WO2008053919A1 - Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors - Google Patents

Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors Download PDF

Info

Publication number
WO2008053919A1
WO2008053919A1 PCT/JP2007/071215 JP2007071215W WO2008053919A1 WO 2008053919 A1 WO2008053919 A1 WO 2008053919A1 JP 2007071215 W JP2007071215 W JP 2007071215W WO 2008053919 A1 WO2008053919 A1 WO 2008053919A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
electric double
functional groups
ppm
surface functional
Prior art date
Application number
PCT/JP2007/071215
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Ishida
Hisahito Takenaka
Shushi Nishimura
Yoshifumi Egawa
Kiyoto Otsuka
Original Assignee
Kuraray Chemical Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co., Ltd filed Critical Kuraray Chemical Co., Ltd
Priority to JP2008542153A priority Critical patent/JP5168585B2/en
Publication of WO2008053919A1 publication Critical patent/WO2008053919A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to activated carbon and a method for producing the same, and a non-aqueous polarizable electrode and an electric double layer capacitor.
  • the activated carbon of the present invention is produced on a polarizable electrode and used in an electric double layer capacitor
  • the non-aqueous polarizable electrode made of the activated charcoal of the present invention has a high capacitance and generates a small amount of gas. It is preferably used for a durable electric double layer capacitor.
  • Electric double layer capacitors are superior in output characteristics and life characteristics compared to batteries. Taking advantage of these characteristics, backup of various memories, power assists for cars and trains, road leveling and rush It has been developed for many applications such as current and storage power sources such as UPS, and some have been put into practical use. However, the performance required as an electric double layer capacitor has become severe in recent years, and further improvement in the high capacitance per polarizable electrode volume and durability is desired.
  • Patent Document 1 Japanese Patent Laid-Open No. 1 241811
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-284188
  • Patent Document 3 Japanese Patent Laid-Open No. 60-189162
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-299259
  • the temperature at which the crystal structure grows varies depending on the raw material, the temperature at which the crystal structure grows also varies depending on the impurity content, and further, depending on the type of surface functional group, it can be easily decomposed. There are some that react easily with the electrolyte and some that do not. However, these publications teach the temperature at which the crystal structure grows and how much surface functional groups should be reduced! ! /
  • Patent Document 5 JP-A-10-116755
  • activated carbons defined by the amount of at least one surface functional group selected from the group of carboxyl group, quinone group, hydroxyl group, and rataton group are also known, and are suitable for highly polarizable electrodes having high strength. It is described that it is a material (Patent Document 6). However, Patent Document 6 describes force impurities described in the total amount of surface functional groups that should be used as polarizable electrodes! /.
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-169129
  • activated carbon for electric double layer capacitors having an oxygen content of 1 mg or more and 20 mg or less per lg of activated carbon, and a natural potential of 2.85 V or more and 3.03 V or less at the counter electrode lithium in the non-aqueous electrolyte.
  • Patent Document 6 has been proposed. According to this activated carbon, nature By making the potential within the above range, it becomes possible to suppress the polarization potential of the activated carbon electrode below the oxidative decomposition potential of the electrolyte, and as a result, it is possible to improve the durability of the electric double layer capacitor. It is expected to obtain a double layer capacitor.
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-33249
  • Patent Document 7 the activated coconut husk activated carbon is heat-treated in an inert gas atmosphere to remove unnecessary surface functional groups, or the carbon crystallinity is developed to increase conductivity.
  • Good power S is described, and it is also described that metal impurities, ash, etc. contained in carbon are removed by washing in an acid aqueous solution such as hydrochloric acid, nitric acid, and sulfuric acid.
  • an acid aqueous solution such as hydrochloric acid, nitric acid, and sulfuric acid.
  • sulfuric acid and nitric acid cannot remove impurities sufficiently, but strongly oxidize the carbon, resulting in an unnecessary increase in surface functional groups.
  • hydrochloric acid it is possible to remove impurities S, chloride ions adsorb on activated carbon, and it is extremely difficult to remove.
  • a first object of the present invention is to provide activated carbon suitable as a non-aqueous polarizable electrode for an electric double layer capacitor having a high capacitance and a small amount of gas generation.
  • a second object of the present invention is to provide a production method capable of efficiently reducing chlorine ions remaining by acid cleaning, and a third object of the present invention is from the activated carbon.
  • An object of the present invention is to provide a non-aqueous polarizable electrode having a high electrostatic capacity.
  • the fourth object of the present invention is to provide an electric double layer capacitor using such a polarizable electrode.
  • the present invention is a coconut husk activated carbon obtained by carbonizing coconut husk and steam activation, has a total surface functional group of 0.4 meq / g or less, contains 50 to 500 ppm of alkali metals, and contains chlorine.
  • An activated carbon having an ion concentration of 0.1 ppm to 20 ppm and a BET specific surface area of 1500 to 2000 m 2 / g.
  • Another invention of the present invention is the production of activated carbon characterized in that steam activated activated coconut shell activated carbon is washed with hydrochloric acid and then deoxidized in an oxidizing gas atmosphere at 500 to 1000 ° C. It is a method.
  • Still another invention of the present invention is a non-aqueous polarizable electrode made of such activated carbon.
  • Yet another invention of the present invention is an electric double layer capacitor using such a polarizable electrode.
  • the activated carbon of the present invention as a polarizable electrode and using it in a non-aqueous electric double layer capacitor, it is possible to construct an electric double layer capacitor having a high capacitance and a small amount of gas generation. .
  • Such an electric double layer capacitor is useful as an electric double layer capacitor having excellent durability.
  • the activated carbon of the present invention is obtained by carbonizing coconut shells and activating water vapor.
  • Known carbonization conditions can be adopted. For example, carbonization is performed by heating and distillation at 400 ° C to 600 ° C.
  • water vapor activation is adopted in the present invention from the viewpoint of electrode corrosiveness when an electric double layer capacitor is formed, a point that surface functional groups are small, and gas generation is suppressed.
  • the total surface functional group is preferably 0.4 meq / g or less, and more preferably 0.3 meq / g or less.
  • the surface functional groups include carboxyl group, rataton group, hydroxyl group, and quinone group.
  • the carboxyl group and latataton group which are easily decomposed at high voltage, must not contain the quinone group. It must be at least%.
  • the quinone group is preferably 60% or more of the total surface functional groups. This This is because gas generation is suppressed when there are more quinone groups that do not contribute much to decomposition or reaction with the electrolyte than hydroxyl groups.
  • the activated carbon of the present invention needs to be 500 ppm or less.
  • Alkali metals are a general term for the 6 elements belonging to Group IA of the Periodic Table.
  • the metal components and content of raw coconut husk vary depending on the place of production, but sodium and potassium are contained in the range of several hundred ppm to several thousand ppm, and such sodium and cadmium correspond to the alkali metals described above. .
  • the range is 50 ppm to 500 ppm. 100 ppm to 400 ppm is preferred.
  • Raw coconut husks contain tens of ppm of transition metals such as iron, chromium, copper, and zinc in addition to alkali metals, and are concentrated in the activated carbonization process and may be present in the activated carbon at several hundred ppm. is there. Since transition metals also affect the durability, it is preferable to use as little as possible! /, But 50 ppm or less is preferable and 20 ppm or less is more preferable from the balance of economy and performance. These transition metals, like alkali metals, are removed by washing.
  • cleaning with an inorganic acid is preferable, but cleaning with hydrochloric acid that does not oxidize activated carbon is more preferable.
  • the activated carbon may be washed with hydrochloric acid and then washed with water, or a combination of washing with water and pickling may be used as appropriate, such as repeated washing and washing.
  • the concentration of hydrochloric acid is preferably 0.1% to 3.0%, more preferably 0.3% to 1.0%. If the hydrochloric acid concentration is low, it is necessary to increase the number of pickling operations to remove impurities.
  • the pickling and rinsing temperatures are usually higher than 80 ° C.
  • the activated carbon of the present invention has a chlorine ion concentration of 0.1 ppm to 20 ppm. 0.1 ppm to 5 ppm is preferable, and 0.1 ppm to 3 ppm is more preferable. Chlorine ion concentration can be measured by the extraction method.
  • the activated carbon of the present invention is 1500 to 2000 m 2 / g.
  • the coconut husk activated carbon carbonizes coconut husk, activates steam, and can be obtained through steps such as acid washing and water washing. Since activated carbon usually contains hydrochloric acid, In order to remove the remaining hydrochloric acid more efficiently and reliably, it is preferable to remove the remaining hydrochloric acid with an activation reaction by contacting with an oxidizing gas for a short time after washing with hydrochloric acid. That is, the activated carbon of the present invention is preferably produced by washing steam activated coconut husk activated charcoal with hydrochloric acid and then deoxidizing it in an oxidizing gas atmosphere of 500 to 1000 ° C.
  • oxidizing gas examples include oxygen, water vapor, carbon dioxide gas, and combustion gas obtained by burning kerosene filling pan. These oxidizing gases may be used as a mixture or may be diluted with an inert gas. Of these, a combustion gas obtained by burning kerosene or propane, or a gas obtained by adding steam to the combustion gas is more preferable because it can be used as a heat source.
  • the temperature for contacting with the oxidizing gas is 500 to 1000 ° C, and more preferable that the temperature is 650 to 850 ° C.
  • the time of contact with the oxidizing gas varies depending on the temperature. Usually, it is about 30 minutes to 3 hours.
  • the oxidizing gas concentration varies depending on the gas used. It is usually 1% to 40% when steam is added, and 2% or more is preferred when carbon dioxide is added.
  • Oxidation and thermal history during washing are low! / Activated carbon may have a little more surface functional groups! / In such cases, deoxidized activated carbon may be used as a rare gas or nitrogen gas.
  • Heat treatment is further performed at 900 to 1200 ° C under an inert gas atmosphere. When heat treatment is performed in a state where there are many impurities, crystallites are more likely to grow, but pore shrinkage occurs and the pore diameter tends to change immediately.After adjusting the amount of impurities by acid washing and deoxidation treatment, Heat treatment can reduce the surface functional groups as pore shrinkage occurs.
  • the furnace for heat treatment and deoxidation treatment various types of furnaces such as a rotary kiln, fluidized bed furnace, fixed bed furnace, moving bed furnace, moving bed furnace, etc. can be used. This can be applied to both continuous and intermittent furnaces.
  • a heating means any electric heating, gas combustion type heating, high frequency induction heating, electric heating, etc. can be applied as long as it can heat up to a predetermined temperature. These heating means may be used alone or in combination.
  • the activated carbon is used after being pulverized.
  • the particle size of the activated carbon a force center particle size of 2 111 to 30 111 depending on the method for producing the electrode is preferable.
  • the central particle diameter is within this range, it is preferable from the viewpoint of improving the bulk density of the electrode and internal resistance immediately after the electrode is produced.
  • a known pulverizer such as a cone crusher, a duff, a Norre-no-re crusher, a tisk crusher, a rotary crusher, a Norre mill, a centrifugal roll mill, a ring-Rhino reminole, a centrifugal ball mill or the like can be used.
  • the particle size distribution may be controlled using a classifier.
  • the activated carbon of the present invention is preferably used as a material for a non-aqueous polarizable electrode of an electric double layer capacitor.
  • a known method may be employed.
  • the activated carbon of the present invention can be produced by adding a binder and a conductive material, kneading and rolling.
  • the binder polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, polybutyl alcohol, polyacrylic acid and the like can be used.
  • the amount of the binder used is preferably as small as possible, but about 0.5 wt% to 10 wt% can be added in view of the strength of the electrode.
  • conductive carbon black such as acetylene black and ketjen black, natural graphite, artificial graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, aluminum, nickel and other metal fibers, metal Examples thereof include fine particles. These can be used alone or in combination. Among these, the amount of conductive carbon black that is effective in a small amount is particularly preferred because the ratio of activated carbon decreases when the amount of activated carbon is too large, depending on the bulk density of the activated carbon. Is about 5% to 15%.
  • the binder and the conductive material are kneaded with the activated carbon, if necessary, an organic compound such as alcohol or N-methylpyrrolidone, a solvent such as water, a dispersant, or various additives may be added. Good. When a solvent is added, the kneaded product can be easily used as a coating agent, and the kneaded product can be easily applied to a current collector to form a coated electrode.
  • the solvent of the non-aqueous electrolyte solution used for the electric double layer capacitor is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, dimethylolene carbonate, methinorenoate carbonate, Powers such as jetinole carbonates-Bonates, y Butyrolatatones, ⁇ -methinolate ⁇ butyllatatanes, ⁇ -methinolate ⁇ -butyllactone, ⁇ -valerolatatanes, 3-methyl-1- ⁇ -valerolatatanes and other lactones, acetonitrile, propionitrile, etc.
  • Powers such as jetinole carbonates-Bonates, y Butyrolatatones, ⁇ -methinolate ⁇ butyllatatanes, ⁇ -methinolate ⁇ -butyllactone, ⁇ -valerolatatanes, 3-methyl-1- ⁇ -valerolatatanes and other lactones, acetonitrile, pro
  • the organic solvent preferably comprises one or more selected from sulfolane.
  • a high melting point solvent such as ethylene carbonate
  • a mixed solvent with a low melting point solvent such as propylene carbonate
  • the water content in the non-aqueous electrolyte is preferably as low as possible in consideration of decomposition at high voltage, and is usually 200 ppm or less, more preferably 50 ppm or less.
  • the electrolyte to be dissolved in these solvents is not particularly limited, but those that dissolve in a solvent at a high concentration are preferable because the electric double layer capacity is sufficiently exhibited.
  • quaternary ammonium cations such as trimethylethylammonium ion are spiro-type cations such as spiro (1, 1 ')-bipyrrolidinium ion and tetrafluoroboric acid.
  • a salt in combination with anion, hexafluorophosphate anion, perchlorate anion, bistrifluoromethanesulfonimide anion, or the like, or a lithium salt whose cation is a lithium ion is used.
  • 1-methyl 3-methylimidazolium tetrafluorovolley In the case of using an ionic liquid such as a salt, there is no upper limit of the concentration unless it solidifies within the temperature range to be used.
  • an electric double layer capacitor excellent in capacitance and durability can be obtained by the configuration in which the positive electrode includes the activated carbon of the present invention. From the viewpoint of achieving both the electrostatic capacity S and the durability at a higher level, which is possible, it is preferable that the activated carbon of the present invention is included in both of the pair of electrodes.
  • the polarizable electrode produced in this way has a high electrostatic capacity, and can be preferably used by being incorporated as a capacitor of cylinder type, laminated type, coin type or the like.
  • the present invention will be described in detail with reference to examples. The present invention is not limited to these examples.
  • Rataton group B— A (meq / g) (Formula 2)
  • ⁇ Measurement method of alkali metal content> Weigh the alumina crucible after baking at 900 ° C and allowing it to cool in a desiccator containing silica gel. 8 ⁇ in a thermostatic oven adjusted to 120 ° C; after vacuum drying for 10 hours, 20g of activated carbon cooled in a desiccator containing silica gel as a desiccant is placed in a 50ml alumina crucible, and the weight of crucible + activated carbon is 0 Weighed accurately to lmg.
  • the alumina crucible containing the sample was placed in an electric furnace, and with the dry air introduced at 20 L / min into the electric furnace, the temperature was raised to 200 ° C in 1 hour, and further increased to 700 ° C over 2 hours. The temperature was raised and maintained at 700 ° C for 14 hours to incinerate. After completion of ashing, the mixture was allowed to cool in a desiccator containing silica gel, and the weight of the crucible + ash was accurately measured to 0.1 mg, and the ash content was calculated from Equation 5.
  • Ash content (ppm) ⁇ (crucible + ash weight) (crucible weight) / (crucible + activated carbon weight) (crucible weight) ⁇ X 10000000 (Formula 5)
  • Metal content (ppm) ⁇ Metal concentration (ppm) by ICP issue analysis / Ashed activated carbon weight
  • Nitrogen adsorption isothermal at 77K of activated carbon using BELSORP-mini made by Nippon Bell The line was measured. Using the BET equation to analyze the obtained adsorption isotherm, calculate the specific surface area from the straight line in the region of the relative pressure p / p 0.001 -0.1 of the obtained curve.
  • coconut husk activated carbon (specific surface area 1 800 m 2 / g) steam-activated at 900 ° C. was washed in 0.1N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C and deoxidized at 700 ° C under kerosene combustion gas atmosphere for 30 minutes. After the deoxidation treatment, heat treatment was performed at 900 ° C. in a nitrogen atmosphere for 120 minutes. Table 1 shows the processing conditions. The obtained heat-treated activated charcoal was pulverized with a ball mill to obtain activated carbon powder for a non-aqueous polarizable electrode having a center particle diameter of 7 m. Table 2 shows the results of measuring the surface functional groups, alkali and alkaline earth metal contents, chloride ion concentration, and BET specific surface area of the obtained activated carbon.
  • the activated carbon powder, Denka Black (conductive material) and polytetrafluoroethylene (binding material) manufactured by Denki Kagaku Kogyo Co., Ltd. were kneaded so as to have a weight ratio of 80:10:10.
  • An activated carbon electrode sheet having an electrode forming density of 0.60 g / cm 3 and a thickness of 400 m was produced by rolling the sheet. Cut this activated carbon electrode sheet as shown in Fig. 1 and crimp it onto aluminum expanded metal (manufactured by Nikkin Kako Co., Ltd.) as shown in Fig. 2 and use an ultrasonic welder to make aluminum lead wires (manufactured by Hosen Co., Ltd.). Was welded to aluminum expanded metal. After welding, it was vacuum dried at 150 ° C to produce a sheet electrode.
  • this sheet-like electrode is stacked and inserted into a bag-like aluminum laminate 50mm XI 50mm (manufactured by Hosen Co., Ltd.) as shown in Fig. 3, and 1 ⁇ Omol / L triethyl inside.
  • a propylene carbonate solution of methylammonium tetrafluoroborate was injected, and after impregnation, the opening was heat sealed to produce an electric double layer aluminum laminate capacitor as shown in Fig. 4.
  • the electric double layer capacitor produced as described above was charged at a constant current with an electric double layer capacitor charge / discharge tester manufactured by Power System Co., Ltd. at room temperature, up to an ultimate voltage of 2.7V, and ImA / cm 2 per electrode surface area. 2. After supplementary charging is completed under a constant voltage of 7V2 hours Discharge at ImA / cm 2 . This discharge cycle was repeated 5 times. The data for the fifth cycle was calculated by the energy conversion method and used as the capacitance.
  • the gas generation amount was measured by holding for 240 hours while applying a voltage of 2.5V in a constant temperature bath at 60 ° C.
  • the amount of gas generated was calculated from buoyancy.
  • Table 3 shows the capacitance and the amount of gas generated per activated carbon.
  • Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that the coconut shell activated carbon used in Example 1 was heat-treated at 1100 ° C. in a nitrogen atmosphere for 120 minutes.
  • Table 1 shows the treatment conditions and Table 2 shows the physical properties of the obtained activated carbon.
  • an electric double layer methanol laminate capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that the coconut husk activated carbon used in Example 1 was heat-treated at 1200 ° C. in a nitrogen atmosphere for 120 minutes.
  • Table 1 shows the treatment conditions and Table 2 shows the physical properties of the obtained activated carbon.
  • an electric double layer methanol laminate capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • the coconut husk activated carbon used in Example 1 was washed with 0.1N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C, deoxidized at 500 ° C for 15 minutes in an atmosphere adjusted to 30% water vapor partial pressure by adding steam to kerosene combustion gas. After deoxidation treatment, heat treatment was performed at 900 ° C in a nitrogen atmosphere for 30 minutes. Except for these treatments, activated carbon for non-aqueous polar electrodes was obtained in the same manner as in Example 1. Table 1 shows the treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • Example 1 The non-oxidized coconut shell activated carbon used in Example 1 was deoxidized at 850 ° C in a kerosene combustion gas atmosphere for 60 minutes, and heat treated at 900 ° C in a nitrogen atmosphere for 60 minutes. An activated carbon for an aqueous polarizable electrode was obtained. Table 1 shows the various treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Furthermore, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • An activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that coconut husk activated carbon (specific surface area 1 550 m 2 / g) steam-activated at 900 ° C in activated gas adjusted to 5% was used. It was. Table 1 shows the treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that coconut husk activated carbon (specific surface area 1 740 m 2 / g) steam-activated at 900 ° C was used. It was. Table 1 shows the various treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • the coconut husk activated carbon used in Example 1 was washed with 0.1N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried only at 120 ° C and pulverized with a ball mill to obtain activated carbon powder for non-aqueous polarizable electrodes having a center particle size of 6 m.
  • Table 2 shows the physical properties of the obtained activated carbon. Further In the same manner as in Example 1, an electric double layer aluminum laminated capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1, except that the coconut shell activated carbon used in Example 1 was not deoxidized in a combustion gas atmosphere.
  • Table 1 shows the treatment conditions
  • Table 2 shows the physical properties of the obtained activated carbon.
  • an electric double layer aluminum laminate capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are not shown in Table ⁇ 3.
  • Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that the coconut shell activated carbon used in Example 1 was heat-treated at 1300 ° C. in a nitrogen atmosphere for 120 minutes.
  • Table 1 shows the treatment conditions and Table 2 shows the physical properties of the obtained activated carbon.
  • an electric double layer methanol laminate capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • the obtained alkali-activated activated carbon was washed in 90 ° C, 0.5N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C. for 24 hours to obtain activated carbon powder for non-aqueous polarizable electrodes.
  • Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • Comparative Example 6 The alkaline activated carbon of coal-based raw coatas prepared in Comparative Example 5 was washed in 90 ° C, 0.5N hydrochloric acid, and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C. for 24 hours, transferred to an aluminum vat, and subjected to deoxidation treatment and heat treatment in the same manner as in Example 1.
  • Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
  • the capacitor using the non-aqueous polarizable electrode made of the activated carbon of the present invention generates less gas than the capacitor using other activated carbon.
  • deoxidation in an oxidizing gas atmosphere and heat treatment in an inert gas atmosphere at 1300 ° C can suppress gas generation, but the specific surface area decreases by 20% or more, and the capacitance is also significantly increased. It turns out that it falls.
  • the activated carbon of the present invention is one in which the concentration of chlorine ions remaining by acid cleaning is efficiently reduced, and the crystallinity is increased while the surface functional groups are reduced, improving the conductivity. You can make it S. Therefore, when the activated carbon of the present invention is produced on a polarizable electrode and used for a non-aqueous electric double layer capacitor, it is difficult to cause a short circuit due to reduction deposition of a metal having a high capacitance. It exhibits a high self-discharge retention rate, is excellent in durability, and generates particularly little gas. Therefore, it is suitable for a capacitor having a large capacity and a high output.
  • Fig. 1 is an activated carbon electrode sheet used in the present invention.
  • FIG. 2 is a schematic view showing a state where an activated carbon electrode sheet is pressure-bonded to an expanded metal.
  • FIG. 3 is a schematic view of an aluminum laminate processed into a bag shape.
  • FIG. 4 is a schematic view of an electric double layer aluminum laminated capacitor. Explanation of symbols

Abstract

The invention aims at providing a nonaqueous type polarizable electrode which little suffers from gas generation and has high capacitance by using an inexpensive activated carbon made from coconut shells. The aim is attained by an activated carbon which is prepared from coconut shells through carbonization and steam activation and which contains surface functional groups in a total content of 0.4meq/g or below with the provisos that the surface functional groups are free from carboxyl groups and lactone groups and that quinone groups account for at least 50% of all the surface functional groups and has an alkali metal content of 50 to 500ppm, a chloride ion concentration of 0.1 to 20ppm and a BET specific surface area of 1500 to 2000m2/g; and a process for the production of the activated carbon.

Description

明 細 書  Specification
活性炭およびその製造方法、並びに非水系分極性電極および電気二重 層キヤノ ンタ  Activated carbon and method for producing the same, non-aqueous polarizable electrode and electric double layer canister
技術分野  Technical field
[0001] 本発明は、活性炭およびその製造方法、並びに非水系分極性電極および電気二 重層キャパシタに関する。本発明の活性炭を分極性電極に作製し、電気二重層キヤ パシタに使用すると、静電容量が高ぐ且つガス発生量が少ないので、本発明の活 性炭からなる非水系分極性電極は、耐久性のある電気二重層キャパシタに好ましく 用いられる。  The present invention relates to activated carbon and a method for producing the same, and a non-aqueous polarizable electrode and an electric double layer capacitor. When the activated carbon of the present invention is produced on a polarizable electrode and used in an electric double layer capacitor, the non-aqueous polarizable electrode made of the activated charcoal of the present invention has a high capacitance and generates a small amount of gas. It is preferably used for a durable electric double layer capacitor.
背景技術  Background art
[0002] 電気二重層キャパシタは、電池と比較して出力特性、寿命特性に優れているので、 このような特性を生かして各種メモリーのバックアップ、自動車や列車などのパワーァ シスト、ロードレべリングやラッシュカレント、 UPSなどの蓄電源用途などに多く開発さ れており、一部実用化もされている。し力もながら、電気二重層キャパシタとして要求 される性能は近年厳しくなつており、とくに分極性電極体積あたりの高静電容量と耐 久性の更なる改善が望まれてレ、る。  [0002] Electric double layer capacitors are superior in output characteristics and life characteristics compared to batteries. Taking advantage of these characteristics, backup of various memories, power assists for cars and trains, road leveling and rush It has been developed for many applications such as current and storage power sources such as UPS, and some have been put into practical use. However, the performance required as an electric double layer capacitor has become severe in recent years, and further improvement in the high capacitance per polarizable electrode volume and durability is desired.
[0003] キャパシタの耐久性は、原料となる活性炭中の不純物による影響が大きぐかかる 点から、活性炭としては不純物ができるだけ少ないものが要求される(特許文献 1、特 許文献 2)。活性炭は、通常塩酸等の酸類と水洗などの処理により精製され、このよう な処理によって金属類の不純物は除去される力 水洗処理において逆に塩酸等の 酸類が活性炭に残留しやすくなり、 目的とする高静電容量と耐久性を発現する活性 炭からなる分極性電極を得ることは非常に困難であった。  [0003] The durability of a capacitor is greatly affected by impurities in activated carbon as a raw material, and therefore activated carbon is required to have as few impurities as possible (Patent Document 1 and Patent Document 2). Activated charcoal is usually refined by treatment with acids such as hydrochloric acid and water washing, and the ability to remove metal impurities by such treatment. In the water washing treatment, acids such as hydrochloric acid tend to remain on the activated carbon. It was very difficult to obtain a polarizable electrode made of activated charcoal that exhibits high capacitance and durability.
特許文献 1:特開平 1 241811号公報  Patent Document 1: Japanese Patent Laid-Open No. 1 241811
特許文献 2:特開 2001— 284188公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-284188
[0004] 一方、炭素繊維または活性炭繊維を真空中、不活性ガス中、還元ガス雰囲気中の V、ずれかにお!/、て、 900°C〜2000°Cで熱処理する分極性電極の製造方法(特許文 献 3)や、不活性ガス雰囲気下で 500°C〜; 1300°Cで熱処理する電気二重層キャパ シタの製造方法(特許文献 4)が知られている。これらの方法によれば、表面官能基 量が低下し、更に不活性雰囲気中で高温熱処理することにより結晶子が成長し、炭 素の積層様式が次第に規則性ある黒鉛構造に移行させることで活性炭の導電性を 上げることあ可能となる。 [0004] On the other hand, manufacture of a polarizable electrode in which carbon fiber or activated carbon fiber is heat-treated at 900 ° C to 2000 ° C in vacuum, inert gas, or V in a reducing gas atmosphere Method (Patent Document 3) and electric double layer capacities that are heat-treated at 1300 ° C in an inert gas atmosphere A method for producing shita (Patent Document 4) is known. According to these methods, the amount of surface functional groups is reduced, and further, crystallites grow by high-temperature heat treatment in an inert atmosphere, and the activated carbon is gradually transferred to a regular graphite structure. It is possible to increase the conductivity of
特許文献 3:特開昭 60— 189162号公報  Patent Document 3: Japanese Patent Laid-Open No. 60-189162
特許文献 4 :特開 2000— 299259号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-299259
[0005] しかしながら、活性炭においては、原料によって結晶構造が成長する温度が異なる し、不純物の含有量によっても結晶構造の成長する温度が異なり、更に、表面官能 基の種類によっては容易に分解したり、電解液と反応しやすいものとそうでないもの があるが、これらの公報には、結晶構造が成長する温度や、どの程度表面官能基を 減少させればよ!/、かは全く教示されて!/、な!/、。  [0005] However, in activated carbon, the temperature at which the crystal structure grows varies depending on the raw material, the temperature at which the crystal structure grows also varies depending on the impurity content, and further, depending on the type of surface functional group, it can be easily decomposed. There are some that react easily with the electrolyte and some that do not. However, these publications teach the temperature at which the crystal structure grows and how much surface functional groups should be reduced! ! /
[0006] また、熱処理前の O/C : 0. 061の活性炭を窒素気流下にて温度 500〜; 1100°C の温度で熱処理して O/Cが 0. 055以下の活性炭にすると、充電放電に伴う不可逆 容量が小さくなり、これにより充電放電を繰り返したときの放電容量を維持するのに有 利な電気二重層キャパシタ用電極を提供することができることが報告されている(特 許文献 5)。しかしながら、特許文献 5には、酸素原子/炭素原子の比はできるだけ 少な!/、方が好まし!/、と記載されて!/、る力 耐久性や漏れ電流に影響がある不純物に つ!/ヽては何ら言及されて!/、な!/、。  [0006] O / C before heat treatment: When activated carbon of 0.061 is heated at a temperature of 500 to 1100 ° C under a nitrogen stream to obtain activated carbon having an O / C of 0.055 or less, the battery is charged. It has been reported that the irreversible capacity associated with the discharge is reduced, which makes it possible to provide an electrode for an electric double layer capacitor that is advantageous for maintaining the discharge capacity when charging and discharging are repeated (Patent Document 5). ). However, Patent Document 5 states that the ratio of oxygen atom / carbon atom is as small as possible! /, Is preferred! / !, an impurity that affects durability and leakage current! / No matter what you mention! /!
特許文献 5:特開平 10— 116755号公報  Patent Document 5: JP-A-10-116755
[0007] また、カルボキシル基、キノン基、水酸基、ラタトン基の群から選ばれる少なくとも 1 種の表面官能基量で規定した活性炭も知られており、高!、強度を有する分極性電極 に好適な材料であることが記載されている(特許文献 6)。し力、しながら、特許文献 6に は、分極性電極として有すべき表面官能基の総量について記載されている力 活性 炭中の不純物につ!/、ては言及されて!/、な!/、。  [0007] In addition, activated carbons defined by the amount of at least one surface functional group selected from the group of carboxyl group, quinone group, hydroxyl group, and rataton group are also known, and are suitable for highly polarizable electrodes having high strength. It is described that it is a material (Patent Document 6). However, Patent Document 6 describes force impurities described in the total amount of surface functional groups that should be used as polarizable electrodes! /.
特許文献 6 :特開 2000— 169129公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2000-169129
[0008] 更に、活性炭 lgあたりの酸素含有量が lmg以上 20mg以下で、かつ非水系電解 液中における対極リチウムでの自然電位が 2. 85V以上 3. 03V以下である電気二重 層キャパシタ用活性炭 (特許文献 6)が提案されている。この活性炭によれば、自然 電位を上記範囲とすることにより活性炭電極の分極電位を電解液の酸化分解電位以 下に抑えることが可能となり、結果的に電気二重層キャパシタの耐久性を向上させる ことができる点で有用な電気二重層キャパシタを得ることが期待される。 [0008] In addition, activated carbon for electric double layer capacitors having an oxygen content of 1 mg or more and 20 mg or less per lg of activated carbon, and a natural potential of 2.85 V or more and 3.03 V or less at the counter electrode lithium in the non-aqueous electrolyte. (Patent Document 6) has been proposed. According to this activated carbon, nature By making the potential within the above range, it becomes possible to suppress the polarization potential of the activated carbon electrode below the oxidative decomposition potential of the electrolyte, and as a result, it is possible to improve the durability of the electric double layer capacitor. It is expected to obtain a double layer capacitor.
特許文献 7:特開 2002— 33249号公報  Patent Document 7: Japanese Patent Laid-Open No. 2002-33249
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 特許文献 7には、賦活処理後のヤシガラ活性炭を不活性ガス雰囲気下で熱処理し て不要な表面官能基を除去したり、炭素の結晶性を発達させて導電性を増加させて もよいこと力 S記載され、また、塩酸、硝酸、硫酸等の酸水溶液中で洗浄して、炭素中 に含まれる金属不純物、灰分等を除去することも記載されている。し力、しながら、硫酸 や硝酸では十分不純物が除去できないばかりでなぐ炭素を強力に酸化し、不必要 に表面官能基を増加させる結果になる。一方、塩酸で洗浄した場合、不純物を取り 除くことはできる力 S、活性炭に塩素イオンが吸着し、取り除くことは極めて困難である [0009] In Patent Document 7, the activated coconut husk activated carbon is heat-treated in an inert gas atmosphere to remove unnecessary surface functional groups, or the carbon crystallinity is developed to increase conductivity. Good power S is described, and it is also described that metal impurities, ash, etc. contained in carbon are removed by washing in an acid aqueous solution such as hydrochloric acid, nitric acid, and sulfuric acid. However, sulfuric acid and nitric acid cannot remove impurities sufficiently, but strongly oxidize the carbon, resulting in an unnecessary increase in surface functional groups. On the other hand, when washed with hydrochloric acid, it is possible to remove impurities S, chloride ions adsorb on activated carbon, and it is extremely difficult to remove.
[0010] 電気二重層キャパシタとしては、静電容量が高いことが必要であることに加え、近年 はとくに安全性の点でガス発生量が少な!/、ことが要求されて!/、る。これらを満足する 電気二重層キャパシタを製造するには、全表面官能基、アルカリ金属類の含有量、 比表面積などを総合的に検討すべきであるが、かかる観点から検討されたものは全く 見当たらない。したがって、本発明の第 1の目的は、静電容量が高ぐ且つガス発生 量が少ない、電気二重層キャパシタ用の非水系分極性電極として好適な活性炭を提 供することにある。 [0010] In addition to being required to have a high capacitance, the electric double layer capacitor has recently been required to produce a small amount of gas especially in terms of safety! /. In order to produce an electric double layer capacitor that satisfies these requirements, the overall surface functional groups, alkali metal content, specific surface area, etc. should be comprehensively studied. Absent. Therefore, a first object of the present invention is to provide activated carbon suitable as a non-aqueous polarizable electrode for an electric double layer capacitor having a high capacitance and a small amount of gas generation.
[0011] 本発明の第 2の目的は、酸洗浄により残留した塩素イオンを効率的に減少させるこ とができる製造方法を提供することにあり、本発明の第 3の目的は上記活性炭からな る静電容量が高い非水系分極性電極を提供することにある。そして本発明の第 4の 目的は、このような分極性電極を用いた電気二重層キャパシタを提供することにある 課題を解決するための手段  [0011] A second object of the present invention is to provide a production method capable of efficiently reducing chlorine ions remaining by acid cleaning, and a third object of the present invention is from the activated carbon. An object of the present invention is to provide a non-aqueous polarizable electrode having a high electrostatic capacity. The fourth object of the present invention is to provide an electric double layer capacitor using such a polarizable electrode. Means for Solving the Problems
[0012] 本発明者らは鋭意検討を重ね、全表面官能基、アルカリ金属、塩素イオン濃度お よび BET比表面積で規定した特定の活性炭により上記目的を達成することができる ことを見出し本発明に至った。すなわち本発明は、ヤシガラを炭化し、水蒸気賦活し て得られたヤシガラ活性炭であって、全表面官能基が 0. 4meq/g以下で、且つァ ルカリ金属類を 50〜500ppm含有し、且つ塩素イオン濃度が 0. lppm〜20ppmで あり、且つ BET比表面積が 1500〜2000m2/gであることを特徴とする活性炭であ [0012] The inventors of the present invention have made extensive studies and studied the concentration of all surface functional groups, alkali metals, and chloride ions. The inventors have found that the above object can be achieved by a specific activated carbon specified by the BET specific surface area and have reached the present invention. That is, the present invention is a coconut husk activated carbon obtained by carbonizing coconut husk and steam activation, has a total surface functional group of 0.4 meq / g or less, contains 50 to 500 ppm of alkali metals, and contains chlorine. An activated carbon having an ion concentration of 0.1 ppm to 20 ppm and a BET specific surface area of 1500 to 2000 m 2 / g.
[0013] また、本発明の別の発明は、水蒸気賦活されたヤシガラ活性炭を塩酸で洗浄後、 5 00〜; 1000°Cの酸化性ガス雰囲気下で脱酸することを特徴とする活性炭の製造方法 である。 [0013] Further, another invention of the present invention is the production of activated carbon characterized in that steam activated activated coconut shell activated carbon is washed with hydrochloric acid and then deoxidized in an oxidizing gas atmosphere at 500 to 1000 ° C. It is a method.
[0014] また、本発明のさらに別の発明は、このような活性炭からなる非水系分極性電極で ある。そして、本発明のさらに別の発明は、このような分極性電極を用いた電気二重 層キャパシタである。  [0014] Still another invention of the present invention is a non-aqueous polarizable electrode made of such activated carbon. Yet another invention of the present invention is an electric double layer capacitor using such a polarizable electrode.
発明の効果  The invention's effect
[0015] 本発明の活性炭を分極性電極に作製し、非水系の電気二重層キャパシタに用いる ことにより、静電容量が高ぐ且つガス発生量が少ない電気二重層キャパシタを構成 すること力 Sできる。このような電気二重層キャパシタは、耐久性に優れた電気二重層 キャパシタとして有用である。  [0015] By producing the activated carbon of the present invention as a polarizable electrode and using it in a non-aqueous electric double layer capacitor, it is possible to construct an electric double layer capacitor having a high capacitance and a small amount of gas generation. . Such an electric double layer capacitor is useful as an electric double layer capacitor having excellent durability.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の活性炭は、ヤシガラを炭化し、水蒸気賦活したものである。炭化条件は公 知のものを採用することができ、例えば、 400°C〜600°Cで加熱乾留されて炭化が実 施される。また、賦活方法としては、電気二重層キャパシタとしたときの電極腐食性の 点、表面官能基が少ない点、およびガス発生が抑制される点から、本発明では水蒸 気賦活が採用される。 The activated carbon of the present invention is obtained by carbonizing coconut shells and activating water vapor. Known carbonization conditions can be adopted. For example, carbonization is performed by heating and distillation at 400 ° C to 600 ° C. Further, as an activation method, water vapor activation is adopted in the present invention from the viewpoint of electrode corrosiveness when an electric double layer capacitor is formed, a point that surface functional groups are small, and gas generation is suppressed.
[0017] 本発明の活性炭において、全表面官能基としては 0. 4meq/g以下であることが好 ましぐ 0. 3meq/g以下であるのがより好ましい。表面官能基としてはカルボキシル 基、ラタトン基、水酸基、およびキノン基が挙げられる力 高電圧で分解しやすいカル ボキシル基ゃラタトン基を含まないことが必要であり、キノン基は全表面官能基の 50 %以上であることが必要である。キノン基は全表面官能基の 60%以上が好ましい。こ れは、分解や電解液との反応にあまり寄与しないキノン基の方が水酸基より多い方が 、ガス発生が抑制されるからである。 In the activated carbon of the present invention, the total surface functional group is preferably 0.4 meq / g or less, and more preferably 0.3 meq / g or less. The surface functional groups include carboxyl group, rataton group, hydroxyl group, and quinone group. The carboxyl group and latataton group, which are easily decomposed at high voltage, must not contain the quinone group. It must be at least%. The quinone group is preferably 60% or more of the total surface functional groups. This This is because gas generation is suppressed when there are more quinone groups that do not contribute much to decomposition or reaction with the electrolyte than hydroxyl groups.
[0018] アルカリ金属類は耐久性に影響を及ぼすため、本発明の活性炭においては 500p pm以下とする必要がある。アルカリ金属類とは一般的に周期表第 IA族に属する 6元 素の総称である。生ヤシガラに含まれる金属成分や含有量は産地により異なるが、特 にナトリウムとカリウムが数百 ppm〜数千 ppm含まれており、このようなナトリウムや力 リウムは上記したアルカリ金属類に該当する。  [0018] Since alkali metals affect durability, the activated carbon of the present invention needs to be 500 ppm or less. Alkali metals are a general term for the 6 elements belonging to Group IA of the Periodic Table. The metal components and content of raw coconut husk vary depending on the place of production, but sodium and potassium are contained in the range of several hundred ppm to several thousand ppm, and such sodium and cadmium correspond to the alkali metals described above. .
[0019] アルカリ金属類はあまり多いと耐久性に影響を与えるのでできるだけ少ない方が好 ましいが、 Oppmにするには、洗浄を極端に繰り返す必要があり、経済性と性能のバ ランス力も、本発明の活性炭では 50ppm〜500ppmの範囲である。 100ppm〜400 ppmが好ましい。生ヤシガラには、アルカリ金属類の他、鉄、クロム、銅、亜鉛などの 遷移金属も数十 ppm含まれており、炭化ゃ賦活工程で濃縮され、活性炭中に数百 p pm存在することもある。遷移金属も耐久性に影響を与えるのでできるだけ少な!/、方 が好ましいが、経済性と性能のバランスから 50ppm以下が好ましぐ 20ppm以下が より好ましい。これら遷移金属もアルカリ金属同様、洗浄により取り除かれる。  [0019] If too much alkali metal affects the durability, it is preferable to reduce it as much as possible. However, in order to achieve Oppm, it is necessary to repeat washing extremely, and the balance between economic efficiency and performance is also In the activated carbon of the present invention, the range is 50 ppm to 500 ppm. 100 ppm to 400 ppm is preferred. Raw coconut husks contain tens of ppm of transition metals such as iron, chromium, copper, and zinc in addition to alkali metals, and are concentrated in the activated carbonization process and may be present in the activated carbon at several hundred ppm. is there. Since transition metals also affect the durability, it is preferable to use as little as possible! /, But 50 ppm or less is preferable and 20 ppm or less is more preferable from the balance of economy and performance. These transition metals, like alkali metals, are removed by washing.
[0020] 不純物の除去方法としては、無機酸による洗浄が好ましいが、中でも活性炭を酸化 することがない塩酸による洗浄がより好ましい。活性炭を塩酸で洗浄後、水洗してもよ いし、酸洗と水洗を繰り返すなど、水洗と酸洗を適宜組合せることもできる。塩酸の濃 度は 0. 1 %〜3. 0%であることが好ましぐ 0. 3%〜; 1. 0%であることがより好ましい 。塩酸濃度が低いと、不純物を除去するために酸洗回数を増やす必要があり、逆に 高いと、残留する塩酸が多くなり好ましくない。また、酸洗や水洗する温度としては、 高いほうが好ましぐ通常 80°C以上で行われる。残留した塩酸は電極を腐食するた め、本発明の活性炭は、塩素イオン濃度が 0. lppm〜20ppmである。 0. lppm〜5 ppmであることが好ましぐ 0. lppm〜3ppmがより好ましい。塩素イオン濃度は抽出 法により測定することカできる。  [0020] As a method for removing impurities, cleaning with an inorganic acid is preferable, but cleaning with hydrochloric acid that does not oxidize activated carbon is more preferable. The activated carbon may be washed with hydrochloric acid and then washed with water, or a combination of washing with water and pickling may be used as appropriate, such as repeated washing and washing. The concentration of hydrochloric acid is preferably 0.1% to 3.0%, more preferably 0.3% to 1.0%. If the hydrochloric acid concentration is low, it is necessary to increase the number of pickling operations to remove impurities. The pickling and rinsing temperatures are usually higher than 80 ° C. Since the remaining hydrochloric acid corrodes the electrode, the activated carbon of the present invention has a chlorine ion concentration of 0.1 ppm to 20 ppm. 0.1 ppm to 5 ppm is preferable, and 0.1 ppm to 3 ppm is more preferable. Chlorine ion concentration can be measured by the extraction method.
[0021] 活性炭の BET比表面積は、あまり小さいと平均細孔径も相対的に小さくなり、大電 流下における充放電時に細孔内での非水系電解質イオンの拡散抵抗によると思わ れる抵抗が増加し、またあまり大きすぎると活性炭の嵩密度が低下し、単位体積あた りの出力が低下するので、本発明の活性炭においては 1500〜2000m2/gである。 [0021] If the BET specific surface area of the activated carbon is too small, the average pore diameter also becomes relatively small, and the resistance that seems to be due to the diffusion resistance of the nonaqueous electrolyte ions in the pores during charge / discharge under a large current increases. If it is too large, the bulk density of the activated carbon will decrease and the unit volume will Therefore, the activated carbon of the present invention is 1500 to 2000 m 2 / g.
[0022] ヤシガラ活性炭は、ヤシガラを炭化し、水蒸気賦活し、酸洗浄、水洗などの工程を 経て得ることができる力 活性炭には通常塩酸が残留するので、本発明の活性炭を 製造するには、より効率的かつ確実に残留する塩酸を除去するため、塩酸洗浄後、 酸化性ガスと短時間接触させることにより、賦活反応を伴レ、ながら残留した塩酸を取 り除くことが好ましい。すなわち、本発明の活性炭は、水蒸気賦活されたヤシガラ活 性炭を塩酸で洗浄した後、 500〜; 1000°Cの酸化性ガス雰囲気下で脱酸することに よって好ましく製造される。酸化性ガスとしては、酸素、水蒸気、炭酸ガス、灯油ゃプ 口パンを燃焼して得られる燃焼ガスなどが挙げられる。これらの酸化性ガスは混合し て使用しても構わないし、不活性ガスで希釈して使用しても構わない。なかでも、灯 油やプロパンを燃焼して得られる燃焼ガス、燃焼ガスにスチームを添加したガスは、 熱源、としても禾 IJ用できること力、らより好ましい。 [0022] The coconut husk activated carbon carbonizes coconut husk, activates steam, and can be obtained through steps such as acid washing and water washing. Since activated carbon usually contains hydrochloric acid, In order to remove the remaining hydrochloric acid more efficiently and reliably, it is preferable to remove the remaining hydrochloric acid with an activation reaction by contacting with an oxidizing gas for a short time after washing with hydrochloric acid. That is, the activated carbon of the present invention is preferably produced by washing steam activated coconut husk activated charcoal with hydrochloric acid and then deoxidizing it in an oxidizing gas atmosphere of 500 to 1000 ° C. Examples of the oxidizing gas include oxygen, water vapor, carbon dioxide gas, and combustion gas obtained by burning kerosene filling pan. These oxidizing gases may be used as a mixture or may be diluted with an inert gas. Of these, a combustion gas obtained by burning kerosene or propane, or a gas obtained by adding steam to the combustion gas is more preferable because it can be used as a heat source.
[0023] 酸化性ガスと接触させるための処理温度としては、あまり低すぎると賦活反応が十 分進行せず、あまり高すぎると急激に賦活反応が進行し、せっかく調整した細孔構造 力変ィ匕するため、 500〜; 1000°Cで fiなうことカ好ましく、 650〜850°Cで fiなうのカ より好ましい。酸化性ガスと接触させる時間は、温度によって異なる力 通常 30分〜 3 時間程度である。酸化性ガス濃度は使用されるガスによって異なる力 スチームを添 カロした場合は通常 1 %〜40%、炭酸ガスを添加した場合は 2%以上が好ましい。  [0023] When the treatment temperature for contacting with the oxidizing gas is too low, the activation reaction does not proceed sufficiently, and when it is too high, the activation reaction proceeds rapidly, and the pore structure strength change adjusted with great effort is obtained. In order to hesitate, it is preferable that the temperature is 500 to 1000 ° C, and more preferable that the temperature is 650 to 850 ° C. The time of contact with the oxidizing gas varies depending on the temperature. Usually, it is about 30 minutes to 3 hours. The oxidizing gas concentration varies depending on the gas used. It is usually 1% to 40% when steam is added, and 2% or more is preferred when carbon dioxide is added.
[0024] 洗浄時での酸化や熱履歴が少な!/、活性炭ではやや表面官能基が多!/、場合があり 、このような場合には、脱酸した活性炭を希ガスや窒素ガスなどの不活性ガス雰囲気 下でさらに 900〜1200°Cで熱処理する。不純物が多い状態で熱処理すると、結晶 子がより成長しやすいものの細孔収縮が起きやすぐ細孔径が変化しやすいので、 酸洗浄、脱酸処理を行うことにより一定の不純物量に調整した後、熱処理する方が、 細孔収縮が起きに《表面官能基を減少させることができる。熱処理温度がこの範囲 に満たないと、表面官能基が分解せず、大きすぎると表面官能基は分解するが、活 性炭の細孔が収縮し、十分容量が得られなくなるため好ましくない。また、不活性ガ ス雰囲気下で熱処理することにより、六員環構造が発達し活性炭の導電性を上げる こと力 Sでさる。 [0025] 熱処理や脱酸処理する炉としては、ロータリキルン、流動層炉、固定層炉、移動層 炉、移動床炉等各種形式の炉を使用することができ、原料の投入、製品の取り出しを 連続的に行う連続炉、間欠的に行うバッチ炉の双方とも適用することができる。加熱 手段としては所定の温度まで加熱可能な手段であれば問題なぐ電気加熱やガス燃 焼型加熱、高周波誘導加熱、通電加熱などが適用できる。また、これら加熱手段は 単独で使用してもよいし、併用しても構わない。 [0024] Oxidation and thermal history during washing are low! / Activated carbon may have a little more surface functional groups! / In such cases, deoxidized activated carbon may be used as a rare gas or nitrogen gas. Heat treatment is further performed at 900 to 1200 ° C under an inert gas atmosphere. When heat treatment is performed in a state where there are many impurities, crystallites are more likely to grow, but pore shrinkage occurs and the pore diameter tends to change immediately.After adjusting the amount of impurities by acid washing and deoxidation treatment, Heat treatment can reduce the surface functional groups as pore shrinkage occurs. If the heat treatment temperature is less than this range, the surface functional groups do not decompose, and if it is too large, the surface functional groups decompose, but the pores of the activated charcoal shrink and a sufficient capacity cannot be obtained. In addition, heat treatment in an inert gas atmosphere develops a six-membered ring structure and increases the conductivity of activated carbon. [0025] As the furnace for heat treatment and deoxidation treatment, various types of furnaces such as a rotary kiln, fluidized bed furnace, fixed bed furnace, moving bed furnace, moving bed furnace, etc. can be used. This can be applied to both continuous and intermittent furnaces. As a heating means, any electric heating, gas combustion type heating, high frequency induction heating, electric heating, etc. can be applied as long as it can heat up to a predetermined temperature. These heating means may be used alone or in combination.
[0026] 本発明の活性炭を使用して非水系分極性電極を作製する場合、活性炭は粉砕し て使用される。活性炭の粒度としては、電極の作製方法にもよる力 中心粒径が 2 111〜30 111が好ましい。中心粒径がこの範囲であると、電極作製しやすぐ更に電極 の嵩密度向上、内部抵抗の観点から好ましい。粉砕方法としては、コーンクラッシャ 一、ダフ、、ノレローノレクラッシャー、ティスククラッシャー、ロータリークラッシャー、 ーノレ ミル、遠心ロールミル、リングローノレミノレ、遠心ボールミルなどの公知の粉砕機で行う ことができる。また、分級機を併用して粒度分布をコントロールしてもよい。更に、粉砕 中に表面が酸化されるのを防ぐため、不活性ガス雰囲気で行うのが望ましい。  [0026] When a non-aqueous polarizable electrode is produced using the activated carbon of the present invention, the activated carbon is used after being pulverized. As the particle size of the activated carbon, a force center particle size of 2 111 to 30 111 depending on the method for producing the electrode is preferable. When the central particle diameter is within this range, it is preferable from the viewpoint of improving the bulk density of the electrode and internal resistance immediately after the electrode is produced. As a pulverization method, a known pulverizer such as a cone crusher, a duff, a Norre-no-re crusher, a tisk crusher, a rotary crusher, a Norre mill, a centrifugal roll mill, a ring-Rhino reminole, a centrifugal ball mill or the like can be used. Further, the particle size distribution may be controlled using a classifier. Furthermore, it is desirable to carry out in an inert gas atmosphere in order to prevent the surface from being oxidized during grinding.
[0027] 本発明の活性炭は、電気二重層キャパシタの非水系分極性電極用の材料として好 ましく使用される。分極性電極を製造するには、公知の方法を採用すればよい。例え ば、本発明の活性炭に、結合材および導電材を加えて混練し、圧延して製造するこ とができる。結合材としては、ポリテトラフルォロエチレン、ポリフッ化ビニリデン、カル ボキシメチルセルロース、ポリビュルアルコール、ポリアクリル酸などが使用できる。使 用される結合材の量はできるだけ少ない方が好ましいが、電極の強度面から 0. 5wt %〜10wt%程度添加することができる。  [0027] The activated carbon of the present invention is preferably used as a material for a non-aqueous polarizable electrode of an electric double layer capacitor. In order to manufacture a polarizable electrode, a known method may be employed. For example, the activated carbon of the present invention can be produced by adding a binder and a conductive material, kneading and rolling. As the binder, polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, polybutyl alcohol, polyacrylic acid and the like can be used. The amount of the binder used is preferably as small as possible, but about 0.5 wt% to 10 wt% can be added in view of the strength of the electrode.
[0028] 導電材としては、アセチレンブラック、ケッチェンブラックのような導電性カーボンブ ラック、天然黒鉛、人造黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、 アルミニウム、ニッケル等の金属ファイバー、金属微粒子などを挙げることができる。こ れらは単独で使用することも複数種を混合して使用してもよレ、。なかでも少量で効果 のある導電性カーボンブラックが特に好ましぐ配合量は、活性炭の嵩密度により異 なる力 多すぎると活性炭の比率が減るため、電極に占める割合では 1 %〜30%、 好ましくは 5%〜; 15%程度である。 [0029] また、活性炭に結合材と導電材を混練する際に、必要に応じて、アルコールや N— メチルピロリドンなどの有機化合物や水などの溶剤、分散剤、各種添加物を添加して もよい。溶剤を添加した場合には、混練物をコーティング剤として使用しやすくなり、 混練物を集電体に塗布して塗布電極とすることが容易となる。 [0028] As the conductive material, conductive carbon black such as acetylene black and ketjen black, natural graphite, artificial graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, aluminum, nickel and other metal fibers, metal Examples thereof include fine particles. These can be used alone or in combination. Among these, the amount of conductive carbon black that is effective in a small amount is particularly preferred because the ratio of activated carbon decreases when the amount of activated carbon is too large, depending on the bulk density of the activated carbon. Is about 5% to 15%. [0029] Further, when the binder and the conductive material are kneaded with the activated carbon, if necessary, an organic compound such as alcohol or N-methylpyrrolidone, a solvent such as water, a dispersant, or various additives may be added. Good. When a solvent is added, the kneaded product can be easily used as a coating agent, and the kneaded product can be easily applied to a current collector to form a coated electrode.
[0030] また、混練する際に熱を加えることも可能である力 必要以上に高い温度は使用し た結合材成分の劣化だけでなぐ結合材が溶融し活性炭の細孔を閉塞することもあ るので、結合材に応じて温度条件を考慮する必要がある。通常は 300°Cを越えない ように混鍊することが好ましレ、。  [0030] In addition, it is possible to apply heat at the time of kneading. When the temperature is higher than necessary, the bonding material melts due to the deterioration of the used binder component, and the pores of the activated carbon may be blocked. Therefore, it is necessary to consider temperature conditions depending on the binder. Usually, it is preferable to mix it so that it does not exceed 300 ° C.
[0031] 電気二重層キャパシタに使用する非水系電解液の溶媒としては、特に限定されるも のではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネー ト、ジメチノレカーボネート、メチノレエチノレカーボネート、ジェチノレカーボネートなどの力 ーボネート類、 y ブチロラタトン、 α—メチノレー Ί ブチルラタトン、 βーメチノレー γ—ブチルラクトン、 γ—バレロラタトン、 3—メチル一 γ—バレロラタトンなどのラクト ン類、ァセトニトリル、プロピオ二トリルなどの二トリル類、ジメチルスルフォキシド、ジェ チルスルフォキシドなどのスルフォキシド類、ジメチルフオルムアミド、ジェチルフオル ムアミドなどのアミド類、テトラヒドロフラン、ジメトキシェタンなどのエーテル類、ジメチ ルスルホラン、スルホランから選ばれる一種以上からなる有機溶媒が好ましい。ただし 、エチレンカーボネート等の高融点溶媒を使用する場合は、低温での使用を考慮し 、プロピレンカーボネート等の低融点溶媒との混合溶媒とする必要がある。また、非 水系電解液中の水分は、高電圧時での分解を考慮しできるだけ少な!/、ことが好まし く、通常 200ppm以下、更には 50ppm以下がより好ましい。 [0031] The solvent of the non-aqueous electrolyte solution used for the electric double layer capacitor is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, dimethylolene carbonate, methinorenoate carbonate, Powers such as jetinole carbonates-Bonates, y Butyrolatatones, α-methinolate Ί butyllatatanes, β-methinolate γ-butyllactone, γ-valerolatatanes, 3-methyl-1-γ-valerolatatanes and other lactones, acetonitrile, propionitrile, etc. Sulphoxides such as nitriles, dimethyl sulfoxide and jetyl sulfoxide, amides such as dimethylformamide and jetylformamide, ethers such as tetrahydrofuran and dimethoxyethane, dimethylsulfola , The organic solvent preferably comprises one or more selected from sulfolane. However, when a high melting point solvent such as ethylene carbonate is used, it is necessary to use a mixed solvent with a low melting point solvent such as propylene carbonate in consideration of use at a low temperature. In addition, the water content in the non-aqueous electrolyte is preferably as low as possible in consideration of decomposition at high voltage, and is usually 200 ppm or less, more preferably 50 ppm or less.
[0032] これらの溶媒に溶解させる電解質としては、特に限定されな!/、が、溶媒に高濃度で 溶解するものが、電気二重層容量が十分発揮されるので好ましい。一般的には、トリ メチルェチルアンモニゥムイオン等で示される第 4級アンモニゥムカチオンゃスピロ (1 , 1 ')ービピロリジニゥムイオンの様なスピロ型カチオンとテトラフルォロホウ酸ァニ オン、へキサフルォロリン酸ァニオン、過塩素酸ァニオン、ビストリフルォロメタンスル ホンイミドア二オン等とを組み合わせた塩、または、カチオンがリチウムイオンであるリ チウム塩が用いられる。また、 1—メチル 3—メチルイミダゾリゥムテトラフロロボレー トなどのイオン性液体を用いる場合、使用する温度範囲で凝固しない限り、濃度の上 限は無い。 [0032] The electrolyte to be dissolved in these solvents is not particularly limited, but those that dissolve in a solvent at a high concentration are preferable because the electric double layer capacity is sufficiently exhibited. In general, quaternary ammonium cations such as trimethylethylammonium ion are spiro-type cations such as spiro (1, 1 ')-bipyrrolidinium ion and tetrafluoroboric acid. A salt in combination with anion, hexafluorophosphate anion, perchlorate anion, bistrifluoromethanesulfonimide anion, or the like, or a lithium salt whose cation is a lithium ion is used. In addition, 1-methyl 3-methylimidazolium tetrafluorovolley In the case of using an ionic liquid such as a salt, there is no upper limit of the concentration unless it solidifies within the temperature range to be used.
[0033] 一対の電極と上記非水系電解液とを有する電気二重層キャパシタにおいて、正極 が上記本発明の活性炭を含む構成によって、静電容量と耐久性に優れる電気二重 層キャパシタを得ることができる力 S、より高いレベルで静電容量と耐久性を両立させる 観点から、一対の電極の両方に上記本発明の活性炭を含むことが好ましい。  [0033] In the electric double layer capacitor having a pair of electrodes and the non-aqueous electrolyte solution, an electric double layer capacitor excellent in capacitance and durability can be obtained by the configuration in which the positive electrode includes the activated carbon of the present invention. From the viewpoint of achieving both the electrostatic capacity S and the durability at a higher level, which is possible, it is preferable that the activated carbon of the present invention is included in both of the pair of electrodes.
[0034] このようにして作製された分極性電極は、高い静電容量を有しており、シリンダー型 、積層型、コイン型などのキャパシタとして組み込まれて好ましく使用することができる 。以下、本発明を実施例によって具体的に説明する力 本発明はこれらに限定され るものではない。 The polarizable electrode produced in this way has a high electrostatic capacity, and can be preferably used by being incorporated as a capacitor of cylinder type, laminated type, coin type or the like. Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to these examples.
[0035] <表面官能基の測定方法〉 <Method for measuring surface functional groups>
120°Cに調節した恒温乾燥器で 8〜; 10時間真空乾燥後、乾燥剤としてシリカゲル を入れたデシケータ中で放冷した活性炭 lgを 100ml共栓三角フラスコ 4個それぞれ に 0. lmgまで正確に量り取った。それぞれの三角フラスコに N/10炭酸水素ナトリ ゥム水溶液、 N/10炭酸ナトリウム水溶液、 N/10水酸化ナトリウム水溶液、 N/10 ナトリウムエトキシドエタノール溶液を 50ml加え、 160rpm、 25°Cにて 24時間振盪し た。振盪後、遠心分離にて上澄みと沈殿に分離し、上澄み液 20mlを 100ml三角フ ラスコに正確に量り、メチルレッドを指示薬として N/10塩酸で滴定した。同様に試 料を含まな!/、溶液で空試験を行い、次式により塩基消費量を算出した。  8 ~ in a constant-temperature dryer adjusted to 120 ° C; after 10 hours vacuum drying, the activated carbon lg was allowed to cool in a desiccator containing silica gel as the desiccant. Weighed out. To each Erlenmeyer flask, add 50 ml of N / 10 sodium hydrogen carbonate aqueous solution, N / 10 sodium carbonate aqueous solution, N / 10 sodium hydroxide aqueous solution, N / 10 sodium ethoxide ethanol solution, and 160 rpm at 25 ° C. Shake for hours. After shaking, the supernatant and precipitate were separated by centrifugation, 20 ml of the supernatant was accurately weighed into a 100 ml triangular flask, and titrated with N / 10 hydrochloric acid using methyl red as an indicator. Similarly, a blank test was performed with no sample! / And the solution, and the base consumption was calculated by the following formula.
[0036] (塩基消費量) = ( (空試験滴定量) (滴定量)) X 0. l X f X 50/20f =塩酸ファタ ター [0036] (Base consumption) = ((Blank test titration) (Titration)) X 0. l X f X 50 / 20f = Fatter hydrochloride
[0037] NaHCO 、 Na CO 、 NaOH、 Na (OCH CH )それぞれの塩基消費量を A、 B、  [0037] Base consumption of each of NaHCO 3, Na 2 CO 3, NaOH, and Na (OCH 2 CH 3) A, B,
3 2 3 2 3  3 2 3 2 3
C、 Dとすると、表面官能基は式;!〜 4で表される。  Assuming C and D, the surface functional group is represented by the formula;
カルボキシル基
Figure imgf000011_0001
(式 1)
Carboxyl group
Figure imgf000011_0001
(Formula 1)
ラタトン基 =B— A(meq/g) (式 2)  Rataton group = B— A (meq / g) (Formula 2)
水酸基 =C B (meq/g) (式 3)  Hydroxyl = C B (meq / g) (Formula 3)
キノン基 =D— C (meq/g) (式 4)  Quinone group = D— C (meq / g) (Formula 4)
[0038] <アルカリ金属量の測定方法〉 900°Cで空焼きし、シリカゲルを入れたデシケータ中で放冷したアルミナるつぼの 重量を測定する。 120°Cに調節した恒温乾燥器で 8〜; 10時間真空乾燥後、乾燥剤 としてシリカゲルを入れたデシケータ中で放冷した活性炭を容積 50mlのアルミナる つぼに 20g入れ、るつぼ +活性炭重量を 0. lmgまで正確に量り取った。試料を入 れたアルミナるつぼを電気炉に入れ、電気炉内に乾燥空気を 20L/分で導入した状 態で、 1時間で 200°Cまで昇温し、更に 2時間かけて 700°Cに昇温し、 700°Cにて 14 時間保持し、灰化した。灰化終了後、シリカゲルを入れたデシケータ中で放冷し、る つぼ +灰の重量を 0. lmgまで正確に量り取り、式 5から灰分を算出した。 <Measurement method of alkali metal content> Weigh the alumina crucible after baking at 900 ° C and allowing it to cool in a desiccator containing silica gel. 8 ~ in a thermostatic oven adjusted to 120 ° C; after vacuum drying for 10 hours, 20g of activated carbon cooled in a desiccator containing silica gel as a desiccant is placed in a 50ml alumina crucible, and the weight of crucible + activated carbon is 0 Weighed accurately to lmg. The alumina crucible containing the sample was placed in an electric furnace, and with the dry air introduced at 20 L / min into the electric furnace, the temperature was raised to 200 ° C in 1 hour, and further increased to 700 ° C over 2 hours. The temperature was raised and maintained at 700 ° C for 14 hours to incinerate. After completion of ashing, the mixture was allowed to cool in a desiccator containing silica gel, and the weight of the crucible + ash was accurately measured to 0.1 mg, and the ash content was calculated from Equation 5.
[0039] 灰分 (ppm) = { (るつぼ +灰重量) (るつぼ重量) / (るつぼ +活性炭重量) (るつぼ重量)} X 10000000 (式 5)  [0039] Ash content (ppm) = {(crucible + ash weight) (crucible weight) / (crucible + activated carbon weight) (crucible weight)} X 10000000 (Formula 5)
[0040] 灰の入ったアルミナるつぼに 35%塩酸 10mlと超純水 30mlを加え、電気コン口上 で加熱濃縮し、放冷後の溶液を 50mlメスフラスコに取り、超純水で標線に合わせた ものを測定溶液とした。調製した測定溶液はパーキンエルマ一社製 ICP発光分析装 置 Optima4300DVにて分析し、得られた値から式 6より活性炭中の金属量とした。  [0040] Add 10 ml of 35% hydrochloric acid and 30 ml of ultrapure water to an alumina crucible containing ash, heat and concentrate on an electric outlet, take the cooled solution in a 50 ml volumetric flask, and align with the mark with ultrapure water. This was used as the measurement solution. The prepared measurement solution was analyzed with an ICP emission analyzer Optima4300DV manufactured by Perkin Elma Co., Ltd. From the obtained value, the amount of metal in the activated carbon was calculated from Equation 6.
[0041] 金属量 (ppm) = {ICP発行分析による金属濃度 (ppm) /灰化した活性炭重量  [0041] Metal content (ppm) = {Metal concentration (ppm) by ICP issue analysis / Ashed activated carbon weight
(g) } X 50 (式 6)  (g)} X 50 (Formula 6)
[0042] <塩素イオン濃度の測定方法〉  [0042] <Method for measuring chloride ion concentration>
120°Cに調節した恒温乾燥器で 8〜; 10時間真空乾燥後、乾燥剤としてシリカゲル を入れたデシケータ中で放冷した活性炭 10gを 200ml共栓三角フラスコに 0. lmgま で正確に量り取り、蒸留水 100mlを加え、冷却管を取り付け、 30分間還流した。還流 後、溶液が冷める前にろ過により活性炭とろ液とに分離した。分離後、ろ液を冷却後 、イオンクロマトグラフにて塩素イオンのピーク面積を求めた。 600°Cで乾燥した塩化 ナトリウム水溶液を用いて作成した検量線からろ液に含まれる塩素イオン濃度を求め 、式 7により活性炭中の塩素イオン濃度を算出した。  8 ~ in a constant-temperature dryer adjusted to 120 ° C; after 10 hours vacuum drying, 10g of activated charcoal cooled in a desiccator containing silica gel as a desiccant is accurately weighed up to 0.1mg in a 200ml stoppered Erlenmeyer flask 100 ml of distilled water was added, a condenser was attached, and the mixture was refluxed for 30 minutes. After refluxing, the solution was separated into activated carbon and filtrate by filtration before the solution cooled. After separation, the filtrate was cooled, and the peak area of chloride ions was determined by ion chromatography. The chloride ion concentration contained in the filtrate was determined from a calibration curve prepared using an aqueous sodium chloride solution dried at 600 ° C, and the chloride ion concentration in the activated carbon was calculated using Equation 7.
[0043] 活性炭中の塩素イオン濃度(ppm) = (ろ液の塩素イオン濃度(ppm)  [0043] Chloride ion concentration in activated carbon (ppm) = (Cl-Ion concentration in filtrate (ppm)
/活性炭重量 (g) ) X 100 (式 7)  / Activated carbon weight (g)) X 100 (Formula 7)
[0044] <比表面積の測定方法〉  <Method for measuring specific surface area>
日本ベル社製 BELSORP— miniを使用し、活性炭の 77Kにおける窒素吸着等温 線を測定した。得られた吸着等温線から BETの式により多点法による解析を行い、 得られた曲線の相対圧 p/p =0. 001 -0. 1の領域での直線から比表面積を算出 Nitrogen adsorption isothermal at 77K of activated carbon using BELSORP-mini made by Nippon Bell The line was measured. Using the BET equation to analyze the obtained adsorption isotherm, calculate the specific surface area from the straight line in the region of the relative pressure p / p = 0.001 -0.1 of the obtained curve.
0  0
した。  did.
[0045] 実施例 1  [0045] Example 1
灯油燃焼ガス(H〇、 CO、 CO、 Nの混合ガス)にスチームを供給し水蒸気分圧 3  Steam is supplied to kerosene combustion gas (mixed gas of H ○, CO, CO, N) and water vapor partial pressure is 3
2 2 2  2 2 2
5%に調整した賦活ガス中、 900°Cで水蒸気賦活されたヤシガラ活性炭(比表面積 1 800m2/g)を 0. 1Nの塩酸中で洗浄後、イオン交換水で脱塩した。脱塩後、 120°C で乾燥し、 700°C、灯油燃焼ガス雰囲気下で 30分脱酸処理した。脱酸処理後、 900 °C、窒素雰囲気下で 120分熱処理した。処理条件を表 1に示す。得られた熱処理活 性炭をボールミルで粉砕し、中心粒径 7 mの非水系分極性電極用活性炭粉末を 得た。得られた活性炭について、表面官能基、アルカリおよびアルカリ土類金属量、 塩素イオン濃度、並びに BET比表面積を測定した結果を表 2に示す。 In activated gas adjusted to 5%, coconut husk activated carbon (specific surface area 1 800 m 2 / g) steam-activated at 900 ° C. was washed in 0.1N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C and deoxidized at 700 ° C under kerosene combustion gas atmosphere for 30 minutes. After the deoxidation treatment, heat treatment was performed at 900 ° C. in a nitrogen atmosphere for 120 minutes. Table 1 shows the processing conditions. The obtained heat-treated activated charcoal was pulverized with a ball mill to obtain activated carbon powder for a non-aqueous polarizable electrode having a center particle diameter of 7 m. Table 2 shows the results of measuring the surface functional groups, alkali and alkaline earth metal contents, chloride ion concentration, and BET specific surface area of the obtained activated carbon.
[0046] 上記活性炭粉末、電気化学工業株式会社製のデンカブラック (導電材)およびポリ テトラフルォロエチレン(結合材)を 80 : 10 : 10の重量比となるように混練し、この混練 物を圧延することにより電極成形密度 0. 60g/cm3、厚さ 400 mの活性炭電極シ ートを作製した。この活性炭電極シートを図 1のようにカットし、図 2のように、アルミ製 エキスパンドメタル(日金化工株式会社製)に圧着し、超音波溶接機でアルミリード線 (宝泉株式会社製)をアルミ製エキスパンドメタルに溶接した。溶接後、 150°Cで真空 乾燥し、シート状電極を作製した。 [0046] The activated carbon powder, Denka Black (conductive material) and polytetrafluoroethylene (binding material) manufactured by Denki Kagaku Kogyo Co., Ltd. were kneaded so as to have a weight ratio of 80:10:10. An activated carbon electrode sheet having an electrode forming density of 0.60 g / cm 3 and a thickness of 400 m was produced by rolling the sheet. Cut this activated carbon electrode sheet as shown in Fig. 1 and crimp it onto aluminum expanded metal (manufactured by Nikkin Kako Co., Ltd.) as shown in Fig. 2 and use an ultrasonic welder to make aluminum lead wires (manufactured by Hosen Co., Ltd.). Was welded to aluminum expanded metal. After welding, it was vacuum dried at 150 ° C to produce a sheet electrode.
[0047] グローブボックス内でセルロース製セパレーター(日本高度紙工業株式会社 TF  [0047] Cellulosic separator in glove box (Japan Advanced Paper Industries TF
40)を介してこのシート状電極を重ね合わせ、図 3のように袋状に加工したアルミラ ミネート 50mm X I 50mm (宝泉株式会社製)に揷入し、内部に 1 · Omol/Lのトリエ チルメチルアンモニゥム.テトラフルォロボレートのプロピレンカーボネート溶液を注入 し、含侵後、開口部をヒートシールし、図 4のような電気二重層アルミラミネートキャパ シタを作製した。  40), this sheet-like electrode is stacked and inserted into a bag-like aluminum laminate 50mm XI 50mm (manufactured by Hosen Co., Ltd.) as shown in Fig. 3, and 1 · Omol / L triethyl inside. A propylene carbonate solution of methylammonium tetrafluoroborate was injected, and after impregnation, the opening was heat sealed to produce an electric double layer aluminum laminate capacitor as shown in Fig. 4.
[0048] 上記のようにして作製した電気二重層キャパシタを株式会社パワーシステム製電気 二重層キャパシタ充放電試験装置により室温下、到達電圧 2. 7Vまで、電極表面積 あたり ImA/cm2で定電流充電し、 2. 7V2時間定電圧下補充電し、補充電完了後 、 ImA/cm2で放電した。この放電サイクルを 5回繰り返した。 5回目のサイクルのデ ータをエネルギー換算法で算出し静電容量とした。 [0048] The electric double layer capacitor produced as described above was charged at a constant current with an electric double layer capacitor charge / discharge tester manufactured by Power System Co., Ltd. at room temperature, up to an ultimate voltage of 2.7V, and ImA / cm 2 per electrode surface area. 2. After supplementary charging is completed under a constant voltage of 7V2 hours Discharge at ImA / cm 2 . This discharge cycle was repeated 5 times. The data for the fifth cycle was calculated by the energy conversion method and used as the capacitance.
[0049] 初期静電容量測定後、 60°Cの恒温槽中にて 2. 5Vの電圧を印加しながら 240時 間保持し、ガス発生量を測定した。発生したガス量は浮力より算出した。静電容量お よび活性炭あたりのガス発生量を表 3に示す。  [0049] After the initial capacitance measurement, the gas generation amount was measured by holding for 240 hours while applying a voltage of 2.5V in a constant temperature bath at 60 ° C. The amount of gas generated was calculated from buoyancy. Table 3 shows the capacitance and the amount of gas generated per activated carbon.
[0050] 実施例 2  [0050] Example 2
実施例 1で使用したヤシガラ活性炭を 1100°C、窒素雰囲気下で 120分熱処理した 以外は、実施例 1と同様にして非水系分極性電極用活性炭を得た。処理条件を表 1 に、得られた活性炭の物性を表 2に示す。更に、実施例 1と同様にして電気二重層ァ ノレミラミネートキャパシタを作製し、静電容量およびガス発生量を測定した。結果を表 3に示す。  Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that the coconut shell activated carbon used in Example 1 was heat-treated at 1100 ° C. in a nitrogen atmosphere for 120 minutes. Table 1 shows the treatment conditions and Table 2 shows the physical properties of the obtained activated carbon. Further, in the same manner as in Example 1, an electric double layer methanol laminate capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0051] 実施例 3 [0051] Example 3
実施例 1で使用したヤシガラ活性炭を 1200°C、窒素雰囲気下で 120分熱処理した 以外は、実施例 1と同様にして非水系分極性電極用活性炭を得た。処理条件を表 1 に、得られた活性炭の物性を表 2に示す。更に、実施例 1と同様にして電気二重層ァ ノレミラミネートキャパシタを作製し、静電容量およびガス発生量を測定した。結果を表 3に示す。  Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that the coconut husk activated carbon used in Example 1 was heat-treated at 1200 ° C. in a nitrogen atmosphere for 120 minutes. Table 1 shows the treatment conditions and Table 2 shows the physical properties of the obtained activated carbon. Further, in the same manner as in Example 1, an electric double layer methanol laminate capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0052] 実施例 4 [0052] Example 4
実施例 1で使用したヤシガラ活性炭を 0. 1Nの塩酸で洗浄した後、イオン交換水で 脱塩した。脱塩後、 120°Cで乾燥し、 500°C、灯油燃焼ガスにスチームを添加し水蒸 気分圧 30%に調整した雰囲気下で 15分脱酸処理した。脱酸処理後、 900°C、窒素 雰囲気下で 30分熱処理した。これらの処理以外は、実施例 1と同様にして非水系分 極性電極用活性炭を得た。処理条件を表 1に、得られた活性炭の物性を表 2に示す 。更に、実施例 1と同様にして電気二重層アルミラミネートキャパシタを作製し、静電 容量およびガス発生量を測定した。結果を表 3に示す。  The coconut husk activated carbon used in Example 1 was washed with 0.1N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C, deoxidized at 500 ° C for 15 minutes in an atmosphere adjusted to 30% water vapor partial pressure by adding steam to kerosene combustion gas. After deoxidation treatment, heat treatment was performed at 900 ° C in a nitrogen atmosphere for 30 minutes. Except for these treatments, activated carbon for non-aqueous polar electrodes was obtained in the same manner as in Example 1. Table 1 shows the treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0053] 実施例 5 [0053] Example 5
実施例 1で使用したヤシガラ活性炭を 850°C、灯油燃焼ガス雰囲気下で 60分脱酸 処理し、 900°C、窒素雰囲気下で 60分熱処理した以外は、実施例 1と同様にして非 水系分極性電極用活性炭を得た。各種処理条件を表 1に、得られた活性炭の物性 を表 2に示す。更に、実施例 1と同様にして電気二重層アルミラミネートキャパシタを 作製し、静電容量およびガス発生量を測定した。結果を表 3に示す。 The non-oxidized coconut shell activated carbon used in Example 1 was deoxidized at 850 ° C in a kerosene combustion gas atmosphere for 60 minutes, and heat treated at 900 ° C in a nitrogen atmosphere for 60 minutes. An activated carbon for an aqueous polarizable electrode was obtained. Table 1 shows the various treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Furthermore, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0054] 実施例 6 [0054] Example 6
灯油燃焼ガス(H〇、 CO、 CO、 Nの混合ガス)にスチームを供給し水蒸気分圧 3  Steam is supplied to kerosene combustion gas (mixed gas of H ○, CO, CO, N) and water vapor partial pressure is 3
2 2 2  2 2 2
5%に調整した賦活ガス中、 900°Cで水蒸気賦活されたヤシガラ活性炭(比表面積 1 550m2/g)を使用した以外は、実施例 1と同様にして非水系分極性電極用活性炭 を得た。処理条件を表 1に、得られた活性炭の物性を表 2に示す。更に、実施例 1と 同様にして電気二重層アルミラミネートキャパシタを作製し、静電容量およびガス発 生量を測定した。結果を表 3に示す。 An activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that coconut husk activated carbon (specific surface area 1 550 m 2 / g) steam-activated at 900 ° C in activated gas adjusted to 5% was used. It was. Table 1 shows the treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0055] 実施例 7 [0055] Example 7
灯油燃焼ガス(H〇、 CO、 CO、 Nの混合ガス)にスチームを供給し水蒸気分圧 3  Steam is supplied to kerosene combustion gas (mixed gas of H ○, CO, CO, N) and water vapor partial pressure is 3
2 2 2  2 2 2
5%に調整した賦活ガス中、 900°Cで水蒸気賦活されたヤシガラ活性炭(比表面積 1 740m2/g)を使用した以外は、実施例 1と同様にして非水系分極性電極用活性炭 を得た。各種処理条件を表 1に、得られた活性炭の物性を表 2に示す。更に、実施例 1と同様にして電気二重層アルミラミネートキャパシタを作製し、静電容量およびガス 発生量を測定した。結果を表 3に示す。 In the activated gas adjusted to 5%, activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that coconut husk activated carbon (specific surface area 1 740 m 2 / g) steam-activated at 900 ° C was used. It was. Table 1 shows the various treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0056] 実施例 8 [0056] Example 8
灯油燃焼ガス(H〇、 CO、 CO、 Nの混合ガス)にスチームを供給し水蒸気分圧 3  Steam is supplied to kerosene combustion gas (mixed gas of H ○, CO, CO, N) and water vapor partial pressure is 3
2 2 2  2 2 2
5%に調整した賦活ガス中、 900°Cで水蒸気賦活されたヤシガラ活性炭(比表面積 1 960m2/g)を使用し、熱処理を施さな力 た以外は、実施例 1と同様にして非水系 分極性電極用活性炭を得た。各種処理条件を表 1に、得られた活性炭の物性を表 2 に示す。更に、実施例 1と同様にして電気二重層アルミラミネートキャパシタを作製し 、静電容量およびガス発生量を測定した。結果を表 3に示す。 Non-aqueous system as in Example 1 except that coconut husk activated carbon (specific surface area 1 960m 2 / g) steam-activated at 900 ° C was used in the activated gas adjusted to 5%, and no heat treatment was applied. Activated carbon for polarizable electrodes was obtained. Table 1 shows the various treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0057] 比較例 1 [0057] Comparative Example 1
実施例 1で使用したヤシガラ活性炭を 0. 1Nの塩酸で洗浄した後、イオン交換水で 脱塩した。脱塩後、 120°Cで乾燥のみ行い、ボールミルで粉砕し、中心粒径 6 mの 非水系分極性電極用活性炭粉末を得た。得られた活性炭の物性を表 2に示す。更 に実施例 1と同様にして電気二重層アルミラミネートキャパシタを作製し、静電容量お よびガス発生量を測定した。結果を表 3に示す。 The coconut husk activated carbon used in Example 1 was washed with 0.1N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried only at 120 ° C and pulverized with a ball mill to obtain activated carbon powder for non-aqueous polarizable electrodes having a center particle size of 6 m. Table 2 shows the physical properties of the obtained activated carbon. Further In the same manner as in Example 1, an electric double layer aluminum laminated capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0058] 比較例 2 [0058] Comparative Example 2
実施例 1で使用したヤシガラ活性炭を燃焼ガス雰囲気下で脱酸処理を施さなかつ た以外は、実施例 1と同様にして非水系分極性電極用活性炭を得た。処理条件を表 1に、得られた活性炭の物性を表 2に示す。更に、実施例 1と同様にして電気二重層 アルミラミネートキャパシタを作製し、静電容量およびガス発生量を測定した。結果を 表《3に不す。  Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1, except that the coconut shell activated carbon used in Example 1 was not deoxidized in a combustion gas atmosphere. Table 1 shows the treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Furthermore, an electric double layer aluminum laminate capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are not shown in Table << 3.
[0059] 比較例 3  [0059] Comparative Example 3
実施例 1で使用したヤシガラ活性炭を 1300°C、窒素雰囲気下で 120分熱処理した 以外は、実施例 1と同様にして非水系分極性電極用活性炭を得た。処理条件を表 1 に、得られた活性炭の物性を表 2に示す。更に、実施例 1と同様にして電気二重層ァ ノレミラミネートキャパシタを作製し、静電容量およびガス発生量を測定した。結果を表 3に示す。  Activated carbon for non-aqueous polarizable electrodes was obtained in the same manner as in Example 1 except that the coconut shell activated carbon used in Example 1 was heat-treated at 1300 ° C. in a nitrogen atmosphere for 120 minutes. Table 1 shows the treatment conditions and Table 2 shows the physical properties of the obtained activated carbon. Further, in the same manner as in Example 1, an electric double layer methanol laminate capacitor was produced, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0060] 比較例 4 [0060] Comparative Example 4
実施例 1で使用したヤシガラ活性炭を 800°C、燃焼ガス雰囲気下で 30分脱酸処理 し、 600°C、窒素雰囲気下で 120分熱処理した以外は、実施例 1と同様にして非水 系分極性電極用活性炭を得た。処理条件を表 1に、得られた活性炭の物性を表 2に 示す。更に、実施例 1と同様にして電気二重層アルミラミネートキャパシタを作製し、 静電容量およびガス発生量を測定した。結果を表 3に示す。  Non-aqueous system as in Example 1 except that the coconut husk activated carbon used in Example 1 was deoxidized at 800 ° C for 30 minutes in a combustion gas atmosphere and heat treated at 600 ° C for 120 minutes in a nitrogen atmosphere. Activated carbon for polarizable electrodes was obtained. Table 1 shows the treatment conditions, and Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0061] 比較例 5 [0061] Comparative Example 5
石炭系重質油を原料に熱処理して得られた異方性生コータス(H/C = 0. 4)をボ ールミルで中心粒径 10 mまで粉砕した後、アルカリ賦活した。得られたアルカリ賦 活活性炭を 90°C、 0. 5Nの塩酸中で洗浄後、イオン交換水で脱塩した。脱塩後、 12 0°C、 24時間乾燥し非水系分極性電極用活性炭粉末を得た。得られた活性炭の物 性を表 2に示す。更に、実施例 1と同様にして電気二重層アルミラミネートキャパシタ を作製し、静電容量およびガス発生量を測定した。結果を表 3に示す。  Anisotropic raw coatas (H / C = 0.4) obtained by heat-treating coal-based heavy oil as raw materials were pulverized with a ball mill to a center particle size of 10 m, and then activated with alkali. The obtained alkali-activated activated carbon was washed in 90 ° C, 0.5N hydrochloric acid and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C. for 24 hours to obtain activated carbon powder for non-aqueous polarizable electrodes. Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[0062] 比較例 6 比較例 5で作製された石炭系生コータスのアルカリ賦活活性炭を 90°C、 0. 5Nの 塩酸中で洗浄した後、イオン交換水で脱塩した。脱塩後、 120°C、 24時間乾燥し、ァ ルミナ製バットに移し、実施例 1と同様に脱酸処理および熱処理を施した。得られた 活性炭の物性を表 2に示す。更に、実施例 1と同様にして電気二重層アルミラミネ一 トキャパシタを作製し、静電容量およびガス発生量を測定した。結果を表 3に示す。 [0062] Comparative Example 6 The alkaline activated carbon of coal-based raw coatas prepared in Comparative Example 5 was washed in 90 ° C, 0.5N hydrochloric acid, and then desalted with ion-exchanged water. After desalting, it was dried at 120 ° C. for 24 hours, transferred to an aluminum vat, and subjected to deoxidation treatment and heat treatment in the same manner as in Example 1. Table 2 shows the physical properties of the obtained activated carbon. Further, an electric double layer aluminum laminated capacitor was produced in the same manner as in Example 1, and the capacitance and gas generation amount were measured. The results are shown in Table 3.
[表 1] [table 1]
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0002
静電容量 ガス発生量 Capacitance Gas generation amount
F / g F / c c (m L Z g—活性炭)  F / g F / cc (m L Z g—activated carbon)
実施例 1 29.8 18.0 1.3  Example 1 29.8 18.0 1.3
実施例 2 26.3 17,8 1.1  Example 2 26.3 17,8 1.1
実施例 3 23.1 15,7 0.8  Example 3 23.1 15,7 0.8
実施例 4 28.9 17.7 2.0  Example 4 28.9 17.7 2.0
実施例 5 28.1 17.3 1.5  Example 5 28.1 17.3 1.5
実施例 6 28.7 19.0 1.5  Example 6 28.7 19.0 1.5
実施例 7 29.6 18.1 1.2  Example 7 29.6 18.1 1.2
実施例 8 31Λ 15.2 1.0  Example 8 31Λ 15.2 1.0
比較例 1 29.7 18,0 3,2  Comparative Example 1 29.7 18,0 3,2
比較例 2 29.2 17.5 2,6  Comparative Example 2 29.2 17.5 2,6
比較例 3 19.4 14.0 0.6  Comparative Example 3 19.4 14.0 0.6
比較例 4 28.6 17.2 2.9  Comparative Example 4 28.6 17.2 2.9
比較例 5 43.6 26.4 5.4  Comparative Example 5 43.6 26.4 5.4
比較^ 6 32.0 20.2 2.5  Comparison ^ 6 32.0 20.2 2.5
[0066] 表 3から明らかなように、本発明の活性炭で作製した非水系分極性電極を用いたキ ャパシタは、他の活性炭を用いたキャパシタに比べ、ガス発生量が少ないことが分か る。また、酸化性ガス雰囲気下で脱酸したのち、 1300°Cの不活性ガス雰囲気下で熱 処理するとガス発生は抑えられるものの、比表面積が 20%以上低下し、静電容量も 同様に大幅に低下することがわかる。 [0066] As is apparent from Table 3, it can be seen that the capacitor using the non-aqueous polarizable electrode made of the activated carbon of the present invention generates less gas than the capacitor using other activated carbon. . In addition, deoxidation in an oxidizing gas atmosphere and heat treatment in an inert gas atmosphere at 1300 ° C can suppress gas generation, but the specific surface area decreases by 20% or more, and the capacitance is also significantly increased. It turns out that it falls.
産業上の利用可能性  Industrial applicability
[0067] 本発明の活性炭は、酸洗浄により残留した塩素イオン濃度を効率的に減少させた ものであり、また表面官能基を減少させつつ、結晶性をあげたものであり、導電性を 向上させること力 Sできる。したがって、本発明の活性炭を分極性電極に作製し、非水 系の電気二重層キャパシタに用いると、静電容量が高ぐ金属の還元析出によるショ ートなどの障害を起こし難ぐまた、良好な自己放電保持率を示し、且つ、耐久性に 優れ、特にガス発生が少ないため、大容量、高出力のキャパシタに好適である。 図面の簡単な説明  [0067] The activated carbon of the present invention is one in which the concentration of chlorine ions remaining by acid cleaning is efficiently reduced, and the crystallinity is increased while the surface functional groups are reduced, improving the conductivity. You can make it S. Therefore, when the activated carbon of the present invention is produced on a polarizable electrode and used for a non-aqueous electric double layer capacitor, it is difficult to cause a short circuit due to reduction deposition of a metal having a high capacitance. It exhibits a high self-discharge retention rate, is excellent in durability, and generates particularly little gas. Therefore, it is suitable for a capacitor having a large capacity and a high output. Brief Description of Drawings
[0068] [図 1]本発明で使用した活性炭電極シートである。  [0068] Fig. 1 is an activated carbon electrode sheet used in the present invention.
[図 2]活性炭電極シートをエキスパンドメタルに圧着した状態を示す概略図である。  FIG. 2 is a schematic view showing a state where an activated carbon electrode sheet is pressure-bonded to an expanded metal.
[図 3]袋状に加工したアルミラミネートの概略図である。  FIG. 3 is a schematic view of an aluminum laminate processed into a bag shape.
[図 4]電気二重層アルミラミネートキャパシタの概略図である。 符号の説明 FIG. 4 is a schematic view of an electric double layer aluminum laminated capacitor. Explanation of symbols
1 タブ付きリード線  1 Lead wire with tab
2 アルミ製エキスパンドメタル 3 ヒートシ一ノレ  2 Aluminum expanded metal 3 Heat paper

Claims

請求の範囲 The scope of the claims
[1] ヤシガラを炭化し、水蒸気賦活して得られたヤシガラ活性炭であって、全表面官能基 が 0. 4meq/g以下、該表面官能基がカルボキシル基およびラタトン基を含まず、且 っキノン基が全表面官能基の 50%以上で、且つアルカリ金属類を 50〜500ppm含 有し、且つ塩素イオン濃度が 0. lppm〜20ppmであり、且つ BET比表面積が 1500 〜2000m2/gであることを特徴とする活性炭。 [1] A coconut husk activated carbon obtained by carbonizing coconut shells and activating water vapor, wherein the total surface functional groups are 0.4 meq / g or less, the surface functional groups do not contain a carboxyl group and a rataton group, and quinones The group is 50% or more of the total surface functional groups, the alkali metal content is 50 to 500 ppm, the chlorine ion concentration is 0.1 ppm to 20 ppm, and the BET specific surface area is 1500 to 2000 m 2 / g. Activated carbon characterized by that.
[2] 水蒸気賦活されたヤシガラ活性炭を塩酸で洗浄した後、 500〜; 1000°Cの酸化性ガ ス雰囲気下で脱酸した後、不活性ガス雰囲気下でさらに 900〜1200°Cで熱処理す ることを特徴とする活性炭の製造方法。  [2] Steam activated coconut shell activated carbon is washed with hydrochloric acid, then deoxidized in an oxidizing gas atmosphere at 500 to 1000 ° C, and then further heat treated at 900 to 1200 ° C in an inert gas atmosphere A method for producing activated carbon, comprising:
[3] 該酸化性ガスが、燃焼ガス又は燃焼ガスにスチームを添加したガスである請求項 2記 載の活性炭の製造方法。  [3] The method for producing activated carbon according to claim 2, wherein the oxidizing gas is a combustion gas or a gas obtained by adding steam to the combustion gas.
[4] 請求項 1記載の活性炭からなる非水系分極性電極。  [4] A non-aqueous polarizable electrode comprising the activated carbon according to claim 1.
[5] 請求項 3記載の分極性電極を用いた電気二重層キャパシタ。  5. An electric double layer capacitor using the polarizable electrode according to claim 3.
PCT/JP2007/071215 2006-11-02 2007-10-31 Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors WO2008053919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542153A JP5168585B2 (en) 2006-11-02 2007-10-31 Activated carbon and method for producing the same, non-aqueous polarizable electrode and electric double layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-298477 2006-11-02
JP2006298477 2006-11-02

Publications (1)

Publication Number Publication Date
WO2008053919A1 true WO2008053919A1 (en) 2008-05-08

Family

ID=39344260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071215 WO2008053919A1 (en) 2006-11-02 2007-10-31 Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors

Country Status (2)

Country Link
JP (1) JP5168585B2 (en)
WO (1) WO2008053919A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168238A (en) * 2009-01-21 2010-08-05 Kansai Coke & Chem Co Ltd Method for producing highly purified activated carbon and electric double layer capacitor obtained by the method
JP2011011935A (en) * 2009-06-30 2011-01-20 Kansai Coke & Chem Co Ltd Manufacturing method of activated carbon, and electric double-layer capacitor using activated carbon obtained by the manufacturing method
JP2011105545A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber
JP5159970B1 (en) * 2012-05-16 2013-03-13 株式会社アルメディオ Activated carbon and manufacturing method thereof
US8482901B2 (en) 2010-01-22 2013-07-09 Corning Incorporated Microporous activated carbon for EDLCS
US8524632B2 (en) 2010-01-22 2013-09-03 Corning Incorporated High-capacitance and low-oxygen porous carbon for EDLCs
CN104769692A (en) * 2012-10-08 2015-07-08 麦克斯威科技公司 Electrolyte for three-volt ultracapacitor
US20160006034A1 (en) * 2013-03-25 2016-01-07 Jsr Corporation Electrode active material, electrode and electrical storage device
CN105390296A (en) * 2014-09-01 2016-03-09 Jsr株式会社 Electrode material, electrode and electrical storage device
WO2016035669A1 (en) * 2014-09-02 2016-03-10 株式会社クラレ Method for purifying plant-derived carbon precursor
JP2016052957A (en) * 2014-09-02 2016-04-14 株式会社クラレ Method for refining plant-derived carbon precursor
JP2016052955A (en) * 2014-09-02 2016-04-14 株式会社クラレ Method for refining plant-derived carbon precursor
WO2016094266A3 (en) * 2014-12-12 2016-10-06 Corning Incorporated Activated carbon and electric double layer capacitor thereof
KR20160120671A (en) 2015-04-08 2016-10-18 가부시키가이샤 캬타라 Carbon Material for Power Storage Device Electrode and Manufacturing Method Thereof
US9607775B2 (en) 2013-08-30 2017-03-28 Corning Incorporated High-voltage and high-capacitance activated carbon and carbon-based electrodes
JP2017199656A (en) * 2011-09-28 2017-11-02 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Carbon supported catalyst
JP2017212433A (en) * 2016-05-18 2017-11-30 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
WO2018012504A1 (en) * 2016-07-15 2018-01-18 株式会社キャタラー Electricity storage device and carbon material used for same
WO2018207769A1 (en) 2017-05-10 2018-11-15 株式会社クラレ Modified activated carbon and method for producing same
CN109923633A (en) * 2016-11-15 2019-06-21 株式会社可乐丽 Carbonaceous material and its manufacturing method for double layer capacitor
WO2019131270A1 (en) * 2017-12-25 2019-07-04 株式会社クラレ Activated carbon, metal-carrying activated carbon using same and hydrogenation reaction catalyst
KR20190124709A (en) * 2017-02-27 2019-11-05 주식회사 쿠라레 Carbonaceous materials and electrode materials for electric double layer capacitors containing the carbonaceous materials, electrodes for electric double layer capacitors and electric double layer capacitors
WO2020004674A1 (en) * 2018-06-29 2020-01-02 東洋炭素株式会社 Method for producing porous carbon, and electrode and catalyst support containing porous carbon produced by said production method
WO2020096008A1 (en) 2018-11-09 2020-05-14 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
CN112174135A (en) * 2020-10-12 2021-01-05 江苏浦士达环保科技股份有限公司 Method for refining water vapor activated super capacitor carbon
WO2021015054A1 (en) 2019-07-19 2021-01-28 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
WO2021131907A1 (en) * 2019-12-25 2021-07-01 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949540A (en) * 2015-08-04 2018-04-20 株式会社可乐丽 The carbon precursor in plant material source

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128590A (en) * 1974-09-03 1976-03-10 Kuraray Chemical Kk
JPH01241811A (en) * 1988-03-24 1989-09-26 Asahi Glass Co Ltd Electric double-layer capacitor
JP2001240407A (en) * 1999-12-24 2001-09-04 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2002015959A (en) * 2000-06-29 2002-01-18 Kyocera Corp Electric double-layer capacitor and method of manufacturing the same
JP2002033249A (en) * 2000-05-09 2002-01-31 Mitsubishi Chemicals Corp Activated charcoal for electric double-layer capacitor
JP2003243265A (en) * 2002-02-20 2003-08-29 Nec Tokin Corp Electric double layer capacitor
JP2005129707A (en) * 2003-10-23 2005-05-19 Nippon Oil Corp Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128590A (en) * 1974-09-03 1976-03-10 Kuraray Chemical Kk
JPH01241811A (en) * 1988-03-24 1989-09-26 Asahi Glass Co Ltd Electric double-layer capacitor
JP2001240407A (en) * 1999-12-24 2001-09-04 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2002033249A (en) * 2000-05-09 2002-01-31 Mitsubishi Chemicals Corp Activated charcoal for electric double-layer capacitor
JP2002015959A (en) * 2000-06-29 2002-01-18 Kyocera Corp Electric double-layer capacitor and method of manufacturing the same
JP2003243265A (en) * 2002-02-20 2003-08-29 Nec Tokin Corp Electric double layer capacitor
JP2005129707A (en) * 2003-10-23 2005-05-19 Nippon Oil Corp Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168238A (en) * 2009-01-21 2010-08-05 Kansai Coke & Chem Co Ltd Method for producing highly purified activated carbon and electric double layer capacitor obtained by the method
JP2011011935A (en) * 2009-06-30 2011-01-20 Kansai Coke & Chem Co Ltd Manufacturing method of activated carbon, and electric double-layer capacitor using activated carbon obtained by the manufacturing method
JP2011105545A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber
US8482901B2 (en) 2010-01-22 2013-07-09 Corning Incorporated Microporous activated carbon for EDLCS
US8524632B2 (en) 2010-01-22 2013-09-03 Corning Incorporated High-capacitance and low-oxygen porous carbon for EDLCs
JP2017199656A (en) * 2011-09-28 2017-11-02 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Carbon supported catalyst
JP5159970B1 (en) * 2012-05-16 2013-03-13 株式会社アルメディオ Activated carbon and manufacturing method thereof
JP2013237595A (en) * 2012-05-16 2013-11-28 Almedio Inc Activated carbon and method for producing the same
JP2015534730A (en) * 2012-10-08 2015-12-03 マックスウェル テクノロジーズ インコーポレイテッド Electrolyte for 3 Volt Ultracapacitor
CN104769692A (en) * 2012-10-08 2015-07-08 麦克斯威科技公司 Electrolyte for three-volt ultracapacitor
US10249448B2 (en) 2012-10-08 2019-04-02 Maxwell Technologies, Inc. Carbon surface modification for three-volt ultracapacitor
US10043615B2 (en) 2012-10-08 2018-08-07 Maxwell Technologies, Inc. Electrode porosity for three-volt ultracapacitor
US11302488B2 (en) 2012-10-08 2022-04-12 Ucap Power, Inc. Carbon surface modification for three-volt ultracapacitor
US10763051B2 (en) 2012-10-08 2020-09-01 Maxwell Technologies, Inc. Carbon surface modification for three-volt ultracapacitor
US20160006034A1 (en) * 2013-03-25 2016-01-07 Jsr Corporation Electrode active material, electrode and electrical storage device
US9607775B2 (en) 2013-08-30 2017-03-28 Corning Incorporated High-voltage and high-capacitance activated carbon and carbon-based electrodes
CN105390296A (en) * 2014-09-01 2016-03-09 Jsr株式会社 Electrode material, electrode and electrical storage device
JP2016054284A (en) * 2014-09-01 2016-04-14 Jsr株式会社 Electrode material, electrode and power storage device
JP2016052957A (en) * 2014-09-02 2016-04-14 株式会社クラレ Method for refining plant-derived carbon precursor
CN106794989A (en) * 2014-09-02 2017-05-31 株式会社可乐丽 The purification process of the carbon precursor from plant
CN106794989B (en) * 2014-09-02 2020-03-31 株式会社可乐丽 Method for purifying plant-derived carbon precursor
JP2016052955A (en) * 2014-09-02 2016-04-14 株式会社クラレ Method for refining plant-derived carbon precursor
WO2016035669A1 (en) * 2014-09-02 2016-03-10 株式会社クラレ Method for purifying plant-derived carbon precursor
WO2016094266A3 (en) * 2014-12-12 2016-10-06 Corning Incorporated Activated carbon and electric double layer capacitor thereof
US10068715B2 (en) 2014-12-12 2018-09-04 Corning Incorporated Activated carbon and electric double layer capacitor thereof
KR20160120671A (en) 2015-04-08 2016-10-18 가부시키가이샤 캬타라 Carbon Material for Power Storage Device Electrode and Manufacturing Method Thereof
JP2017212433A (en) * 2016-05-18 2017-11-30 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
US11551877B2 (en) 2016-05-18 2023-01-10 Kuraray Co., Ltd. Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
KR20190008859A (en) * 2016-05-18 2019-01-25 주식회사 쿠라레 An electrode material for an electric double layer capacitor containing a carbonaceous material and a carbonaceous material, an electrode for an electric double layer capacitor, and an electric double layer capacitor
JP7007810B2 (en) 2016-05-18 2022-01-25 株式会社クラレ A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
JP2022019781A (en) * 2016-05-18 2022-01-27 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
KR102421215B1 (en) * 2016-05-18 2022-07-14 주식회사 쿠라레 Carbonaceous material and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbonaceous material
WO2018012504A1 (en) * 2016-07-15 2018-01-18 株式会社キャタラー Electricity storage device and carbon material used for same
JP2018011015A (en) * 2016-07-15 2018-01-18 株式会社キャタラー Power storage device and carbon material used therefor
CN109478471A (en) * 2016-07-15 2019-03-15 株式会社科特拉 Electrical storage device and carbon material for the electrical storage device
CN109478471B (en) * 2016-07-15 2021-06-29 株式会社科特拉 Electricity storage device and carbon material used for same
US11823837B2 (en) 2016-11-15 2023-11-21 Kuraray Co., Ltd. Carbonaceous material for electric double layer capacitors and method for producing same
CN109923633A (en) * 2016-11-15 2019-06-21 株式会社可乐丽 Carbonaceous material and its manufacturing method for double layer capacitor
US10879014B2 (en) 2016-11-15 2020-12-29 Kuraray Co., Ltd. Carbonaceous material for electric double layer capacitors and method for producing same
KR20190124709A (en) * 2017-02-27 2019-11-05 주식회사 쿠라레 Carbonaceous materials and electrode materials for electric double layer capacitors containing the carbonaceous materials, electrodes for electric double layer capacitors and electric double layer capacitors
KR102500399B1 (en) * 2017-02-27 2023-02-15 주식회사 쿠라레 Carbonaceous material, and electrode material for electric double layer capacitor containing the carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
CN110582464A (en) * 2017-05-10 2019-12-17 株式会社可乐丽 Modified activated carbon and method for producing same
JPWO2018207769A1 (en) * 2017-05-10 2020-03-12 株式会社クラレ Modified activated carbon and method for producing the same
WO2018207769A1 (en) 2017-05-10 2018-11-15 株式会社クラレ Modified activated carbon and method for producing same
EP3623344A4 (en) * 2017-05-10 2021-02-24 Kuraray Co., Ltd. Modified activated carbon and method for producing same
KR20200006968A (en) * 2017-05-10 2020-01-21 주식회사 쿠라레 Modified activated carbon and its manufacturing method
JP7083343B2 (en) 2017-05-10 2022-06-10 株式会社クラレ Modified activated carbon and its manufacturing method
KR102572395B1 (en) * 2017-05-10 2023-08-29 주식회사 쿠라레 Modified activated carbon and its manufacturing method
JPWO2019131270A1 (en) * 2017-12-25 2020-12-24 株式会社クラレ Activated carbon, metal-supported activated carbon using it, and hydrogenation reaction catalyst
US10974224B2 (en) 2017-12-25 2021-04-13 Kuraray Co., Ltd Activated carbon, metal-carrying activated carbon using same and hydrogenation reaction catalyst
WO2019131270A1 (en) * 2017-12-25 2019-07-04 株式会社クラレ Activated carbon, metal-carrying activated carbon using same and hydrogenation reaction catalyst
JP7186182B2 (en) 2017-12-25 2022-12-08 株式会社クラレ Activated carbon, metal-supported activated carbon using same, and hydrogenation reaction catalyst
JP6677863B1 (en) * 2018-06-29 2020-04-08 東洋炭素株式会社 Method for producing porous carbon, electrode and catalyst carrier containing porous carbon produced by this method
US11235978B2 (en) 2018-06-29 2022-02-01 Toyo Tanso Co., Ltd. Method of producing porous carbon, and electrode and catalyst carrier containing porous carbon produced by the method
US11702344B2 (en) 2018-06-29 2023-07-18 Toyo Tanso Co., Ltd. Method of producing porous carbon, and electrode and catalyst carrier containing porous carbon produced by the method
WO2020004674A1 (en) * 2018-06-29 2020-01-02 東洋炭素株式会社 Method for producing porous carbon, and electrode and catalyst support containing porous carbon produced by said production method
WO2020096008A1 (en) 2018-11-09 2020-05-14 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
KR20210089643A (en) 2018-11-09 2021-07-16 주식회사 쿠라레 Carbonaceous material, its manufacturing method, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
EP3878810A4 (en) * 2018-11-09 2022-08-17 Kuraray Co., Ltd. Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
KR20220035327A (en) 2019-07-19 2022-03-22 주식회사 쿠라레 Carbonaceous material, its manufacturing method, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
WO2021015054A1 (en) 2019-07-19 2021-01-28 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
CN114829301A (en) * 2019-12-25 2022-07-29 株式会社可乐丽 Carbonaceous material, method for producing same, electrode active material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
WO2021131907A1 (en) * 2019-12-25 2021-07-01 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor
CN112174135A (en) * 2020-10-12 2021-01-05 江苏浦士达环保科技股份有限公司 Method for refining water vapor activated super capacitor carbon

Also Published As

Publication number Publication date
JPWO2008053919A1 (en) 2010-02-25
JP5168585B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2008053919A1 (en) Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors
JP5322435B2 (en) Negative electrode active material for electricity storage devices
AU774448B2 (en) Activated carbon, process for producing the same, polarisable electrode, and electric double layer capacitor
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP7083343B2 (en) Modified activated carbon and its manufacturing method
JP5400464B2 (en) Carbon material and manufacturing method thereof
WO2001086674A1 (en) Activated carbon for electric double layer capacitor
Zolfaghari et al. Electrochemical study on zeolitic imidazolate framework-67 modified MnFe2O4/CNT nanocomposite for supercapacitor electrode
Nanaji et al. Jute sticks derived novel graphitic porous carbon nanosheets as Li‐ion battery anode material with superior electrochemical properties
JP6342601B1 (en) Carbonaceous material for electric double layer capacitor and manufacturing method thereof
JP2009205918A (en) Power storage device
JP5548837B1 (en) Carbon material for polarizable electrode and method for producing the same
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
WO2022085694A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
JP6931186B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP6931185B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
Mandal et al. Graphene decorated LiMn2O4 electrode material for hybrid type energy storage devices
WO2022168847A1 (en) Positive electrode additive for nonaqueous electrolyte secondary battery, positive electrode active material composition for nonaqueous electrolyte secondary battery containing said additive, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with same
JP2014524156A (en) Carbon electrode and electrochemical capacitor
EP3109877A1 (en) Capacitor and method for charging and discharging same
US20160172122A1 (en) Activated carbon and electric double layer capacitor thereof
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP2005243933A (en) Electric double-layer capacitor
JPH1187191A (en) Electric double layer capacitor
WO2021015054A1 (en) Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542153

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830949

Country of ref document: EP

Kind code of ref document: A1