JP2005076756A - Carbon nano-tube sliding member and its manufacturing method - Google Patents

Carbon nano-tube sliding member and its manufacturing method Download PDF

Info

Publication number
JP2005076756A
JP2005076756A JP2003308165A JP2003308165A JP2005076756A JP 2005076756 A JP2005076756 A JP 2005076756A JP 2003308165 A JP2003308165 A JP 2003308165A JP 2003308165 A JP2003308165 A JP 2003308165A JP 2005076756 A JP2005076756 A JP 2005076756A
Authority
JP
Japan
Prior art keywords
sliding member
substrate
carbon nanotube
carbon nanotubes
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003308165A
Other languages
Japanese (ja)
Other versions
JP4374593B2 (en
Inventor
Atsushi Hirata
敦 平田
Nobuaki Yoshioka
信明 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2003308165A priority Critical patent/JP4374593B2/en
Publication of JP2005076756A publication Critical patent/JP2005076756A/en
Application granted granted Critical
Publication of JP4374593B2 publication Critical patent/JP4374593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member having high lubricating performance in vacuum. <P>SOLUTION: In this sliding member, carbon nano-tubes are stood on a base. Preferably, a diameter of the carbon nano-tube is 10-200 nm, a density of carbon nano-tubes per 1 square μm is 5 pieces or more, and its length is more than a maximum height of surface roughness of the base. The base preferably has fine pores of 10-200 nm diameter, and a thin film of metal selected from iron, nickel and cobalt and its oxide, or a particulate substance is preferably formed on the surface of the base in advance. The carbon nano-tubes are raised by a chemical vapor phase growing method, and the growing is preferably accelerated by applying electric field. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はカーボンナノチューブを固体潤滑材として利用した摺動部材とその製造方法に関する。   The present invention relates to a sliding member using carbon nanotubes as a solid lubricant and a manufacturing method thereof.

カーボンナノチューブの同素体である、グラファイトは層状格子構造を有し、分子間壁開と粒子間すべりにより大気中においては優れた潤滑効果を発揮する。固体潤滑材としての使用形態は粉末として摺動面に塗布する形態、接着剤と混合して塗布膜を摺動面に塗布する形態、他の物質と複合して自己潤滑性摺動部材とする形態、PVD法などで密着性のよい皮膜とする形態などがある。グラファイトの潤滑特性には雰囲気依存性があり、真空中においては結晶端の吸着物質が蒸発し、凝着しやすくなることから優れた潤滑効果を示さないことが知られている(非特許文献1)。   Graphite, an allotrope of carbon nanotubes, has a layered lattice structure, and exhibits an excellent lubricating effect in the atmosphere due to intermolecular wall opening and interparticle sliding. The use form as a solid lubricant is a form in which it is applied to the sliding surface as a powder, a form in which a coating film is applied to the sliding face by mixing with an adhesive, and a self-lubricating sliding member by combining with other substances. There are forms such as a film with good adhesion by a PVD method. It is known that the lubrication characteristics of graphite are dependent on the atmosphere, and in the vacuum, the adsorbed substance at the crystal edge evaporates and tends to adhere, so that it does not show an excellent lubrication effect (Non-Patent Document 1). ).

また、カーボンナノチューブの同素体の潤滑性薄膜としてダイヤモンドライクカーボンが挙げられる。ダイヤモンドライクカーボンは各種硬質薄膜のなかでも、高硬度による優れた耐摩耗性と低摩擦係数を有している。合成方法に応じて性質の異なる膜が合成され、切削工具から電気機器の摺動部品にまで適用されている。プラズマCVD法によって合成したダイヤモンドライクカーボンは真空中において低摩擦係数を示すとの報告例(非特許文献2)はあるが、密着性改善のために種種の前処理を必要とし、生産コストが高いという問題点がある。   Moreover, diamond-like carbon is mentioned as a lubricious thin film of an allotrope of carbon nanotubes. Diamond-like carbon has excellent wear resistance due to high hardness and low friction coefficient among various hard thin films. Films having different properties are synthesized depending on the synthesis method, and applied from cutting tools to sliding parts of electrical equipment. There is a report example (Non-Patent Document 2) that diamond-like carbon synthesized by plasma CVD shows a low friction coefficient in vacuum, but various pretreatments are required to improve adhesion, resulting in high production costs. There is a problem.

一方、カーボンナノチューブは安定な表面構造と高引っ張り強度などの優れた機械的特性(非特許文献3)を有することから、樹脂や金属の複合材料として自己潤滑性摺動部材への応用が検討されている(非特許文献4)。しかし、摺動時に複合材料の母材と相手材が接触し、凝着しやすいことなどから真空中において適用可能な摺動部材ではないと考えられる。   On the other hand, since carbon nanotubes have excellent mechanical properties such as a stable surface structure and high tensile strength (Non-patent Document 3), application to self-lubricating sliding members as a composite material of resin and metal has been studied. (Non-Patent Document 4). However, it is considered that it is not a sliding member applicable in a vacuum because the base material of the composite material and the counterpart material come into contact with each other during sliding and easily adhere to each other.

二硫化モリブデンなどは真空中においても優れた潤滑効果を示す(非特許文献5)。潤滑機構はグラファイトと同様に分子間壁開と粒子間滑りによるものと言われている。二硫化モリブデンは1940年代中ごろから、軍需や宇宙開発を目的として研究開発が進められ、今やあらゆる産業で用いられるようになった。しかし近年、半導体技術の超高精度化に伴って真空テーブルなどの摺動部用固体潤滑剤として長寿命、低発塵性を有する新たな固体潤滑材の需要が高まっている。現在のところ、真空テーブル用固体潤滑材としてテフロンや銀薄膜が使用されている。   Molybdenum disulfide and the like show an excellent lubricating effect even in vacuum (Non-patent Document 5). The lubrication mechanism is said to be due to intermolecular wall opening and interparticle slipping, similar to graphite. Molybdenum disulfide has been researched and developed for military purposes and space development since the mid-1940s, and is now used in all industries. However, in recent years, demand for new solid lubricants having a long life and low dust generation as a solid lubricant for sliding parts such as a vacuum table has increased with the advancement of ultra-high precision semiconductor technology. At present, Teflon and silver thin films are used as solid lubricants for vacuum tables.

本発明に近い従来技術として、目的は異なるが、基体に細孔を作製してその低部の成長核からカーボンナノチューブの成長方向を規制して合成する技術(特許文献1)が挙げられる。そのような従来技術において多くの場合、基体として多孔質アルミナまたは多孔質シリコンが用いられているが、その基体自体の降伏圧力が低下してしまい、摺動部材としては使用に耐えない。   As a conventional technique close to the present invention, there is a technique (Patent Document 1) in which pores are formed in a substrate and the growth direction of carbon nanotubes is regulated from the lower growth nucleus to synthesize, although the purpose is different. In many of such prior arts, porous alumina or porous silicon is used as a substrate, but the yield pressure of the substrate itself is lowered, and it cannot be used as a sliding member.

特開平11−11917JP-A-11-11917

寺岡利雄:トライボロジスト,36,103(1991)Toshio Teraoka: Tribologist, 36, 103 (1991) A.Grill,V.Patel:Diamond and Related Materials,2,597(1993)A. Grill, V. Patel: Diamond and Related Materials, 2,597 (1993) Min-Fen Yu,Oleg Lourie:Science,287,637(2000)Min-Fen Yu, Oleg Lourie: Science, 287, 637 (2000) W.X.Chen,J.P.Tu:Surface and Coating Technology,160,68(2002)W.X.Chen, J.P.Tu: Surface and Coating Technology, 160, 68 (2002) M.E.Bell and J.H.Findlay:Phys,Rev.,57,635(1940)。M. E. Bell and J. H. Findlay: Phys, Rev. 57, 635 (1940).

本発明は従来の固体潤滑材を付与した摺動部材の真空中における潤滑特性の向上、寿命や発塵性、製造コストなどの問題点を解決することを目的とする。   An object of the present invention is to solve problems such as improvement of lubrication characteristics in a vacuum of a sliding member provided with a conventional solid lubricant, life, dust generation, and manufacturing cost.

本発明は(1)基体上にカーボンナノチューブが林立していることを特徴とするカーボンナノチューブ摺動部材である。   The present invention is (1) a carbon nanotube sliding member characterized in that a carbon nanotube stands on a substrate.

また(2)前記摺動部材上のカーボンナノチューブが直径10 nm以上200nm未満であることを特徴とする前記(1)記載のカーボンナノチューブ摺動部材である。   (2) The carbon nanotube sliding member according to (1), wherein the carbon nanotubes on the sliding member have a diameter of 10 nm or more and less than 200 nm.

また(3)前記摺動部材上のカーボンナノチューブ本数密度が1平方μmあたり5本以上であることを特徴とする前記(1)または(2)記載のカーボンナノチューブ摺動部材である。   (3) The carbon nanotube sliding member according to (1) or (2), wherein the number density of carbon nanotubes on the sliding member is 5 or more per square μm.

また(4)前記摺動部材上のカーボンナノチューブの長さが基体表面粗さの最大高さ以上であることを特徴とする前記(1)〜(3)の何れかに記載のカーボンナノチューブ摺動部材である。   (4) The carbon nanotube sliding according to any one of (1) to (3) above, wherein the length of the carbon nanotube on the sliding member is not less than the maximum height of the surface roughness of the substrate. It is a member.

また(5)前記摺動部材の製造過程において、表面に直径10nm以上200nm未満の微少な細孔を有する材料を摺動部材の基体として使用することを特徴とする前記(1)〜(4)の何れかに記載のカーボンナノチューブ摺動部材の製造方法である。   (5) In the manufacturing process of the sliding member, a material having fine pores having a diameter of 10 nm or more and less than 200 nm on the surface is used as a base of the sliding member. The method for producing a carbon nanotube sliding member according to any one of the above.

また(6)前記基体表面には鉄、ニッケル、コバルトから選ばれる一種以上からなる金属またはその酸化物の薄膜状または微粒子状物質がカーボンナノチューブの製造にさきだって形成されることを特徴とする前記(5)記載のカーボンナノチューブ摺動部材の製造方法である。   (6) A thin film or fine particle material of a metal selected from iron, nickel and cobalt or an oxide thereof is formed on the surface of the substrate prior to the production of carbon nanotubes. (5) A method for producing a carbon nanotube sliding member according to (5).

また(7)前記摺動部材を製造する過程において、化学気相成長法を用いてカーボンナノチューブを林立させることを特徴とする前記(5)または(6)記載のカーボンナノチューブ摺動部材の製造方法である。   (7) The method for producing a carbon nanotube sliding member according to (5) or (6), wherein in the process of producing the sliding member, carbon nanotubes are grown using chemical vapor deposition. It is.

また(8)前記化学気相成長法において、電界を印加してカーボンナノチューブの成長を促進することを特徴とする前記(7)記載のカーボンナノチューブ摺動部材の製造方法である。   (8) The method of manufacturing a carbon nanotube sliding member according to (7), wherein in the chemical vapor deposition method, an electric field is applied to promote the growth of the carbon nanotube.

以下に本発明を具体的に説明する。本発明者等は、かかる技術課題を解決するために鋭意研究を重ねた結果、安定な表面構造と高い機械強度を有するカーボンナノチューブに着目したが、従来のようにそれを他の材料と複合化して使用するのではなく、化学気相成長法を用いて基体表面上に直接的に成長させることによりそれらを林立させた構造が最も優れた摺動効果を示すことを全く新たに見出した。したがって本発明は摺動表面上にカーボンナノチューブを林立した摺動部材とその製造方法を提供しようとするものである。また、カーボンナノチューブの合成時間は数10分であるので、その数倍以上合成時間を要するダイヤモンドライクカーボンよりも低コストの摺動部材の製造方法である。   The present invention will be specifically described below. As a result of intensive research in order to solve such technical problems, the present inventors have focused on carbon nanotubes having a stable surface structure and high mechanical strength. However, they have been combined with other materials as in the past. It was found that the structure in which they are grown by directly growing on the surface of a substrate using a chemical vapor deposition method exhibits the best sliding effect. Accordingly, the present invention intends to provide a sliding member in which carbon nanotubes are erected on the sliding surface and a method for manufacturing the same. Further, since the synthesis time of carbon nanotubes is several tens of minutes, this is a method for manufacturing a sliding member at a lower cost than diamond-like carbon which requires several times or more of the synthesis time.

カーボンナノチューブを表面上に林立させる基体は、表面に微小な細孔を有し、カーボンナノチューブを保持する作用を有する基体が好ましい。   The substrate on which the carbon nanotubes are planted on the surface is preferably a substrate having fine pores on the surface and having a function of holding the carbon nanotubes.

基体表面の微小な細孔径にカーボンナノチューブの付着力は依存しているので、基体表面上の微少な細孔径は10nmから200nmで、合成するカーボンナノチューブの直径は10nmから200nmの範囲内にあるのが好ましい。   Since the adhesion force of carbon nanotubes depends on the minute pore diameter on the substrate surface, the minute pore diameter on the substrate surface is 10 nm to 200 nm, and the diameter of the carbon nanotube to be synthesized is in the range of 10 nm to 200 nm. Is preferred.

基体表面上のカーボンナノチューブ密度に依存して摺動部材の潤滑特性は異なる。本発明者がカーボンナノチューブ密度を変えて摩擦摩耗試験を行ったところ、次のことがらがわかった。摺動部材としてカーボンナノチューブ密度は1平方μmあたり5本以上が好ましい。カーボンナノチューブ密度は、走査電子顕微鏡によって試料表面の3μm四方に含まれるカーボンナノチューブ本数を3箇所測定し、平均することによって求めた。   Depending on the density of carbon nanotubes on the surface of the substrate, the lubrication characteristics of the sliding member are different. When the present inventor conducted a frictional wear test while changing the density of carbon nanotubes, the following was found. As the sliding member, the density of carbon nanotubes is preferably 5 or more per square μm. The carbon nanotube density was determined by measuring the number of carbon nanotubes contained in a 3 μm square of the sample surface at three locations with a scanning electron microscope and averaging the measured number.

基体表面上のカーボンナノチューブ長さに依存して摺動部材の潤滑特性は異なる。本発明者等はカーボンナノチューブ長さを変えて摩擦摩耗試験を行ったところ、次のことがらがわかった。カーボンナノチューブ長さは基体表面粗さの最大高さを超えることが好ましい。   Depending on the length of the carbon nanotube on the substrate surface, the lubrication characteristics of the sliding member are different. The inventors of the present invention conducted the friction and wear test while changing the length of the carbon nanotube, and found the following. The length of the carbon nanotubes preferably exceeds the maximum height of the substrate surface roughness.

基体自体の強度維持のためには、硬質微粒子から構成される基体材料を用いることが好ましい。摺動部材の基体が、鉄、ニッケル、コバルトから選ばれる1種以上からなる金属またはその酸化物を燒結助剤のように含む場合は、その基体材料に直接カーボンナノチューブを合成することができる。逆に含まない場合、その基体上に鉄、ニッケル、コバルトから選ばれる1種以上からなる金属またはその酸化物の薄膜状または微粒子状物質をカーボンナノチューブの作製にさきだって形成することが好ましい。   In order to maintain the strength of the substrate itself, it is preferable to use a substrate material composed of hard fine particles. When the base of the sliding member contains at least one metal selected from iron, nickel, and cobalt or an oxide thereof as a sintering aid, carbon nanotubes can be directly synthesized into the base material. On the other hand, when not included, it is preferable to form a thin film or particulate material of one or more metals selected from iron, nickel, and cobalt on the substrate, or an oxide thereof, prior to the production of carbon nanotubes.

カーボンナノチューブの合成方法は主にアーク放電法、レーザー蒸発法、化学気相成長法に分けられる。基体上に広範囲にかつ不純物を少なくカーボンナノチューブを合成する必要があるので合成方法として化学気相成長法が好ましい。   Carbon nanotube synthesis methods are mainly classified into arc discharge, laser evaporation, and chemical vapor deposition. Since it is necessary to synthesize carbon nanotubes over a wide range and with few impurities, a chemical vapor deposition method is preferred as a synthesis method.

基体に垂直に電界を印加しながら化学気相成長法でカーボンナノチューブの合成を行い、基体表面に垂直にカーボンナノチューブを合成した場合、摺動時に相手材とカーボンナノチューブが接触する割合が上昇する。また電界を印加することによってカーボンナノチューブの合成速度、合成割合が増加する。したがって基体に対して垂直に電界を印加しながら合成を行うことが好ましい。   When carbon nanotubes are synthesized by chemical vapor deposition while applying an electric field perpendicularly to the substrate, and the carbon nanotubes are synthesized perpendicularly to the surface of the substrate, the rate of contact between the counterpart material and the carbon nanotubes during sliding increases. In addition, by applying an electric field, the synthesis rate and synthesis rate of carbon nanotubes increase. Therefore, it is preferable to perform the synthesis while applying an electric field perpendicular to the substrate.

カーボンナノチューブはグラファイトシートを円筒状に丸めた構造をとり、安定な表面構造をしていることからグラファイト同様、潤滑性を有する。基体への付着力が高い場合、転がり摩擦ではなく滑り摩擦が生じていると考えられる。しかし、ナノオーダーでは転がり摩擦より、滑り摩擦の方が小さいという報告もあり、滑りによる優れた潤滑効果が期待される。   Carbon nanotubes have a structure in which a graphite sheet is rolled into a cylindrical shape, and have a stable surface structure, so that they have lubricity like graphite. When the adhesion to the substrate is high, it is considered that sliding friction is generated instead of rolling friction. However, there is a report that the sliding friction is smaller than the rolling friction in the nano-order, and an excellent lubricating effect by sliding is expected.

カーボンナノチューブの基体への付着力強化のために表面上に微小な細孔を有する基体を用いたが、その強化機構は次のように考えられる。気体表面の細孔径がカーボンナノチューブ径に等しい場合、その細孔中から成長したカーボンナノチューブは摺動時に相手材との摩擦による根元部からの摩耗が妨げられ、摺動後も摺動部上に付着しているものと考えられる。   In order to enhance the adhesion of carbon nanotubes to the substrate, a substrate having fine pores on the surface was used. The strengthening mechanism is considered as follows. When the pore diameter of the gas surface is equal to the carbon nanotube diameter, the carbon nanotubes grown from the pores are prevented from wearing from the root due to friction with the counterpart material during sliding, and remain on the sliding portion after sliding. It is thought that it has adhered.

本発明によれば、表面に微小な細孔を有する基体を用いて化学気相成長法によりカーボンナノチューブを基体表面上に作製することにより、基体に強固に付着したカーボンナノチューブを有する摺動部材を提供することができる。この摺動部材は、摺動時、カーボンナノチューブが基体と相手材の接触を防ぎ、カーボンナノチューブ自身は安定な表面構造を有することから真空中においても適用可能な摺動部材となる。しかも、真空中において優れた固体潤滑材である二硫化モリブデンとは、このように潤滑メカニズムが異なることから、発塵性を示さない。もちろん大気中、潤滑油中においても優れた潤滑効果を示す。   According to the present invention, a sliding member having carbon nanotubes firmly attached to a substrate can be obtained by producing carbon nanotubes on the substrate surface by chemical vapor deposition using a substrate having minute pores on the surface. Can be provided. This sliding member is a sliding member that can be applied even in a vacuum because the carbon nanotubes prevent the substrate and the counterpart material from contacting each other during sliding, and the carbon nanotubes themselves have a stable surface structure. Moreover, since the lubrication mechanism is different from that of molybdenum disulfide, which is an excellent solid lubricant in vacuum, it does not exhibit dust generation. Of course, it exhibits an excellent lubricating effect even in the air and in lubricating oil.

本発明の実施例として、発明者等は図2にしめす構成のマイクロ波プラズマCVD装置を用いて、図3に示すようにマイクロ波の入射を妨げないように基体上部に極板を設置し、電界を印加しながらマイクロ波プラズマCVD法によってカーボンナノチューブの合成を行った。微小な細孔を含む基体材料(Sample)として、炭化タングステン微粒子平均粒径が1μmでコバルト助剤を5%含む超硬合金基板を用いた。   As an example of the present invention, the inventors used a microwave plasma CVD apparatus having the configuration shown in FIG. 2, and installed an electrode plate on the base so as not to interfere with the incidence of microwaves as shown in FIG. Carbon nanotubes were synthesized by microwave plasma CVD while applying an electric field. As a base material (Sample) including fine pores, a cemented carbide substrate having an average particle size of tungsten carbide fine particles of 1 μm and containing 5% of a cobalt auxiliary was used.

まず基板を2〜3μmのダイヤモンド砥粒でラッピングし、算術平均粗さ0.15μmとした。その後基板をアセトン中で超音波洗浄してから、CVD装置の石英チャンバー(Quartz glass tube)内に配置し、1.0×10−2 Torrまで真空排気した。その後、メタンと水素が1:10の割合の混合ガスを流し、石英チャンバー内圧力を5 Torrとした。次にマイクロ波出力(Microwave power unit の出力)900W、印加電圧を50Vとしてプラズマを生成し、10分間カーボンナノチューブの合成を行った。走査電子顕微鏡で基板表面を観察したところ、図1に示すように、基板表面に林立した直径100nm前後のカーボンナノチューブが合成された。 First, the substrate was lapped with 2 to 3 μm diamond abrasive grains to obtain an arithmetic average roughness of 0.15 μm. Thereafter, the substrate was ultrasonically cleaned in acetone, then placed in a quartz chamber (Quartz glass tube) of a CVD apparatus, and evacuated to 1.0 × 10 −2 Torr. Thereafter, a mixed gas of methane and hydrogen in a ratio of 1:10 was flowed, and the pressure in the quartz chamber was set to 5 Torr. Next, plasma was generated with a microwave power (microwave power unit output) of 900 W and an applied voltage of 50 V, and carbon nanotubes were synthesized for 10 minutes. When the surface of the substrate was observed with a scanning electron microscope, as shown in FIG. 1, carbon nanotubes with a diameter of around 100 nm were synthesized on the surface of the substrate.

このようにして得られたカーボンナノチューブを用いて、ボールオンディスク式摩擦試験装置で潤滑特性を検討した。この際、ボールには3/16インチ径のSUS440C鋼球を、ディスクにはカーボンナノチューブを合成した超硬合金基板を用いた。荷重を0.5N、滑り速度を10mm/s、雰囲気は1.0×10−5 Torrの真空中において摩擦摩耗試験を行った。 Using the carbon nanotubes thus obtained, lubrication characteristics were examined with a ball-on-disk friction test apparatus. In this case, a 3/16 inch diameter SUS440C steel ball was used for the ball, and a cemented carbide substrate synthesized with carbon nanotubes was used for the disk. The friction and wear test was performed in a vacuum of 0.5 N load, sliding speed 10 mm / s, and atmosphere 1.0 × 10 −5 Torr.

算術平均粗さ0.15μmの超硬合金基板のみの場合は0.5〜0.6の摩擦係数を示したの対し、カーボンナノチューブを合成した場合は0.1以下の低摩擦係数を示した。滑り距離が20mに達するまで摩擦摩耗試験を行い、走査電子顕微鏡によってその基板摺動部を観察したところ、カーボンナノチューブが傾斜したまま付着しているのが観察された。したがって合成を行ったカーボンナノチューブは基板への強固な付着力を有しており、優れた潤滑効果を示すことがわかった。もちろん、本発明の摺動部材は大気中、潤滑油中においても優れた潤滑効果を示す。   In the case of only the cemented carbide substrate having an arithmetic average roughness of 0.15 μm, a friction coefficient of 0.5 to 0.6 was shown, whereas when carbon nanotubes were synthesized, a low friction coefficient of 0.1 or less was shown. A frictional wear test was performed until the sliding distance reached 20 m, and the substrate sliding portion was observed with a scanning electron microscope. As a result, it was observed that the carbon nanotubes were attached while being inclined. Therefore, it was found that the synthesized carbon nanotube has a strong adhesion to the substrate and exhibits an excellent lubricating effect. Of course, the sliding member of the present invention exhibits an excellent lubricating effect even in the air and in lubricating oil.

次に基体材料を窒化珪素基板としてカーボンナノチューブの合成を行い、摩擦摩耗試験を行った。合成するにあたり、基板にラッピング処理を行って算術平均粗さ0.2μmとした後、20%(質量比 溶質:蒸留水=1:4)の硝酸鉄水溶液に浸し、水分を乾燥炉で除去することによって鉄触媒を基板上に析出させた。その後のカーボンナノチューブの合成プロセスは超硬合金基板を用いた場合と同じである。 Next, carbon nanotubes were synthesized using the substrate material as a silicon nitride substrate, and a frictional wear test was conducted. In the synthesis, the substrate is lapped to an arithmetic average roughness of 0.2 μm, and then immersed in a 20% iron nitrate aqueous solution (mass specific solute: distilled water = 1: 4) to remove moisture in a drying furnace. As a result, the iron catalyst was deposited on the substrate. The subsequent carbon nanotube synthesis process is the same as when a cemented carbide substrate is used.

合成後、超硬合金基板の場合と同条件で摩擦摩耗試験を行った。窒化珪素基板のみを真空中において摩擦摩耗試験を行った場合、摩擦係数は0.4〜0.5を示すのに対して、カーボンナノチューブを合成した基板は0.1程度の低摩擦係数を示した。したがって窒化珪素基板上に合成したカーボンナノチューブも真空中において優れた潤滑効果を示すことがわかった。   After the synthesis, a friction and wear test was performed under the same conditions as for the cemented carbide substrate. When the frictional wear test was performed on only a silicon nitride substrate in a vacuum, the friction coefficient was 0.4 to 0.5, whereas the substrate on which the carbon nanotubes were synthesized exhibited a low friction coefficient of about 0.1. Therefore, it was found that carbon nanotubes synthesized on a silicon nitride substrate also showed an excellent lubricating effect in vacuum.

〔比較例1〕
比較例として市販のグラファイト粉末を同種の超硬合金基板上に散布して摩擦摩耗試験を行った。摩擦摩耗試験条件も実施例1と同条件であり、真空中において試験を行った。超硬合金基板はダイヤモンド砥粒によるラッピング処理後の状態である。その結果、摩擦係数は初期の摩擦係数0.3程度から増加し、滑り距離7m以降は摩擦係数0.5〜0.6で超硬合金基板そのものとほぼ等しい値を示した。グラファイトが真空中において優れた潤滑効果を示さないことは既知であり、カーボンナノチューブの潤滑特性との差異が確認された。
[Comparative Example 1]
As a comparative example, a commercially available graphite powder was dispersed on the same type of cemented carbide substrate, and a frictional wear test was conducted. The friction and wear test conditions were also the same as in Example 1, and the test was performed in a vacuum. The cemented carbide substrate is in a state after lapping with diamond abrasive grains. As a result, the coefficient of friction increased from an initial coefficient of friction of about 0.3, and after a sliding distance of 7 m, the coefficient of friction was 0.5 to 0.6, which was almost equal to that of the cemented carbide substrate itself. It is known that graphite does not show an excellent lubricating effect in vacuum, and a difference from the lubricating properties of carbon nanotubes has been confirmed.

〔比較例2〕
次に市販の気相成長炭素繊維を実施例1と同種の超硬合金基板上に散布して摩擦摩耗試験を行った。気相成長炭素繊維は直径200〜300nm、長さは5μm以上である。摩擦摩耗試験条件も実施例1と同条件であり、真空中において試験を行った。超硬合金基板はダイヤモンド砥粒によるラッピング処理後の状態である。その結果、滑り距離3mまでは摩擦係数0.3程度を示し、それ以降は摩擦係数0.5〜0.6で超硬合金基板そのものとほぼ等しい値を示した。グラファイト同様、気相成長炭素繊維は本条件において優れた潤滑効果を示さなかった。この結果の理由として、カーボンナノチューブとは異なり繊維表面上に多くのダングリングボンドを有していることなどが考えられる。
[Comparative Example 2]
Next, a commercially available vapor grown carbon fiber was sprayed on the same type of cemented carbide substrate as in Example 1 to conduct a frictional wear test. The vapor grown carbon fiber has a diameter of 200 to 300 nm and a length of 5 μm or more. The friction and wear test conditions were also the same as in Example 1, and the test was performed in a vacuum. The cemented carbide substrate is in a state after lapping with diamond abrasive grains. As a result, a friction coefficient of about 0.3 was shown up to a sliding distance of 3 m, and after that, a friction coefficient of 0.5 to 0.6 showed a value almost equal to that of the cemented carbide substrate itself. Like graphite, vapor grown carbon fiber did not show an excellent lubricating effect under these conditions. A possible reason for this result is that, unlike carbon nanotubes, there are many dangling bonds on the fiber surface.

本発明の基板表面に林立したカーボンナノチューブの例を示す図。The figure which shows the example of the carbon nanotube planted on the substrate surface of this invention. 実施例で用いたマイクロ波プラズマCVD装置を示す図。The figure which shows the microwave plasma CVD apparatus used in the Example. 図2の要部の説明図Explanatory drawing of the main part of FIG.

Claims (8)

基体上にカーボンナノチューブが林立していることを特徴とするカーボンナノチューブ摺動部材。 A carbon nanotube sliding member characterized in that carbon nanotubes stand on a substrate. 前記摺動部材上のカーボンナノチューブが直径10 nm以上200nm未満であることを特徴とする請求項1記載のカーボンナノチューブ摺動部材。 2. The carbon nanotube sliding member according to claim 1, wherein the carbon nanotubes on the sliding member have a diameter of 10 nm or more and less than 200 nm. 前記摺動部材上のカーボンナノチューブ本数密度が1平方μmあたり5本以上であることを特徴とする請求項1または2記載のカーボンナノチューブ摺動部材。 3. The carbon nanotube sliding member according to claim 1, wherein the number density of carbon nanotubes on the sliding member is 5 or more per square μm. 4. 前記摺動部材上のカーボンナノチューブの長さが基体表面粗さの最大高さ以上であることを特徴とする請求項1〜3の何れかに記載のカーボンナノチューブ摺動部材。 The carbon nanotube sliding member according to any one of claims 1 to 3, wherein a length of the carbon nanotube on the sliding member is equal to or greater than a maximum height of the substrate surface roughness. 前記摺動部材の製造過程において、表面に直径10nm以上200nm未満の微少な細孔を有する材料を摺動部材の基体として使用することを特徴とする請求項1〜4の何れかに記載のカーボンナノチューブ摺動部材の製造方法。 5. The carbon according to claim 1, wherein a material having fine pores having a diameter of 10 nm or more and less than 200 nm on the surface is used as a base of the sliding member in the manufacturing process of the sliding member. Manufacturing method of nanotube sliding member. 前記基体表面には鉄、ニッケル、コバルトから選ばれる一種以上からなる金属またはその酸化物の薄膜状または微粒子状物質がカーボンナノチューブの製造にさきだって形成されることを特徴とする請求項5記載のカーボンナノチューブ摺動部材の製造方法。 The thin film-like or fine-particle substance of a metal consisting of at least one selected from iron, nickel and cobalt or an oxide thereof is formed on the surface of the substrate prior to the production of carbon nanotubes. Manufacturing method of carbon nanotube sliding member. 前記摺動部材を製造する過程において、化学気相成長法を用いてカーボンナノチューブを林立させることを特徴とする請求項5または6記載のカーボンナノチューブ摺動部材の製造方法。 The method for producing a carbon nanotube sliding member according to claim 5 or 6, wherein in the process of producing the sliding member, the carbon nanotube is planted using chemical vapor deposition. 前記化学気相成長法において、電界を印加してカーボンナノチューブの成長を促進することを特徴とする請求項7記載のカーボンナノチューブ摺動部材の製造方法。


8. The method of manufacturing a carbon nanotube sliding member according to claim 7, wherein in the chemical vapor deposition method, an electric field is applied to promote the growth of the carbon nanotube.


JP2003308165A 2003-09-01 2003-09-01 Carbon nanotube sliding member and manufacturing method thereof Expired - Fee Related JP4374593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003308165A JP4374593B2 (en) 2003-09-01 2003-09-01 Carbon nanotube sliding member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308165A JP4374593B2 (en) 2003-09-01 2003-09-01 Carbon nanotube sliding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005076756A true JP2005076756A (en) 2005-03-24
JP4374593B2 JP4374593B2 (en) 2009-12-02

Family

ID=34410711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308165A Expired - Fee Related JP4374593B2 (en) 2003-09-01 2003-09-01 Carbon nanotube sliding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4374593B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042352A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Field electron emitting source, magnetron using it, and microwave applied device
JP2008105082A (en) * 2006-10-27 2008-05-08 Matsuoka Tekkosho:Kk Mold
JP2011084436A (en) * 2009-10-16 2011-04-28 Hitachi Zosen Corp Substrate for producing carbon nanotube
JP2011112392A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011112388A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011112390A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011112389A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011147984A (en) * 2010-01-22 2011-08-04 Toyota Central R&D Labs Inc Mold, solidified body, and method for producing the same
JP2011241420A (en) * 2010-05-17 2011-12-01 Showa Denko Kk Method for manufacturing copper material with carbon thin film
JP2012166969A (en) * 2011-02-10 2012-09-06 Katsuyoshi Kondo Substrate with film and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042352A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Field electron emitting source, magnetron using it, and microwave applied device
JP2008105082A (en) * 2006-10-27 2008-05-08 Matsuoka Tekkosho:Kk Mold
JP2011084436A (en) * 2009-10-16 2011-04-28 Hitachi Zosen Corp Substrate for producing carbon nanotube
JP2011112392A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011112388A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011112390A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011112389A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011147984A (en) * 2010-01-22 2011-08-04 Toyota Central R&D Labs Inc Mold, solidified body, and method for producing the same
US8646745B2 (en) 2010-01-22 2014-02-11 Toyota Jidosha Kabushiki Kaisha Mold, solidified body, and methods of manufacture thereof
JP2011241420A (en) * 2010-05-17 2011-12-01 Showa Denko Kk Method for manufacturing copper material with carbon thin film
JP2012166969A (en) * 2011-02-10 2012-09-06 Katsuyoshi Kondo Substrate with film and method for manufacturing the same

Also Published As

Publication number Publication date
JP4374593B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
Gogotsi et al. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure
Wu et al. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering
US6080470A (en) Hard graphite-like material bonded by diamond-like framework
US6899828B2 (en) Composite coatings
Lai et al. Straight β-SiC nanorods synthesized by using C–Si–SiO 2
Xiao et al. Synthesis of a Self‐Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes
JP5647232B2 (en) Method for coating micromechanical components while maintaining high friction performance applied to micromechanical systems
US20060222850A1 (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
JP4374593B2 (en) Carbon nanotube sliding member and manufacturing method thereof
CN105839070B (en) A kind of preparation method of low friction nanometer TaC enhancings charcoal base complex phase film
Wang et al. Elastic properties of a‐C: N: H films
Ma et al. Deposition and characterization of nanocrystalline diamond films on Co-cemented tungsten carbide inserts
Bakoglidis et al. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering
Radhika et al. Extremely high wear resistance and ultra-low friction behaviour of oxygen-plasma-treated nanocrystalline diamond films
Tiwari et al. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition
Din et al. Tribological performance of titanium alloy Ti–6Al–4V via CVD–diamond coatings
JPH1025565A (en) Production of head thin film and hard thin film
Zhou et al. Mechanochemical grinding diamond film using titanium-coated diamond active abrasives prepared by vacuum micro-evaporation coating
Chou et al. Fractal dimension and surface topography on the diamond deposition of seeded WC–Co substrates
JP5182852B2 (en) Silicon carbide abrasive and silicon carbide polishing method using the same
Saha et al. Growth of diamond-like carbon films with significant nanocrystalline phases in a low-pressure high-density CH4 plasma in ICP-CVD: Effect of negative dc substrate bias
JP2005036275A (en) Dlc particulate and its production metho
Rashid et al. Manufacturing and Characterization of a Carbon-Based Amorphous (a-CN X) Coating Material
JP2000178070A (en) Hard graphite-like material bonded by diamond-like framework
Dörfel et al. Microstructural characterization of binary and ternary hard coating systems for wear protection Part II: Ti (CN) PACVD coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4374593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees