JP2011112389A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2011112389A
JP2011112389A JP2009266582A JP2009266582A JP2011112389A JP 2011112389 A JP2011112389 A JP 2011112389A JP 2009266582 A JP2009266582 A JP 2009266582A JP 2009266582 A JP2009266582 A JP 2009266582A JP 2011112389 A JP2011112389 A JP 2011112389A
Authority
JP
Japan
Prior art keywords
electrode
acceleration sensor
sensor according
acceleration
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009266582A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
仁 吉田
Masatoshi Nomura
昌利 野村
Katsumi Kakimoto
勝己 垣本
Hideki Ueda
英喜 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009266582A priority Critical patent/JP2011112389A/en
Priority to EP10832714.9A priority patent/EP2506018A4/en
Priority to US13/511,178 priority patent/US9261530B2/en
Priority to CN201080052810.1A priority patent/CN102667497B/en
Priority to PCT/IB2010/002975 priority patent/WO2011064642A2/en
Publication of JP2011112389A publication Critical patent/JP2011112389A/en
Priority to US14/718,493 priority patent/US9244094B2/en
Priority to US14/874,845 priority patent/US9702895B2/en
Priority to US15/617,777 priority patent/US10126322B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor improving precision of temperature characteristics of output and reducing a difference in capacitance between each fixed electrode and each movable electrode. <P>SOLUTION: The acceleration sensor includes two sensor units comprising weight units 4, 5 where recesses 41, 51 and full units 40, 50 are formed integrally, a pair of beam units 6a, and the like, movable electrodes 4a, 5a, first fixed electrodes 20a, 21a and second fixed electrodes 20b, 21b, and electrode units 8a, and the like including respective detection electrodes 80a, and the like. The respective electrode units 8a, and the like are disposed along one direction so that the sensor chip 1 is divided into half, the respective weight units 4, 5 are disposed so that the respective weight units 4, 5 are symmetrical with respect to a point with nearly the center of the arrangement of the respective electrode units 8a, and the like as a center, and the respective beam units 6a, and the like are disposed so that a straight line connecting the respective beam units 6a, and the like are orthogonal to the arrangement directions of the respective electrode units 8a, and the like. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、静電容量型の加速度センサに関する。   The present invention relates to a capacitance type acceleration sensor.

従来、可動電極を有する直方体形状の重り部と、重り部の長手方向における略中央において重り部を回動自在に支持する1対のビーム部と、1対のビーム部を結ぶ直線を境界線とした重り部の表面のそれぞれ一方側及び他方側に対して所定距離を空けて対向配置された1対の固定電極とを備えた加速度センサが知られている(例えば、特許文献1参照)。   Conventionally, a rectangular parallelepiped weight portion having a movable electrode, a pair of beam portions that rotatably support the weight portion at a substantially center in the longitudinal direction of the weight portion, and a straight line connecting the pair of beam portions as a boundary line An acceleration sensor is known that includes a pair of fixed electrodes that are arranged to face each other on the one side and the other side of the surface of the weighted portion with a predetermined distance therebetween (see, for example, Patent Document 1).

以下、このような加速度センサの従来例について図面を用いて説明する。尚、以下の説明では、図4における上下を上下方向、センサチップ1の短手方向と平行な方向をx方向、センサチップ1の長手方向と平行な方向をy方向、x方向及びy方向に互いに直交する方向をz方向と定めるものとする。この従来例は、図4に示すように、外形が矩形板状であるセンサチップ1と、センサチップ1の上面側に固定される上部固定板2aと、センサチップ1の下面側に固定される下部固定板2bとを備える。   Hereinafter, a conventional example of such an acceleration sensor will be described with reference to the drawings. In the following description, the vertical direction in FIG. 4 is the vertical direction, the direction parallel to the short direction of the sensor chip 1 is the x direction, and the direction parallel to the longitudinal direction of the sensor chip 1 is the y direction, x direction, and y direction. The directions orthogonal to each other are defined as the z direction. In this conventional example, as shown in FIG. 4, the sensor chip 1 whose outer shape is a rectangular plate, the upper fixing plate 2 a fixed to the upper surface side of the sensor chip 1, and the lower surface side of the sensor chip 1 are fixed. And a lower fixing plate 2b.

センサチップ1は、上下方向から見て矩形状の2つの枠部3a,3bが長手方向に並設されたフレーム部3と、枠部3a,3bの内周面に対して隙間を空けた状態で枠部3a,3b内に配置された直方体形状の重り部4,5と、枠部3a,3bの内周面と重り部4,5の側面とを連結してフレーム部3に対して重り部4,5を回動自在に支持する各1対のビーム部6a,6b及び7a,7bと、重り部4,5の上面に形成される可動電極4a,5aとを備える。   The sensor chip 1 has a state in which a gap is formed between a frame portion 3 in which two rectangular frame portions 3a and 3b as viewed in the vertical direction are arranged in parallel in the longitudinal direction and an inner peripheral surface of the frame portions 3a and 3b. The weights 4 and 5 having a rectangular parallelepiped shape arranged in the frame portions 3a and 3b and the inner peripheral surface of the frame portions 3a and 3b and the side surfaces of the weight portions 4 and 5 are connected to the frame portion 3 to be weighted. A pair of beam portions 6a, 6b and 7a, 7b for rotatably supporting the portions 4, 5 and movable electrodes 4a, 5a formed on the upper surfaces of the weight portions 4, 5 are provided.

重り部4,5は、一面(下面)に開口する凹部(図示せず)と、凹部を除く充実部(図示せず)とが一体に形成されている。凹部は、開口面の法線方向(上下方向)から見て平面視四角形状に形成され、また、凹部内を2分割する補強壁(図示せず)が重り部4,5と一体に形成されている。   The weight portions 4 and 5 are integrally formed with a recess (not shown) that opens to one surface (lower surface) and a solid portion (not shown) excluding the recess. The concave portion is formed in a square shape in plan view when viewed from the normal direction (vertical direction) of the opening surface, and a reinforcing wall (not shown) that divides the concave portion into two is formed integrally with the weight portions 4 and 5. ing.

1対のビーム部6a,6bは、重り部4の枠部3aと対向する側面のx方向における略中央部と枠部3aとを連結している。同様に、1対のビーム部7a,7bは、重り部5の枠部3bと対向する側面のx方向における略中央部と枠部3bとを連結している。而して、1対のビーム部6a,6bを結ぶ直線、並びに1対のビーム部7a,7bを結ぶ直線が回動軸となり、回動軸の回りに各重り部4,5が回動するようになっている。   The pair of beam portions 6a and 6b connects the frame portion 3a and the substantially central portion in the x direction of the side surface facing the frame portion 3a of the weight portion 4. Similarly, the pair of beam portions 7a and 7b connects the frame portion 3b and the substantially central portion in the x direction of the side surface facing the frame portion 3b of the weight portion 5. Thus, a straight line connecting the pair of beam portions 6a and 6b and a straight line connecting the pair of beam portions 7a and 7b serve as a rotation axis, and the weight portions 4 and 5 rotate around the rotation axis. It is like that.

センサチップ1は、半導体の微細加工技術によりSOI(Silicon on Insulator)基板を加工して形成され、重り部4,5の上面を含む部位が可動電極4a,5aとなる。また、重り部4,5の上面及び下面には、重り部4,5が上部固定板2a及び下部固定板2bに直接衝突するのを防止するための突起部43a,43b,53a,53bが突設されている。   The sensor chip 1 is formed by processing an SOI (Silicon on Insulator) substrate by a semiconductor microfabrication technique, and the portions including the upper surfaces of the weight portions 4 and 5 become the movable electrodes 4a and 5a. Further, protrusions 43a, 43b, 53a, 53b for preventing the weights 4, 5 from directly colliding with the upper fixing plate 2a and the lower fixing plate 2b protrude from the upper and lower surfaces of the weights 4, 5, respectively. It is installed.

上部固定板2aは、例えばガラス等の絶縁材料から形成され、その下面には、上下方向に沿ってセンサチップ1の重り部4(可動電極4a)と対向する位置に第1の固定電極20aと第2の固定電極20bとがx方向に並設されるととともに、上下方向に沿ってセンサチップ1の重り部5(可動電極5a)と対向する位置に第1の固定電極21aと第2の固定電極21bとがx方向に並設されている。また、上部固定板2aのx方向一端側には、5つの貫通孔22a〜22eがy方向に並べて貫設されている。更に、上部固定板2aの下面には、各固定電極20a,20b及び21a,21bと電気的に接続された複数の導電パターン(図示せず)が形成されている。   The upper fixed plate 2a is made of an insulating material such as glass, for example, and the lower surface thereof has the first fixed electrode 20a and the first fixed electrode 20a at a position facing the weight portion 4 (movable electrode 4a) of the sensor chip 1 along the vertical direction. The second fixed electrode 20b and the second fixed electrode 20b are arranged side by side in the x direction, and the first fixed electrode 21a and the second fixed electrode 20a are arranged at positions facing the weight portion 5 (movable electrode 5a) of the sensor chip 1 along the vertical direction. The fixed electrode 21b is juxtaposed in the x direction. Further, five through holes 22a to 22e are arranged side by side in the y direction on one end side in the x direction of the upper fixing plate 2a. Further, a plurality of conductive patterns (not shown) electrically connected to the fixed electrodes 20a, 20b and 21a, 21b are formed on the lower surface of the upper fixed plate 2a.

一方、センサチップ1のx方向一端側には、フレーム部3から離間された計4つの電極部8a,8b,9a,9bが並設されている。これら4つの電極部8a,8b,9a,9bは、上面における略中央に金属膜から成る検出電極80a,80b,90a,90bがそれぞれ形成されるとともに、枠部3a,3bに臨む端部の上面に金属膜から成る圧接電極(図示せず)がそれぞれ形成されている。尚、フレーム部3上面の電極部8b,9aの間には接地電極10が形成されている。そして、センサチップ1の上面に上部固定板2aが接合されると、上部固定板2aの下面に形成されている導電パターンと圧接電極とが圧接接続されることで、各検出電極80a,80b,90a,90bが各固定電極20a,20b,21a,21bと電気的に接続されるとともに、上部固定板2aの貫通孔22a〜22dを介して各検出電極80a,80b,90a,90bが外部に露出する。尚、接地電極10も貫通孔22eを介して外部に露出する。   On the other hand, a total of four electrode portions 8 a, 8 b, 9 a, 9 b separated from the frame portion 3 are juxtaposed on one end side in the x direction of the sensor chip 1. The four electrode portions 8a, 8b, 9a, and 9b are formed with detection electrodes 80a, 80b, 90a, and 90b made of a metal film substantially at the center on the upper surface, and upper surfaces of end portions facing the frame portions 3a and 3b. In addition, a pressure contact electrode (not shown) made of a metal film is formed. A ground electrode 10 is formed between the electrode portions 8b and 9a on the upper surface of the frame portion 3. Then, when the upper fixing plate 2a is joined to the upper surface of the sensor chip 1, the conductive pattern formed on the lower surface of the upper fixing plate 2a and the press contact electrode are connected by press contact, whereby each of the detection electrodes 80a, 80b, 90a and 90b are electrically connected to the fixed electrodes 20a, 20b, 21a and 21b, and the detection electrodes 80a, 80b, 90a and 90b are exposed to the outside through the through holes 22a to 22d of the upper fixed plate 2a. To do. The ground electrode 10 is also exposed to the outside through the through hole 22e.

下部固定板2bは、上部固定板2aと同様にガラス等の絶縁材料から形成され、その上面には上下方向に沿ってセンサチップ1の重り部4,5と対向する位置にそれぞれ付着防止膜23a,23bが形成されている。この付着防止膜23a,23bは、アルミニウム系合金等の固定電極20a,…と同じ材料で形成されており、回動した重り部4,5の下面が下部固定板2bに付着するのを防止している。   The lower fixing plate 2b is made of an insulating material such as glass like the upper fixing plate 2a, and the upper surface of the lower fixing plate 2b is respectively attached to the sensor chip 1 at positions facing the weight portions 4 and 5 along the vertical direction. , 23b are formed. These adhesion preventing films 23a, 23b are made of the same material as the fixed electrodes 20a,... Such as an aluminum alloy, and prevent the lower surfaces of the rotated weight parts 4, 5 from adhering to the lower fixed plate 2b. ing.

ここで、本実施形態では、枠部3a、重り部4、ビーム部6a,6b、可動電極4a、第1及び第2の固定電極20a,20b、検出電極80a,80bと、枠部3b、重り部5、ビーム部7a,7b、可動電極5a、第1及び第2の固定電極21a,21b、検出電極90a,90bとで各々センサ部が構成され、重り部4,5の向き(充実部と凹部の配置)を180度反転させた状態で2つのセンサ部が一体に形成されている。   Here, in this embodiment, the frame portion 3a, the weight portion 4, the beam portions 6a and 6b, the movable electrode 4a, the first and second fixed electrodes 20a and 20b, the detection electrodes 80a and 80b, the frame portion 3b and the weight. Part 5, beam parts 7a and 7b, movable electrode 5a, first and second fixed electrodes 21a and 21b, and detection electrodes 90a and 90b each constitute a sensor part, and the direction of weight parts 4 and 5 (the solid part and The two sensor portions are integrally formed in a state where the arrangement of the recesses is inverted 180 degrees.

次に、上記従来例の検出動作について説明する。先ず、一方の重り部4にx方向の加速度が印加された場合を考える。x方向に加速度が印加されると、重り部4が回動軸の回りに回動して可動電極4aと第1の固定電極20a並びに第2の固定電極20bとの間の距離が変化し、その結果、可動電極4aと各固定電極20a,20bとの間の静電容量C1,C2も変化する。ここで、x方向の加速度が印加されていないときの可動電極4aと各固定電極20a,20bとの間の静電容量をC0とし、加速度の印加によって生じる静電容量の変化分をΔCとすれば、x方向の加速度が印加されたときの静電容量C1,C2は、
C1=C0−ΔC …(1)
C2=C0+ΔC …(2)
と表すことができる。
Next, the detection operation of the conventional example will be described. First, consider a case where an acceleration in the x direction is applied to one weight portion 4. When acceleration is applied in the x direction, the weight 4 rotates about the rotation axis, and the distance between the movable electrode 4a and the first fixed electrode 20a and the second fixed electrode 20b changes. As a result, the capacitances C1 and C2 between the movable electrode 4a and the fixed electrodes 20a and 20b also change. Here, the capacitance between the movable electrode 4a and each fixed electrode 20a, 20b when no acceleration in the x direction is applied is C0, and the change in capacitance caused by the application of acceleration is ΔC. For example, the capacitances C1 and C2 when the acceleration in the x direction is applied are:
C1 = C0−ΔC (1)
C2 = C0 + ΔC (2)
It can be expressed as.

同様に、他方の重り部5にx方向の加速度が印加された場合、可動電極5aと各固定電極21a,21bとの間の静電容量C3,C4は、
C3=C0−ΔC …(3)
C4=C0+ΔC …(4)
と表すことができる。
Similarly, when an acceleration in the x direction is applied to the other weight portion 5, the capacitances C3 and C4 between the movable electrode 5a and the fixed electrodes 21a and 21b are:
C3 = C0−ΔC (3)
C4 = C0 + ΔC (4)
It can be expressed as.

ここで、静電容量C1〜C4の値は、検出電極80a,80b及び90a,90bから取出す電圧信号を演算処理することで検出することができる。そして、一方のセンサ部から得られる静電容量C1,C2の差分値CA(=C1−C2)と、他方のセンサ部から得られる静電容量C3,C4の差分値CB(=C3−C4)との和(±4ΔC)を算出すれば、この差分値CA,CBの和に基づいてx方向に印加された加速度の向きと大きさを演算することができる。   Here, the values of the capacitances C1 to C4 can be detected by performing arithmetic processing on voltage signals taken from the detection electrodes 80a and 80b and 90a and 90b. Then, the difference value CA (= C1-C2) between the capacitances C1, C2 obtained from one sensor unit and the difference value CB (= C3-C4) between the capacitances C3, C4 obtained from the other sensor unit. Is calculated (± 4ΔC), the direction and magnitude of the acceleration applied in the x direction can be calculated based on the sum of the difference values CA and CB.

次に、一方の重り部4にz方向の加速度が印加された場合を考える。z方向に加速度が印加されると重り部4が回動軸の回りに回動して可動電極4aと第1の固定電極20a並びに第2の固定電極20bとの間の距離が変化し、その結果、可動電極4aと各固定電極20a,20bとの間の静電容量C1,C2も変化する。ここで、z方向の加速度が印加されていないときの可動電極4aと各固定電極20a,20bとの間の静電容量をC0とし、加速度の印加によって生じる静電容量の変化分をΔCとすれば、z方向の加速度が印加されたときの静電容量C1,C2は、
C1=C0+ΔC …(5)
C2=C0−ΔC …(6)
と表すことができる。
Next, consider a case where an acceleration in the z direction is applied to one weight portion 4. When acceleration is applied in the z direction, the weight portion 4 rotates around the rotation axis, and the distance between the movable electrode 4a and the first fixed electrode 20a and the second fixed electrode 20b changes. As a result, the capacitances C1 and C2 between the movable electrode 4a and the fixed electrodes 20a and 20b also change. Here, the capacitance between the movable electrode 4a and the fixed electrodes 20a and 20b when no acceleration in the z direction is applied is C0, and the change in capacitance caused by the application of acceleration is ΔC. For example, the capacitances C1 and C2 when the acceleration in the z direction is applied are:
C1 = C0 + ΔC (5)
C2 = C0−ΔC (6)
It can be expressed as.

同様に、他方の重り部5にz方向の加速度が印加された場合、可動電極5aと各固定電極21,21bとの間の静電容量C3,C4は、
C3=C0−ΔC …(7)
C4=C0+ΔC …(8)
と表すことができる。
Similarly, when acceleration in the z direction is applied to the other weight portion 5, the capacitances C3 and C4 between the movable electrode 5a and the fixed electrodes 21 and 21b are:
C3 = C0−ΔC (7)
C4 = C0 + ΔC (8)
It can be expressed as.

そして、一方のセンサ部から得られる静電容量C1,C2の差分値CA(=C1−C2)と、他方のセンサ部から得られる静電容量C3,C4の差分値CB(=C3−C4)との差(±4ΔC)を算出すれば、この差分値CA,CBの差に基づいてz方向に印加された加速度の向きと大きさを演算することができる。尚、差分値CA,CBの和と差とに基づいてx方向及びz方向の加速度の向きと大きさを求める演算処理については従来周知であるので、ここでは詳細な説明を省略する。   Then, the difference value CA (= C1-C2) between the capacitances C1, C2 obtained from one sensor unit and the difference value CB (= C3-C4) between the capacitances C3, C4 obtained from the other sensor unit. Is calculated (± 4ΔC), the direction and magnitude of the acceleration applied in the z direction can be calculated based on the difference between the difference values CA and CB. Note that calculation processing for obtaining the direction and magnitude of the acceleration in the x direction and the z direction based on the sum and difference of the difference values CA and CB is well known in the art, and detailed description thereof is omitted here.

特表2008−544243号公報Special table 2008-544243 gazette

ところで、上記従来例のような加速度センサでは、センサチップ1を構成する材料(ここでは、シリコン)と各固定板2a,2bを構成する材料(ここでは、ガラス)との熱膨張係数の差に起因する熱応力によって歪みが生じる虞がある。また、センサチップ1をパッケージ(図示せず)に樹脂材料でダイボンディングする際にも、センサチップ1に歪みが生じる虞がある。このようにセンサチップ1に歪みが生じて捩れた場合、センサチップ1の対角線上に応力が集中する。ここで、上記従来例のセンサチップ1は、そのy方向における略中央を通り且つx方向に平行な軸に対しては線対称な構造であるものの、そのx方向における略中央を通り且つy方向に平行な軸に対しては線対称の構造となっていない。このため、各重り部4,5の充実部と凹部とで集中する応力に差が生じる。したがって、検出感度の温度特性やオフセット温度特性といった出力の温度特性の精度が悪化するという問題があった。   By the way, in the acceleration sensor as in the conventional example, the difference in thermal expansion coefficient between the material (here, silicon) constituting the sensor chip 1 and the material (here, glass) constituting each of the fixing plates 2a and 2b. There is a risk of distortion due to the resulting thermal stress. Further, when the sensor chip 1 is die-bonded to a package (not shown) with a resin material, the sensor chip 1 may be distorted. When the sensor chip 1 is thus distorted and twisted, the stress is concentrated on the diagonal line of the sensor chip 1. Here, the sensor chip 1 of the above-described conventional example has a substantially symmetrical structure with respect to an axis parallel to the x direction passing through the approximate center in the y direction, but passing through the approximate center in the x direction and the y direction. It is not a line-symmetric structure with respect to an axis parallel to the axis. For this reason, a difference arises in the stress which concentrates by the solid part of each weight part 4 and 5, and a recessed part. Therefore, there is a problem that the accuracy of the temperature characteristic of the output such as the temperature characteristic of the detection sensitivity and the offset temperature characteristic deteriorates.

また、上記従来例では、各センサ部において第1の固定電極20a,21aと電極部8a,8b,9a,9bとの間の距離と、第2の固定電極20b,21bと電極部8a,8b,9a,9bとの間の距離とが互いに異なっている。このため、電極間を結ぶ各導電パターンの配線長が互いに異なるので、各導電パターンの寄生容量にも差が生じ、したがって各固定電極20a,…と各可動電極4a,5aとの間の静電容量にも差が生じるという問題があった。   In the conventional example, the distance between the first fixed electrodes 20a, 21a and the electrode portions 8a, 8b, 9a, 9b and the second fixed electrodes 20b, 21b and the electrode portions 8a, 8b in each sensor unit. , 9a, 9b are different from each other. For this reason, since the wiring lengths of the conductive patterns connecting the electrodes are different from each other, the parasitic capacitances of the conductive patterns are also different. Therefore, the electrostatic capacitance between the fixed electrodes 20a,... And the movable electrodes 4a, 5a is different. There was a problem in that there was a difference in capacity.

本発明は、上記の点に鑑みて為されたもので、出力の温度特性の高精度化を図るとともに、各固定電極と各可動電極との間の静電容量の差を低減することのできる加速度センサを提供することを目的とする。   The present invention has been made in view of the above points, and can improve the accuracy of output temperature characteristics and reduce the difference in capacitance between each fixed electrode and each movable electrode. An object is to provide an acceleration sensor.

請求項1の発明は、上記目的を達成するために、一面に開口する凹部と凹部を除く充実部が一体に形成された重り部と、凹部と充実部とが回動方向に沿って並ぶように重り部を回動自在に支持する1対のビーム部と、凹部が開口する前記一面と異なる他の一面において凹部と充実部とに跨って設けられた可動電極と、可動電極における凹部側と対向する位置に配設された第1の固定電極と、可動電極における充実部側と対向する位置に配設された第2の固定電極と、各固定電極と電気的に接続される検出電極を有する1対の電極部とから成るセンサ部を備え、1対のビーム部を結ぶ直線を回動軸とした重り部の回動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検出する加速度センサであって、センサ部は同一のチップに2つ形成され、各電極部はチップを半々に分割するように一方向に沿って配置され、各重り部は、各電極部の配列の略中央を中心として点対称となるように配置され、且つ各ビーム部を結ぶ直線が各電極部の配置方向と直交する方向に沿うように各ビーム部が配置されたことを特徴とする。   In order to achieve the above object, the first aspect of the present invention is such that the concave portion opening on one surface and the weight portion integrally formed with the solid portion excluding the concave portion, and the concave portion and the solid portion are aligned along the rotation direction. A pair of beam portions that rotatably support the weight portion, a movable electrode provided across the concave portion and the solid portion on the other surface different from the one surface where the concave portion opens, and the concave portion side of the movable electrode; A first fixed electrode disposed at a position facing the second fixed electrode; a second fixed electrode disposed at a position facing the solid portion side of the movable electrode; and a detection electrode electrically connected to each fixed electrode. A change in capacitance between the movable electrode and the fixed electrode that accompanies the rotation of the weight portion with a straight line connecting the pair of beam portions as a rotation axis. Acceleration sensor for detecting acceleration, and the sensor unit is 2 on the same chip. Each electrode part is arranged along one direction so as to divide the chip in half, and each weight part is arranged so as to be symmetric about the center of the arrangement of each electrode part, and each Each beam part is arranged so that a straight line connecting the beam parts is along a direction orthogonal to the arrangement direction of each electrode part.

請求項2の発明は、請求項1の発明において、重り部に印加された第1の方向の加速度と、第1の方向と直交する第2の方向の加速度とを検出することを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the acceleration in the first direction applied to the weight portion and the acceleration in the second direction orthogonal to the first direction are detected. .

請求項3の発明は、請求項2の発明において、一方のセンサ部が他方のセンサ部に対して同一平面において180度回転して配置されたことを特徴とする。   The invention of claim 3 is characterized in that, in the invention of claim 2, one of the sensor parts is arranged to rotate 180 degrees in the same plane with respect to the other sensor part.

請求項4の発明は、請求項1乃至3の何れか1項の発明において、各固定電極の可動電極との対向面、又は可動電極の各固定電極との対向面には突起部が形成されたことを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, a protrusion is formed on a surface of each fixed electrode facing the movable electrode or a surface facing each fixed electrode of the movable electrode. It is characterized by that.

請求項5の発明は、請求項4の発明において、突起部は、シリコン又はシリコン酸化膜から形成されたことを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the protrusion is formed of silicon or a silicon oxide film.

請求項6の発明は、請求項4の発明において、突起部は、その表層がカーボン材料から形成されたことを特徴とする。   The invention of claim 6 is characterized in that, in the invention of claim 4, the surface of the protrusion is formed of a carbon material.

請求項7の発明は、請求項6の発明において、カーボン材料はカーボンナノチューブであることを特徴とする。   The invention of claim 7 is characterized in that, in the invention of claim 6, the carbon material is a carbon nanotube.

請求項8の発明は、請求項1乃至7の何れか1項の発明において、重り部の固定電極が対向する側と反対側の面と所定の間隔を空けて配置される固定板を有し、固定板の重り部と対向する面には、重り部の付着を防止するための付着防止膜が設けられたことを特徴とする。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, further comprising a fixing plate disposed at a predetermined distance from a surface opposite to the opposite side of the weight fixed electrode. The surface of the fixing plate facing the weight portion is provided with an adhesion preventing film for preventing the weight portion from adhering.

請求項9の発明は、請求項8の発明において、付着防止膜は、固定電極と同じ材料から形成されたことを特徴とする。   The invention according to claim 9 is the invention according to claim 8, wherein the adhesion preventing film is made of the same material as that of the fixed electrode.

請求項10の発明は、請求項8又は9の発明において、付着防止膜は、固定電極と同時に形成されることを特徴とする。   The invention of claim 10 is characterized in that, in the invention of claim 8 or 9, the adhesion preventing film is formed simultaneously with the fixed electrode.

請求項11の発明は、請求項8乃至10の何れか1項の発明において、付着防止膜は、半導体製造プロセスを利用して成膜されることを特徴とする。   According to an eleventh aspect of the present invention, in the invention according to any one of the eighth to tenth aspects, the adhesion preventing film is formed using a semiconductor manufacturing process.

請求項12の発明は、請求項8乃至11の何れか1項の発明において、付着防止膜は、アルミニウム系合金から形成されたことを特徴とする。   A twelfth aspect of the invention is characterized in that, in the invention of any one of the eighth to eleventh aspects, the adhesion preventing film is formed of an aluminum alloy.

請求項13の発明は、請求項8乃至12の何れか1項の発明において、固定電極と可動電極との間に吸引力を発生させることにより、第1及び第2の固定電極と可動電極との間の静電容量の変化を検出することを特徴とする。   According to a thirteenth aspect of the present invention, in the invention according to any one of the eighth to twelfth aspects, the first and second fixed electrodes and the movable electrode are generated by generating a suction force between the fixed electrode and the movable electrode. It is characterized by detecting a change in capacitance between the two.

請求項14の発明は、請求項13の発明において、付着防止膜の表面には、有機材料から成る薄膜が設けられたことを特徴とする。   The invention of claim 14 is characterized in that, in the invention of claim 13, a thin film made of an organic material is provided on the surface of the adhesion preventing film.

請求項15の発明は、請求項14の発明において、薄膜は、ポリイミド薄膜であることを特徴とする。   The invention of claim 15 is the invention of claim 14, characterized in that the thin film is a polyimide thin film.

請求項16の発明は、請求項1乃至15の何れか1項の発明において、重り部の重心位置から前記回動軸に下ろした垂線と可動電極の表面とが成す角度が略45度となるように、ビーム部を凹部側にずらして配置したことを特徴とする。   The invention according to claim 16 is the invention according to any one of claims 1 to 15, wherein the angle formed between the perpendicular line drawn from the center of gravity of the weight portion to the rotation shaft and the surface of the movable electrode is approximately 45 degrees. As described above, the beam portion is arranged to be shifted to the concave portion side.

本発明によれば、センサ全体の対称性が増すため、熱膨張などによって歪みが発生した場合にもセンサ全体に均等に歪みが生じ、全体のバランスが損なわれない。したがって、出力の温度特性の高精度化を図ることができる。また、各電極部と各重り部との間の距離が等しくなるのに伴って、各電極部と各固定電極との間の距離も等しくなるため、電極間を結ぶ各導電パターンの配線長を互いに等しくすることができる。したがって、各導電パターンの寄生容量の差が低減され、各可動電極と各固定電極との間の静電容量の差も低減することができる。更に、ビーム部から重り部の各端部までの距離、即ち、重り部の回動半径を大きくとることができるため、チップが同一寸法の従来の加速度センサと比較して同一の検出感度を得るために必要な回動変位を小さくすることができる。このため、ビーム部の曲げ剛性を高くすることができるので、仮に可動電極が固定電極に付着したとしてもビーム部の復帰力によって可動電極を固定電極から引き剥がすことができる。   According to the present invention, since the symmetry of the entire sensor is increased, even when distortion occurs due to thermal expansion or the like, the entire sensor is also distorted, and the overall balance is not impaired. Therefore, it is possible to improve the accuracy of the temperature characteristic of the output. Also, as the distance between each electrode part and each weight part becomes equal, the distance between each electrode part and each fixed electrode also becomes equal, so the wiring length of each conductive pattern that connects the electrodes is reduced. Can be equal to each other. Therefore, the difference in parasitic capacitance of each conductive pattern is reduced, and the difference in capacitance between each movable electrode and each fixed electrode can also be reduced. Further, since the distance from the beam portion to each end of the weight portion, that is, the turning radius of the weight portion can be increased, the same detection sensitivity can be obtained as compared with the conventional acceleration sensor having the same size as the chip. Therefore, the required rotational displacement can be reduced. For this reason, since the bending rigidity of a beam part can be made high, even if a movable electrode adheres to a fixed electrode, a movable electrode can be peeled from a fixed electrode with the restoring force of a beam part.

本発明に係る加速度センサの実施形態を示す分解斜視図である。It is a disassembled perspective view which shows embodiment of the acceleration sensor which concerns on this invention. 同上のセンサチップを下側から見た平面図である。It is the top view which looked at the sensor chip same as the above from the lower side. 同上の断面図である。It is sectional drawing same as the above. 従来の加速度センサを示す分解斜視図である。It is a disassembled perspective view which shows the conventional acceleration sensor.

以下、本発明に係る加速度センサの実施形態について図面を用いて説明する。但し、本実施形態の基本的な構成は従来例と共通であるので、共通する部位には同一の番号を付して説明を省略する。尚、以下の説明では、図1における上下を上下方向、センサチップ1の長手方向と平行な方向をx方向、センサチップ1の短手方向と平行な方向をy方向、x方向及びy方向に互いに直交する方向をz方向と定めるものとする。   Hereinafter, embodiments of an acceleration sensor according to the present invention will be described with reference to the drawings. However, since the basic configuration of this embodiment is the same as that of the conventional example, common portions are denoted by the same reference numerals and description thereof is omitted. In the following description, the vertical direction in FIG. 1 is the vertical direction, the direction parallel to the longitudinal direction of the sensor chip 1 is the x direction, and the direction parallel to the short direction of the sensor chip 1 is the y direction, x direction, and y direction. The directions orthogonal to each other are defined as the z direction.

本実施形態は、図1に示すように、センサチップ1の短手方向(y方向)における略中央に各電極部8a,8b,9a,9b,10aをx方向に沿って直線状に配置している。即ち、センサチップ1を半々に分割するように各電極部8a,…を配置している。尚、電極部10aの上面には、接地電極10が設けられている。また、各重り部4,5を、各電極部8a,…の配列の略中央を中心として点対称となるように配置し、且つ各ビーム部6a,6b,7a,7bを結ぶ直線が各電極部8a,8ab,9a,9bの配置方向と直交する方向(y方向)に沿うように各ビーム部6a,6b,7a,7bを配置している。また、電極部8aと第1の固定電極20a、電極部8bと第2の固定電極20b、電極部9aと第1の固定電極21a、電極部9bと第2の固定電極21bが各々導電パターンを介して電気的に接続されている。尚、本実施形態では、図2に示すように、各重り部4,5の凹部41,51において、各凹部41,51内を3分割するように各々2つの補強壁42,52が各重り部4,5と一体に形成されている。   In the present embodiment, as shown in FIG. 1, the electrode portions 8a, 8b, 9a, 9b, and 10a are arranged linearly along the x direction at substantially the center in the short direction (y direction) of the sensor chip 1. ing. That is, the electrode portions 8a,... Are arranged so as to divide the sensor chip 1 in half. A ground electrode 10 is provided on the upper surface of the electrode portion 10a. Further, the weights 4 and 5 are arranged so as to be point-symmetric about the approximate center of the arrangement of the electrode parts 8a, and a straight line connecting the beam parts 6a, 6b, 7a, and 7b is provided for each electrode. Each beam part 6a, 6b, 7a, 7b is arrange | positioned along the direction (y direction) orthogonal to the arrangement direction of the part 8a, 8ab, 9a, 9b. Further, the electrode portion 8a and the first fixed electrode 20a, the electrode portion 8b and the second fixed electrode 20b, the electrode portion 9a and the first fixed electrode 21a, and the electrode portion 9b and the second fixed electrode 21b each have a conductive pattern. Is electrically connected. In the present embodiment, as shown in FIG. 2, in the concave portions 41 and 51 of the weight portions 4 and 5, two reinforcing walls 42 and 52 are respectively provided so that the inside of the concave portions 41 and 51 is divided into three parts. It is formed integrally with the parts 4 and 5.

上述のように構成することで、本実施形態ではセンサチップ1が接地電極10を中心とした点対称の構造となる。このため、センサ全体の対称性が増し、熱膨張などによって歪みが発生した場合にもセンサ全体に均等に歪みが生じ、全体のバランスが損なわれない。したがって、各重り部4,5の充実部40,50及び凹部41,51、並びにビーム部6a,6b及び7a,7bに集中する応力に差が生じ難く、出力の温度特性の高精度化を図ることができる。   By configuring as described above, in this embodiment, the sensor chip 1 has a point-symmetric structure with the ground electrode 10 as the center. For this reason, the symmetry of the whole sensor increases, and even when distortion occurs due to thermal expansion or the like, the whole sensor is also distorted, and the overall balance is not lost. Therefore, it is difficult for the stresses concentrated in the solid portions 40 and 50 and the concave portions 41 and 51 of the weight portions 4 and 5 and the beam portions 6a and 6b and 7a and 7b to occur, and the temperature characteristic of the output is improved. be able to.

また、本実施形態では、各電極部8a,…と各重り部4,5との間の距離が等しくなるのに伴って、各電極部8a,…と各固定電極20a,…との間の距離も等しくなるため、電極間を結ぶ各導電パターンの配線長を互いに等しくすることができる。したがって、各導電パターンの寄生容量の差が低減され、各可動電極4a,5aと各固定電極20a,…との間の静電容量の差も低減することができる。   Further, in the present embodiment, as the distance between each electrode portion 8a,... And each weight portion 4, 5 becomes equal, the distance between each electrode portion 8a,... And each fixed electrode 20a,. Since the distances are also equal, the wiring lengths of the conductive patterns connecting the electrodes can be made equal to each other. Therefore, the difference in parasitic capacitance of each conductive pattern is reduced, and the difference in capacitance between each movable electrode 4a, 5a and each fixed electrode 20a,.

更に、本実施形態では、ビーム部6a,6b,7a,7bから重り部4,5の長手方向の各端部までの距離、即ち、重り部4,5の回動半径を大きくとることができるため、センサチップ1が同一寸法の上記従来例の加速度センサと比較して同一の検出感度を得るために必要な回動変位を小さくすることができる。このため、ビーム部6a,6b,7a,7bの曲げ剛性を高くすることができるので、仮に各可動電極4a,5aが各固定電極20a,…に付着したとしても、ビーム部6a,6b,7a,7bの復帰力によって各可動電極4a,5aを各固定電極20a,…から引き剥がすことができる。   Further, in the present embodiment, the distance from the beam portions 6a, 6b, 7a, 7b to the end portions in the longitudinal direction of the weight portions 4, 5, that is, the turning radius of the weight portions 4, 5 can be increased. Therefore, the rotational displacement necessary for the sensor chip 1 to obtain the same detection sensitivity as compared with the conventional acceleration sensor having the same dimensions can be reduced. Therefore, since the bending rigidity of the beam portions 6a, 6b, 7a, 7b can be increased, the beam portions 6a, 6b, 7a even if the movable electrodes 4a, 5a are attached to the fixed electrodes 20a,. , 7b, the movable electrodes 4a, 5a can be peeled off from the fixed electrodes 20a,.

ところで、本実施形態では、図3に示すように、上記従来例の加速度センサと同様に突起部43a,43b,53a,53bが設けられているが、突起部43a,43b,53a,53bをシリコン又はシリコン酸化膜といったセンサチップの主材料により形成した場合には、突起部43a,43b,53a,53bを容易に製造することができる。また、突起部43a,43b,53a,53bの表層をカーボン材料でコーティングしてもよい。この場合、突起部43a,43b,53a,53bの機械的強度が増し、上部固定板2a及び下部固定板2bとの衝突によって突起部43a,43b,53a,53bが破損するのを防止することができる。更に、カーボン材料としてカーボンナノチューブを採用すれば、コーティングの厚み寸法を小さくできるので、突起部43a,43b,53a,53bを所望の高さ寸法に容易に調整することができる。   Incidentally, in this embodiment, as shown in FIG. 3, the protrusions 43a, 43b, 53a, and 53b are provided in the same manner as the acceleration sensor of the conventional example, but the protrusions 43a, 43b, 53a, and 53b are made of silicon. Alternatively, the protrusions 43a, 43b, 53a, 53b can be easily manufactured when formed from the main material of the sensor chip such as a silicon oxide film. Moreover, you may coat the surface layer of protrusion part 43a, 43b, 53a, 53b with a carbon material. In this case, the mechanical strength of the protrusions 43a, 43b, 53a, 53b is increased, and the protrusions 43a, 43b, 53a, 53b can be prevented from being damaged by the collision with the upper fixing plate 2a and the lower fixing plate 2b. it can. Furthermore, if carbon nanotubes are used as the carbon material, the thickness of the coating can be reduced, so that the protrusions 43a, 43b, 53a, 53b can be easily adjusted to the desired height.

また、本実施形態では、図1に示すように、上記従来例の加速度センサと同様に付着防止膜23a,23bが設けられているが、付着防止膜23a,23bを固定電極20a,…と同一材料で形成することにより、付着防止膜23a,23bを容易に形成することができる。このとき、付着防止膜23a,23bを固定電極20a,…と同時に形成すれば、重り部4,5と固定電極20a,…との間、及び重り部4,5と下部固定板2bとの間の距離の精度を高めることができる。   Further, in the present embodiment, as shown in FIG. 1, the adhesion preventing films 23a and 23b are provided in the same manner as the conventional acceleration sensor, but the adhesion preventing films 23a and 23b are the same as the fixed electrodes 20a,. By forming with a material, the adhesion preventing films 23a and 23b can be easily formed. At this time, if the adhesion preventing films 23a, 23b are formed simultaneously with the fixed electrodes 20a,..., Between the weight portions 4, 5 and the fixed electrodes 20a,... And between the weight portions 4, 5 and the lower fixed plate 2b. The accuracy of the distance can be increased.

尚、付着防止膜23a,23bを半導体製造プロセスにより成膜した場合、付着防止膜23a,23bの表面に微小な凹凸が形成されるため、重り部4,5が下部固定板2bに付着するのをより好適に防止することができる。ここで、付着防止膜23a,23bをアルミニウム系合金により形成した場合、エッチング加工が容易になる。また、付着防止膜23a,23bの表面上に半導体製造プロセスとの整合性が良く、且つ加工がし易いポリイミド薄膜等の有機材料薄膜を形成することにより、付着防止膜23a,23bと重り部4,5との間の短絡を防止するようにしてもよい。   When the adhesion preventing films 23a and 23b are formed by a semiconductor manufacturing process, minute irregularities are formed on the surfaces of the adhesion preventing films 23a and 23b, so that the weight portions 4 and 5 adhere to the lower fixing plate 2b. Can be more suitably prevented. Here, when the adhesion preventing films 23a and 23b are formed of an aluminum alloy, the etching process becomes easy. Further, by forming an organic material thin film such as a polyimide thin film having good consistency with the semiconductor manufacturing process and easy to process on the surface of the adhesion preventing films 23a and 23b, the adhesion preventing films 23a and 23b and the weight part 4 are formed. , 5 may be prevented from being short-circuited.

尚、本実施形態では、図1に示すように、隣接する各電極部8a,…の間、各電極部8a,…とフレーム部3との間、各電極部8a,…と各重り部4,5との間に各々隙間が設けられている。このように構成することで、各検出電極80a,80b,90a,90bが互いに電気的に絶縁されるので、各検出電極80a,80b,90a,90bの寄生容量や電極間のクロストークを低減し、高精度な静電容量の検出を行うことができる。   In the present embodiment, as shown in FIG. 1, between the adjacent electrode portions 8 a,..., Between each electrode portion 8 a,... And the frame portion 3, each electrode portion 8 a,. , 5 are respectively provided with gaps. With this configuration, the detection electrodes 80a, 80b, 90a, and 90b are electrically insulated from each other, thereby reducing parasitic capacitance of the detection electrodes 80a, 80b, 90a, and 90b and crosstalk between the electrodes. Highly accurate capacitance detection can be performed.

また、本実施形態では、図3に示すように、ビーム部6a,6b,7a,7b(同図ではビーム部6aのみ図示)を重り部4,5の長手方向における略中央から凹部41,51側(同図の左側)にずらして配置することで、重り部4,5の重心位置から回動軸に下ろした垂線と可動電極4a,5aの表面とが成す角度θを略45度となるようにしている。而して、ビーム部6a,6b,7a,7bをずらして配置するだけで角度θを略45度に維持することができるため、重り部4,5の厚み寸法を大きくする、或いは重り部4,5を軽量化することなく検出感度を向上させることができる。   In the present embodiment, as shown in FIG. 3, the beam portions 6a, 6b, 7a, 7b (only the beam portion 6a is shown in the figure) are recessed from the approximate center in the longitudinal direction of the weight portions 4, 5. By shifting to the side (left side of the figure), the angle θ formed by the perpendicular line drawn from the center of gravity of the weights 4 and 5 to the rotation axis and the surfaces of the movable electrodes 4a and 5a becomes approximately 45 degrees. I am doing so. Thus, the angle θ can be maintained at about 45 degrees simply by shifting the beam portions 6a, 6b, 7a, 7b, so that the thickness dimensions of the weight portions 4, 5 are increased, or the weight portion 4 , 5 can be improved without reducing the weight.

尚、本実施形態では、以下の手順を踏むことで加速度センサの動作確認を行うことができる。即ち、第1の固定電極20a又は第2の固定電極20bと可動電極4aとの間、若しくは第1の固定電極21a又は第2の固定電極21bと可動電極5aとの間に吸引力を発生させることで、重り部4,5を回動させる。そして、重り部4,5の回動に伴って生じる各固定電極20a,…と重り部4,5との間の静電容量の変化を検出することで、加速度センサが正常に動作しているか否かを確認することができる。尚、付着防止膜23a,23bと可動電極4a,5aとの間に吸引力を発生させることで同様の動作確認を行ってもよい。   In the present embodiment, the operation of the acceleration sensor can be confirmed by following the following procedure. That is, an attractive force is generated between the first fixed electrode 20a or the second fixed electrode 20b and the movable electrode 4a, or between the first fixed electrode 21a or the second fixed electrode 21b and the movable electrode 5a. Thus, the weight parts 4 and 5 are rotated. Whether the acceleration sensor is operating normally by detecting a change in capacitance between the fixed electrodes 20a,... And the weights 4 and 5 that occur as the weights 4 and 5 rotate. You can check whether or not. The same operation confirmation may be performed by generating a suction force between the adhesion preventing films 23a and 23b and the movable electrodes 4a and 5a.

1 センサチップ
20a,21a 第1の固定電極
20b,21b 第2の固定電極
4,5 重り部
40,50 充実部
41,51 凹部
4a,5a 可動電極
6a,6b ビーム部
7a,7b ビーム部
8a,8b,9a,9b 電極部
80a,80b,90a,90b 検出電極
DESCRIPTION OF SYMBOLS 1 Sensor chip 20a, 21a 1st fixed electrode 20b, 21b 2nd fixed electrode 4, 5 Weight part 40, 50 Solid part 41, 51 Recessed part 4a, 5a Movable electrode 6a, 6b Beam part 7a, 7b Beam part 8a, 8b, 9a, 9b Electrode portion 80a, 80b, 90a, 90b Detection electrode

Claims (16)

一面に開口する凹部と凹部を除く充実部が一体に形成された重り部と、凹部と充実部とが回動方向に沿って並ぶように重り部を回動自在に支持する1対のビーム部と、凹部が開口する前記一面と異なる他の一面において凹部と充実部とに跨って設けられた可動電極と、可動電極における凹部側と対向する位置に配設された第1の固定電極と、可動電極における充実部側と対向する位置に配設された第2の固定電極と、各固定電極と電気的に接続される検出電極を有する1対の電極部とから成るセンサ部を備え、1対のビーム部を結ぶ直線を回動軸とした重り部の回動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検出する加速度センサであって、センサ部は同一のチップに2つ形成され、各電極部はチップを半々に分割するように一方向に沿って配置され、各重り部は、各電極部の配列の略中央を中心として点対称となるように配置され、且つ各ビーム部を結ぶ直線が各電極部の配置方向と直交する方向に沿うように各ビーム部が配置されたことを特徴とする加速度センサ。   A pair of beam portions that rotatably supports the weight portion so that the concave portion and the solid portion excluding the concave portion are integrally formed, and the weight portion and the solid portion are aligned along the rotation direction. And a movable electrode provided across the concave portion and the solid portion on the other surface different from the one surface where the concave portion opens, a first fixed electrode disposed at a position facing the concave portion side of the movable electrode, A sensor unit including a second fixed electrode disposed at a position facing the solid portion side of the movable electrode and a pair of electrode units having a detection electrode electrically connected to each fixed electrode; An acceleration sensor that detects acceleration from a change in capacitance between a movable electrode and a fixed electrode that accompanies rotation of a weight portion with a straight line connecting a pair of beam portions as a rotation axis. Two are formed on the chip, and each electrode part divides the chip in half Arranged in one direction, the weights are arranged so as to be point-symmetric about the center of the arrangement of the electrode parts, and the straight line connecting the beam parts is orthogonal to the arrangement direction of the electrode parts. An acceleration sensor characterized in that each beam portion is arranged along a direction to be moved. 前記重り部に印加された第1の方向の加速度と、第1の方向と直交する第2の方向の加速度とを検出することを特徴とする請求項1記載の加速度センサ。   2. The acceleration sensor according to claim 1, wherein an acceleration in a first direction applied to the weight part and an acceleration in a second direction orthogonal to the first direction are detected. 前記一方のセンサ部が他方のセンサ部に対して同一平面において180度回転して配置されたことを特徴とする請求項2記載の加速度センサ。   The acceleration sensor according to claim 2, wherein the one sensor unit is rotated 180 degrees in the same plane with respect to the other sensor unit. 前記各固定電極の可動電極との対向面、又は可動電極の各固定電極との対向面には突起部が形成されたことを特徴とする請求項1乃至3の何れか1項に記載の加速度センサ。   The acceleration according to any one of claims 1 to 3, wherein a protrusion is formed on a surface of each of the fixed electrodes facing the movable electrode or on a surface of the movable electrode facing the fixed electrode. Sensor. 前記突起部は、シリコン又はシリコン酸化膜から形成されたことを特徴とする請求項4記載の加速度センサ。   The acceleration sensor according to claim 4, wherein the protrusion is formed of silicon or a silicon oxide film. 前記突起部は、その表層がカーボン材料から形成されたことを特徴とする請求項4記載の加速度センサ。   The acceleration sensor according to claim 4, wherein the protrusion has a surface layer formed of a carbon material. 前記カーボン材料はカーボンナノチューブであることを特徴とする請求項6記載の加速度センサ。   The acceleration sensor according to claim 6, wherein the carbon material is a carbon nanotube. 前記重り部の固定電極が対向する側と反対側の面と所定の間隔を空けて配置される固定板を有し、固定板の重り部と対向する面には、重り部の付着を防止するための付着防止膜が設けられたことを特徴とする請求項1乃至7の何れか1項に記載の加速度センサ。   A fixing plate disposed at a predetermined distance from a surface opposite to a surface of the weight portion opposite to the fixed electrode; and preventing the weight portion from adhering to the surface of the fixing plate facing the weight portion. An acceleration sensor according to any one of claims 1 to 7, further comprising an adhesion preventing film. 前記付着防止膜は、固定電極と同じ材料から形成されたことを特徴とする請求項8記載の加速度センサ。   The acceleration sensor according to claim 8, wherein the adhesion preventing film is made of the same material as the fixed electrode. 前記付着防止膜は、固定電極と同時に形成されることを特徴とする請求項8又は9記載の加速度センサ。   10. The acceleration sensor according to claim 8, wherein the adhesion preventing film is formed simultaneously with the fixed electrode. 前記付着防止膜は、半導体製造プロセスを利用して成膜されることを特徴とする請求項8乃至10の何れか1項に記載の加速度センサ。   The acceleration sensor according to claim 8, wherein the adhesion preventing film is formed using a semiconductor manufacturing process. 前記付着防止膜は、アルミニウム系合金から形成されたことを特徴とする請求項8乃至11の何れか1項に記載の加速度センサ。   The acceleration sensor according to claim 8, wherein the adhesion preventing film is made of an aluminum alloy. 前記固定電極と可動電極との間に吸引力を発生させることにより、第1及び第2の固定電極と可動電極との間の静電容量の変化を検出することを特徴とする請求項8乃至12の何れか1項に記載の加速度センサ。   9. A change in electrostatic capacitance between the first and second fixed electrodes and the movable electrode is detected by generating an attractive force between the fixed electrode and the movable electrode. The acceleration sensor according to any one of 12. 前記付着防止膜の表面には、有機材料から成る薄膜が設けられたことを特徴とする請求項13に記載の加速度センサ。   The acceleration sensor according to claim 13, wherein a thin film made of an organic material is provided on a surface of the adhesion preventing film. 前記薄膜は、ポリイミド薄膜であることを特徴とする請求項14記載の加速度センサ。   The acceleration sensor according to claim 14, wherein the thin film is a polyimide thin film. 前記重り部の重心位置から前記回動軸に下ろした垂線と可動電極の表面とが成す角度が略45度となるように、ビーム部を凹部側にずらして配置したことを特徴とする請求項1乃至15の何れか1項に記載の加速度センサ。   The beam portion is arranged so as to be shifted to the concave portion side so that an angle formed by a perpendicular drawn from the center of gravity of the weight portion to the rotation shaft and the surface of the movable electrode is approximately 45 degrees. The acceleration sensor according to any one of 1 to 15.
JP2009266582A 2009-11-24 2009-11-24 Acceleration sensor Pending JP2011112389A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009266582A JP2011112389A (en) 2009-11-24 2009-11-24 Acceleration sensor
EP10832714.9A EP2506018A4 (en) 2009-11-24 2010-11-23 Acceleration sensor
US13/511,178 US9261530B2 (en) 2009-11-24 2010-11-23 Acceleration sensor
CN201080052810.1A CN102667497B (en) 2009-11-24 2010-11-23 Acceleration sensor
PCT/IB2010/002975 WO2011064642A2 (en) 2009-11-24 2010-11-23 Acceleration sensor
US14/718,493 US9244094B2 (en) 2009-11-24 2015-05-21 Acceleration sensor
US14/874,845 US9702895B2 (en) 2009-11-24 2015-10-05 Acceleration sensor
US15/617,777 US10126322B2 (en) 2009-11-24 2017-06-08 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266582A JP2011112389A (en) 2009-11-24 2009-11-24 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2011112389A true JP2011112389A (en) 2011-06-09

Family

ID=44234849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266582A Pending JP2011112389A (en) 2009-11-24 2009-11-24 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2011112389A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843426A (en) * 1994-06-29 1996-02-16 Texas Instr Inc <Ti> Micro-mechanical type digital accelerometer
US5659195A (en) * 1995-06-08 1997-08-19 The Regents Of The University Of California CMOS integrated microsensor with a precision measurement circuit
JPH11101816A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Angular acceleration sensor and method for detecting angular acceleration
JP2005076756A (en) * 2003-09-01 2005-03-24 Nippon Parkerizing Co Ltd Carbon nano-tube sliding member and its manufacturing method
WO2006009194A1 (en) * 2004-07-21 2006-01-26 Hokuriku Electric Industry Co., Ltd. Semiconductor sensor
JP2006049929A (en) * 2005-10-11 2006-02-16 Renesas Technology Corp Semiconductor device
JP2006133245A (en) * 2006-02-16 2006-05-25 Mitsubishi Electric Corp Capacitance type acceleration sensor
JP2006172662A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus
JP2006519387A (en) * 2003-03-05 2006-08-24 ヴェーテーイー テクノロジーズ オサケユキチュア Capacitive acceleration sensor
JP2007298405A (en) * 2006-04-28 2007-11-15 Matsushita Electric Works Ltd Electrostatic capacity type sensor
JP2008076153A (en) * 2006-09-20 2008-04-03 Denso Corp Mechanical quantity sensor
JP2008544243A (en) * 2005-06-17 2008-12-04 ヴェーテーイー テクノロジーズ オサケユキチュア Method for manufacturing capacitive acceleration sensor and capacitive acceleration sensor
WO2009020716A1 (en) * 2007-08-03 2009-02-12 Freescale Semiconductor Inc. Symmetrical differential capacitive sensor and method of making same
JP2010281641A (en) * 2009-06-03 2010-12-16 Denso Corp Mechanical quantity sensor and method for manufacturing mechanical quantity sensor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843426A (en) * 1994-06-29 1996-02-16 Texas Instr Inc <Ti> Micro-mechanical type digital accelerometer
US5659195A (en) * 1995-06-08 1997-08-19 The Regents Of The University Of California CMOS integrated microsensor with a precision measurement circuit
JPH11101816A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Angular acceleration sensor and method for detecting angular acceleration
JP2006519387A (en) * 2003-03-05 2006-08-24 ヴェーテーイー テクノロジーズ オサケユキチュア Capacitive acceleration sensor
JP2005076756A (en) * 2003-09-01 2005-03-24 Nippon Parkerizing Co Ltd Carbon nano-tube sliding member and its manufacturing method
WO2006009194A1 (en) * 2004-07-21 2006-01-26 Hokuriku Electric Industry Co., Ltd. Semiconductor sensor
JP2006172662A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus
JP2008544243A (en) * 2005-06-17 2008-12-04 ヴェーテーイー テクノロジーズ オサケユキチュア Method for manufacturing capacitive acceleration sensor and capacitive acceleration sensor
JP2006049929A (en) * 2005-10-11 2006-02-16 Renesas Technology Corp Semiconductor device
JP2006133245A (en) * 2006-02-16 2006-05-25 Mitsubishi Electric Corp Capacitance type acceleration sensor
JP2007298405A (en) * 2006-04-28 2007-11-15 Matsushita Electric Works Ltd Electrostatic capacity type sensor
JP2008076153A (en) * 2006-09-20 2008-04-03 Denso Corp Mechanical quantity sensor
WO2009020716A1 (en) * 2007-08-03 2009-02-12 Freescale Semiconductor Inc. Symmetrical differential capacitive sensor and method of making same
JP2010281641A (en) * 2009-06-03 2010-12-16 Denso Corp Mechanical quantity sensor and method for manufacturing mechanical quantity sensor

Similar Documents

Publication Publication Date Title
US10126322B2 (en) Acceleration sensor
JP2015049190A (en) Acceleration sensor
JP5789737B2 (en) Acceleration sensor
WO2010061777A1 (en) Acceleration sensor
JP2010210425A (en) Acceleration sensor
JP4965546B2 (en) Acceleration sensor
JP5716149B2 (en) Acceleration sensor
JP4965547B2 (en) Acceleration sensor
JP2011112389A (en) Acceleration sensor
JP2011112392A (en) Acceleration sensor
JP2012220376A (en) Acceleration sensor
JP2011112390A (en) Acceleration sensor
JP2013231616A (en) Acceleration sensor
JP2010210430A (en) Acceleration sensor
JP2010210431A (en) Acceleration sensor
JP2010216843A (en) Sensor for detecting dynamic quantity
JP2012008022A (en) Acceleration sensor
JP2010210416A (en) Acceleration sensor
JP6070112B2 (en) Acceleration sensor
JP2010216837A (en) Sensor for detecting dynamic quantity
JP2013231617A (en) Acceleration sensor
JP2012008036A (en) Capacitance type sensor
JP2010210418A (en) Acceleration sensor
JP2010210426A (en) Acceleration sensor and method for manufacturing the same
JP2010210417A (en) Acceleration sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126