JP2011105545A - Activated carbon fiber - Google Patents

Activated carbon fiber Download PDF

Info

Publication number
JP2011105545A
JP2011105545A JP2009261974A JP2009261974A JP2011105545A JP 2011105545 A JP2011105545 A JP 2011105545A JP 2009261974 A JP2009261974 A JP 2009261974A JP 2009261974 A JP2009261974 A JP 2009261974A JP 2011105545 A JP2011105545 A JP 2011105545A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
less
pore volume
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009261974A
Other languages
Japanese (ja)
Other versions
JP5327009B2 (en
Inventor
Masanobu Kobayashi
真申 小林
Manabu Asano
学 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009261974A priority Critical patent/JP5327009B2/en
Publication of JP2011105545A publication Critical patent/JP2011105545A/en
Application granted granted Critical
Publication of JP5327009B2 publication Critical patent/JP5327009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon fiber having especially superior adsorbing performance of an organic compound having a boiling point of 120-300°C. <P>SOLUTION: The activated carbon fiber has a BET specific surface area of 1,500-2,300 m<SP>2</SP>/g, a total volume of pores of 0.7-1.2 cc/g, a pore volume of micropores whose pore diameter is 1 nm or less of 90-92% or above in the total volume of the micropores and a moisture adsorbing rate at a temperature of 25°C and a relative humidity of 52% of 4% or less. In the activated carbon fiber, the amount of a carboxy group is favorably 0.04 meq/g or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、沸点が120〜300℃の範囲内の有機化合物に対し特に優れた吸着性能を有する活性炭素繊維に関するものである。   The present invention relates to an activated carbon fiber having a particularly excellent adsorption performance for an organic compound having a boiling point in the range of 120 to 300 ° C.

活性炭素繊維は、粒状活性炭と比較し、外表面積が大きく、細孔が表面に存在するために吸着性能が優れ、繊維状のため紙状、織布状など多様な形態に加工できることとも併せ、様々な分野で活用されている。   Activated carbon fiber has a large outer surface area compared to granular activated carbon, and has excellent adsorption performance due to the presence of pores on the surface. In addition, it can be processed into various forms such as paper and woven cloth because of its fibrous form. It is used in various fields.

従来の活性炭素繊維として、たとえば特開2005−138038号公報(特許文献1)には、比表面積700〜1500m2/g、全細孔容積0.3〜0.7cc/g、且つ表面酸性基量が0.5meq/g以下である有機化合物吸着用繊維状活性炭が開示されている。このような特許文献1に開示された繊維状活性炭によれば、塩化メチレン、塩化ビニルモノマーなどの活性炭に対する吸着性の低い、低分子量、低沸点化合物の吸着処理に対して効果が発揮され、たとえば排ガス処理装置に適用した場合に、コンパクトで、しかも低コストにでき、化学工場、医薬工場などの工業プロセスから排出される低分子量、低沸点化合物の排出濃度を低減でき、環境浄化、リサイクルに貢献できるものである。 As a conventional activated carbon fiber, for example, Japanese Patent Application Laid-Open No. 2005-138038 (Patent Document 1) discloses a specific surface area of 700 to 1500 m 2 / g, a total pore volume of 0.3 to 0.7 cc / g, and a surface acidic group. An organic compound-adsorbing fibrous activated carbon having an amount of 0.5 meq / g or less is disclosed. According to such a fibrous activated carbon disclosed in Patent Document 1, an effect is exerted on an adsorption treatment of a low molecular weight, low boiling point compound having low adsorptivity to activated carbon such as methylene chloride and vinyl chloride monomer. When applied to exhaust gas treatment equipment, it is compact and low-cost, and can reduce the concentration of low molecular weight and low-boiling compounds emitted from industrial processes such as chemical factories and pharmaceutical factories, contributing to environmental purification and recycling. It can be done.

またたとえば特開平7−145516号公報(特許文献2)には、25℃、相対湿度37%における平衡水分率が0.05〜1.0%、BET比表面積が300〜3000m2/g、細孔容積が0.25〜2.00cc/gで、かつ水蒸気法で測定した細孔半径が7〜14Åの範囲または9〜20Åの範囲である細孔の容積が、細孔半径が100Å以下の細孔が占める容積の80%以上である活性炭素繊維が開示されている。このような特許文献2に開示された活性炭素繊維は、水中に溶解するハロゲン化炭化水素などの水に対する溶解度の小さい疎水性有機化合物の吸着に好適に用いられるものである。 Further, for example, in JP-A-7-145516 (Patent Document 2), an equilibrium moisture content at 25 ° C. and a relative humidity of 37% is 0.05 to 1.0%, a BET specific surface area is 300 to 3000 m 2 / g, fine. The pore volume with a pore volume of 0.25 to 2.00 cc / g and a pore radius measured by the water vapor method in the range of 7 to 14 mm or 9 to 20 mm, the pore radius is 100 mm or less An activated carbon fiber that is 80% or more of the volume occupied by the pores is disclosed. Such activated carbon fibers disclosed in Patent Document 2 are suitably used for adsorption of hydrophobic organic compounds having low solubility in water such as halogenated hydrocarbons that are dissolved in water.

また、たとえば特開平6−99065号公報(特許文献3)には、比表面積が800m2/g以上であり、水蒸気吸着法で測定した細孔半径9Å以下の細孔の占める累積細孔容積が0.20cc/g以上であり、且つ水蒸気吸着法で測定した細孔半径9Å以下の細孔の占める累積細孔容積が細孔半径100Å以下の細孔の占める累積細孔容積の50%以上である繊維状活性炭からなる浄水器用充填材が開示されている。このような特許文献3に開示された浄水器用充填材(繊維状活性炭)は、水中に含まれるトリハロメタンの除去能が極めて高く、特に水道水中のトリハロメタンの大半を占めるクロロホルムを効率よく除去でき、家庭、工場、店舗、会社等の種々の場所で使用する浄水器用に有効に使用することができる。 Also, for example, in JP-A-6-99065 (Patent Document 3), the cumulative pore volume occupied by pores having a specific surface area of 800 m 2 / g or more and a pore radius of 9 mm or less measured by the water vapor adsorption method is disclosed. The cumulative pore volume occupied by pores having a pore radius of 9 mm or less as measured by the water vapor adsorption method is 0.20 cc / g or more and 50% or more of the cumulative pore volume occupied by pores having a pore radius of 100 mm or less. A filler for water purifiers made of a certain fibrous activated carbon is disclosed. Such a water purifier filler (fibrous activated carbon) disclosed in Patent Document 3 has an extremely high ability to remove trihalomethane contained in water, and can effectively remove chloroform, which occupies most of the trihalomethane in tap water. It can be effectively used for water purifiers used in various places such as factories, stores, and companies.

さらに、特開2005−903号公報(特許文献4)、特開2005−21851号公報(特許文献5)には、25℃、相対湿度37%における平衡吸着水分率が1.0〜15.0%、BET比表面積が300〜2500m2/gまたは500〜2000m2/g、細孔容積が0.25〜2.0cc/gまたは0.25〜1.5cc/gで、かつ水蒸気法で測定した細孔半径6〜16Åの範囲にある細孔の容積が、細孔半径100Å以下の細孔の占める容積の80%以上であって、X線回折強度曲線の(002)面の回折ピークにおける黒鉛的結晶性構造パラメータIp/Ioが0.35以下の繊維状活性炭を用いた、有機塩素系溶剤の回収方法が開示されている。このような特許文献4、5に記載された方法によれば、装置の腐食が少なくして、有機塩素系溶剤または混合溶剤の効率的な回収が可能となる。 Furthermore, in Japanese Patent Application Laid-Open No. 2005-903 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2005-21851 (Patent Document 5), the equilibrium adsorption moisture content at 25 ° C. and a relative humidity of 37% is 1.0 to 15.0. %, BET specific surface area of 300~2500m 2 / g or 500~2000m 2 / g, pore volume of at 0.25~2.0cc / g or 0.25~1.5cc / g, and measured by a water vapor method The volume of the pores in the range of the pore radius of 6 to 16 mm is 80% or more of the volume occupied by pores having a pore radius of 100 mm or less, and in the diffraction peak on the (002) plane of the X-ray diffraction intensity curve An organic chlorine solvent recovery method using a fibrous activated carbon having a graphitic crystalline structure parameter Ip / Io of 0.35 or less is disclosed. According to the methods described in Patent Documents 4 and 5, the corrosion of the apparatus is reduced, and the organic chlorine solvent or the mixed solvent can be efficiently recovered.

特開2005−138038号公報JP 2005-138038 A 特開平7−145516号公報JP-A-7-145516 特開平6−99065号公報JP-A-6-99065 特開2005−903号公報JP-A-2005-903 特開2005−21851号公報JP 2005-21851 A

沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物は、吸着される分子の容積が大きく、小さな細孔には吸着しないという性質を有するため、このような有機化合物を活性炭素繊維で吸着させようとする場合、活性炭素繊維の細孔が有効に活用できないという問題がある。したがって、このような有機化合物に対し特に優れた吸着性能を有する活性炭素繊維の開発が望まれている。   An organic compound such as m-xylene having a boiling point in the range of 120 to 300 ° C. has such a property that the volume of adsorbed molecules is large and does not adsorb to small pores. When trying to make it adsorb | suck with a fiber, there exists a problem that the pore of an activated carbon fiber cannot be utilized effectively. Therefore, development of activated carbon fibers having particularly excellent adsorption performance for such organic compounds is desired.

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、沸点が120〜300℃の範囲内の有機化合物に対し特に優れた吸着性能を有する活性炭素繊維を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and its object is to provide an activated carbon fiber having particularly excellent adsorption performance for organic compounds having a boiling point in the range of 120 to 300 ° C. Is to provide.

本発明の活性炭素繊維は、BET比表面積が1500〜2300m2/g、全細孔容積が0.7〜1.2cc/g、細孔直径1nm以下のマイクロポア細孔容積が全マイクロポア細孔容積の90〜92%であり、かつ、温度25℃、相対湿度52%における水分吸着率が4%以下であることを特徴とする。 The activated carbon fiber of the present invention has a BET specific surface area of 1500 to 2300 m 2 / g, a total pore volume of 0.7 to 1.2 cc / g, and a micropore pore volume of 1 nm or less in pore diameter of all micropores. It is 90 to 92% of the pore volume, and the moisture adsorption rate at a temperature of 25 ° C. and a relative humidity of 52% is 4% or less.

本発明の活性炭素繊維において、カルボキシル基量が0.04meq/g以下であることが好ましい。   In the activated carbon fiber of the present invention, the amount of carboxyl groups is preferably 0.04 meq / g or less.

本発明の活性炭素繊維は、沸点が120〜300℃の範囲内の有機化合物を吸着させるために用いられるものであることが、好ましい。   The activated carbon fiber of the present invention is preferably used for adsorbing an organic compound having a boiling point in the range of 120 to 300 ° C.

本発明によれば、沸点が120〜300℃の範囲内の有機化合物に対し特に優れた吸着性能を有する活性炭素繊維が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the activated carbon fiber which has the especially outstanding adsorption | suction performance with respect to the organic compound in the range whose boiling point is 120-300 degreeC is provided.

本発明の活性炭素繊維は、BET比表面積が1500〜2300m2/gの範囲内であることを特徴の1つとする。本発明の活性炭素繊維のBET比表面積が1500m2/g未満である場合には、沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着されないという不具合があり、また、2300m2/gを超える場合には、単繊維の強度が著しく低下し、形態を保てないという不具合がある。沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着でき、繰り返し使用した際に形態を保持するためには、活性炭素繊維のBET比表面積は1700〜2100m2/gの範囲内であることが好ましい。なお、BET比表面積とは、液体窒素温度での窒素ガス吸着等温線によるBET法により求められる比表面積を意味し、たとえば比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を用いて測定することができる。 One feature of the activated carbon fiber of the present invention is that the BET specific surface area is in the range of 1500 to 2300 m 2 / g. When the BET specific surface area of the activated carbon fiber of the present invention is less than 1500 m 2 / g, there is a problem that an organic compound such as m-xylene having a boiling point in the range of 120 to 300 ° C. is not sufficiently adsorbed, Moreover, when it exceeds 2300 m < 2 > / g, there exists a malfunction that the intensity | strength of a single fiber falls remarkably and a form cannot be maintained. In order to sufficiently adsorb organic compounds such as m-xylene having a boiling point in the range of 120 to 300 ° C., and to maintain the form when repeatedly used, the BET specific surface area of the activated carbon fiber is 1700 to 2100 m 2 / It is preferable to be within the range of g. The BET specific surface area means a specific surface area determined by a BET method using a nitrogen gas adsorption isotherm at a liquid nitrogen temperature, and is measured using, for example, a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics). be able to.

本発明の活性炭素繊維はまた、全細孔容積が0.7〜1.2cc/gの範囲内であることを特徴の1つとする。本発明の活性炭繊維の全細孔容積が0.7cc/g未満である場合には、沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着されないという不具合があり、1.2cc/gを超える場合には、単繊維の強度が著しく低下し、形態を保てないという不具合がある。沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着でき、繰り返し使用した際に形態を保持するためには、活性炭素繊維の全細孔容積は0.7〜1.0cc/gの範囲内であることが好ましい。なお、全細孔容積は、たとえば比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を用いて測定することができる。   The activated carbon fiber of the present invention is also characterized in that the total pore volume is in the range of 0.7 to 1.2 cc / g. When the total pore volume of the activated carbon fiber of the present invention is less than 0.7 cc / g, there is a problem that an organic compound such as m-xylene having a boiling point in the range of 120 to 300 ° C. is not sufficiently adsorbed. In the case of exceeding 1.2 cc / g, there is a problem that the strength of the single fiber is remarkably lowered and the form cannot be maintained. For example, m-xylene such as m-xylene having a boiling point in the range of 120 to 300 ° C. can be sufficiently adsorbed, and the total pore volume of the activated carbon fiber is 0.7 to It is preferably within the range of 1.0 cc / g. The total pore volume can be measured using, for example, a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics).

本発明の活性炭素繊維は、細孔直径1nm以下のマイクロポア細孔容積が全マイクロポア細孔容積の90〜92%であることを特徴の1つとする。細孔直径1nm以下のマイクロポア細孔容積が全マイクロポア細孔容積の90%未満である場合には、細孔が大きくなりすぎて、沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着されないという不具合があり、また、92%を超える場合には、細孔が小さくなりすぎて、沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着されないという不具合がある。沸点が120〜300℃の範囲内のたとえばm−キシレンなどの有機化合物が十分に吸着できるためには、活性炭素繊維の細孔直径1nm以下のマイクロポア細孔容積は、全マイクロポア細孔容積の91〜92%であることが好ましい。なお、細孔直径1nm以下のマイクロポア細孔容積の割合は、たとえば比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を用いて測定することができる。   The activated carbon fiber of the present invention is characterized in that the micropore pore volume having a pore diameter of 1 nm or less is 90 to 92% of the total micropore pore volume. When the micropore pore volume having a pore diameter of 1 nm or less is less than 90% of the total micropore pore volume, the pores become too large, for example, m-xylene having a boiling point within the range of 120 to 300 ° C. In the case where the organic compound such as m-xylene is not sufficiently adsorbed and exceeds 92%, the pores are too small and the boiling point is in the range of 120 to 300 ° C. There is a problem that is not sufficiently adsorbed. In order to sufficiently adsorb organic compounds such as m-xylene having a boiling point in the range of 120 to 300 ° C., the micropore pore volume of the activated carbon fiber having a pore diameter of 1 nm or less is the total micropore pore volume. It is preferable that it is 91-92% of. The ratio of the micropore pore volume having a pore diameter of 1 nm or less can be measured using, for example, a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics).

また本発明の活性炭素繊維は、温度25℃、相対湿度52%における水分吸着率が4%以下であることも特徴の1つとする。温度25℃、相対湿度52%における水分吸着率が4%を超える場合には、細孔周辺に先に水分子が吸着されるため、その細孔には有機化合物の吸着量が吸着されず、その分低下してしまうという不具合がある。水分子の吸着の影響を受けにくくするためには、温度25℃、相対湿度52%における水分吸着率は3%以下であることが好ましい。温度25℃、相対湿度52%における水分吸着率は、たとえば恒温恒湿器SH−661(エスペック社製)を用いて測定することができる。   The activated carbon fiber of the present invention is also characterized in that the moisture adsorption rate at a temperature of 25 ° C. and a relative humidity of 52% is 4% or less. When the moisture adsorption rate at a temperature of 25 ° C. and a relative humidity of 52% exceeds 4%, water molecules are first adsorbed around the pores, so that the adsorption amount of the organic compound is not adsorbed in the pores, There is a problem that it is lowered accordingly. In order to make it less susceptible to the adsorption of water molecules, the moisture adsorption rate at a temperature of 25 ° C. and a relative humidity of 52% is preferably 3% or less. The moisture adsorption rate at a temperature of 25 ° C. and a relative humidity of 52% can be measured using, for example, a constant temperature and humidity chamber SH-661 (manufactured by Espec Corp.).

本発明の活性炭素繊維は、上述したBET比表面積、全細孔容積、マイクロポア細孔容積の割合および水分吸着率がそれぞれ上述した範囲内であることで、沸点が120〜300℃の範囲内(より好適には120〜220℃の範囲内)と比較的沸点の高い有機化合物(高沸点有機化合物)に対し特に高い吸着性能を示す。これは、高沸点有機化合物を吸着するのに好適な細孔があり、それが上述したBET比表面積、全細孔容積、マイクロポア細孔容積の割合および水分吸着率の活性炭素繊維であるという理由のためであると考えられる。   In the activated carbon fiber of the present invention, the BET specific surface area, the total pore volume, the micropore pore volume ratio, and the moisture adsorption rate are within the above-described ranges, respectively, so that the boiling point is within the range of 120 to 300 ° C. (More preferably within the range of 120-220 ° C.) and a particularly high adsorption performance for an organic compound having a relatively high boiling point (high boiling organic compound). It is said that there are pores suitable for adsorbing high-boiling organic compounds, which are activated carbon fibers of the BET specific surface area, total pore volume, micropore pore volume ratio and moisture adsorption rate described above. This is probably because of the reason.

ここで、本発明の活性炭素繊維による吸着させる対象として好適な高沸点有機化合物としては、たとえばm−キシレン(沸点:139℃)、p−キシレン(沸点:138℃)、o−キシレン(沸点:144℃)、イソノナン(沸点:135℃)、デカン(沸点:171℃)、N−メチルピロリドン(沸点:202℃)、ジメチルホルムアミド(沸点:153℃)、ジメチルスルホキシド(沸点:189℃)などが挙げられる。中でも、水に不溶な点から、本発明の活性炭素繊維による吸着対象としてm−キシレンが特に好適である。   Here, as a high boiling point organic compound suitable as an object to be adsorbed by the activated carbon fiber of the present invention, for example, m-xylene (boiling point: 139 ° C.), p-xylene (boiling point: 138 ° C.), o-xylene (boiling point: 144 ° C.), isononane (boiling point: 135 ° C.), decane (boiling point: 171 ° C.), N-methylpyrrolidone (boiling point: 202 ° C.), dimethylformamide (boiling point: 153 ° C.), dimethyl sulfoxide (boiling point: 189 ° C.), etc. Can be mentioned. Among these, m-xylene is particularly suitable as an object to be adsorbed by the activated carbon fiber of the present invention because it is insoluble in water.

本発明の活性炭素繊維は、水分が吸着しにくくなるという理由からは、カルボキシル基量が0.04meq/g以下であることが好ましく、0.02meq/g以下であることがより好ましい。活性炭素繊維のカルボキシル基量は、塩基との中和滴定によって測定することができる。   In the activated carbon fiber of the present invention, the amount of carboxyl groups is preferably 0.04 meq / g or less, and more preferably 0.02 meq / g or less, for the reason that moisture hardly adsorbs. The amount of carboxyl groups of the activated carbon fiber can be measured by neutralization titration with a base.

なお、本発明の活性炭素繊維におけるフェノール性水酸基量、全酸性基量、全塩基性基量については特に制限されるものではないが、フェノール性水酸基量については通常0.05〜0.15meq/g、全酸性基量については通常0.05〜0.25meq/g、全塩基性基量については通常0.30〜0.60meq/gである。なお、活性炭素繊維のフェノール性水酸基量、全酸性基量は塩基との中和滴定によって測定することができ、全塩基性基量は酸との中和滴定によって測定することができる。   The amount of phenolic hydroxyl groups, the total amount of acidic groups, and the amount of total basic groups in the activated carbon fiber of the present invention are not particularly limited, but the amount of phenolic hydroxyl groups is usually 0.05 to 0.15 meq / The amount of g and total acidic groups is usually 0.05 to 0.25 meq / g, and the amount of total basic groups is usually 0.30 to 0.60 meq / g. In addition, the amount of phenolic hydroxyl groups and the total amount of acidic groups of the activated carbon fiber can be measured by neutralization titration with a base, and the amount of total basic groups can be measured by neutralization titration with an acid.

本発明の活性炭素繊維は、その原料(前駆体)としては特に制限されるものではなく、たとえばフェノール、セルロース、ポリアクリロニトリル系、ピッチ系、アラミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンベンゾビスオキサゾール、ポリビニルアルコール、ポリスルホンエーテル、ポリスルホン、ポリフェニレンオキサイドなどの当分野において原料として通常用いられる繊維を用いることができる。これらの中で、セルロース系は原料中の酸素含有率が高く、活性炭の中でも比較的表面酸性基量が多い。フェノール系はセルロース系に比べて酸素含有量が少なく、灰分に由来する極性部分が少なく、セルロース系よりは極性度が小さく水分吸着の影響を受けにくい。中でも、疎水性が高く、加工性と実用的強度を併せ持つことから、フェノール繊維を原料として用いることが、好ましい。   The activated carbon fiber of the present invention is not particularly limited as a raw material (precursor), for example, phenol, cellulose, polyacrylonitrile, pitch, aramid, polyimide, polyamide, polyamideimide, polyphenylenebenzobisoxazole, Fibers commonly used as raw materials in the art such as polyvinyl alcohol, polysulfone ether, polysulfone, polyphenylene oxide, and the like can be used. Among these, the cellulose type has a high oxygen content in the raw material, and the amount of surface acidic groups is relatively large among activated carbons. The phenol type has a lower oxygen content than the cellulose type, has a small polar portion derived from ash, has a lower degree of polarity than the cellulose type, and is less susceptible to moisture adsorption. Among them, it is preferable to use phenol fiber as a raw material because it is highly hydrophobic and has both workability and practical strength.

本発明の活性炭素繊維を製造するに際しては、まず、フェノール繊維を原料とする場合には、窒素流動下で管状炉中を移動させながら800〜950℃程度の温度にまで昇温し、3.5〜5時間保持させた状態で、純水を供給し続けるという賦活処理を施す。ここで、上述した保持時間(賦活時間)を調整することで、得られる活性炭素繊維におけるBET比表面積、全細孔容積、マイクロポア細孔容積の割合および水分吸着率を制御することができる。   In producing the activated carbon fiber of the present invention, first, when phenol fiber is used as a raw material, the temperature is raised to a temperature of about 800 to 950 ° C. while moving in a tubular furnace under nitrogen flow. An activation process is performed in which pure water is continuously supplied in a state of being held for 5 to 5 hours. Here, by adjusting the retention time (activation time) described above, the BET specific surface area, the total pore volume, the ratio of the micropore pore volume, and the moisture adsorption rate in the obtained activated carbon fiber can be controlled.

賦活処理後、酸素濃度を0.5%以下(好適には0.1%以下)とした状態で冷却する。この冷却の際の酸素濃度を0.5%以下とすることで、温度25℃、相対湿度52%における水分吸着率が15%以下と従来より低い本発明の活性炭素繊維が得られる。これは、冷却工程において、活性炭素繊維の表面官能基の生成が抑制されるためであると考えられる。このように酸素濃度を0.5%以下とするためには、具体的には、冷却工程での窒素の流量を増やし、出入口の炉内圧が2Pa以上を維持できるような操作を施せばよい。この点、従来は冷却工程の際の酸素濃度には着目がなく、特に上述したような操作を施さずに冷却を行っており、通常、酸素濃度は1%程度である。   After the activation treatment, cooling is performed in a state where the oxygen concentration is 0.5% or less (preferably 0.1% or less). By setting the oxygen concentration during this cooling to 0.5% or less, the activated carbon fiber of the present invention having a moisture adsorption rate of 15% or less at a temperature of 25 ° C. and a relative humidity of 52% can be obtained. This is considered to be because the generation of surface functional groups of activated carbon fibers is suppressed in the cooling step. In order to reduce the oxygen concentration to 0.5% or less as described above, specifically, an operation may be performed in which the flow rate of nitrogen in the cooling process is increased and the furnace pressure at the inlet / outlet can be maintained at 2 Pa or higher. In this regard, conventionally, there is no focus on the oxygen concentration in the cooling step, and cooling is performed without performing the above-described operation, and the oxygen concentration is usually about 1%.

本発明の活性炭素繊維は、高沸点有機化合物に対し特に優れた吸着性能を示すものであるため、このような高沸点有機化合物を主な吸着対象とするフィルタに好適に適用することができる。本発明の活性炭素繊維を適用したフィルタは、吸着と水蒸気による脱着を交互に切り替え可能であり、化学工場、医薬工場などの工業プロセスから排出される高沸点有機化合物を除去、回収するための排ガス処理装置に好適に用いられる。   Since the activated carbon fiber of the present invention exhibits a particularly excellent adsorption performance for high-boiling organic compounds, it can be suitably applied to a filter having such a high-boiling organic compound as a main adsorption target. The filter to which the activated carbon fiber of the present invention is applied is capable of alternately switching between adsorption and desorption with water vapor, and is an exhaust gas for removing and recovering high-boiling organic compounds discharged from industrial processes such as chemical factories and pharmaceutical factories. It is suitably used for a processing apparatus.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
内径70mm、有効長30cmの管状炉を用いて、繊維径24μmのフェノール繊維を、5L/minでの窒素流動下で昇温速度5℃/minで900℃まで昇温し、4時間(賦活時間)保持させた状態で純水を0.6mL/minで供給し続けて、賦活処理を行った。その後、出入口の炉内圧を2Pa以上に維持し、常温になるまで冷却した。出入口の炉内圧を2Pa以上に維持するために、炉内の温度が下がるにつれて窒素の流量を徐々に増やしていき、最終的には30L/minの窒素を流すことで、冷却時の酸素濃度が0.05%(東レエンジニアリング社のジルコニア酸素濃度計LC−750Lで測定)となるようにした。このようにして実施例1の活性炭素繊維を得た。
<Example 1>
Using a tubular furnace having an inner diameter of 70 mm and an effective length of 30 cm, a phenol fiber having a fiber diameter of 24 μm was heated to 900 ° C. at a heating rate of 5 ° C./min under a nitrogen flow of 5 L / min for 4 hours (activation time) ) Purified water was continuously supplied at a rate of 0.6 mL / min while being held, and an activation treatment was performed. Thereafter, the furnace pressure at the entrance / exit was maintained at 2 Pa or higher and cooled to room temperature. In order to maintain the furnace pressure at the inlet / outlet at 2 Pa or higher, the flow rate of nitrogen is gradually increased as the temperature in the furnace decreases, and finally, by flowing 30 L / min of nitrogen, the oxygen concentration during cooling is reduced. 0.05% (measured with a zirconia oxygen concentration meter LC-750L manufactured by Toray Engineering Co., Ltd.). Thus, the activated carbon fiber of Example 1 was obtained.

<実施例2>
賦活時間を4.5時間としたこと以外は実施例1と同様にして、実施例2の活性炭素繊維を得た。
<Example 2>
An activated carbon fiber of Example 2 was obtained in the same manner as in Example 1 except that the activation time was 4.5 hours.

<比較例1>
酸素濃度の制御をせずに冷却工程を行った(酸素濃度:1.0%)こと以外は実施例1と同様にして、比較例1の活性炭素繊維を得た。
<Comparative Example 1>
An activated carbon fiber of Comparative Example 1 was obtained in the same manner as in Example 1 except that the cooling step was performed without controlling the oxygen concentration (oxygen concentration: 1.0%).

<比較例2>
賦活時間を4.5時間としたこと以外は比較例1と同様にして、比較例2の活性炭素繊維を得た。
<Comparative example 2>
An activated carbon fiber of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the activation time was 4.5 hours.

得られた実施例1、2、比較例1、2の活性炭素繊維について、以下の評価試験を行った。   The following evaluation tests were performed on the activated carbon fibers obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

(1)BET比表面積(m2/g)
試料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、試料の吸着等温線を作成した。相対圧0.02〜0.15の範囲での結果をもとに、BET法により重量あたりのBET比表面積(単位:m2/g)を求めた。
(1) BET specific surface area (m 2 / g)
About 30 mg of a sample was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in the range of relative pressure of 0.02 to 0.95, and the adsorption isotherm of the sample was created. Based on the results in the relative pressure range of 0.02 to 0.15, the BET specific surface area (unit: m 2 / g) per weight was determined by the BET method.

(2)全細孔容積(cc/g)
試料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、試料の吸着等温線を作成した。相対圧0.95での結果より全細孔容積(単位:cc/g)を算出した。
(2) Total pore volume (cc / g)
About 30 mg of a sample was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in the range of relative pressure of 0.02 to 0.95, and the adsorption isotherm of the sample was created. The total pore volume (unit: cc / g) was calculated from the result at a relative pressure of 0.95.

(3)全マイクロポア細孔容積(A)(cc/g)
試料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、試料の吸着等温線を作成した。この結果をMP法によって解析範囲0〜20Å、t決定式H.Jの条件で解析し、吸着時のマイクロポア細孔径分布数表の結果より全マイクロポア細孔容積(A)(単位:cc/g)を算出した。
(3) Total micropore pore volume (A) (cc / g)
About 30 mg of a sample was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in the range of relative pressure of 0.02 to 0.95, and the adsorption isotherm of the sample was created. This result was analyzed by the MP method with an analysis range of 0 to 20 cm and a t-determining formula H.264. Analysis was performed under the conditions of J, and the total micropore pore volume (A) (unit: cc / g) was calculated from the results of the micropore pore diameter distribution number table at the time of adsorption.

(4)細孔直径1nm以下のマイクロポア細孔容積(B)(cc/g)
試料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、試料の吸着等温線を作成した。この結果をMP法によって解析範囲0〜2nm、t決定式H.Jの条件で解析し、吸着時のマイクロポア細孔径分布数表の結果より全マイクロポア細孔容積(A)から細孔直径1.003nm以上のマイクロポア細孔容積を引いて、細孔直径1nm以下のマイクロポア細孔容積B(単位:cc/g)を算出した。
(4) Micropore pore volume with pore diameter of 1 nm or less (B) (cc / g)
About 30 mg of a sample was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini 2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) was measured in the range of relative pressure of 0.02 to 0.95, and the adsorption isotherm of the sample was created. This result was analyzed by the MP method with an analysis range of 0 to 2 nm and a t-determining formula H.264. Analyzing under the conditions of J, subtracting the micropore pore volume with a pore diameter of 1.003 nm or more from the total micropore pore volume (A) from the results of the micropore pore diameter distribution number table at the time of adsorption, The micropore pore volume B (unit: cc / g) of 1 nm or less was calculated.

(5)温度25℃、相対湿度52%における水分吸着率(%)
試料を約0.2mg採取し、120℃で12時間真空乾燥して秤量し、恒温恒湿器SH−661(エスペック社製)を使用し、温度25℃、相対湿度52%で2時間置いたときの重量変化から水分吸着率(%)を求めた。
(5) Moisture adsorption rate (%) at a temperature of 25 ° C. and a relative humidity of 52%
About 0.2 mg of a sample was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, and placed in a thermo-hygrostat SH-661 (manufactured by Espec) for 2 hours at a temperature of 25 ° C. and a relative humidity of 52%. The moisture adsorption rate (%) was determined from the change in weight.

(6)全酸性基量(meq/g)
試料を水洗、乾燥後、約1gを採取し、120℃で12時間真空乾燥して秤量し、1/10MのNaOH水溶液50ml中に浸漬し、25℃で2時間振盪した。この液をガラス濾過器で濾過し、濾液20mlを正確に分取して1/10MのHCl水溶液により逆滴定した。滴定の際は0.1w/v%のメチルオレンジ溶液(和研薬社製)を指示薬として用いた。空試験も同様に行い、空試験での滴定量を差し引いた値から全酸性基量(単位:meq/g)を求めた。
(6) Total acidic group content (meq / g)
After washing and drying the sample, about 1 g was collected, vacuum-dried at 120 ° C. for 12 hours, weighed, immersed in 50 ml of 1/10 M NaOH aqueous solution, and shaken at 25 ° C. for 2 hours. This solution was filtered with a glass filter, and 20 ml of the filtrate was accurately collected and back-titration was performed with a 1/10 M aqueous HCl solution. For titration, a 0.1 w / v% methyl orange solution (manufactured by Wakken Yakuhin Co., Ltd.) was used as an indicator. The blank test was performed in the same manner, and the total amount of acidic groups (unit: meq / g) was determined from the value obtained by subtracting the titration value in the blank test.

(7)カルボキシル基量(meq/g)
試料を水洗、乾燥後、約1gを採取し、120℃で12時間真空乾燥して秤量し、1/20MのNa2CO3水溶液50ml中に浸漬し、25℃で2時間振盪した。この液をガラス濾過器で濾過し、濾液20mlを正確に分取して1/10MのHCl水溶液により逆滴定した。滴定の際は0.1w/v%のメチルオレンジ溶液(和研薬社製)を指示薬として用いた。空試験も同様に行い、空試験での滴定量を差し引いた値からカルボキシル基量(単位:meq/g)を求めた。
(7) Carboxyl group amount (meq / g)
After the sample was washed with water and dried, about 1 g was collected, vacuum dried at 120 ° C. for 12 hours, weighed, immersed in 50 ml of 1/20 M Na 2 CO 3 aqueous solution, and shaken at 25 ° C. for 2 hours. This solution was filtered with a glass filter, and 20 ml of the filtrate was accurately collected and back-titration was performed with a 1/10 M aqueous HCl solution. For titration, a 0.1 w / v% methyl orange solution (manufactured by Wakken Yakuhin Co., Ltd.) was used as an indicator. The blank test was performed in the same manner, and the carboxyl group amount (unit: meq / g) was determined from the value obtained by subtracting the titration value in the blank test.

(8)フェノール性水酸基量(meq/g)
全酸性基量からカルボキシル基量を引いて、フェノール性水酸基量(単位:meq/l)を求めた。
(8) Amount of phenolic hydroxyl group (meq / g)
The amount of phenolic hydroxyl groups (unit: meq / l) was determined by subtracting the amount of carboxyl groups from the total amount of acidic groups.

(9)全塩基性基量(meq/g)
試料を水洗、乾燥後、約1gを採取し、120℃で12時間真空乾燥して秤量し、1/10MのHCl水溶液50ml中に浸漬し、25℃で2時間振盪した。この液をガラス濾過器で濾過し、濾液20mlを正確に分取して1/10MのNaOH水溶液により逆滴定した。滴定の際は0.1w/v%のメチルオレンジ溶液(和研薬社製)を指示薬として用いた。空試験も同様に行い、空試験での滴定量を差し引いた値から全塩基性基量(単位:meq/g)を求めた。
(9) Total basic group amount (meq / g)
After the sample was washed with water and dried, about 1 g was collected, vacuum dried at 120 ° C. for 12 hours, weighed, immersed in 50 ml of 1/10 M HCl aqueous solution, and shaken at 25 ° C. for 2 hours. This liquid was filtered with a glass filter, and 20 ml of the filtrate was accurately collected and back titrated with a 1/10 M NaOH aqueous solution. For titration, a 0.1 w / v% methyl orange solution (manufactured by Wakken Yakuhin Co., Ltd.) was used as an indicator. The blank test was performed in the same manner, and the total basic group amount (unit: meq / g) was determined from the value obtained by subtracting the titration value in the blank test.

(10)m−キシレンに対する吸着性能評価
試料を約3kg充填した吸着槽を2槽併設した吸着装置に、濃度1000ppm、温度30℃、湿度50%、風量10m3/minのm−キシレンのガスを流し、一定時間吸着し、吸着終了時に吸着槽に水蒸気を噴出させて脱着するサイクルを10回繰り返して、平均の吸着破過時間(分)を求めた。
(10) Adsorption performance evaluation for m-xylene M-xylene gas having a concentration of 1000 ppm, a temperature of 30 ° C., a humidity of 50%, and an air volume of 10 m 3 / min was added to an adsorption apparatus equipped with two adsorption tanks filled with about 3 kg of a sample. A cycle of flowing, adsorbing for a certain time, and ejecting water vapor into the adsorption tank at the end of adsorption was repeated 10 times to obtain an average adsorption breakthrough time (minutes).

実施例1、2、比較例1、2の活性炭素繊維について得られた結果を表1、2にそれぞれ示す。   The results obtained for the activated carbon fibers of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Tables 1 and 2, respectively.

Figure 2011105545
Figure 2011105545

Figure 2011105545
Figure 2011105545

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (3)

BET比表面積が1500〜2300m2/g、全細孔容積が0.7〜1.2cc/g、細孔直径1nm以下のマイクロポア細孔容積が全マイクロポア細孔容積の90〜92%であり、かつ、温度25℃、相対湿度52%における水分吸着率が4%以下である、活性炭素繊維。 BET specific surface area is 1500-2300 m 2 / g, total pore volume is 0.7-1.2 cc / g, micropore pore volume with pore diameter of 1 nm or less is 90-92% of total micropore pore volume An activated carbon fiber having a water adsorption rate of 4% or less at a temperature of 25 ° C. and a relative humidity of 52%. カルボキシル基量が0.04meq/g以下である、請求項1に記載の活性炭素繊維。   The activated carbon fiber according to claim 1, wherein the amount of carboxyl groups is 0.04 meq / g or less. 沸点が120〜300℃の範囲内の有機化合物を吸着させるために用いられる、請求項1または2に記載の活性炭素繊維。   The activated carbon fiber according to claim 1 or 2, which is used for adsorbing an organic compound having a boiling point in a range of 120 to 300 ° C.
JP2009261974A 2009-11-17 2009-11-17 Activated carbon fiber Active JP5327009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261974A JP5327009B2 (en) 2009-11-17 2009-11-17 Activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261974A JP5327009B2 (en) 2009-11-17 2009-11-17 Activated carbon fiber

Publications (2)

Publication Number Publication Date
JP2011105545A true JP2011105545A (en) 2011-06-02
JP5327009B2 JP5327009B2 (en) 2013-10-30

Family

ID=44229491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261974A Active JP5327009B2 (en) 2009-11-17 2009-11-17 Activated carbon fiber

Country Status (1)

Country Link
JP (1) JP5327009B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772261A4 (en) * 2011-10-07 2015-09-30 Teijin Pharma Ltd Orally administered adsorbent
JPWO2014077305A1 (en) * 2012-11-16 2017-01-05 ニチアス株式会社 Silanol compound remover
JP6471256B1 (en) * 2018-05-18 2019-02-13 ユニチカ株式会社 Deodorizing material and deodorizing sheet
JP2023171415A (en) * 2019-08-20 2023-12-01 国立研究開発法人産業技術総合研究所 Activated carbon for adsorbing per- and polyfluoroalkyl compounds in water sample

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044876B1 (en) * 2017-11-22 2019-11-14 한국에너지기술연구원 Water adsorption / desorption material capable of autonomous humidity control and the manufacturing method thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152534A (en) * 1985-12-26 1987-07-07 Toho Rayon Co Ltd Pitch type activated carbon fiber for adsorption and recovery
JPH04104813A (en) * 1990-08-23 1992-04-07 Osaka Gas Co Ltd Adsorbing body for adsorption treatment of gas
JPH0617321A (en) * 1992-06-25 1994-01-25 Morinobu Endo Pitch-based activated carbon fiber
JPH0699065A (en) * 1991-12-10 1994-04-12 Kuraray Co Ltd Filler for water purifier
JPH07145516A (en) * 1993-11-18 1995-06-06 Petoca:Kk Active carbon fiber, its production and water purifier containing the same active carbon fiber as adsorbent
JPH0943185A (en) * 1995-07-31 1997-02-14 Tokai Carbon Co Ltd Moisture sensor element
JP2001261319A (en) * 2000-03-14 2001-09-26 Osaka Gas Co Ltd Activated carbon and method of producing the same
JP2003251132A (en) * 2002-02-28 2003-09-09 Toyobo Co Ltd Gas treatment apparatus and treatment method used for the same
JP2005000903A (en) * 2003-05-19 2005-01-06 Kuraray Chem Corp Recovery method for organochlorine solvent
JP2005021851A (en) * 2003-07-01 2005-01-27 Kuraray Chem Corp Method for recovering mixed solvent
JP2005138038A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Organic compound adsorption fibrous activated carbon and exhaust gas treatment apparatus
WO2006109595A1 (en) * 2005-04-06 2006-10-19 Toyo Boseki Kabushiki Kaisha Filter for removing radioactive substance and filter unit employing the same
JP2007186403A (en) * 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
JP2008055318A (en) * 2006-08-31 2008-03-13 Osaka Gas Chem Kk Adsorbent and filter for eliminating siloxane gas
JP2008100186A (en) * 2006-10-20 2008-05-01 Toyobo Co Ltd Gas adsorption apparatus
WO2008053919A1 (en) * 2006-11-02 2008-05-08 Kuraray Chemical Co., Ltd Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors
JP2011106051A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152534A (en) * 1985-12-26 1987-07-07 Toho Rayon Co Ltd Pitch type activated carbon fiber for adsorption and recovery
JPH043257B2 (en) * 1985-12-26 1992-01-22
JPH04104813A (en) * 1990-08-23 1992-04-07 Osaka Gas Co Ltd Adsorbing body for adsorption treatment of gas
JPH0699065A (en) * 1991-12-10 1994-04-12 Kuraray Co Ltd Filler for water purifier
JPH0617321A (en) * 1992-06-25 1994-01-25 Morinobu Endo Pitch-based activated carbon fiber
JPH07145516A (en) * 1993-11-18 1995-06-06 Petoca:Kk Active carbon fiber, its production and water purifier containing the same active carbon fiber as adsorbent
JPH0943185A (en) * 1995-07-31 1997-02-14 Tokai Carbon Co Ltd Moisture sensor element
JP2001261319A (en) * 2000-03-14 2001-09-26 Osaka Gas Co Ltd Activated carbon and method of producing the same
JP2003251132A (en) * 2002-02-28 2003-09-09 Toyobo Co Ltd Gas treatment apparatus and treatment method used for the same
JP2005000903A (en) * 2003-05-19 2005-01-06 Kuraray Chem Corp Recovery method for organochlorine solvent
JP2005021851A (en) * 2003-07-01 2005-01-27 Kuraray Chem Corp Method for recovering mixed solvent
JP2005138038A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Organic compound adsorption fibrous activated carbon and exhaust gas treatment apparatus
WO2006109595A1 (en) * 2005-04-06 2006-10-19 Toyo Boseki Kabushiki Kaisha Filter for removing radioactive substance and filter unit employing the same
JP2007186403A (en) * 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
JP2008055318A (en) * 2006-08-31 2008-03-13 Osaka Gas Chem Kk Adsorbent and filter for eliminating siloxane gas
JP2008100186A (en) * 2006-10-20 2008-05-01 Toyobo Co Ltd Gas adsorption apparatus
WO2008053919A1 (en) * 2006-11-02 2008-05-08 Kuraray Chemical Co., Ltd Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors
JP2011106051A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772261A4 (en) * 2011-10-07 2015-09-30 Teijin Pharma Ltd Orally administered adsorbent
US9682046B2 (en) 2011-10-07 2017-06-20 Teijin Pharma Limited Adsorbents for oral administration
AU2012319495B2 (en) * 2011-10-07 2017-07-20 Teijin Limited Orally administered adsorbent
JPWO2014077305A1 (en) * 2012-11-16 2017-01-05 ニチアス株式会社 Silanol compound remover
JP6471256B1 (en) * 2018-05-18 2019-02-13 ユニチカ株式会社 Deodorizing material and deodorizing sheet
JP2019198542A (en) * 2018-05-18 2019-11-21 ユニチカ株式会社 Deodorant and deodorizing sheet
JP2023171415A (en) * 2019-08-20 2023-12-01 国立研究開発法人産業技術総合研究所 Activated carbon for adsorbing per- and polyfluoroalkyl compounds in water sample

Also Published As

Publication number Publication date
JP5327009B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5482133B2 (en) Activated carbon fiber
Chen et al. Adsorption of 2, 4, 6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu (II)
JP5327009B2 (en) Activated carbon fiber
JP6379325B1 (en) Activated carbon and manufacturing method thereof
Jahangiri et al. The adsorption of benzene, toluene and xylenes (BTX) on the carbon nanostructures: the study of different parameters
Tofighy et al. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent
JP6683968B1 (en) Activated carbon
JP2022132348A (en) Activated carbon and production method thereof
JP5482134B2 (en) Activated carbon fiber
JP2008100186A (en) Gas adsorption apparatus
Berned‐Samatán et al. Self‐supported single‐wall carbon nanotube buckypaper membranes applied to air and water filtration
JP2008188493A (en) Water treatment apparatus
ZHANG et al. Removal of elemental mercury from coal combustion flue gas by bentonite-chitosan and their modifier
JP2008149267A (en) Organic halide based compound removal filter
Pourfayaz et al. An evaluation of the adsorption potential of MWCNTs for benzene and toluene removal
Salawudeen et al. Evaluation of the removal of phenol from contaminated water by graphene oxide functionalized with polydiallydimethylammonium chloride (GPDADMAC)
Othman et al. Adsorption of cadmium (II) ions by polyacrylonitrile-based activated carbon nanofibers/magnesium oxide as its adsorbents
Pourfayaz et al. A study of effects of different surface modifications of MWCNTs on their adsorption capacity of benzene and toluene
Wang et al. Sorption of volatile organic compounds on organic substance-modified titanate nanotubes
JP4378612B2 (en) Fibrous activated carbon for adsorbing organic compounds and exhaust gas treatment apparatus using the same
Moon et al. Packaging vertically aligned carbon nanotubes into a heat-shrink tubing for efficient removal of phenolic pollutants
Poliakrilonitril et al. Removal of lead (II) from aqueous solution using polyacrylonitrile/zinc oxide activated carbon nanofibers
KR101572967B1 (en) Polyvinylidene Fluoride-based Carbon Nanofiber for Carbon Dioxide Adsorption and Preparation Method for Preparing the Same
JP7006239B2 (en) Porous carbon material
Afshar et al. Amidation of purified carbon nanotubes for selective solid phase extraction of mercury (II) ions from aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5327009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350