JP2011103312A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011103312A
JP2011103312A JP2009256627A JP2009256627A JP2011103312A JP 2011103312 A JP2011103312 A JP 2011103312A JP 2009256627 A JP2009256627 A JP 2009256627A JP 2009256627 A JP2009256627 A JP 2009256627A JP 2011103312 A JP2011103312 A JP 2011103312A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor element
semiconductor device
slit
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009256627A
Other languages
Japanese (ja)
Inventor
Shinji Hiramitsu
真二 平光
Satoshi Matsuyoshi
聡 松吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009256627A priority Critical patent/JP2011103312A/en
Publication of JP2011103312A publication Critical patent/JP2011103312A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that secures high reliability at even a high temperature region by: decreasing a thermal resistance in a peripheral region of a semiconductor element; and also decreasing a thermal stress of the semiconductor element. <P>SOLUTION: Two electrodes are provided on both sides of the semiconductor device, respectively, and a plurality of slits are provided on each of the sides thereof opposite to the junction surface of the two electrodes. Bending rigidity is lowered and the directions of the slits of the two electrodes are displaced by 90° to be vertical. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は半導体装置に係り、特に、車両用回転発電機の整流装置に好適な半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device suitable for a rectifier of a vehicular rotary generator.

図4は、車両用回転発電機の整流装置である半導体装置の一般的な構造を示すものである。   FIG. 4 shows a general structure of a semiconductor device which is a rectifier of a vehicular rotary generator.

該図に示す如く、半導体装置は、半導体素子1と、導電性を有する第一の電極3及び第二の電極5とを備え、これらを接合する接合材2,4を積層し、周辺を封止材6で覆った構造となっている。   As shown in the figure, the semiconductor device includes a semiconductor element 1, a first electrode 3 and a second electrode 5 having conductivity, and bonding materials 2 and 4 for bonding them are stacked, and the periphery is sealed. The structure is covered with a stopper 6.

半導体素子1は、線膨張係数が非常に小さく、第一及び第二の電極3,5は、半導体素子1の数倍の線膨張係数を有することが多い。そのため、半導体装置に温度変化を与えた場合、半導体素子1や接合材6には、半導体素子1と第一及び第二の電極3,5などの線膨張係数差に起因する熱応力が発生するが、半導体素子1や接合材2,4に過大な熱応力が負荷されると、それらが破壊に至る恐れがある。   The semiconductor element 1 has a very small coefficient of linear expansion, and the first and second electrodes 3 and 5 often have a coefficient of linear expansion several times that of the semiconductor element 1. Therefore, when a temperature change is given to the semiconductor device, the semiconductor element 1 and the bonding material 6 generate thermal stress due to the difference in linear expansion coefficient between the semiconductor element 1 and the first and second electrodes 3 and 5. However, if an excessive thermal stress is applied to the semiconductor element 1 or the bonding materials 2 and 4, they may be broken.

接合部の信頼性を確保するための構造として、特許文献1に示すように、半導体素子と部品の中間の線膨張係数を有する部品を挿入し熱応力を分散する構造や、特許文献2に示すように電極の剛性を低減する構造が提案されている。   As a structure for ensuring the reliability of the joint portion, as shown in Patent Document 1, a structure in which a component having a linear expansion coefficient intermediate between the semiconductor element and the component is inserted and thermal stress is dispersed, or as shown in Patent Document 2 is shown. Thus, a structure for reducing the rigidity of the electrode has been proposed.

米国特許第4349831号公報U.S. Pat. No. 4,349,831 特開2006−190728号公報JP 2006-190728 A

近年、パワー半導体分野では、自動車の電装化の加速や、次世代半導体素子の開発を背景に、従来以上の高温域での動作に対する要求が高まってきている。パワー半導体装置の使用温度が高くなると、半導体素子に発生する熱応力は、これまで以上に増大することが予測される。   In recent years, in the field of power semiconductors, there has been an increasing demand for operation in a higher temperature range than in the past due to the acceleration of the electrification of automobiles and the development of next-generation semiconductor elements. As the operating temperature of the power semiconductor device increases, the thermal stress generated in the semiconductor element is expected to increase more than ever.

一方、環境社会の実現に向けて、鉛フリー化製品の開発が推進されている。鉛フリー接合材は、耐熱性が高いものほど材料の硬くなる傾向にあるため、今後高まる使用温度に耐える鉛フリー接合材を選定すると、必然的に半導体素子に発生する熱応力も大きくなる。結果、特許文献1,2に示すような構造的な対策のみでは、半導体素子の信頼性を十分に確保できないのが現状である。   On the other hand, development of lead-free products is being promoted to realize an environmental society. Since lead-free bonding materials tend to be harder as the heat resistance is higher, selecting a lead-free bonding material that can withstand higher operating temperatures in the future inevitably increases the thermal stress generated in the semiconductor element. As a result, the present situation is that the reliability of the semiconductor element cannot be sufficiently ensured only by structural measures as shown in Patent Documents 1 and 2.

そこで、本発明の目的は、半導体素子周辺部の熱抵抗を低減し、かつ半導体素子の熱応力も低減できる構造とすることで、高温域でも高い信頼性を確保できる半導体装置を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor device that can ensure high reliability even in a high temperature region by reducing the thermal resistance of the periphery of the semiconductor element and reducing the thermal stress of the semiconductor element. is there.

上記目的を達成するために、本発明の半導体装置は、半導体素子と、該半導素子と接合材を介して接合される第一の電極と、該第一の電極と反対側の半導体素子と接合材を介して接合される第二の電極とを備えた半導体装置において、前記第一の電極における前記半導体素子の接合面と反対側に平行にスリットを設け、かつ、前記第二の電極における前記半導体素子接合面と反対側に平行にスリットを設け、かつ、前記第一の電極のスリットと前記第二の電極のスリットの向きが直交しているか、或いは90度ずれていることを特徴とする。   In order to achieve the above object, a semiconductor device of the present invention includes a semiconductor element, a first electrode bonded to the semiconductor element via a bonding material, and a semiconductor element opposite to the first electrode. In a semiconductor device comprising a second electrode bonded via a bonding material, a slit is provided in parallel to the opposite side of the bonding surface of the semiconductor element in the first electrode, and in the second electrode A slit is provided in parallel to the side opposite to the semiconductor element bonding surface, and the direction of the slit of the first electrode and the direction of the slit of the second electrode is orthogonal or shifted by 90 degrees. To do.

本発明によれば、半導体装置の温度が上昇して接続部周辺の各部材が熱膨張しても、両側の電極の曲げ剛性が90度ずれているために、半導体素子の両側で反り変形の向きが90度ずれ、互いの反り変形を拘束しあうことなく、力を逃がすことが可能となるので、半導体素子周辺部の熱抵抗が低減され、かつ半導体素子の熱応力も低減でき、高温域でも高い信頼性を確保できる半導体装置を得ることができる。   According to the present invention, even when the temperature of the semiconductor device rises and each member around the connection portion thermally expands, the bending rigidity of the electrodes on both sides is shifted by 90 degrees, so that warpage deformation occurs on both sides of the semiconductor element. Since the direction is shifted by 90 degrees and the force can be released without restraining the warp deformation of each other, the thermal resistance of the periphery of the semiconductor element can be reduced, and the thermal stress of the semiconductor element can also be reduced. However, a semiconductor device that can ensure high reliability can be obtained.

本発明の第1の実施例における半導体装置を示す斜視図と、その一部の拡大断面図である。1 is a perspective view showing a semiconductor device according to a first embodiment of the present invention and a partial enlarged sectional view thereof. 本発明の第2の実施例における半導体装置を示し、(a)は断面正面図、(b)は断面側面図である。The semiconductor device in the 2nd example of the present invention is shown, (a) is a section front view and (b) is a section side view. 本発明の第3の実施例における半導体装置を示し、(a)は断面正面図、(b)は断面側面図である。The semiconductor device in the 3rd example of the present invention is shown, (a) is a section front view and (b) is a section side view. 従来の半導体装置を示す要部断面図である。It is principal part sectional drawing which shows the conventional semiconductor device.

半導体素子周辺部の熱抵抗が低減され、かつ半導体素子の熱応力も低減できる構造を簡単な構成で実現できる。   A structure that can reduce the thermal resistance of the periphery of the semiconductor element and reduce the thermal stress of the semiconductor element can be realized with a simple configuration.

図1は、本発明の第1の実施例における半導体装置を示すものである。   FIG. 1 shows a semiconductor device according to a first embodiment of the present invention.

図1に示す第1の実施例の半導体装置は、従来と同様に、半導体素子1と、導電性を有する第一の電極3及び第二の電極5とを備え、これらを接合する接合材2,4を積層し、周辺を封止材(図示せず)で覆った構造となっている。   The semiconductor device of the first embodiment shown in FIG. 1 includes a semiconductor element 1, a conductive first electrode 3 and a second electrode 5 as in the prior art, and a bonding material 2 for bonding them. , 4 are stacked and the periphery is covered with a sealing material (not shown).

そして、本実施例では、第一の電極3における半導体素子1の接合面と反対側に平行にスリット3aが設けられていると共に、第二の電極5における半導体素子1の接合面と反対側にも平行にスリット5aが設けられ、しかも、それぞれスリット3aと5aが直交するように、つまり90度ずらして設けられている。なお、モジュールの実装部品などは省略して描かれてない。   In this embodiment, a slit 3 a is provided in parallel to the opposite side of the first electrode 3 to the bonding surface of the semiconductor element 1, and on the opposite side of the second electrode 5 to the bonding surface of the semiconductor element 1. Also, slits 5a are provided in parallel, and the slits 3a and 5a are provided so as to be orthogonal to each other, that is, shifted by 90 degrees. It should be noted that module mounting parts are not omitted.

ここで、半導体素子1にはSiを用いているが、SiCやGaNの場合でも本発明の効果は失われない。また、接合材2,4にはAgの焼結材を使用しているが、Sn−Sb系はんだ,Sn−Cu系はんだ,Bi−Ag系はんだ,Zn−Al系はんだ,AgやCuのロウ材,焼結材,ペースト材の場合でも、本発明の効果は失われない。第一及び第二の電極3,5はCuを用いているが、Agやその他の材質でも構わない。   Here, although Si is used for the semiconductor element 1, the effect of the present invention is not lost even in the case of SiC or GaN. In addition, although Ag sintered material is used for the joining materials 2 and 4, Sn—Sb solder, Sn—Cu solder, Bi—Ag solder, Zn—Al solder, Ag and Cu solder are used. Even in the case of materials, sintered materials, and paste materials, the effects of the present invention are not lost. Although the first and second electrodes 3 and 5 are made of Cu, Ag or other materials may be used.

このような本実施例の構成とすることにより、半導体装置の温度が上昇して接続部周辺の各部材が熱膨張しても、両側の電極の曲げ剛性が90度ずれているために、半導体素子の両側で反り変形の向きが90度ずれ、互いの反り変形を拘束しあうことなく、力を逃がすことが可能となる。さらに、電極にスリットを入れ、一部板厚の大きい部分を敢えて設けておくことで、電極を一様に薄くした場合に比べて熱容量を大きくし、半導体素子の温度上昇を低減することも可能となる。結果、半導体素子に発生する熱応力を低減することが可能となる。   With the configuration of this embodiment, even if the temperature of the semiconductor device rises and each member around the connection portion thermally expands, the bending rigidity of the electrodes on both sides is shifted by 90 degrees. The direction of the warp deformation is shifted by 90 degrees on both sides of the element, and the force can be released without restraining the warp deformation. Furthermore, it is possible to increase the heat capacity and reduce the temperature rise of the semiconductor element compared to the case where the electrode is uniformly thinned by slitting the electrode and providing a part with a large plate thickness. It becomes. As a result, it is possible to reduce the thermal stress generated in the semiconductor element.

図2は、本発明の第2の実施例における半導体装置を示すものである。   FIG. 2 shows a semiconductor device according to the second embodiment of the present invention.

図2に示す第2の実施例の半導体装置は、図1に示した第1の実施例と略同一構造であるが、図1との相違は、第一の電極材3に端子接続用領域3b部が設けられている点及び第二の電極5に放熱フィンに圧入するための壁部5bが設けられている点である。   The semiconductor device of the second embodiment shown in FIG. 2 has substantially the same structure as that of the first embodiment shown in FIG. 1 except that the first electrode material 3 has a terminal connection region. 3b is provided, and the second electrode 5 is provided with a wall 5b for press-fitting into the radiating fin.

このような構成に本実施例の構成としても、その効果は、上述した第1の実施例と同様である。   Even in this configuration, the effect of this embodiment is the same as that of the first embodiment described above.

本実施例は、車両用回転発電機の整流装置等への適用可能であることを示す一例である。   A present Example is an example which shows that it can apply to the rectifier of a rotary generator for vehicles, etc.

図3は、本発明の第3の実施例における半導体装置を示すものである。   FIG. 3 shows a semiconductor device according to a third embodiment of the present invention.

図2に示した第2の実施例との相違は、第二の電極5が放熱フィンに圧入するためケース材7に接続されている点である。第二の電極5とケース材7は、溶接などの直接的な接合あるいは、接合材などを介した間接的な接合のいずれでも同様の効果を得られる。   The difference from the second embodiment shown in FIG. 2 is that the second electrode 5 is connected to the case material 7 because it is press-fitted into the radiation fin. The second electrode 5 and the case material 7 can obtain the same effect by either direct bonding such as welding or indirect bonding via a bonding material.

ここで、第二の電極5とケース材7は同じ材質であることが好ましい。   Here, the second electrode 5 and the case material 7 are preferably made of the same material.

1 半導体素子
2,4 接合材
3 第一の電極
3a,5a スリット
3b 端子接続用領域
5 第二の電極
5b,7a 壁部
6 封止材
7 ケース材
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2, 4 Bonding material 3 1st electrode 3a, 5a Slit 3b Area | region 5 for terminal connection 2nd electrode 5b, 7a Wall part 6 Sealing material 7 Case material

Claims (5)

半導体素子と、該半導素子と接合材を介して接合される第一の電極と、該第一の電極と反対側の半導体素子と接合材を介して接合される第二の電極とを備えた半導体装置において、
前記第一の電極における前記半導体素子の接合面と反対側に平行にスリットを設けると共に、前記第二の電極における前記半導体素子の接合面と反対側に平行にスリットを設け、かつ、前記第一の電極のスリットと前記第二の電極のスリットの向きが直交していることを特徴とする半導体装置。
A semiconductor element; a first electrode bonded to the semiconductor element via a bonding material; and a second electrode bonded to the semiconductor element opposite to the first electrode via a bonding material. In semiconductor devices
A slit is provided in parallel to the opposite side of the bonding surface of the semiconductor element in the first electrode, a slit is provided in parallel to the opposite side of the bonding surface of the semiconductor element in the second electrode, and the first The semiconductor device is characterized in that the direction of the slit of the electrode and the direction of the slit of the second electrode are orthogonal.
半導体素子と、該半導素子と接合材を介して接合される第一の電極と、該第一の電極と反対側の半導体素子と接合材を介して接合される第二の電極とを備えた半導体装置において、
前記第一の電極における前記半導体素子の接合面と反対側に平行にスリットを設けると共に、前記第二の電極における前記半導体素子の接合面と反対側に平行にスリットを設け、かつ、前記第一の電極のスリットと前記第二の電極のスリットの向きが90度ずれていることを特徴とする半導体装置。
A semiconductor element; a first electrode bonded to the semiconductor element via a bonding material; and a second electrode bonded to the semiconductor element opposite to the first electrode via a bonding material. In semiconductor devices
A slit is provided in parallel to the opposite side of the bonding surface of the semiconductor element in the first electrode, a slit is provided in parallel to the opposite side of the bonding surface of the semiconductor element in the second electrode, and the first The semiconductor device is characterized in that the orientation of the slit of the electrode and the slit of the second electrode is shifted by 90 degrees.
請求項1又は2に記載の半導体装置において、
前記第一の電極材に端子接続用の領域が設けられていると共に、前記第二の電極に放熱フィンに圧入するための壁部が設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2,
A region for connecting a terminal is provided in the first electrode material, and a wall portion is provided in the second electrode for press-fitting into a radiation fin.
請求項1又は2に記載の半導体装置において、
前記第二の電極が、放熱フィンに圧入するためケース材に接続されていることを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2,
The semiconductor device, wherein the second electrode is connected to a case material for press-fitting into the heat radiation fin.
請求項4に記載の半導体装置において、
前記第二の電極とケース材は、同じ材質であることを特徴とする半導体装置。
The semiconductor device according to claim 4,
The semiconductor device, wherein the second electrode and the case material are the same material.
JP2009256627A 2009-11-10 2009-11-10 Semiconductor device Pending JP2011103312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256627A JP2011103312A (en) 2009-11-10 2009-11-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256627A JP2011103312A (en) 2009-11-10 2009-11-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2011103312A true JP2011103312A (en) 2011-05-26

Family

ID=44193545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256627A Pending JP2011103312A (en) 2009-11-10 2009-11-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2011103312A (en)

Similar Documents

Publication Publication Date Title
EP2738804B1 (en) Flexible thermal transfer strips
JP5511621B2 (en) Semiconductor device
US20140042609A1 (en) Semiconductor device and method of manufacturing the same
JP2012033559A (en) Semiconductor device
JP5975909B2 (en) Semiconductor device
JP4989552B2 (en) Electronic components
JP2009283741A (en) Semiconductor device
JP2008135511A (en) Power module substrate and power module
WO2017130370A1 (en) Semiconductor device
JP6643481B2 (en) Semiconductor module and method of manufacturing semiconductor module
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP6834815B2 (en) Semiconductor module
JP2013183038A (en) Semiconductor device
JP6777148B2 (en) Semiconductor device
JP5957866B2 (en) Semiconductor device
JP4913617B2 (en) Thermo module and manufacturing method thereof
JP2016174034A (en) Semiconductor power module
JP5363361B2 (en) Semiconductor device and manufacturing method thereof
JP2011103312A (en) Semiconductor device
JP5761123B2 (en) Thermoelectric converter
JP6835244B2 (en) Semiconductor device
JP4961398B2 (en) Semiconductor device
JP5955911B2 (en) Semiconductor device
JP5256159B2 (en) Semiconductor package
JP2012129393A (en) Semiconductor device