JP2011107001A - 非常用炉心冷却装置 - Google Patents

非常用炉心冷却装置 Download PDF

Info

Publication number
JP2011107001A
JP2011107001A JP2009263447A JP2009263447A JP2011107001A JP 2011107001 A JP2011107001 A JP 2011107001A JP 2009263447 A JP2009263447 A JP 2009263447A JP 2009263447 A JP2009263447 A JP 2009263447A JP 2011107001 A JP2011107001 A JP 2011107001A
Authority
JP
Japan
Prior art keywords
pipe
reactor
emergency
cooling
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009263447A
Other languages
English (en)
Other versions
JP5586213B2 (ja
Inventor
Yoshiyuki Kataoka
良之 片岡
Tomohiko Ikegawa
智彦 池側
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009263447A priority Critical patent/JP5586213B2/ja
Publication of JP2011107001A publication Critical patent/JP2011107001A/ja
Application granted granted Critical
Publication of JP5586213B2 publication Critical patent/JP5586213B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】原子力プラントの系統構成を簡素化でき、オンラインメンテナンスができる非常用炉心冷却装置を提供する。
【解決手段】BWRプラントの運転時に、原子炉浄化系15が原子炉圧力容器1内の冷却水を浄化する。3区分の安全系、及び原子炉浄化系15と兼用の安全系95が設けられる。区分IIIの安全系のLPFLでオンラインメンテナンスを行っているとき、LOCAが発生したとする。このとき、区分IIの安全系の非常用DG66が故障し、区分Iの安全系のLPFL配管が破断している。制御装置97は、第1切替え装置86を切替え、非常用DG48で生じた電力で浄化系ポンプ19Aを駆動させる。原子炉浄化系15の浄化系配管16と圧力抑制プール9を接続した冷却水配管22の開閉弁25Aが開き、圧力抑制プール9の冷却水が非再生熱交換器17Aで冷却され、原子炉圧力容器1に注入される。
【選択図】図1

Description

本発明は、非常用炉心冷却装置に係り、特に、沸騰水型原子炉に適用するのに好適な非常用炉心冷却装置に関する。
沸騰水型原子力プラント等の原子力プラントは、非常用炉心冷却系、及び非常用ディーゼル発電機(以下、非常用DGという)等の非常用電源を有する多重の安全系を備えている。この安全系の多重化により、原子炉圧力容器に接続された配管破断による冷却材喪失事故(LOCA)が発生したときに、一系統の安全系に含まれる機器に故障が発生したとしても、残りの安全系で原子力プラントを安全に冷却し停止状態にすることを可能にしている。例えば、改良型の沸騰水型原子炉(ABWR;Advanced Boiling Water Reactor)では、高圧注水系、残留熱除去系を有する低圧注水系、及びそれらの非常用DGを備えた安全系が、3区分設けられている。3区分の安全系を設けることにより、一基の非常用DGが故障してこの非常用DGを含む1つの区分の安全系における冷却系が不作動になり、かつ、残りの2区分のうち、1つの区分の安全系に含まれる非常用炉心冷却系の高圧注水系あるいは低圧注水系のいずれかで配管が破断しても、残っている健全な安全系で原子炉の炉心を冷却することができる。3区分の安全系を備えた非常用炉心冷却装置の例が、特開昭62−217193号公報に記載されている(第2図参照)。
原子力プラントの稼働率を向上させるために、非常用炉心冷却装置の安全系に設けられた機器の点検保守を原子力プラントの運転中に実施し、原子力プラントの停止中に実施する定期検査期間を短縮する、オンラインメンテナンスの適用が考えられている。非常用炉心冷却装置では、炉心及び格納容器の冷却に必要な安全系を、LOCAが発生したときに作動できるように、待機状態にしておく必要がある。非常用炉心冷却装置において1区分の安全系を対象にオンラインメンテナンスを行う場合においても、オンラインメンテナンス時にLOCAが発生したときに少なくとも1区分の安全系を作動させなければならない。このため、安全系を1区分増やし、4区分の安全系を有する非常用炉心冷却装置が提案されている。
4区分の安全系を有する非常用炉心冷却装置では、1区分の安全系で非常用DGが故障し、他の1区分の安全系で配管が破断し、さらに、他の1区分の安全系でオンラインメンテナンスを実施して、3区分の安全系が作動できない状態になっていても、LOCAが発生したときには残りの1区分の安全系で原子炉の炉心を冷却することができる。
4区分の安全系を設けてオンラインメンテナンスを可能にした非常用炉心冷却装置の例が、特開2008−281426号公報に提案されている。特開2008−281426号公報に記載された非常用炉心冷却装置は、3区分の動的安全系及び1区分の静的安全系を備えている。
沸騰水型原子力プラントにおいて、常用系の原子炉浄化系を、LOCA時において原子炉の炉心に冷却水を注水する非常時の冷却系として用いることが提案されている(特開平6−160586号公報、特開平7−318687号公報及び特開平8−62373号公報参照)。特開平6−160586号公報では、圧力抑制プールを原子炉浄化系の非再生熱交換器とろ過脱塩器の間の浄化系配管に接続し、水源を多様化している。LOCAが発生したとき、圧力抑制プール内の冷却水が、原子炉浄化系の浄化系配管を通して原子炉の炉心に供給される。
特開平7−318687号公報及び特開平8−62373号公報では、LOCAが発生したとき、圧力抑制プール内の冷却水が、原子炉浄化系の非再生熱交換器で冷却された後、原子炉浄化系の浄化系配管を通して原子炉の炉心に供給される。
特開昭62−217193号公報 特開2008−281426号公報 特開平6−160586号公報 特開平7−318687号公報 特開平8−62373号公報
特開2008−281426号公報に記載された非常用炉心冷却装置は、4区分の安全系を備えており、オンラインメンテナンスを実施するために1区分の安全系(静的安全系)を増やす必要がある。このため、原子力プラントの系統構成が大型化している。また、特開平6−160586号公報、特開平7−318687号公報及び特開平8−62373号公報では、非常用炉心冷却装置のオンラインメンテナンスについて言及していない。
本発明の目的は、原子力プラントの系統構成を簡素化することができ、オンラインメンテナンスを実施できる非常用炉心冷却装置を提供することにある。
上記した目的を達成するため本発明の特徴は、高圧炉心注水系、低圧注水系及び非常用電源装置を有する3区分の安全系と、
原子炉圧力容器に接続された浄化系配管、この浄化系配管に設けられた冷却装置、第2ポンプ及び浄化装置、第1開閉弁が設置されて圧力抑制プールと浄化系配管とを冷却装置の上流で接続する冷却水配管、浄化系配管と冷却水配管の接続点よりも上流で浄化系配管に設けられた第2開閉弁、及び浄化装置をバイパスして両端が浄化系配管に接続されたバイパス配管を有する原子炉浄化系と、
常用母線に接続された第1端子、及び第2端子を有し、第2ポンプを第1端子及び第2端子のいずれかに接続する第1切替え装置、及び3系統の安全系のそれぞれの非常用電源装置に別々に接続された3つの第3端子を有し、これらの第3端子のうちの1つの第3端子に第2端子を接続して第2端子に接続される非常用電源装置を切替える第2切替え装置を有する電源切替え装置と、
第1切替え装置及び第2切替え装置の切替え制御を行う制御装置とを備えたことにある。
上記した原子炉浄化系及び電源切替え装置を備えているので、3区分の安全系のうち1区分の安全系に対してオンラインメンテナンスを実施している状態で冷却材喪失事故が発生したとき、他の2区分の安全系が何らかの原因で作動しない場合であっても、原子炉浄化系を1系統の安全系として用い、原子炉浄化系に設けられた第2ポンプを、オンラインメンテナンスを実施している区分の非常用電源装置からの電力で駆動し、原子炉浄化系に設けられた冷却装置で圧力抑制プールの冷却水を冷却して原子炉圧力容器内に注水することができる。原子炉浄化系を1区分の安全系と兼用するので、オンラインメンテナンスに備えて新たな安全系を設ける必要がないので、原子力プラントの系統構成を簡素化することができる。しかも、冷却材喪失事故時に2区分の安全系が何らかの原因で作動しない事態を想定して原子炉浄化系と兼用した1区分の安全系を備えているので、非常用炉心冷却装置の1区分の安全系に対するオンラインメンテナンスを実施することができる。これは、原子力プラントの稼働率向上に貢献する。
本発明によれば、原子力プラントの系統構成を簡素化することができ、非常用炉心冷却装置のオンラインメンテナンスを実施できる。
本発明の好適な一実施例である実施例1の非常用炉心冷却装置の、原子炉浄化系と兼用される1つの安全系の構成図である。 実施例1の非常用炉心冷却装置における他の3区分の各安全系の構成図である。 実施例1の非常用炉心冷却装置における4つの安全系の概要を示す説明図である。 1区分の高圧注水系が破断して他の1区分の低圧注水系でオンラインメンテナンスが実施されているときに冷却材喪失事故が発生したとき、冷却材喪失事故後の経過時間と原子炉内の水位と関係を示す特性図である。 1区分の低圧注水系が破断して他の1区分の低圧注水系でオンラインメンテナンスが実施されているときに冷却材喪失事故が発生したとき、冷却材喪失事故後の経過時間と原子炉内の水位と関係を示す特性図である。 本発明の他の実施例である実施例2の非常用炉心冷却装置の、原子炉浄化系と兼用される1つの安全系の構成図である。 本発明の他の実施例である実施例3の非常用炉心冷却装置の、原子炉浄化系と兼用される1つの安全系の構成図である。
本発明の実施例を以下に説明する。
本発明の好適な一実施例である実施例1の非常用炉心冷却装置を、図1及び図2を用いて説明する。本実施例の非常用炉心冷却装置14が適用される沸騰水型原子力プラントの構成を、まず、図1及び図2を用いて説明する。
沸騰水型原子力プラントは、原子炉を原子炉格納容器6内に配置している。原子炉は、図2に示すように、原子炉圧力容器1、炉心2、炉心シュラウド3及び複数のインターナルポンプ5を有する。複数の燃料集合体(図示せず)が装荷されている炉心2が、原子炉圧力容器1内に配置される。炉心2は、原子炉圧力容器1内に設置された炉心シュラウド3によって取り囲まれている。環状のダウンカマ4が、原子炉圧力容器1と炉心シュラウド3の間に形成されている。複数のインターナルポンプ5が原子炉圧力容器1の底部に設置され、各インターナルポンプ5のインペラ(図示せず)がダウンカマ4内に配置される。
原子炉圧力容器1は、原子炉格納容器6内のドライウェル7内に配置され、原子炉格納容器6内に設置されたペデスタル(図示せず)によって支持されている。ウエットウェルである環状の圧力抑制室8が、このペデスタルを取り囲んで配置される。冷却水が充填された圧力抑制プール9が圧力抑制室8内に形成されている。ドライウェル7と圧力抑制室8は、互いに隔離されている。原子炉格納容器6内に設けられた複数のベント通路32のそれぞれの上端部がドライウェル7に開放され、各ベント通路32の下端部が圧力抑制プール9の水中に開放されている。
隔離弁11A,11Bが設けられた主蒸気配管10が、原子炉圧力容器1に接続される。隔離弁13A,13Bが設けられた給水配管12A、及び隔離弁13C,13Dが設けられた給水配管12Bが、原子炉圧力容器1にそれぞれ接続される。隔離弁11A,13A及び13Cが原子炉格納容器6の外側に配置され、隔離弁11B,13B及び13Dが原子炉格納容器6内のドライウェル7に配置される。
沸騰水型原子力プラントは原子炉浄化系15を備えている。原子炉浄化系15は、浄化系配管(第1配管)16、再生熱交換器17、非再生熱交換器17A,17B、浄化系ポンプ19A,19B、ろ過脱塩器(浄化装置)20A,20Bを有する。再生熱交換器17、非再生熱交換器17A,17B、浄化系ポンプ19A,19B、ろ過脱塩器(浄化装置)20A,20Bが、浄化系配管16に設けられる。浄化系配管16は、一端が原子炉圧力容器1に接続され、他端が給水配管12Aに接続される。ドライウェル7に配置された隔離弁21A及び原子炉格納容器6の外側に配置された隔離弁21Bが浄化系配管16に設けられる。再生熱交換器17が隔離弁21Bの下流に配置される。補機冷却系18Aに接続された非再生熱交換器17A、及び補機冷却系18Bに接続された非再生熱交換器17Bが、互いに並列になるように浄化系配管16に設けられており、かつ再生熱交換器17の下流に配置される。
非再生熱交換器17A,17Bの下流に位置する浄化系ポンプ19A,19Bも、互いに並列になるように浄化系配管16に設けられている。浄化系ポンプ19A,19Bの下流に位置するろ過脱塩器20A,20Bが、互いに並列になるように浄化系配管16に設けられる。開閉弁26が、浄化系ポンプ19A,19Bとろ過脱塩器20A,20Bの間の浄化系配管16に設けられる。開閉弁26及びろ過脱塩器20A,20Bをバイパスするバイパス配管27の両端が、浄化系配管16に接続される。開閉弁28がバイパス配管27に設けられる。
ろ過脱塩器20A,20Bより下流側の浄化系配管16が、再生熱交換器17に接続される。ろ過脱塩器20A,20Bよりも下流側において、バイパス配管27と浄化系配管16の接続点と再生熱交換器17の間の浄化系配管16に、開閉弁29が設けられる。ろ過脱塩器20A,20Bよりも下流で開閉弁29及び再生熱交換器17をバイパスするバイパス配管30が、浄化系配管16に接続される。開閉弁31がバイパス配管30に設けられる。
開閉弁25が設けられた冷却水配管(第2配管)22が、圧力抑制プール3内の冷却水中に配置された取水口23に接続され、さらに、隔離弁21Bと再生熱交換器17の間で浄化系配管16に接続される。開閉弁25Bが設けられた配管24が開閉弁25Aに並置されて冷却水配管22に接続される。
本実施例の非常用炉心冷却装置14は、図3に示すように、区分Iの安全系33、区分IIの安全系49、区分IIIの安全系67及び区分IVの安全系95を備えている。区分IVの安全系95は、図1に示された原子炉浄化系15の冷却水配管22、浄化系配管16、非再生熱交換器17A,17B、浄化系ポンプ19A,19B、及びバイパス配管27,30によって構成される。安全系33,49及び67のそれぞれの具体的な構成を、図2を用いて以下に説明する。
安全系33は、動的安全系であり、高圧炉心注水系である隔離時冷却系(以下、RCICという)34、低圧注水系(以下、LPFLという)41及び非常用DG(非常用電源装置)48を有している。RCIC34は注水ポンプ36及びRCIC配管35を有する。RCIC配管35が、圧力抑制プール9の冷却水中に配置された取水口38と給水配管12Aを接続している。注水ポンプ36がRCIC配管35に設けられ、注水ポンプ36の回転軸にタービン37の回転軸が連結されている。弁39が注水ポンプ36の上流でRCIC配管35に設けられ、弁40が注水ポンプ36の下流でRCIC配管35に設けられる。
LPFL41は、LPFL配管42、モータ駆動の注水ポンプ43及び熱交換器(冷却装置)44を有する。LPFL配管42が圧力抑制プール9の冷却水中に配置された取水口27と給水配管12Bを接続している。注水ポンプ43、及び補機冷却系45に接続された熱交換器44がLPFL配管42に設けられ、熱交換器44が注水ポンプ43の下流に配置される。弁46が注水ポンプ43の上流でLPFL配管42に設けられ、弁47が熱交換器44の下流でLPFL配管42に設けられる。
非常用DG48が、注水ポンプ43及び補機冷却系45のポンプ(図示せず)の各モータ(図示せず)にそれぞれ接続される。
安全系49は、動的安全系であり、高圧炉心注水系(以下、HPCFという)50、LPFL57及び非常用DG66を有している。HPCF50はモータ駆動の注水ポンプ52及びHPCF配管51を有する。HPCF配管51が、圧力抑制プール9の冷却水中に配置された取水口53に接続されている。HPCF配管51が原子炉圧力容器1を貫通しており、HPCF配管51の放水口56が炉心2の上方で炉心シュラウド3の内側に配置される。注水ポンプ52がHPCF配管51に設けられる。弁54が注水ポンプ52の上流でHPCF配管51に設けられ、弁55A,55Bが注水ポンプ52の下流でHPCF配管51に設けられる。弁55Aが原子炉格納容器6の外側に配置され、弁55Bがドライウェル7内に配置される。
LPFL57は、LPFL配管58、モータ駆動の注水ポンプ59及び熱交換器(冷却装置)60を有する。LPFL配管58が圧力抑制プール9の冷却水中に配置された取水口62に接続されている。LPFL配管58が原子炉圧力容器1を貫通しており、LPFL配管58の放水口65がダウンカマ4内に配置されている。注水ポンプ59、及び補機冷却系61に接続された熱交換器60がLPFL配管58に設けられ、熱交換器60が注水ポンプ59の下流に配置される。弁63が注水ポンプ59の上流でLPFL配管58に設けられ、弁64A,64Bが熱交換器60の下流でLPFL配管58に設けられる。弁64Aが原子炉格納容器6の外側に配置され、弁64Bがドライウェル7内に配置される。
非常用DG66が、注水ポンプ52,59及び補機冷却系61のポンプ(図示せず)の各モータ(図示せず)にそれぞれ接続される。
安全系67は、動的安全系であり、HPCF68、LPFL75及び非常用DG84を有している。HPCF68はモータ駆動の注水ポンプ70及びHPCF配管69を有する。HPCF配管69が、圧力抑制プール9の冷却水中に配置された取水口71に接続されている。HPCF配管69が原子炉圧力容器1を貫通しており、HPCF配管69の放水口74が炉心2の上方で炉心シュラウド3の内側に配置される。注水ポンプ70がHPCF配管69に設けられる。弁72が注水ポンプ70の上流でHPCF配管69に設けられ、弁73A,73Bが注水ポンプ70の下流でHPCF配管69に設けられる。弁73Aが原子炉格納容器6の外側に配置され、弁73Bがドライウェル7内に配置される。
LPFL75は、LPFL配管76、モータ駆動の注水ポンプ77及び熱交換器(冷却装置)78を有する。LPFL配管76が圧力抑制プール9の冷却水中に配置された取水口80に接続されている。LPFL配管76が原子炉圧力容器1を貫通しており、LPFL配管76の放水口83がダウンカマ4内に配置されている。注水ポンプ77、及び補機冷却系79に接続された熱交換器78がLPFL配管76に設けられ、熱交換器78が注水ポンプ77の下流に配置される。弁81が注水ポンプ77の上流でLPFL配管76に設けられ、弁82A,82Bが熱交換器78の下流でLPFL配管76に設けられる。弁82Aが原子炉格納容器6の外側に配置され、弁82Bがドライウェル7内に配置される。
非常用DG84が、注水ポンプ70,77及び補機冷却系79のポンプ(図示せず)の各モータ(図示せず)にそれぞれ接続される。
非常用炉心冷却装置14は、電源切替え装置96を供えている。電源切替え装置96は、第1切替え装置86及び第2切替え装置90を有する。第1切替え装置86は可動端子87及び固定端子88,89を有する。第2切替え装置90は可動端子91及び固定端子92,93,94を有する。可動端子87が所内電源の常用母線85に接続される。固定端子88が所内電源の常用母線85に接続され、固定端子89が第2切替え装置90の可動端子91に接続される。固定端子92が非常用DG48に接続され、固定端子93が非常用DG66に接続され、固定端子94が非常用DG84に接続される。
沸騰水型原子力プラントの通常運転時では、安全系33,49及び67の弁40,47,55A,55B,64A,64B,73A,73B,82A及び82Bが閉じており、弁39,46,54,63,72,及び81が開いている。原子炉浄化系15及び安全系95の開閉弁25A,25B,28,31が閉じられ、主蒸気配管10の隔離弁11A,11B、及び給水配管の隔離弁13A,13B,13C及び13Dが開いている。原子炉浄化系15の隔離弁21A,21B及び弁26,29が開いている。
インターナルポンプ5の駆動によってダウンカマ4の冷却水が昇圧され、炉心2に供給される。炉心2に流入した冷却水は、燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気になる。蒸気及び冷却水を含む気液二相流が、炉心2の上方に配置された気水分離器(図示せず)に導かれ、蒸気と冷却水が分離される。分離された蒸気は、気水分離器の上方で原子炉圧力容器1内に設置された蒸気乾燥器(図示せず)で湿分が除去され、主蒸気配管10を通ってタービン(図示せず)に供給される。タービンが蒸気によって回転され、タービンに連結された発電機(図示せず)も回転して発電が行われる。
タービンから排気された蒸気は、復水器(図示せず)で凝縮されて水になる。この水が、給水として、給水配管12A,12Bにより原子炉圧力容器1内に供給される。気水分離器で分離された冷却水は、ダウンカマ4内を給水と共に下降し、インターナルポンプ5で昇圧される。
沸騰水型原子力プラントの通常運転時において、原子炉圧力容器1内の冷却水は、原子炉浄化系15のろ過脱塩器20A,20Bで浄化される。浄化系ポンプ19A及び19Bの両方(又は片方)が駆動されている。浄化系ポンプが駆動しているので、原子炉圧力容器1内の冷却水が浄化系配管16内に流入する。この冷却水は、再生熱交換器17で冷却され、さらに、非再生熱交換器17A及び17Bの両方(あるいは片方)で冷却される。
浄化系ポンプ19Aで昇圧されて温度が100℃以下になっている冷却水が、ろ過脱塩器20A,20Bに供給される。ろ過脱塩器20A,20Bは、冷却水に含まれているクラッド等の固形物、及び陽イオン等のイオンを除去する。ろ過脱塩器20A,20Bで浄化された冷却水は、再生熱交換器17で隔離弁21A,21Bを通過した高温の冷却水によって加熱されて温度が上昇する。再生熱交換器17で温度が上昇した冷却水は、浄化系配管16及び給水配管12Aを通して原子炉圧力容器1内に戻される。
沸騰水型原子力プラントの通常運転時において、図3に示すように、区分IIIの安全系67のLPFL75に対してオンラインメンテナンスが実施されている。このオンラインメンテナンス中に原子炉格納容器6内で隔離弁11Bの上流で主蒸気配管10が破断(または主蒸気配管10に貫通したき裂が発生)し、LOCAが発生したとする。主蒸気配管10の破断箇所からドライウェル7に放出された高温の蒸気が、複数のベント通路32を通って圧力抑制プール9の冷却水中に放出されて凝縮される。この結果、ドライウェル7内の圧力上昇が抑制される。
しかしながら、原子炉圧力容器1内の冷却水が蒸気になって主蒸気配管10の破断箇所からドライウェル7内に放出される。このため、原子炉圧力容器1内の冷却水の水位が低下し、炉心2内の燃料集合体が露出する可能性がある。この事態を避けるために、非常用炉心冷却装置14が作動し、圧力抑制プール9内の冷却水を原子炉圧力容器1内に供給して炉心2を冠水させる。
LOCAが発生したとき、原子炉圧力容器1内に設けられた全制御棒(図示せず)が炉心2に全挿入され、原子炉がスクラムされる。これにより、沸騰水型原子力プラントの運転が停止される。LOCAの発生によって、隔離弁11A,11B,13A,13B,13C,13Dが閉じられる。この沸騰水型原子力プラントによる発電が停止される。LOCA発生時には、まず、RCIC34が作動する。原子炉圧力容器1内の高圧の蒸気が配管(図示せず)を通してタービン37に供給される。タービン37が蒸気によって駆動され、注水ポンプ36を回転させる。タービン37への蒸気の供給開始と同時に弁40を開く。圧力抑制プール9内の冷却水が、取水口38からRCIC配管35内に流入し、注水ポンプ36で昇圧される。注水ポンプ36から吐出された高圧の冷却水が、RCIC配管35及び給水配管12Aを通って原子炉圧力容器1内に供給される。RCIC34では、注水ポンプ36が、非常用DGの駆動によって発生した電力ではなく、原子炉圧力容器1内の高圧の蒸気によって駆動されるタービン37によって回転されるので、LOCAの発生と同時に高圧の冷却水を、圧力が高い原子炉圧力容器1内に供給することができ、炉心2の冠水が保持される。
さらに、LOCAの発生と同時に、安全系に設けられた電動の注水ポンプ等の電源が非常用DGに切り替えられるとともに、安全系の注水ポンプに起動信号が発信される。これにより、健全な安全系から炉心への注水が継続され、長期間に亘り炉心2の冠水が維持される。
沸騰水型原子力プラントには、自動減圧系(ADS)が設けられている。ADSは、各主蒸気配管(例えば、4本の主蒸気配管)10に逃し安全弁をそれぞれ設け、圧力抑制プール9の冷却水中に伸びる蒸気排気管を各逃し安全弁に接続して構成される。LOCAが発生して隔離弁11A,11Bが閉じられて原子炉圧力容器1内の圧力が設定圧力まで上昇したとき、逃し安全弁が開き、原子炉圧力容器1内の蒸気が、逃し安全弁及び蒸気排気管を通して圧力抑制プール9の冷却水中に放出され、凝縮される。これにより、原子炉圧力容器1内の圧力上昇が抑制される。
区分IIIの安全系67のLPFL75に対してオンラインメンテナンスが実施されている状態でLOCAが発生したとき、区分IIの安全系49の非常用DG66が故障しており、区分Iの安全系33のLPFL41のLPFL配管42が破断している場合を想定する。このため、LOCAが発生したとき、安全系33,49及び67が十分に機能を発揮することができないので、安全系95による原子炉圧力容器1内への冷却水の注水が行われる。安全系95による原子炉圧力容器1内への冷却水の注水は、以下のようにして行われる。
区分IIIの安全系67のLPFL75に対してオンラインメンテナンスを実施する場合には、その安全系の注水ポンプ等の電気的な負荷を非常用DG84から切り離すとともに、第2切替え装置90を、手動により、安全系67をカバーする非常用DG84側に切り替えておく。これにより、オンラインメンテナンス中は、区分IVで示される浄化系と兼用の安全系95は、非常用DG84でカバーされる状態となる。この切替えは、オンラインメンテナンス前に、手動操作で行う。他の非常用DGは、第2切替え装置90が切替えられる前の状態、すなわち、それぞれ専属の区分の注水ポンプ等のみと接続されている状態になっている。
制御装置97は、LOCA発生時に入力したLOCA信号に基づいて、非常用DG48,66,84を起動させるとともに、可動端子87を固定端子88から切り離して固定端子86に接続する。第1切替え装置86は、所内電源85側から非常用DG84側に切り替わる。この操作により、LOCA時には、オンラインメンテナンスしている系統の代替として、区分IVの浄化系と共用した安全系95を他の安全系と同時に起動することができる。例えば、安全系67のLPFL75に対してオンラインメンテナンスを行なっていても、その代替の注水、冷却機能を安全系95により維持できる。LOCAが発生したときに、区分IIIの安全系67でLPFL75に対してオンラインメンテナンスが実施され、安全系49で非常用DG66が故障し、安全系33でLPFL配管42が破断していると仮定する。この状態では、LOCA発生時に、オンラインメンテナンスをしている安全系67の代替として非常用DG84により安全系95が駆動され、稼動できる系統数の低減はない。
LOCA時には沸騰水型原子力プラントの運転停止により所内電源が使用できなくなるが、以上に述べた制御装置97による第1切替え装置86の切替え操作によって、非常用DG84の駆動により発生した電力が、浄化系ポンプ19A及び19B、及び補機冷却系18A,18Bの各ポンプを駆動するそれぞれのモータに供給される。そして、これらのポンプが駆動される。制御装置97は、第1切替え装置86の切替え操作を開始すると、隔離弁21A,21B,弁26,29を閉じ、弁25A,25B,28,31を開ける。
蓄電池が開閉器を介して制御装置97に接続されており、LOCAの発生等により所内電源が使用できなくなった場合には、この開閉器が閉じられて蓄電池から電流が制御装置97に供給されるので、制御装置97による制御が可能になる。蓄電池の接続後に、制御装置97には、例えば、他の発電所で発生した電力を供給する外部電源、または前述の駆動している非常用DGから電流が供給される。このため、制御装置97への電流の供給が、LOCAの発生によっても途絶えることがない。
圧力抑制プール9内の冷却水が、浄化系ポンプ19A及び19Bの駆動によって、弁25A,25B及び冷却水配管22を通って浄化系配管16に流入する。非再生熱交換器17Aには補機冷却系18Aから冷却水が供給され、非再生熱交換器17Bには補機冷却系18Bから冷却水が供給される。浄化系配管16に流入した冷却水は、非再生熱交換器17A,17Bで冷却され、浄化系ポンプ19A,19Bで昇圧される。その後、昇圧された冷却水は、バイパス配管27,30を通り、バイパス配管30より下流の浄化系配管16、及び給水配管12Aを通って原子炉圧力容器1に供給される。安全系95による原子炉圧力容器1への冷却水の注入は、RCIC34による原子炉圧力容器1への冷却水の注入が終了した後も継続して行われる。
本実施例によれば、原子炉浄化系15と兼用する安全系95が設けられているので、LOCAが発生したときに、3つの区分の安全系のうち、1つの区分の安全系(例えば、安全系67)でオンラインメンテナンスが実施され、他の1つの区分の安全系(例えば、安全系49)で非常用DGが故障し、残りの1つの区分の安全系(例えば、安全系33)のLPFL配管42が破断している場合でも、原子炉浄化系15と兼用する安全系95を作動させることによって、原子炉圧力容器1内に冷却水を供給することができる。このため、オンラインメンテナンスしている系統の注水/冷却機能を維持可能であり、LOCAが発生しても、原子炉圧力容器1内で炉心2を冠水させることができ、燃料集合体の冷却が可能になる。
安全系95が原子炉浄化系15と兼用しているので、本実施例の非常用炉心冷却装置14を有する沸騰水型原子力プラントの系統構成は、オンラインメンテナンスを実施できるにもかかわらず、原子炉浄化系15を含まないで、4つの区分の安全系を有する非常用炉心冷却装置を備えた、特開2008−281426号公報に記載された沸騰水型原子力プラントの系統構成に比べて簡素化される。
浄化系配管16内に流入し、安全系95の非再生熱交換器17A,17Bで冷却されて温度が低下した、圧力抑制プール9の冷却水が、給水配管12Aより原子炉圧力容器1内、すなわちダウンカマ4内に供給される。この冷却水は、ダウンカマ4を下降して炉心2に装荷された燃料集合体内に導かれ、燃料集合体内の核燃料物質の崩壊熱により加熱される。崩壊熱によって冷却水が加熱されることによって、燃料集合体が、結果的に冷却される。加熱された冷却水が、蒸気になって主蒸気配管10の破断箇所からドライウェル7に放出される。この蒸気はベント通路32を通って圧力抑制プール9の冷却水中に放出されて凝縮され、炉心2で発生した、核燃料物質の崩壊熱が圧力抑制プール9の冷却水に蓄えられる。圧力抑制プール9の冷却水は上記したように非再生熱交換器17A,17Bで冷却されるので、結果的に、炉心2で発生した崩壊熱は非再生熱交換器17A,17Bで除去することができる。
LOCAが発生したときに、第1切替え装置86の切替え操作を行うことによって、安全系95の浄化系ポンプ19A,19B,及び補機冷却系18A,18Bのそれぞれのポンプを非常用DGによって駆動させることができる。このため、LOCA発生時に、圧力抑制プール9の冷却水を、安全系95により原子炉圧力容器1内に供給することができる。
本実施例の非常用炉心冷却装置14を適用した沸騰水型原子力プラントでは、LOCA発生時に、通常運転時に使用される原子炉浄化系15を圧力抑制プール9に接続し、第1切替え装置86の切替えによって非常用DGで発生した電力を原子炉浄化系15供給するので、原子炉浄化系15を、オンラインメンテナンスしている低圧注水系の代替系統である安全系95として使用することができる。
他の安全系統をオンラインメンテナンスする場合には、LOCA時において区分IVの浄化系と兼用する安全系95を作動させるために、第2切替え装置90をオンラインメンテナンスする系統が含まれる区分の非常用DG側に切り替えておく。これにより、LOCA発生時に第1切替え装置86を切り替えることで、該当する非常用DGにより、安全系95を作動させることができる。このため、1区分の安全系を新たに設けることなく、安全系33,49及び67のオンラインメンテナンスを順次行うことができる。
非常用DGに切替わるときに、ポンプの再起動が必要となる。しかしながら、沸騰水型原子力プラントの通常運転時では、ろ過脱塩器20A,20Bに低温の冷却水を供給するために、非再生熱交換器で100℃以下に冷却された冷却水が浄化系ポンプ19Aに供給されるので、浄化系ポンプ19Aの再起動には特に問題が生じない。また、原子炉浄化系15と兼用した安全系95の電源容量が、オンラインメンテナンスしている系統の電源容量よりも小さいので、非常用DGの電源容量を増大させる必要はない。
発明者等は、本実施例でのLOCA時における炉心冷却性能を、沸騰水型原子炉の許認可コードの一つであるSAFERコードを用い、以下に述べる第1及び第2のケースについて評価を行った。第1のケースでは、ABWRの設計基準事故であるHPCFの破断が生じ、オンラインメンテナンスが1系統のLPFLを対象に行われている。第2のケースでは、1系統のLPFLが破断し、他の1系統のLPFLでオンラインメンテナンスが行われている。安全評価上考慮する必要がある単一故障で非常用DG不作動を前提とするため、第1のケースでは、安全系は1系統の隔離時冷却系(RCIC)及び1系統の低圧注水系(LPFL)のみが作動し、第2のケースでは1系統の隔離時冷却系(RCIC)及び1系統の高圧炉心注水系のみが作動する。なお、これらの解析では原子炉浄化系15と兼用している安全系95の作動は考慮していない。
評価結果を図4及び図5に示す。図4に示した第1のケースでは、LOCA発生時点から約420秒経過後に原子炉内の水位が低下する。しかし、約450秒経過後から水位が回復し始め、最小となるその水位は炉心の発熱部上端より上方に維持される。このため、炉心に装荷された燃料集合体の発熱部が冷却水の外に露出しない。また、第2のケースでは、LOCA後における原子炉内の水位は上部プレナム下端より上方に維持されている。これは、炉心内に装荷された燃料集合体の発熱部が冷却水の外に露出しないということであり、原子炉の炉心冷却という観点からは問題がない。
さらに、本実施例(図1及び図2参照)では、上記の評価において考慮しなかった、原子炉の通常運転に用いられる原子炉浄化系15と兼用した安全系95による炉心への注水能力が加わる。このため、本実施例が適用された沸騰水型原子力プラントの安全が、さらに向上する。換言すれば、原子炉の炉心冷却の観点からは、原子炉浄化系15と兼用した安全系95を構成することによって、従来の安全系33,49及び67以外に、原子炉浄化系15とは別の独立した新たな安全系を設置しなくてもオンラインメンテナンスが可能となる。しかし、安全上の他の目的である原子炉格納容器冷却(残留熱除去)の観点からは、第2のケースに対処するためには、残留熱除去の機能を有する低圧注水系(LPFL)が全く作動しないので、熱交換器による冷却機能を有する代替の安全系が必要になる。原子炉浄化系15は、前述したように、補機冷却系18A,18Bで冷却される非再生熱交換器17A,17Bを備えている。この原子炉浄化系15の非再生熱交換器17A,17B及び浄化系ポンプ19A,19B等を備えている安全系95は、LOCA発生時に圧力抑制プール9の冷却水に一時的に蓄えられる残留熱を除去することができる。この残留熱は、LOCA時にドライウェル7に放出された蒸気がベント通路32を通って圧力抑制プール9の冷却水で凝縮されることによって、この冷却水に蓄えられる。安全系95を有する本実施例は、オンラインメンテナンス中に低圧注水系が全く作動しない事象が生じた場合でも、原子炉格納容器冷却(残留熱除去)を行うことができ、沸騰水型原子力プラントの安全が向上する。
本発明の他の実施例である実施例2の非常用炉心冷却装置を、図6を用いて説明する。本実施例の非常用炉心冷却装置14Aは、実施例1の非常用炉心冷却装置14において安全系95を安全系95Aに替えた構成を有する。非常用炉心冷却装置14Aの他の構成は非常用炉心冷却装置14と同じである。安全系95Aは、安全系95に、さらに、配管99、非再生熱交換器100A,100B、及びポンプ102A,102Bを備えた構成を有する。安全系95Aの他の構成は安全系95と同じである。非常用炉心冷却装置14Aは沸騰水型原子力プラントに設けられる。
安全系95Aにおいて安全系95と異なる構成を具体的に説明する。配管99は、一端が、浄化系配管16と冷却水配管22の接続点と再生熱交換器17の間で浄化系配管16に接続され、他端が、開閉弁26より上流に存在するバイパス配管27と浄化系配管16の接続点と浄化系ポンプ19Aの間で浄化系配管16に接続されている。補機冷却系101Aに接続された非再生熱交換器100A、及び補機冷却系101Bに接続された非再生熱交換器100Bが、互いに並列になるように配管99に設けられている。非再生熱交換器100Aの上流に開閉弁103Aが設けられ、非再生熱交換器100Bの上流に開閉弁103Bが設けられている。ポンプ102A,102Bが、非再生熱交換器100A,100Bの下流で、互いに並列になるように配管99に設けられている。ポンプ102Aのモータが、操作盤(図示せず)に設けられたスイッチ104を介して、第1切替え装置86の可動端子87に接続されている。ポンプ102Bのモータも、図示されていないが、別のスイッチ104を介して、第1切替え装置86の可動端子87に接続されている。
浄化系配管16に設けられた非再生熱交換器17A,17Bは、原子炉浄化系15に要求される高圧及び高温条件を満足するように設計されている。このため、非再生熱交換器17A,17Bは、LOCA時において冷却対象が相対的に低温である、圧力抑制プール9内の冷却水に対する除熱性能が低下する。非再生熱交換器100A,100Bのそれぞれは、非再生熱交換器17A,17Bのそれぞれの除熱性能の不足分を補うように、熱交換器44,60,78のそれぞれの除熱性能から非再生熱交換器17A,17Bのそれぞれの除熱性能を差し引いた除熱性能を有している。ポンプ102A,102Bのそれぞれの容量は、注水ポンプ43,59,77のそれぞれの容量からポンプ19A,19Bのそれぞれの容量を差し引いた容量になっている。
沸騰水型原子力プラントの通常運転時には、実施例1と同様に、第2切替え装置90はオンラインメンテナンスしている系統が属する区分に含まれる非常用DG側に接続されている。さらに、開閉弁103A,103Bが閉じており、原子炉圧力容器1から浄化系配管16に排出された冷却水は、非再生熱交換器100A,100Bに供給されない。また、各スイッチ104が切れているので、ポンプ102A,102Bが駆動されない。
LOCAが発生したとき、原子炉圧力容器1内に設けられた全制御棒(図示せず)が炉心2に全挿入され、原子炉がスクラムされる。これにより、沸騰水型原子力プラントの運転が停止される。このとき、実施例1で例示した同じ事象が非常用炉心冷却装置14Aで発生したとき、まず、RCIC34が実施例と同様に作動し、圧力抑制プール9の冷却水を原子炉圧力容器1内に注水する。制御装置97は、3つの区分をカバーする非常用DGを駆動する。制御装置97は、実施例1と同様に、可動端子87を固定端子89に接続する。LOCA時に発生するLOCA信号によって、ポンプ102A,102Bに接続されたスイッチ104が入る。
以上に述べた制御装置97による第1切替え装置86の切替え操作によって、オンラインメンテナンスしている区分に含まれる非常用DGの駆動により発生した電力が、浄化系ポンプ19A、19B,ポンプ102A、102B,及び補機冷却系18A,18B,101A,101Bの各ポンプを駆動するそれぞれのモータに供給され、これらのポンプが駆動される。隔離弁21A,21Bが閉じているので、圧力抑制プール9の冷却水が、冷却水配管22を通り、浄化系配管16により非再生熱交換器17A,17Bに供給され、さらに、配管99により非再生熱交換器100A,100Bに供給される。非再生熱交換器100A,100Bで冷却された冷却水は、ポンプ102Aで昇圧されて、浄化系ポンプ19Aから吐出された冷却水と合流し、バイパス配管27,30を経て給水配管12Aより原子炉圧力容器1に戻される。これによって、オンラインメンテナンスしている安全系の系統と同等の容量での注水及び冷却機能を維持可能である。
本実施例も、安全系33,49,67に含まれるいずれかの系統を対象にしたオンラインメンテナンスを行うことができ、実施例1で生じる各効果を得ることができる。本実施例の非常用炉心冷却装置14Aは、非再生熱交換器100A,100Bを備えているので、安全系95Aの除熱性能を高めることができる。本実施例は、実施例1に比べて非再生熱交換器100A,100Bを追設する必要があるが、非再生熱交換器100A,100Bのそれぞれの除熱性能を、非再生熱交換器17A,17Bのそれぞれの除熱性能の不足分を補うように、熱交換器44,60,78のそれぞれの除熱性能から非再生熱交換器17A,17Bのそれぞれの除熱性能を差し引いてえられる除熱性能にしているので、例えば、オンラインメンテナンスしている系統の熱交換器78と導容量の熱交換器を設置するよりもコンパクト化が図れる。
本発明の他の実施例である実施例3の非常用炉心冷却装置を、図7を用いて説明する。本実施例の非常用炉心冷却装置14Bは、実施例2の非常用炉心冷却装置14Aにおいて制御装置97及び電源切替え装置96を制御装置97A及び電源切替え装置96Aに替えた構成を有する。非常用炉心冷却装置14Bの他の構成は非常用炉心冷却装置14Aと同じである。
電源切替え装置96Aは、実施例1及び2で用いられる電源切替え装置96に第3切替え装置105を追加した構成を有する。電源切替え装置96Aの他の構成は電源切替え装置96と同じである。第3切替え装置105は可動端子107及び固定端子106を有する。固定端子106は、第1切替え装置86の可動端子87に接続されている。可動端子107は、ポンプ102Aのモータに接続されている開閉装置104に接続される。ポンプ102Bのモータに接続されている別の開閉装置104(図示せず)も、可動端子107に接続される。
制御装置97Aは、安全系33,49,67のいずれかでオンラインメンテナンスが実行されているときにLOCAが発生したとき、第3切替え装置105の可動端子107が固定端子106に接続される。
浄化系ポンプ19A,19B及びポンプ102A,102Bが駆動され、実施例2と同様に、圧力抑制プール9の冷却水が非再生熱交換器17A,17B,100A,100Bで冷却される。冷却された冷却水は、給水配管12Aより原子炉圧力容器1に供給される。
本実施例は、実施例2で生じる各効果を得ることができる。
本発明は沸騰水型原子力プラントに適用することができる。
1…原子炉圧力容器、2…炉心、6…原子炉格納容器、7…ドライウェル、8…圧力抑制室、9…圧力抑制プール、12A,12B…給水系、14,14A,14B…非常用炉心冷却装置、15…原子炉浄化系、16…浄化系配管、17…再生熱交換器、17A,17B,100A,100B…非再生熱交換器、19A,19B…浄化系ポンプ、20A,20B…ろ過脱塩器、22…配管、25A…開閉弁、27,30…バイパス配管、32…ベント通路、33,49,67,95,95A…安全系、34…隔離時冷却系、41,57,75…低圧注水系、48,66,84…非常用ディーゼル発電機、50,68…高圧炉心注水系、86…第1切替え装置、90…第2切替え装置、96,96A…電源切替え装置、97,97A…制御装置、99…配管、105…第3切替え装置。

Claims (3)

  1. 原子炉圧力容器を内蔵する原子炉圧力容器に形成された圧力抑制プールの冷却水を原子炉圧力容器に供給する高圧注水系及び低圧注水系、及び前記高圧注水系及び前記低圧注水系のそれぞれに設けられた各第1ポンプに電力を供給する非常用電源装置を有する3区分の安全系と、
    前記原子炉圧力容器に接続された第1配管、前記第1配管に設けられた第1冷却装置、第2ポンプ及び浄化装置、第1開閉弁が設置されて前記圧力抑制プールと前記第1配管とを前記第1冷却装置の上流で接続する第2配管、前記第1配管と前記第2配管の第1接続点よりも上流で前記第1配管に設けられた第2開閉弁、及び前記浄化装置をバイパスして両端が前記第1配管に接続されたバイパス配管を有する原子炉浄化系と、
    常用母線に接続された第1端子、及び第2端子を有し、前記第2ポンプを前記第1端子及び前記第2端子のいずれかに接続する第1切替え装置、及び前記3区分の安全系のそれぞれの前記非常用電源装置に別々に接続された3つの第3端子を有し、これらの第3端子のうちの1つの前記第3端子に前記第2端子を接続して前記第2端子に接続される前記非常用電源装置を切替える第2切替え装置を有する電源切替え装置と、
    前記第1切替え装置及び前記第2切替え装置の切替え制御を行う制御装置とを備えたことを特徴とする非常用炉心冷却装置。
  2. 前記第1接続点より下流で前記第1冷却装置より上流で一端が前記第1配管に接続され、前記第2ポンプより下流で、かつ前記浄化装置よりも上流における前記第1配管と前記バイパス配管の第2接続点より上流で、他端が前記第1配管に接続される第3配管と、前記の第3配管に設けられた第2冷却装置と、前記第3配管に設けられて前記第1切替え装置から前記第2ポンプに供給される電流が供給される第3ポンプとを備えた請求項1に記載の非常用炉心冷却装置。
  3. 前記第1切替え装置から前記第2ポンプに供給される電流の前記第3ポンプへの供給をON/OFFする開閉装置と、前記3区分の安全系のいずれか1つをオンラインメンテナンスするときに前記開閉装置を閉じる前記制御装置とを備えた請求項2に記載の非常用炉心冷却装置。
JP2009263447A 2009-11-19 2009-11-19 非常用炉心冷却装置 Active JP5586213B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263447A JP5586213B2 (ja) 2009-11-19 2009-11-19 非常用炉心冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263447A JP5586213B2 (ja) 2009-11-19 2009-11-19 非常用炉心冷却装置

Publications (2)

Publication Number Publication Date
JP2011107001A true JP2011107001A (ja) 2011-06-02
JP5586213B2 JP5586213B2 (ja) 2014-09-10

Family

ID=44230642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263447A Active JP5586213B2 (ja) 2009-11-19 2009-11-19 非常用炉心冷却装置

Country Status (1)

Country Link
JP (1) JP5586213B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426864A (zh) * 2011-12-12 2012-04-25 曾祥炜 反应堆严重事故非能动应急冷却系统
CN103811083A (zh) * 2012-11-14 2014-05-21 中国广东核电集团有限公司 核电站安全注入系统及清理其注入管线的清理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115769012A (zh) * 2020-06-04 2023-03-07 博沃艾特先进技术有限责任公司 双截流阀

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218096A (ja) * 1984-04-13 1985-10-31 株式会社日立製作所 沸騰水型原子炉の冷却材浄化系設備
JPS62197795A (ja) * 1986-02-26 1987-09-01 株式会社日立製作所 原子炉残留熱除去装置
JPH03229196A (ja) * 1990-02-05 1991-10-11 Toshiba Corp 原子力発電プラント
JPH08278386A (ja) * 1995-04-06 1996-10-22 Hitachi Ltd 原子炉冷却系統の運転方法及び原子炉冷却系統設備
JPH10307199A (ja) * 1997-05-07 1998-11-17 Toshiba Eng Co Ltd 原子力発電所の復水貯蔵槽浄化装置
JP2003315483A (ja) * 2002-04-23 2003-11-06 Toshiba Corp 原子力発電プラント
JP2004061192A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 原子力発電設備
JP2006138680A (ja) * 2004-11-10 2006-06-01 Toshiba Corp 非常用炉心冷却系
JP2009031079A (ja) * 2007-07-26 2009-02-12 Toshiba Corp 非常用炉心冷却系

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218096A (ja) * 1984-04-13 1985-10-31 株式会社日立製作所 沸騰水型原子炉の冷却材浄化系設備
JPS62197795A (ja) * 1986-02-26 1987-09-01 株式会社日立製作所 原子炉残留熱除去装置
JPH03229196A (ja) * 1990-02-05 1991-10-11 Toshiba Corp 原子力発電プラント
JPH08278386A (ja) * 1995-04-06 1996-10-22 Hitachi Ltd 原子炉冷却系統の運転方法及び原子炉冷却系統設備
JPH10307199A (ja) * 1997-05-07 1998-11-17 Toshiba Eng Co Ltd 原子力発電所の復水貯蔵槽浄化装置
JP2003315483A (ja) * 2002-04-23 2003-11-06 Toshiba Corp 原子力発電プラント
JP2004061192A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 原子力発電設備
JP2006138680A (ja) * 2004-11-10 2006-06-01 Toshiba Corp 非常用炉心冷却系
JP2009031079A (ja) * 2007-07-26 2009-02-12 Toshiba Corp 非常用炉心冷却系

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426864A (zh) * 2011-12-12 2012-04-25 曾祥炜 反应堆严重事故非能动应急冷却系统
CN102426864B (zh) * 2011-12-12 2014-03-26 曾祥炜 反应堆严重事故非能动应急冷却系统
CN103811083A (zh) * 2012-11-14 2014-05-21 中国广东核电集团有限公司 核电站安全注入系统及清理其注入管线的清理方法

Also Published As

Publication number Publication date
JP5586213B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
US8817941B2 (en) Pressurized water reactor plant
EP2642489B1 (en) Emergency reactor core cooling system and boiling-water nuclear power plant
CN108461163B (zh) 应急堆芯冷却系统和使用该应急堆芯冷却系统的沸水反应堆装置
JPH01267495A (ja) 原子炉の非常冷却材噴射装置
JP5586213B2 (ja) 非常用炉心冷却装置
JP5642091B2 (ja) 原子炉の過渡緩和システム
CN105427911B (zh) 压水堆核电厂厂用电源切换试验的控制方法及控制系统
JP2017067725A (ja) 非常用炉心冷却系の代替循環冷却方法および原子力発電所
JP2009031079A (ja) 非常用炉心冷却系
JP4960178B2 (ja) 原子力プラントの安全系
JP2004061192A (ja) 原子力発電設備
JP3982419B2 (ja) 原子炉の安全設備
JPH10260294A (ja) 電源設備
JPH05264774A (ja) 非常時原子炉冷却装置
JP2000275380A (ja) 非常用炉心冷却系及びその取水設備
JP2020012768A (ja) 原子炉冷却システム及びその運転方法
JP2011185741A (ja) 非常用炉心冷却系
JP2005201834A (ja) 原子力プラント及びその運転方法
JP5513846B2 (ja) 原子力発電プラントおよびその運転方法
KR100448876B1 (ko) 원자력발전소의 비상급수 시스템
JPH08313686A (ja) 沸騰水型原子炉の非常用炉心冷却系
JPH0862373A (ja) 原子炉格納容器除熱装置
JP4916497B2 (ja) 沸騰水型原子力プラントの設備点検方法
JP2001091684A (ja) 燃料プール冷却設備
JPH0567000B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150