し、バス111を介して算出されたパッチ濃度Tを図5の制御部102に出力する。
制御部102は、濃度検出制御部201から受信したK色を含む各色パッチ画像のパッチ濃度Tに基づき画像形成部10Y、10M、10C、10Kの作像条件を調整する画像濃度調整制御を実行する。そして、画像濃度調整制御で調整された作像条件の下で各色画像形成部を動作させることにより、高品質な印刷物を安定的に出力可能にしている。
[不揮発メモリ203内の各種情報]
不揮発メモリ203内には発光量情報格納部203a、特性情報格納部203b、オフセット電圧格納部203c、及び補正テーブル格納部203dを有する。
発光量特情報格納部203aは、画像濃度検出制御を実行する際に発光素子81を所定の発光条件で点灯するためにCPU202からD/Aポート202aに出力される基準発光設定値Irを格納する記憶領域である。基準発光設定値Irは、発光素子81を所定の発光条件で点灯させる発光設定値Iである。そして、基準発光設定値Irは、画像濃度検出制御に先行して実行される発光量設定制御によって、予め取得され発光量特情報格納部203aに格納される。
特性情報格納部203bは、パッチ画像に対する光学濃度検出手段8のパッチ検出値Vsからパッチ濃度Tを演算するための複数の特性情報としての特性テーブルTbjを格納する記憶領域である。各特性テーブルはTbj(j=1,2.3,・・・)で示され、複数の暗電流範囲に対しそれぞれが対応付けられている。
オフセット電圧格納部203cは光学濃度検出手段8のオフセット電圧Voffを格納する記憶領域である。オフセット電圧Voffは、発光素子81に流れる電流を零にした場合に、つまり発光素子81から発光される光量を零にした場合に、受光素子82と抵抗素子86との間にある端子89に発生する電圧に対応する検出値Vmである。オフセット電圧Voffは、本発明に係る受光素子82に生じる暗電流に起因し、受光素子82の温度変化及び受光素子82間差によって変動するものである。
補正テーブル格納部203dは本発明に係る補正テーブルCTbを格納する記憶領域である。補正テーブルCTbは、検出されたオフセット電圧Voffと、オフセット電圧Voffの場合に用いる特性情報としての特性テーブルTbjと、を関連付けている。
[オフセット電圧測定制御]
暗電流Idは、発光素子81の発光量とは独立して受光素子82に流れる電流である。
つまり、オフセット電圧Voffは、発光素子81の発光の停止時にA/Dポート202bで検出される検出値Vmであり、暗電流Idに抵抗素子86の抵抗値を乗じた値であり、パッチ画像のパッチ検出値Vsにも暗電流成分として含まれる。
図7は、本発明に係る画像濃度検出制御に先行して実行されるオフセット電圧Voffを測定するVoff測定制御を示す制御フロー図である。
S201は、発光素子81を駆動する電流ieを零にするための発光設定値Iを取得するステップである。なお、I=0のときに電流ieが零となるよう、発光設定値Iは正規化されている。
S202は、I=0(つまり、発光素子81の発光停止)の状態下で光学濃度検出手段8を作動し、検出値Vmを取得するステップである。
S203は、S202で得られた検出値Vmをオフセット電圧Voffとして確定するステップである。
S204は、確定されたオフセット電圧Voffを不揮発メモリ203内のオフセット電圧格納部203cに記憶するステップである。
以上のように、Voff測定制御は、CPU202によりD/Aポート202aに指令する発光設定値Iを取得し、A/Dポート202bで検出された検出値Vmを取得する。そして、取得された検出値Vmをオフセット電圧Voffとして不揮発メモリ203のオフセット電圧格納部203cに予め設定している。
[発光量設定制御]
本発明に係る濃度検出制御部201は、中間転写体70の繰り返し使用に伴う中間転写体70自体の反射率の変化を補償するために、パッチ画像のトナー量検出制御の実行に先行して、画像濃度検出制御を実行する際に発光素子81を点灯させる動作条件(所定の発光条件)を予め設定するための発光量設定制御を実行している。
発光量設定制御は、中間転写体70の領域NPAを検出しているときに光学濃度検出手段8で検出される検出値Vmを所定値Vaに一致させるところの発光設定値Iを取得し、この発光設定値Iを基準発光設定値Irとして発光量特情報格納部203aに格納する制御を実行している。以下に詳しく説明する。
図8は、上記の画像濃度検出制御に先行して実行される、本発明の第1実施形態に係る発光量設定制御を示す制御フロー図である。
S301は、不揮発メモリ203内の発光量情報格納部203aに既に格納されている基準発光設定値Irを読出すステップである。この基準発光設定値Irは、先の画像濃度検出制御の実行において用いられたものである。
S302は、発光設定値IにS301で読み出した基準発光設定値Irを代入するステップである。
S310は、発光素子81の点灯を発光設定値Iで動作させるステップであり、同時にA/Dポート202bからCPU202に入力される検出値Vmを検出するステップである。
S311は、S310ステップで検出された検出値Vmが所定値Vaの算出使用範囲にあるか否かを判定するステップであり、検出値Vmが算出使用範囲の外、つまりVaを超える、あるいは(Va−α)未満である場合にはS312ステップに移行する。なお、αはVaの算出使用範囲を規定する定数である。
S312は、所定値Vaより検出値Vmを減じて差分(Va−Vm)を算出し、更に差分(Va−Vm)に基づき指令値の変化分△Iを演算するステップである。例えは、次式を用いて演算する。
△I=β×(Va−Vm)
β(定数)>0
S313は、S312ステップで得られた指令値の変化分△Iを発光指令値Iに加算するステップであり、演算処理後にS310ステップに再度戻る。
そして、S311ステップにおいて検出値Vmが算出使用範囲内にある、つまり、Va以下、且つ(Va−α)超えの場合にはS314ステップ以降に移行し、発光設定値Iを新たな基準発光設定値Irとして入力し(S314ステップ)、そして、基準発光設定値Irは不揮発メモリ203内の発光量情報格納部203aに格納させる(S315ステップ)。
以上のように、発光量設定制御は、画像濃度検出制御を実行する前に、画像濃度検出制御の実行時に発光素子81を点灯させるための基準発光設定値Irを予め設定可能にしている。
[第1実施形態に係る画像濃度検出制御]
図9は、濃度検出制御部201によって実行される、本発明に係る第1の実施形態に係る画像濃度検出制御を示す制御フロー図である。図9に従い以下説明する。
制御部102より検出を受けると(S101ステップ;Yes)、図7に示す暗電流影響成分のVoff測定制御を実行する(S102ステップ)。
S103はS102ステップで検出されたVoff電圧に適合する特性テーブルTbjを選択するステップである。
以下に、特性テーブルTbjに関係する主要な内容について詳しく説明する。
特性テーブルTbjは、不揮発メモリ203内の特性情報格納部203bに複数個格納されており、ここでは、j=1、2、3・・・・10のように10個のテーブルが格納されている。図10は、特性テーブルTbjの一例をグラフ化した特性曲線である。従って、各特性テーブルTdjは、図10に示すように、濃度の異なる多数のパッチ画像の各々に対して光学濃度検出手段8でパッチ画像を検出したときのパッチ検出値Vsとパッチ画像の濃度(g/m)とを関連付けている。図10に示す特性曲線KCは、特性テーブルTbjの多数の要素Ai(Ti及びVsiで構成され、それぞれ対応付けられている)を繋ぐ特性曲線である。特性曲線KCはVs=Voff及びVs=Vaを示す2つの破線の間に展開している。SRは、VaとVoffsとの差分、つまり光学濃度検出手段8の検出感度範囲を示す。
図11は、10区分に分割された各Voffの範囲と、その範囲に適合する特性テーブルTbj(Tb1、Tb2・・・TbA)とを関連付けている補正テーブルCTbの一例である。図11に示す格納先は、各特性テーブルTbjが格納される特性情報格納部203b内の領域203bjを示している。なお、図11は暗電流の範囲を10区分に分割しているが、更に多く分割することで、より正確な特性テーブルを提供できる。分割数は、特性データ格納部203bの記憶容量の増大と実用的に要求される検出精度との兼ね合いから適宜決定される。
CPU202は、上記のS103ステップにおいて図11の補正テーブルCTbを参照してS102ステップで検出されたオフセット電圧Voffに適合する特性テーブルTbjを選択している。
図12は、オフセット電圧VoffがVoff=a1、Voff=a5、あるいはVoff=aAである場合において、S103ステップで選択された各特性テーブルTb1、Tb5、TbAを示す。KC11、KC15、KC1Aは、それぞれの特性テーブルに対応する特性曲線として参考に示している。
次にCPU202はS104ステップにおいて図9で示した発光量設定制御を実行する。この段階で、濃度検出制御部201は制御部102に対し中間転写体上にパッチ画像を形成するパッチ画像形成開始の指令を出力する。
S105は、制御部102から受信したパッチ画像形成実行の旨の信号に基づきパッチ画像形成の有無を判定するステップである。CPU202はパッチ画像形成の有と判定すると、S106ステップに移行する。
S106は画像濃度検出制御を実行するステップで、不揮発メモリ203内の発光量情報格納部203aから発光基準値Irを読み出し発光設定値Iに代入し、発光設定値Iの下で発光素子81を点灯させて、パッチ画像に対応する検出値Vm、つまりパッチ検出値Vsを検出している。
S107は、S103ステップで選択された特性テーブルTbjを参照してS106で検出されたパッチ検出値Vsに基づきパッチ画像の濃度Tを取得するステップである。
S108は、S107で得られたパッチ画像の濃度Tを制御部102にバス111を介して転送するステップである。
以上に示したように、第1実施形態に係る画像濃度検出制御は、光学濃度検出手段の出力からトナー量を演算する適切な特性情報をオフセット電圧に対応して取得しており、受光素子の暗電流に起因して発生するパッチ画像濃度検出の誤差を防止可能にしている。
[第2の実施形態の画像濃度検出制御]
第2の実施形態に係る画像濃度検出制御は、第1の実施形態と同様に、図9の一連の画像濃度検出制御フローに従いパッチ画像の濃度Tを取得している。第1の実施形態と異なる点は、図13に示すような発光量設定制御を実行していることである。
図13は、第2の実施形態に係る発光量設定制御に関する制御フロー図である。
発光量設定制御の制御フロー図において、第1の実施形態と異なる点は、S302ステップとS310ステップとの間にS303ステップとS304ステップが追加されている点である。
S303は不揮発メモリ203内のオフセット電圧格納部203cからオフセット電圧Voffを読み出すステップである。
S304は、S303ステップで読み出されたオフセット電圧Voffを基底値Varに加算し、所定値Vaに代入するステップである。つまり、つぎのような演算を実行している。
Va=Var+Voff
なお、基底値Varはオフセット電圧Voffが零であると仮定したときに光学濃度検出手段8が中間転写体70の領域NPAを検出しているときにA/Dポート202bからCPU202に入力される検出値Vmに対応する値を意味する。
そして、第1実施形態と同様にS310からS315までのステップにおいて、光学濃度検出手段8が中間転写体70の領域NPAを検出しているときにA/Dポート202bからCPU202に入力される検出値Vmが所定値Vaに一致させるような発光設定値Irを確定している。そして確定された発光設定値Irを発光量情報格納部203aに格納している。
第1実施形態と同様に図9に示した一連の画像濃度検出制御を実行し、S102ステップでオフセット電圧Voffを検出し、S103ステップにおいてオフセット電圧に適合する特性テーブルTbjを選択する。
次に、S104ステップにおいてオフセット電圧Voffに応じた発光設定値Irを確定する。
次に、パッチ画像が作成されると、図9に示したS106ステップからS108ステップの制御フローを実施して、パッチ画像に対応するパッチ検出値VsをS103ステップで選択された特性テーブルTbjに参照してパッチ画像の濃度Tを取得する。そして、S107で取得された濃度Tを制御部102にバス111を介して転送する。
S103で選択されるところの複数の特性テーブルTbjは、発光設定値Irがオフセット電圧Voffに応じて変化するために、第1の実施形態における複数の特性テーブルTbjとは異なる組み合わせになる。後述の図15に示すように、複数の特性テーブルに対応する各特性曲線はVs軸に平行移動している。
図14は、第2実施形態に係る画像濃度検出制御に用いられる補正テーブルCTbの一例を示す。図示のようにオフセット電圧VoffがVoff≦a1の場合には、特性テーブルTb1が適用され、オフセット電圧Voffがa4<Voff≦a5の場合には、特性テーブルTb5が適用される。そして、オフセット電圧Voffがa9<Voff≦a1の場合には、特性テーブルTbAが適用される。
図15は、上記の特性テーブルTb1、Tb5、TbAの対応関係をグラフ化した特性曲線KC1、KC5、KCAを示す。図示のように、各特性曲線はVs軸に平行移動している。従って、オフセット電圧Voffの変化にも拘わらずVaとVoffとの差分、つまり光学濃度検出手段8の検出感度範囲SRは一定に保持されており、オフセット電圧Voffが高くなっても同一の高い検出精度を有し、第1実施形態の画像濃度検出制御に比較して検出精度の面で優れるという特長を有する。
なお、図13に示すような補正テーブルTCに代わって、単一の特性テーブルTbを原特性テーブルTbrとして特性情報格納部203bに予め格納しておき、演算処理を実行してオフセット電圧Voffに適合する特性テーブルTbjを演算するようにしてもよい。
例えば、オフセット電圧Voffがa1であるときの特性テーブルTb1を原特性テーブルTbrにした場合、S102ステップでオフセット電圧Voffがajであると検出されると、基準特性テーブルTbrの各要素Ai(Vsi、Ti)に対し、次の演算処理を施して新たな特性テーブルTbjの各要素Ai(Vsi、Ti)を取得するようにしてもよい。
演算処理1:DVoff=aj−a1
DVoffはオフセット電圧の変動量である。
演算処理2:Vsi=Vsi+DVoff
上記の演算処理で取得された新たな特性テーブルTbjはオフセット電圧Voff=ajに適合する特性テーブルとして特性情報格納部203bに格納される。
そして、画像濃度検出制御のS107ステップ(図9)において特性情報格納部203bから読み出した特性テーブルTbjを参照してパッチ画像の濃度を取得するものである。
以上のように、第2実施形態の画像濃度検出制御は、光学濃度検出手段の出力からトナー量を演算する適切な特性情報をオフセット電圧に対応して取得しており、受光素子の暗電流に起因して発生するパッチ画像濃度検出の誤差を防止可能にしている。更に、オフセット電圧の変化に対しパッチ画像濃度検出の感度特性が一定に維持されるものであり、第1実施形態の画像濃度検出制御と比較してより優れた画像濃度検出制御を可能にする。
[第3実施形態の画像濃度安定化制御]
本発明に係る画像濃度安定化制御は、あらゆる階調の画像を常に一定の濃度で出力可能にするために、画像形成の実行前に実際に複数のパッチ画像を中間転写体上に形成し各パッチ画像のトナー量(パッチ濃度T)を検出し、更に、パッチ濃度Tを目標値と一致させるよう、各色画像形成部の作像条件を適宜調整するものである。以下に詳しく説明する。
K色パッチ画像の場合には、図10で示した特性曲線において、トナー量が高くなると、光学濃度検出手段の感度が小さい、あるいは感度がないような領域があり、この領域に属すパッチ濃度T(パッチ画像のトナー量)は、光学濃度検出手段の検出値から直接的に中間転写体上のトナー量を取得できない。ここでは、上記の領域を非検出範囲NMRと仮称す。
本発明に係る第3実施形態の画像濃度安定化制御は、非検出範囲NMRより低いトナー量の領域に対応する階調濃度Dpのパッチ画像を形成して、第1実施形態又は第2実施形態の画像濃度検出制御を実行してパッチ濃度T(パッチ画像のトナー量)を検出して、パッチ濃度Tに基づき非検出範囲NMRに属する仮想パッチ画像のトナー量(仮想パッチ濃度Tv)を予測する仮想パッチ濃度検出制御を実行している。
更に、仮想パッチ濃度検出制御で得られた仮想パッチ濃度Tvが目標値に一致するようK色画像形成部10Kの作像条件を調整する作像条件調整制御を実行している。
なお、パッチ画像は階調濃度Dpの異なる複数のパッチ画像が好ましく、複数のトナー量に基づき仮想パッチ濃度Tを予測することにより、高い精度でK色画像形成部10Kの作像条件を適正値に調整できる。
ふたつの異なる階調濃度のK色パッチ画像を形成する画像濃度安定化制御の一例について、その概要を以下に説明する。
図17は中間転写体70上に形成された階調濃度の異なる第1パッチ画像Pa1と第2パッチ画像Pa2を示す模式図である。第1パッチ画像Pa1の階調濃度Dp1は第2パッチ画像Pa2の階調濃度Dp2より低い。なお、階調濃度Dpはパッチ画像を構成する各画素に対するレーザ点灯ONのDUTY比(%)で規定される。
レーザ点灯ONのDUTY比を切り替える制御は、レーザ光点灯のパルス幅変調制御(PWM制御)と称され、感光体上の画像電圧における階調を形成する手段として一般的に普及している。PWMが100%の場合に、最大のコントラスト電圧が形成され、中間転写体70上に形成されるパッチ画像のトナー量が最大になる。
コントラスト電圧は感光体上の画像電圧(画像の表面電位)と現像DCバイアス(現像バイアスのDC成分)との差分であり、パッチ画像のトナー量はコントラスト電圧に依存し、広いトナー量領域においてコントラスト電圧と線形的な関係を有する。
図18は、本発明に係る非検出範囲NMRに属する仮想パッチのトナー量(仮想パッチ濃度)Tvを予測する仮想パッチ濃度検出制御を示す特性図である。パッチ画像の階調濃度Dpと、中間転写体70上のパッチ画像のトナー量Tと、パッチ検出値Vsとの関係を示しめしている。横軸はパッチ画像のトナー量Tを示す。下方の象限の縦軸はパッチ画像の階調濃度Dpを示し、上方の象限の縦軸はパッチ検出値Vsを示している。
K色パッチ画像に対する光学濃度検出手段8の特性曲線KCが上方の象限に示されている。そして、K色画像形成部10Kの画像形成特性DCが下方の象限に示されている。なお、画像形成特性DCが線形的関係で示されているが、実際の画像形成特性DCは曲線部分を有している。
画像形成特性DCは、現像DCバイアス電圧Vdcを変更すると、矢印fの示すように平行移動する。例えば、Vdcを大きくするとパッチ濃度T(パッチ画像のトナー量)は大きくなり、Vdcを小さくするとパッチ濃度Tは小さくなる。
画像形成特性DC2に対応する作像条件(現像DCバイアス)が予め設定されている場合には、パッチ画像の階調濃度Dpとパッチ検出値Vsとの関係は画像形成特性DC2と特性曲線KCにより定まる。従って、矢印cで示すような関係により第1階調濃度Dp1に対し第1パッチ検出値Vs1が検出される。又、矢印dで示すような関係により第2階調濃度Dp2に対し第2パッチ検出値Vs2が検出される。
本発明の制御部は、第1実施形態、あるいは第2実施形態の画像濃度検出制御を実行して、上方の象限の特性曲線KCを用いて第1パッチ検出値Vs1から第1パッチ濃度T1を取得し、第2パッチ検出値Vs2から第2パッチ濃度T2を取得する。
図18のNMRは、光学濃度検出手段8では直接的にパッチ濃度(パッチ画像のトナー量)が検出できないトナー量の範囲を示す。
次に、本発明の制御部は、非検出範囲NMRに属する仮想パッチ画像のトナー量(仮想パッチ濃度)Tvを式2に基づき算出する。式2の意味について以下説明する。
図18の下方象限に示すP1(T1、Dp1)、P2(T2、Dp2)及びP3(Tv、100)は画像形成特性DC2上に存在し、且つ階調濃度値のDp1、Dp2及び100は定数であることから、次の式1に示すような関係が成り立つ。制御部102は、式1を用いて仮想パッチ濃度Tvを算出している。
Tv=Ax(T2−T1)+T1・・・式1
A:比例定数
更に、本発明の制御部は、上記演算で取得した仮想パッチ濃度Tvを目標値Tgに一致させるように適正な作像条件を調整することにより、適正な画像形成特性を構築している。ここでは、現像DCバイアス電圧Vdcの調整により、DC1で示す適正な画像形成特性が構築されている。
図18に示すARは、上限値ULと下限値LLとで規定され、第1パッチ検出値Vs1及び第2パッチ検出値Vs2を収めるための算出使用範囲である。
本発明に係る制御部は、第1パッチ検出値Vs1及び第2パッチ検出値Vs2を上記の算出使用範囲ARに収めるよう制御すると共に、表1に示す対応表に用いてオフセット電圧Voffに基づき算出使用範囲AR(上限値UL、下限値LL)を変更(設定)するよう制御している。
Figure 2011112988
図19は、オフセット電圧Voffが変化したときの光学濃度検出手段8の特性曲線KCと、オフセット電圧Voffの変化に合わせて変更する算出使用範囲ARを示す。
KC1はオフセット電圧VoffがVoff1のときの特性曲線を示し、KC2はVoff2のときの特性曲線を示す。AR1はVoff1のときの算出使用範囲を示し、AR2はVoff2のときの算出使用範囲を示す。
なお、上限値ULは低いトナー量の領域において発生するパッチ濃度Tのムラによる検出誤差を防止するものであり、画像形成部の画像形成特性に関係する境界値である。下限値LLは光学濃度検出手段8の感度が低すぎるために生じる検出誤差を防止するものである。
以上のように本発明に係る制御部は、オフセット電圧Voffの変化に対して常に適正な算出使用範囲ARを設定可能にして、複数のパッチ濃度Tから非検出範囲NMRに属する高い階調濃度の仮想パッチ画像のトナー量(仮想パッチ濃度)Tvを常に高い精度で算出可能にしている。
更に、本発明に係る制御部は、仮想濃度検出制御で得られた仮想パッチ濃度(仮想パッチ画像のトナー量)Tvが目標値Tgに一致させる作像条件(例えば、現像DCバイアス条件)を調整する作像条件調整制御を行い、最適な画像形成特性DCを構築している。図18に示す一例では、DC1が最適な画像形成特性に相当する。
図16は、本発明に係る第3実施形態の画像濃度検出制御、及び画像濃度安定化制御を示す、制御フロー図である。
S801は、画像安定化制御の実行指令の有無を判定するステップであり、有の場合にS802ステップに移行する。
S802は、オフセット電圧測定制御を実行するステップである。
S803は、表2で示した対応表を参照してS802ステップで得られたオフセット電圧Voffに適合する算出使用範囲AR(上限値ULと下限値LL)を設定し、不揮発メモリに格納するステップである。
S804は先に不揮発メモリに格納されている現像DCバイアスVdcを初期値とするステップである。
S805は、Vdcを含む他の作像条件でパッチ画像を形成するステップである。パッチ画像として第1パッチ画像と、第1パッチ画像に対し階調濃度の高い第2パッチ画像が形成される。
S806は第1パッチ検出値Vs1が上限値UL未満であるか否かを判定するステップである。未満の場合にはS807ステップに移行し、以上の場合にはS808ステップに移行する。
S809は第2パッチ検出値Vs2が下限値LLを超えている否かを判定するステップである。超えている場合にはS810ステップに移行し、以下の場合にはS809ステップに移行する。
S808はVdcを所定値dだけ加算し、S805ステップに戻るステップである。S809はVdcを所定値dだけ減算し、S805ステップに戻るステップである。そして、S805ステップに戻り新しいVdcの下で再度画像形成を行う。このようなS805からS809までのステップを繰り返して、第1パッチ検出値Vs1と第2パッチ検出値Vs2がS802で設定された算出使用範囲ARに収まると、S810ステップに移行する。
S810は第1実施形態及び第2実施形態で示した画像濃度検出制御を実行するステップであり、第1パッチ濃度T1と第2パッチ濃度T2を検出する。
S811は、上記に示した演算式に用いて第1パッチ濃度T1と第2パッチ濃度T2に基づき仮想パッチ濃度Tvを算出するステップである。
S812は、仮想パッチ濃度Tvが目標値Tgに一致させるよう現像DCバイアスVdc、又は現像ACバイアス電圧Vacを調整するステップである。
以上の画像濃度安定化制御を用いることにより、必要に応じて作像条件が調整されるために、常に最適な画像形成特性DCが構築される。そして、常に最適な画像形成特性DCに従い画像形成が実行され、色調・濃度の安定した高品質な画像が常時印刷できる画像形成装置の提供を可能にする。
なお、特性情報としての特性テーブルTbjを関数情報としての関数式に置換するようにしてもよい。表2は、図14の複数の特性テーブルTbjに置き換えて、不揮発メモリ203の特性情報格納部203bに格納された関数式の一例を示す。
Figure 2011112988
なお、表2の関数式の欄に示すf(x)は次式に示す2次多項式である。変数yはパッチ画像のパッチ検出値Vsに対応し、はパッチ画像のトナー量(パッチ濃度T)に対応し、a、b及びcは定数である。
y=f(x)=ax+bx+c
f(x)を3次以上の多項式にすることでより高い精度を得ることができるが、演算処理の負荷が増大し、要求精度を考慮して適宜選択している。
また、上記実施形態では、検出制御部201は、画像濃度検出制御の実行の直前に光学濃度検出手段8のオフセット電圧Voffを測定し、測定されたオフセット電圧Voffを不揮発メモリ203のオフセット電圧格納部203cに書き替える、オフセット電圧測定制御を実行しているが、定期的に、あるいは環境条件又は機械条件が変化した時期に実行するようにしても良い。
また、複数の特性テーブルTbjは特性情報格納部203bに予め登録されているが、これに限定されるものではない。例えば、基準の特性テーブルTbrを予め登録しておき、適宜測定されたオフセット電圧Voff基づきオフセット電圧Voffに適合する特性テーブルTbjを演算するようにしてもよい。
なお、上記の画像濃度安定化制御は、定期的に、環境等が変化した時に、あるいはメンテナンス等の処置が実施された直後に実行される。
なお、上記の実施の形態では、光学濃度検出手段8を中間転写体70に対向して配設しているが、光学濃度検出手段を像担持体である感光体に対向して配設するような実施の形態でも、本発明のトナー量判定及び画像濃度安定化の制御技術は適用可能である。
また、上記の実施の形態は中間転写体を用いた画像形成装置であるが、本発明は感光体上の画像を用紙上に直接的に転写する画像形成装置にも適用することも可能である。その場合には感光体又は用紙が像担持体になり、光学濃度検出手段で感光体上又は用紙上のパッチ画像の濃度を光学的に検出するような実施の形態になる。
1Y、1M、1C、1K 感光体
10Y、10M、10C、10K 画像形成部
70 中間転写体(像担持体)
8 光学濃度検出手段
81 発光素子
82 受光素子
102 制御部
201 濃度検出制御部
202 CPU
203 不揮発メモリ(記憶部)
203a 発光量情報格納部
203b 特性情報格納部
203c オフセット電圧格納部
AR 算出使用範囲
Dp パッチ階調値(パッチ画像の階調値)
Dp1 第1パッチ階調値
Dp2 第2パッチ階調値
I 発光設定値
Ir 基準発光設定値
Pa1 第1パッチ画像
Pa2 第2パッチ画像
T パッチ濃度(パッチ画像のトナー量)
Tv 仮想パッチ濃度(仮想パッチ画像のトナー量)
Tg 目標値
Tbj 特性テーブル(特性情報)
Voff オフセット電圧
Vm 検出値
Vs パッチ検出値(パッチ画像の検出値)

Claims (8)

  1. 像担持体上に画像を形成する画像形成部と、
    前記像担持体に対向して配設される発光素子と受光素子とを有し前記発光素子を予め設定された基準発光設定値で点灯して前記像担持体面の反射濃度を検出する光学濃度検出手段と、
    前記光学濃度検出手段の検出値とトナー量とを対応付ける所定特性情報を格納する記憶部と、
    前記画像形成部を制御して前記像担持体上にパッチ画像を形成し、前記光学濃度検出手段を制御して前記パッチ画像の検出値を検出し、前記所定特性情報を用いて前記パッチ画像の検出値に基づき前記パッチ画像のトナー量を取得する制御部と、を備え、
    前記制御部は、パッチ画像の形成に先行して、前記受光素子の暗電流で生じるオフセット電圧を測定し、当該オフセット電圧に適合する特性情報を取得し、当該特性情報を前記所定特性情報として設定することを特徴とする画像形成装置。
  2. 前記制御部は、パッチ画像の形成に先行して前記光学濃度検出手段を制御して前記像担持体上の非画像面を検出させ、前記光学濃度検出手段の検出値が所定値に一致する前記発光素子の発光設定値を取得し、当該発光設定値を前記基準発光設定値として設定することを特徴とする請求項1に記載の画像形成装置。
  3. 前記制御部は、前記オフセット電圧の変化に応じて前記基準発光値を変更することを特徴とする請求項2に記載の画像形成装置。
  4. 前記制御部は、前記パッチ画像のトナー量を目標値にするよう、前記画像形成部の作像条件を調整することを特徴とする請求項1から3までの何れか1項に記載の画像形成装置。
  5. 像担持体上に画像を形成する画像形成部と、
    前記像担持体に対向して配設される発光素子と受光素子とを有し前記発光素子を予め設定された所定の発光条件で点灯し前記像担持体面の反射濃度を検出する光学濃度検出手段と、
    前記光学濃度検出手段によるパッチ画像の検出値と当該パッチ画像のトナー量とを対応付ける所定特性情報を格納する記憶部と、
    前記画像形成部を制御して前記像担持体上にパッチ画像を形成し、前記光学濃度検出手段に検出された前記パッチ画像の検出値が算出使用範囲にある場合に前記検出値を前記所定特性情報に参照し前記パッチ画像のトナー量を演算し前記パッチ画像のトナー量に基づき前記画像形成部の作像条件を調整し、一方前記パッチ画像の検出値が前記算出使用範囲の外にある場合に前記パッチ画像の検出値が前記算出使用範囲に収まるよう前記画像形成部の作像条件を変更する制御部と、を備え、
    前記制御部は、パッチ画像の形成に先行して前記受光素子の暗電流によって生じるオフセット電圧を測定し、当該オフセット電圧に応じて前記算出使用範囲を変更することを特徴とする画像形成装置。
  6. 前記パッチ画像が異なる階調値を示す複数のパッチ画像であり、
    前記制御部は、前記パッチ画像のトナー量に基づき前記複数のパッチ画像より高い濃度の階調値を示す仮想パッチ画像のトナー量を演算し、当該仮想パッチ画像のトナー量が目標値と一致するよう前記画像形成部の作像条件を調整することを特徴とする請求項5に記載の画像形成装置。
  7. 前記仮想パッチ画像の階調値は、前記画像形成部に指示できる最高濃度であることを特徴とする請求項5、又は6に記載の画像形成装置。
  8. 前記算出使用範囲は、前記パッチ画像のトナー量において許容不能なレベルのムラを生じる領域の境界である上限と、前記光学濃度検出手段の検出感度が許容不能なレベルに低下する領域の境界である下限と、で規定される前記光学濃度検出手段の検出範囲であることを特徴とする請求項5から7までの何れか1項に記載の画像形成装置。
JP2009271190A 2009-11-30 2009-11-30 画像形成装置 Expired - Fee Related JP5304618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271190A JP5304618B2 (ja) 2009-11-30 2009-11-30 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271190A JP5304618B2 (ja) 2009-11-30 2009-11-30 画像形成装置

Publications (2)

Publication Number Publication Date
JP2011112988A true JP2011112988A (ja) 2011-06-09
JP5304618B2 JP5304618B2 (ja) 2013-10-02

Family

ID=44235340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271190A Expired - Fee Related JP5304618B2 (ja) 2009-11-30 2009-11-30 画像形成装置

Country Status (1)

Country Link
JP (1) JP5304618B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102768A (ja) * 2013-11-26 2015-06-04 富士ゼロックス株式会社 画像形成装置およびプログラム
US9819826B2 (en) 2015-09-07 2017-11-14 Canon Kabushiki Kaisha Image forming apparatus that controls image forming conditions for adjusting image density
US9971293B2 (en) 2015-11-06 2018-05-15 Canon Kabushiki Kaisha Image forming apparatus including optical sensor
US11575803B1 (en) 2022-02-10 2023-02-07 Toshiba Tec Kabushiki Kaisha Image forming apparatus and method correcting density unevenness for each divided region in a main scanning direction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152751A (ja) * 1995-11-30 1997-06-10 Mita Ind Co Ltd 画像形成装置に適用される濃度調整装置
JP2002108029A (ja) * 2000-09-29 2002-04-10 Seiko Epson Corp 画像形成装置
JP2005265969A (ja) * 2004-03-16 2005-09-29 Canon Inc 画像形成装置及びその制御方法
JP2008058157A (ja) * 2006-08-31 2008-03-13 Brother Ind Ltd 光量測定装置、画像形成装置およびトナー濃度測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152751A (ja) * 1995-11-30 1997-06-10 Mita Ind Co Ltd 画像形成装置に適用される濃度調整装置
JP2002108029A (ja) * 2000-09-29 2002-04-10 Seiko Epson Corp 画像形成装置
JP2005265969A (ja) * 2004-03-16 2005-09-29 Canon Inc 画像形成装置及びその制御方法
JP2008058157A (ja) * 2006-08-31 2008-03-13 Brother Ind Ltd 光量測定装置、画像形成装置およびトナー濃度測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102768A (ja) * 2013-11-26 2015-06-04 富士ゼロックス株式会社 画像形成装置およびプログラム
US9819826B2 (en) 2015-09-07 2017-11-14 Canon Kabushiki Kaisha Image forming apparatus that controls image forming conditions for adjusting image density
US9971293B2 (en) 2015-11-06 2018-05-15 Canon Kabushiki Kaisha Image forming apparatus including optical sensor
US11575803B1 (en) 2022-02-10 2023-02-07 Toshiba Tec Kabushiki Kaisha Image forming apparatus and method correcting density unevenness for each divided region in a main scanning direction

Also Published As

Publication number Publication date
JP5304618B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5157694B2 (ja) 画像形成装置
US8248640B2 (en) Image forming apparatus, controlling unit, image forming method and computer readable medium
JP5804764B2 (ja) 画像処理装置
JP6270138B2 (ja) 画像形成装置
US9977361B2 (en) Image forming apparatus and image forming system
JP4241759B2 (ja) 画像形成装置および画像形成装置の濃度制御方法
US20110305468A1 (en) Image forming apparatus
JP2008026747A (ja) 画像形成装置
JP5304618B2 (ja) 画像形成装置
JP5803414B2 (ja) 画像形成装置、制御装置及びプログラム
JP2008020818A (ja) 画像形成装置および画像安定化方法
JP2010107727A (ja) 画像形成装置
JP4887949B2 (ja) 画像形成装置およびトナー濃度制御方法
CN105518536A (zh) 图像形成装置
JP2008276118A (ja) トナー濃度測定感度測定方法、トナー濃度制御方法、トナー濃度制御装置、現像装置、画像形成装置及び画像形成方法
US8837965B2 (en) Image forming apparatus and control method thereof
JP5262671B2 (ja) 画像形成装置及び画像形成方法
JP2006330123A (ja) 画像形成装置及び画像形成方法
JP2016156888A (ja) 画像形成装置及び画像形成方法
JP2007058029A (ja) 画像形成装置及びそのトナー補給方法
US20240319650A1 (en) Image forming apparatus
JP5225934B2 (ja) 画像形成装置及びプログラム
JP5453900B2 (ja) 画像形成装置
JP2005148355A (ja) 画像形成装置
JP2021173953A (ja) 画像形成装置、作像条件決定方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5304618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees