JPH0943185A - Moisture sensor element - Google Patents

Moisture sensor element

Info

Publication number
JPH0943185A
JPH0943185A JP21403895A JP21403895A JPH0943185A JP H0943185 A JPH0943185 A JP H0943185A JP 21403895 A JP21403895 A JP 21403895A JP 21403895 A JP21403895 A JP 21403895A JP H0943185 A JPH0943185 A JP H0943185A
Authority
JP
Japan
Prior art keywords
humidity
pore
moisture
carbon fiber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21403895A
Other languages
Japanese (ja)
Inventor
Tomio Hata
都美雄 畑
Masakatsu Tsuchiya
正勝 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP21403895A priority Critical patent/JPH0943185A/en
Publication of JPH0943185A publication Critical patent/JPH0943185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure low to high moisture with a high sensitivity at a high response speed by using an active carbon fiber with a specific pore property as a moisture sensor element. SOLUTION: A moisture sensor element is constituted of an active carbon fiber with pore property where a volume occupied by a micro pore with a diameter of 20Å or less is equal to or more than 85% of a total pore area and a total power volume is equal to or more than 0.5cc/H. The pore of an active carbon fiber is made by activating carbon fiber within oxidizing gas atmosphere or carbonizing an organic precursor fiber in oxidizing gas atmosphere. A micro power whose diameter is 20Å or less rapidly absorbs or desorbs moisture and can smoothly and uniformly absorbs and desorbs water when an occupation volume is at least 85% of the total pore volume, thus reducing the scattering in electrical resistance change due to the absorption and desorption of water and accurately measuring moisture change. Further, since absorbed and desorbed water can be rapidly and uniformly absorbed in the pore of the micro pore even in a moisture atmosphere with less amount of absorbed water, thus accurately measuring moisture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低湿度から高湿度
まで広い湿度領域において測定可能であり、高精度、高
感度で湿度を検出することのできる湿度センサー素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity sensor element capable of measuring humidity in a wide humidity range from low humidity to high humidity and capable of detecting humidity with high accuracy and high sensitivity.

【0002】湿度センサーは水分の吸着とそれによる物
理的変化とを組み合わせて湿度を検出するものであり、
古くは毛髪の吸脱湿による伸縮を利用した湿度センサー
が知られている。しかしながら、この湿度センサーは測
定感度が十分でなく、また吸脱湿時のヒステリシスが大
きいなどの欠点があるため、その後数多くの湿度センサ
ー用の検出素子が開発されている。
Humidity sensors detect humidity by combining the adsorption of water and the resulting physical changes.
Humidity sensors that use expansion and contraction due to moisture absorption and desorption of hair have long been known. However, this humidity sensor has drawbacks such as insufficient measurement sensitivity and large hysteresis during adsorption and dehumidification, and many detection elements for humidity sensors have been developed thereafter.

【0003】[0003]

【従来の技術】従来、検出素子としては電解質系、金属
系、高分子系、セラミックス系などが知られている。こ
のうちセラミックス系は金属酸化物を主体とした焼結体
であり熱的、物理化学的に安定なため適当な気孔と表面
積をもつ多孔質焼結体が多く使用されている。該セラミ
ックス系湿度センサーは、使用可能な温度範囲が広
い、湿度測定範囲が広い、応答速度が速い、材料
が安価である、などの特徴があるが、高湿度においては
ドリフトが大きく、化学吸着によるセンサーの劣化や経
時変化の影響を除くためセンサー素子を加熱処理して化
学吸着した水を脱離させたり、あるいはセンサー素子面
にコーティング処理を施すなどの処置が必要となる難点
がある。
2. Description of the Related Art Heretofore, electrolyte-based, metal-based, polymer-based, ceramic-based, etc. have been known as detection elements. Among them, the ceramic type is a sintered body mainly composed of a metal oxide and is thermally and physicochemically stable, so that a porous sintered body having appropriate pores and surface areas is often used. The ceramic humidity sensor has features such as a wide usable temperature range, a wide humidity measurement range, a fast response speed, and a low cost material, but it has a large drift at high humidity and is caused by chemisorption. In order to eliminate the effects of sensor deterioration and aging, there is a drawback in that it is necessary to heat the sensor element to release the chemically adsorbed water, or to apply a coating treatment to the sensor element surface.

【0004】高分子系湿度センサーは、感湿高分子膜の
水和膨潤や吸湿による電気抵抗、誘電率などの変化から
湿度を検出するもので、ポリスチレンスルフォン酸、ア
ルギン酸、ポリアクリル酸、セルロース系高分子膜など
の検出素子材が開発されている。しかしながら、高湿度
雰囲気中で長期間の安定使用に耐えられるものは未だ開
発されていない。また、塩化リチウムなどの電解質水溶
液を多孔質マトリックスに含浸させた検出素子は高湿状
態で長時間使用したり、結露させると塩化リチウムが流
出して使用不能となる欠点がある。
The polymer type humidity sensor detects humidity from changes in electric resistance, dielectric constant and the like due to hydration swelling and moisture absorption of a moisture sensitive polymer film, and polystyrene sulfonic acid, alginic acid, polyacrylic acid, cellulose type. Detecting element materials such as polymer films have been developed. However, a material that can withstand long-term stable use in a high humidity atmosphere has not yet been developed. In addition, a detection element in which an electrolyte aqueous solution such as lithium chloride is impregnated in a porous matrix has a drawback that it cannot be used due to lithium chloride flowing out when it is used for a long time in a high humidity state or when it is condensed.

【0005】更に、活性炭素繊維を担体として吸湿性物
質を担持させた湿度センサーも開発されており、特公昭
61−22898号公報には、平均直径が10〜50オ
ングストロームの細孔を有する繊維状活性炭に吸湿性物
質を担持させた湿度センサーが提案されている。この湿
度センサーは特定の細孔分布を有する繊維状活性炭にエ
チレングリコール、トリエチレングリコールなどの有機
吸湿性物質、塩化リチウム、塩化マグネシウムなどの無
機吸湿性物質を担持させたものであり、吸湿に伴う電気
抵抗の変化を測定して湿度を検出するものである。
Further, a humidity sensor in which a hygroscopic substance is supported by using activated carbon fiber as a carrier has been developed. In Japanese Patent Publication No. Sho 61-22898, a fibrous shape having pores having an average diameter of 10 to 50 angstroms is developed. A humidity sensor in which activated carbon is loaded with a hygroscopic substance has been proposed. This humidity sensor is made by supporting fibrous activated carbon with a specific pore distribution with organic hygroscopic substances such as ethylene glycol and triethylene glycol, and inorganic hygroscopic substances such as lithium chloride and magnesium chloride. The humidity is detected by measuring the change in electric resistance.

【0006】[0006]

【発明が解決しようとする課題】ところが、この活性炭
素繊維系の湿度センサーは高湿度雰囲気や高温雰囲気中
で長時間使用すると吸湿性物質の潮解による流出や変質
が生じて、精度よく高感度で湿度測定をすることができ
ない問題点がある。
However, when the activated carbon fiber type humidity sensor is used for a long time in a high-humidity atmosphere or a high-temperature atmosphere, the hygroscopic substance may flow out or deteriorate due to deliquescent, resulting in high accuracy and high sensitivity. There is a problem that humidity cannot be measured.

【0007】このように吸湿性物質の材質性状によって
湿度センサーの機能低下が生じる難点に鑑み、本発明者
は吸湿性物質を使用することなく活性炭素繊維の気孔性
状と水分の吸湿、脱湿特性との関係について鋭意研究し
た結果、特定の気孔性状を有する活性炭素繊維を検出素
子として用い、吸湿水分の吸脱着による電気抵抗の変化
を測定することにより長期に亘り安定で高精度、高感度
で湿度を検出できることを見出した。
In view of the problem that the function of the humidity sensor deteriorates due to the material properties of the hygroscopic substance, the present inventor has found that the porosity of the activated carbon fiber and the moisture absorption / dehumidification characteristics of the activated carbon fiber do not use the hygroscopic substance. As a result of diligent research on the relationship with, the use of activated carbon fiber having a specific porosity as a detection element, by measuring the change in electrical resistance due to adsorption and desorption of moisture absorption moisture, stable and highly accurate with high sensitivity It has been found that humidity can be detected.

【0008】本発明は上記知見に基づいて完成されたも
ので、その目的は、低湿度から高湿度まで広範囲の湿度
測定が可能で、応答速度、高温安定性、経時安定性に優
れ、高精度、高感度で湿度を検出することができる湿度
センサー素子を提供することにある。
The present invention has been completed based on the above findings, and its purpose is to be able to measure humidity in a wide range from low humidity to high humidity, and to have excellent response speed, high temperature stability, and temporal stability, and high accuracy. Another object of the present invention is to provide a humidity sensor element capable of detecting humidity with high sensitivity.

【0009】[0009]

【課題を解決するための手段】すなわち、上記目的を達
成するための本発明による湿度センサー素子は、直径2
0オングストローム以下のミクロポアの占める容積が全
細孔容積の85%以上であり、全細孔容積が0.5cc/g
以上の気孔性状を有する活性炭素繊維からなることを構
成上の特徴とする。
That is, the humidity sensor element according to the present invention for achieving the above object has a diameter of 2 mm.
The volume occupied by micropores of 0 Å or less is 85% or more of the total pore volume, and the total pore volume is 0.5 cc / g.
The structural feature is that the activated carbon fiber has the above-mentioned porosity.

【0010】[0010]

【発明の実施の形態】活性炭素繊維は、炭素繊維を酸化
性ガス雰囲気中で賦活処理する方法や有機質前駆体繊維
を酸化性ガス雰囲気中で炭化する方法により細孔を生成
させたもので、この細孔により大きな吸着性能を付与す
ることができるので各種吸着材として用いられている。
BEST MODE FOR CARRYING OUT THE INVENTION Activated carbon fibers are those in which pores are generated by a method of activating a carbon fiber in an oxidizing gas atmosphere or a method of carbonizing an organic precursor fiber in an oxidizing gas atmosphere. Since these pores can give a large adsorption performance, they are used as various adsorbents.

【0011】この活性炭素繊維を湿度センサー素子とし
て利用するためには水分の吸着と吸着された水分が容易
に除去されること、すなわち吸湿と脱湿が円滑に行われ
ることが必要である。また、水分の吸脱着による電気抵
抗の変化が大きく、多量の水分を吸着できること、水分
の吸脱着が不可逆吸着(化学吸着)でないことも重要な
要素となる。
In order to use this activated carbon fiber as a humidity sensor element, it is necessary that water is adsorbed and the adsorbed water is easily removed, that is, moisture absorption and dehumidification are performed smoothly. Further, it is also an important factor that the change in electric resistance due to water adsorption / desorption is large, a large amount of water can be adsorbed, and that the water adsorption / desorption is not irreversible adsorption (chemical adsorption).

【0012】本発明で特定した気孔性状のうち、直径2
0オングストローム以下の微小なミクロポアは水分を迅
速に吸湿および脱湿するために有効機能する。この直径
20オングストローム以下のミクロポアは、その容積が
全細孔容積の85%以上の割合で存在することが必要で
ある。大きな直径の細孔が多く存在すると水分の吸脱着
が円滑均等に進行し難くなり、水分吸着に伴う電気抵抗
変化のばらつきが生じ易くなるが、直径20オングスト
ローム以下のミクロポアの占める容積を全細孔容積の8
5%以上の気孔性状とすることにより水分を円滑均等に
吸脱着させることができる。その結果、水分の吸脱着に
よる電気抵抗変化のばらつきを減少し、精確に湿度変化
を測定することができる。更に、高湿度雰囲気ばかりで
はなく、吸着水分量の少ない低湿度雰囲気中においても
吸湿水分はこのミクロポアの気孔中に迅速均等に吸着さ
れるので、精確に湿度を測定することが可能となる。
Among the pore characteristics specified in the present invention, the diameter is 2
Minute micropores of 0 angstrom or less function effectively to absorb and dehumidify water quickly. The micropores having a diameter of 20 angstroms or less need to have a volume of 85% or more of the total pore volume. If there are many large-diameter pores, it becomes difficult for water adsorption and desorption to proceed smoothly and evenly, and variations in electrical resistance change due to water adsorption tend to occur. 8 in volume
By setting the porosity to be 5% or more, moisture can be smoothly adsorbed and desorbed. As a result, variations in electric resistance change due to water adsorption / desorption can be reduced, and humidity change can be accurately measured. Further, not only in a high humidity atmosphere, but also in a low humidity atmosphere with a small amount of adsorbed moisture, the absorbed moisture is quickly and evenly adsorbed in the pores of the micropores, so that the humidity can be accurately measured.

【0013】また、気孔性状として全細孔容積が0.5
cc/g以上であることが必要である。全細孔容積が0.5
cc/g未満であると、吸着し得る水分量が少ないので高湿
度雰囲気中において長時間の測定を行うと細孔内が吸着
水分により飽和して湿度測定が不能になるためである。
Further, as a porosity, the total pore volume is 0.5.
It must be cc / g or higher. Total pore volume is 0.5
If it is less than cc / g, the amount of water that can be adsorbed is small, and therefore, if the measurement is performed for a long time in a high humidity atmosphere, the pores will be saturated with the adsorbed water and the humidity cannot be measured.

【0014】本発明の気孔性状を有する活性炭素繊維
は、焼成してガラス状カーボン質に転化するフェノール
樹脂やフラン樹脂などを溶融紡糸した有機質前駆体繊維
を非酸化性雰囲気中で焼成炭化処理したガラス状カーボ
ン繊維を賦活処理することにより製造することができ
る。
The activated carbon fiber having the porosity of the present invention is obtained by subjecting an organic precursor fiber obtained by melt-spinning a phenol resin or a furan resin which is converted into a glassy carbonaceous substance by firing to a carbonizing treatment in a non-oxidizing atmosphere. It can be produced by activating the glassy carbon fiber.

【0015】この場合、有機質前駆体繊維の焼成炭化処
理は窒素ガス、アルゴンガスなどの非酸化性ガス雰囲気
中1000℃以下の温度、好ましくは900℃以下の温
度で熱処理することによりガラス状カーボン繊維を作製
する。焼成炭化温度が1000℃を越えるとガラス状カ
ーボン繊維の半導体的性質が弱くなり、水分吸着による
電気抵抗変化を測定することが困難となり、更に、次段
の賦活処理時にガラス状カーボン繊維の表面に直径20
オングストローム以下の微細なミクロポアを形成するこ
とが困難となる。
In this case, the firing carbonization treatment of the organic precursor fiber is performed by heat-treating at a temperature of 1000 ° C. or lower, preferably 900 ° C. or lower in a non-oxidizing gas atmosphere such as nitrogen gas or argon gas. To make. If the firing carbonization temperature exceeds 1000 ° C., the semiconducting properties of the glassy carbon fiber become weak, making it difficult to measure the change in electrical resistance due to water adsorption. Diameter 20
It becomes difficult to form fine micropores of angstrom or smaller.

【0016】賦活処理はガラス状カーボン繊維を空気、
炭酸ガス、水蒸気あるいはオゾンなどの酸化性ガス雰囲
気中で加熱処理する通常の方法を適用することができ、
気孔性状は加熱処理の温度、昇温速度および加熱時間な
どを調整することにより制御される。好ましい賦活条件
は加熱温度800〜1000℃、昇温速度100〜30
0℃/hr 、加熱時間1〜3hrである。このようにして本
発明で特定する気孔性状を備えた活性炭素繊維が製造さ
れる。
The activation treatment is carried out by using glassy carbon fiber in air,
It is possible to apply a normal method of heat treatment in an oxidizing gas atmosphere such as carbon dioxide, water vapor or ozone,
The porosity is controlled by adjusting the temperature of the heat treatment, the heating rate, the heating time, and the like. The preferred activation conditions are a heating temperature of 800 to 1000 ° C. and a heating rate of 100 to 30.
The heating time is 0 ° C./hr and the heating time is 1 to 3 hr. Thus, the activated carbon fiber having the porosity specified in the present invention is manufactured.

【0017】本発明で特定した気孔性状のうち、直径2
0オングストローム以下のミクロポアの占める容積が全
細孔容積の85%以上という性状は微細な気孔が多く分
布することにより特徴付けられるもので、この微細な気
孔により吸湿時に水分を迅速かつ均等に吸着することが
できる。したがって、吸湿による電気抵抗は正確かつ速
やかに変化し、その結果応答速度が早く高精度、高感度
で湿度を検出することが可能となる。
Among the pore properties specified in the present invention, the diameter is 2
The volume occupied by micropores of 0 angstroms or less is 85% or more of the total pore volume, which is characterized by a large distribution of fine pores, and these fine pores quickly and evenly adsorb moisture during moisture absorption. be able to. Therefore, the electric resistance due to moisture absorption changes accurately and promptly, and as a result, the response speed is fast and the humidity can be detected with high accuracy and high sensitivity.

【0018】また、焼成炭化後に賦活処理するので形成
される細孔構造が複雑化せず、シンプルな形状であるた
めに水分の吸着および脱着は円滑に行われ、更に活性炭
素繊維の水分吸着は物理吸着が支配的で、化学吸着は殆
ど起こらないので吸脱着に伴うヒステリシスを生じるこ
となく、再現性よく湿度を検出することができる。
Also, since activation treatment is carried out after firing and carbonization, the pore structure formed does not become complicated, and since it has a simple shape, the adsorption and desorption of water can be carried out smoothly. Since physical adsorption is dominant and chemical adsorption hardly occurs, humidity can be detected with good reproducibility without causing hysteresis accompanying adsorption / desorption.

【0019】更に、全細孔容積が0.5cc/g以上の気孔
性状により水分の吸着容量が大きく高湿度雰囲気中にお
いて長時間の測定が可能であり、また微小なミクロポア
が多く分布する細孔性状により低湿度領域においても迅
速、均等に水分吸着が起こるので低湿度雰囲気において
も高精度、高感度で湿度検出が可能となる。したがっ
て、低湿度から高湿度まで広い範囲の湿度を測定するこ
とができる。
Further, the pores having a total pore volume of 0.5 cc / g or more have a large water adsorption capacity and can be measured for a long time in a high humidity atmosphere. Due to the nature of the property, moisture can be adsorbed quickly and evenly in the low humidity region, so that the humidity can be detected with high accuracy and high sensitivity even in the low humidity atmosphere. Therefore, it is possible to measure a wide range of humidity from low humidity to high humidity.

【0020】本発明の湿度センサー素子は、このような
気孔性状を有する活性炭素繊維により構成されているの
で高温かつ腐食性ガス雰囲気中においても安定で、低湿
度から高湿度まで広範囲の湿度測定が可能であり、応答
速度、高温安定性、経時安定性に優れ、高精度、高感度
で湿度を検出することができる。
Since the humidity sensor element of the present invention is composed of activated carbon fibers having such a porosity, it is stable even in a high temperature and corrosive gas atmosphere, and can measure humidity in a wide range from low humidity to high humidity. It is possible, excellent in response speed, high temperature stability, stability over time, and capable of detecting humidity with high accuracy and high sensitivity.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0022】実施例1〜5、比較例1〜5 フェノール樹脂繊維〔群栄化学(株)製カイノール繊維
KR0240 〕を窒素ガス雰囲気中で熱処理温度を変えて焼
成炭化し、ガラス状カーボン繊維を作製した。次いで、
このガラス状カーボン繊維を炭酸ガス中で加熱して賦活
処理した。賦活処理は加熱温度、昇温速度および加熱時
間を調整して行い、気孔性状の異なる活性炭素繊維を製
造した。なお、気孔性状は水銀圧入法により測定した。
このようにして得られた活性炭素繊維の気孔性状を処理
条件と対比して表1に示した。
Examples 1-5, Comparative Examples 1-5 Phenolic resin fiber [Kynol fiber manufactured by Gunei Chemical Co., Ltd.]
KR0240] was calcined and carbonized in a nitrogen gas atmosphere at different heat treatment temperatures to produce glassy carbon fibers. Then
The glassy carbon fiber was heated in carbon dioxide gas to be activated. The activation treatment was performed by adjusting the heating temperature, heating rate and heating time to produce activated carbon fibers having different porosity. The porosity was measured by mercury porosimetry.
The porosity of the activated carbon fiber thus obtained is shown in Table 1 in comparison with the treatment conditions.

【0023】[0023]

【表1】 (表注)*1〔(直径20オングストローム以下のミクロポア容積)÷(全細孔容 積)〕×100[Table 1] (Table Note) * 1 [(volume of micropores with a diameter of 20 angstroms or less) / (total pore volume)] x 100

【0024】これらの活性炭素繊維を検出素子として湿
度センサーを組立て、湿度の異なる恒湿槽内にセット
し、1分間経過後の電気抵抗を測定して、その結果を表
2に示した。
Humidity sensors were assembled using these activated carbon fibers as detection elements, set in constant humidity chambers having different humidities, and the electric resistance after 1 minute was measured. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2の実施例1および比較例3について、
図1に相対湿度(%)と電気抵抗(Ω)との関係をグラ
フで示した。図1から実施例1は低湿度から高湿度まで
広い湿度範囲に亘って湿度による電気抵抗変化が大き
く、良い相関を示しているが、比較例3では湿度による
電気抵抗の変化量が小さく、吸着時に平衡状態に達する
のに時間がかかり湿度センサー素子として感度が悪いこ
とが判る。
Regarding Example 1 and Comparative Example 3 in Table 2,
FIG. 1 is a graph showing the relationship between relative humidity (%) and electric resistance (Ω). 1 to Example 1, the electric resistance change due to humidity is large over a wide humidity range from low humidity to high humidity and shows a good correlation. However, in Comparative Example 3, the change amount of electric resistance due to humidity is small and adsorption It can be seen that it sometimes takes time to reach an equilibrium state and the sensitivity is poor as a humidity sensor element.

【0027】次に、湿度センサーとしての応答性能およ
び再現性を評価するために次の方法により吸脱着に伴う
電気抵抗の変化を測定した。湿度センサーを湿度10%
に調節したデシケーター中に入れ平衡状態に達したの
ち、湿度98%に調整された水を張った密閉容器中にセ
ットし10分間保持した。次いで、湿度センサーを前記
デシケーター中に戻して10分間保持した。この操作サ
イクルにおいて密閉容器中(吸着過程)およびデシケー
ター中(脱着過程)に保持した際の電気抵抗の経時変化
を測定した。
Next, in order to evaluate the response performance and reproducibility as a humidity sensor, the change in electric resistance due to adsorption and desorption was measured by the following method. Humidity sensor 10% humidity
After reaching the equilibrium state by placing it in a desiccator adjusted to No. 2, it was set in a closed container filled with water whose humidity was adjusted to 98% and kept for 10 minutes. Then, the humidity sensor was returned to the desiccator and held for 10 minutes. In this operation cycle, the change with time of the electric resistance was measured when it was held in a closed container (adsorption process) and in a desiccator (desorption process).

【0028】表1の実施例1と比較例3の活性炭素繊維
を検出素子として組み立てた湿度センサーを用いて、上
記方法により吸脱着に伴う電気抵抗を測定して、吸着時
間および脱着時間と電気抵抗の変化を図2に示した。図
2から実施例1の活性炭素繊維を検出素子とした場合に
は吸着過程において速やかに水分吸着が起こるために急
激に電気抵抗が低下し吸着時間1分以内に平衡状態に達
し、また、脱着過程では吸着水分の脱離が速やかに進行
して電気抵抗が増大し、同様に1分以内で平衡状態にな
り、平衡後の電気抵抗の変動も認められない。すなわ
ち、測定値のばらつきが少なく、応答性能も優れている
ことが判る。更に、吸脱湿に伴う電気抵抗変化量が大き
いので高精度、高感度で湿度を検出することができた。
これに対し比較例3の活性炭素繊維を検出素子とした場
合には吸着過程、脱着過程とも平衡状態に達する時間が
長くなるうえ、平衡時の電気抵抗変化量も小さく応答性
能および検出精度が劣ることが判明する。
Using the humidity sensors in which the activated carbon fibers of Example 1 and Comparative Example 3 in Table 1 were assembled as detection elements, the electrical resistance associated with adsorption / desorption was measured by the above method, and the adsorption time, desorption time and electric The change in resistance is shown in FIG. From FIG. 2, when the activated carbon fiber of Example 1 is used as the detection element, water adsorption occurs rapidly in the adsorption process, so that the electric resistance rapidly decreases and the equilibrium state is reached within 1 minute of the adsorption time. In the process, desorption of adsorbed water rapidly progresses to increase electric resistance, similarly, an equilibrium state is reached within 1 minute, and no change in electric resistance after equilibration is observed. That is, it can be seen that there is little variation in measured values and the response performance is excellent. Furthermore, since the amount of change in electric resistance due to adsorption and dehumidification is large, humidity can be detected with high accuracy and high sensitivity.
On the other hand, when the activated carbon fiber of Comparative Example 3 is used as the detection element, both the adsorption process and the desorption process take a long time to reach the equilibrium state, the electric resistance change amount at the equilibrium time is small, and the response performance and the detection accuracy are poor. It turns out.

【0029】[0029]

【発明の効果】以上のとおり、本発明によれば特定の気
孔性状を備えた活性炭素繊維を湿度センサー素子として
用いることによって、水分の吸着および脱着が迅速、円
滑に起こり、応答速度が速く高精度、高感度に湿度を検
出することができる。更に低湿度から高湿度まで測定可
能な湿度範囲が広く、また高温、腐食性ガス雰囲気中に
おいても長期間安定使用が可能であるので、湿度センサ
ー素子として極めて有用である。
As described above, according to the present invention, by using the activated carbon fiber having a specific pore property as the humidity sensor element, the adsorption and desorption of water occur quickly and smoothly, and the response speed is fast and high. Humidity can be detected with high accuracy and high sensitivity. Furthermore, it has a wide measurable humidity range from low humidity to high humidity, and can be stably used for a long period of time even in a high temperature and corrosive gas atmosphere, and is therefore extremely useful as a humidity sensor element.

【図面の簡単な説明】[Brief description of drawings]

【図1】相対湿度と電気抵抗との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between relative humidity and electric resistance.

【図2】吸着時間および脱着時間と電気抵抗との関係を
示すグラフである。
FIG. 2 is a graph showing a relationship between adsorption time and desorption time and electric resistance.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年9月5日[Submission date] September 5, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 [Fig. 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直径20オングストローム以下のミクロ
ポアの占める容積が全細孔容積の85%以上であり、全
細孔容積が0.5cc/g以上の気孔性状を有する活性炭素
繊維からなることを特徴とする湿度センサー素子。
1. The volume occupied by micropores having a diameter of 20 Å or less is 85% or more of the total pore volume, and the total pore volume is composed of activated carbon fibers having a porosity of 0.5 cc / g or more. Humidity sensor element.
JP21403895A 1995-07-31 1995-07-31 Moisture sensor element Pending JPH0943185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21403895A JPH0943185A (en) 1995-07-31 1995-07-31 Moisture sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21403895A JPH0943185A (en) 1995-07-31 1995-07-31 Moisture sensor element

Publications (1)

Publication Number Publication Date
JPH0943185A true JPH0943185A (en) 1997-02-14

Family

ID=16649252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21403895A Pending JPH0943185A (en) 1995-07-31 1995-07-31 Moisture sensor element

Country Status (1)

Country Link
JP (1) JPH0943185A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278549A (en) * 2008-05-16 2009-11-26 Chugoku Electric Power Co Inc:The Water immersion detection system, water immersion detection method using the same, and waveguide
JP2011027458A (en) * 2009-07-22 2011-02-10 Mitsubishi Materials Corp Humidity sensor
JP2011105545A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber
CN109186896A (en) * 2018-09-21 2019-01-11 河海大学 It is a kind of for detecting the long-distance distributed monitoring system for the treatment of technology for tunnel seepage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278549A (en) * 2008-05-16 2009-11-26 Chugoku Electric Power Co Inc:The Water immersion detection system, water immersion detection method using the same, and waveguide
JP2011027458A (en) * 2009-07-22 2011-02-10 Mitsubishi Materials Corp Humidity sensor
JP2011105545A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber
CN109186896A (en) * 2018-09-21 2019-01-11 河海大学 It is a kind of for detecting the long-distance distributed monitoring system for the treatment of technology for tunnel seepage

Similar Documents

Publication Publication Date Title
Burnett et al. Measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus
Hanzawa et al. Structural changes in carbon aerogels with high temperature treatment
Xu et al. Carbon spheres with hierarchical micro/mesopores for water desalination by capacitive deionization
Moreno-Castilla et al. Surface characteristics and electrochemical capacitances of carbon aerogels obtained from resorcinol and pyrocatechol using boric and oxalic acids as polymerization catalysts
Weiss et al. Surface-modified CAU-10 MOF materials as humidity sensors: impedance spectroscopic study on water uptake
Bjorkqvist et al. Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor
JP6644445B2 (en) Electrochemical gas sensor
Gregg et al. Test of the nonane method for micropore evaluation. Use of nitrogen, n-hexane and carbon tetrachloride as adsorptives with ammonium phosphomolybdate, phosphotungstate and silicomolybdate as absorbents
Waghuley Synthesis, characterization and CO 2 gas sensing response of SnO 2/Al 2 O 3 double layer sensor
Nakashima et al. On the adsorption of CO2 by molecular sieve carbons—volumetric and gravimetric studies
Davini Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product
Assunção da Silva et al. Humidity sensor based on PEO/PEDOT: PSS blends for breath monitoring
JPH0943185A (en) Moisture sensor element
Stoeckli et al. Characterization of industrial activated carbons by adsorption and immersion techniques and by STM
TWI601954B (en) Capacitor-based fluid sensing unit and the method of use
Lee et al. Improved sensitivity of an NO gas sensor by chemical activation of electrospun carbon fibers
Wang et al. MgAl2O4-based humidity-sensing material for potential application in PEM fuel cells
Martin The control of conditioning atmospheres by saturated salt solutions
US3299387A (en) Humidity-sensitive resistor
US4186071A (en) Process for producing oxygen gas sensor elements
JPS6355847B2 (en)
Paski et al. Effects of treatment temperature on thermally‐carbonized porous silicon hygroscopicity
Sundaram et al. Solid state electrical conductivity and humidity sensing properties of WO3–Y2O3 composites
JPS6122898B2 (en)
Robens et al. Comments on surface structure analysis by water and nitrogen adsorption