JP2011101553A - Energy storage system - Google Patents

Energy storage system Download PDF

Info

Publication number
JP2011101553A
JP2011101553A JP2009256129A JP2009256129A JP2011101553A JP 2011101553 A JP2011101553 A JP 2011101553A JP 2009256129 A JP2009256129 A JP 2009256129A JP 2009256129 A JP2009256129 A JP 2009256129A JP 2011101553 A JP2011101553 A JP 2011101553A
Authority
JP
Japan
Prior art keywords
data
heat
power load
weather
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009256129A
Other languages
Japanese (ja)
Inventor
Shigeo Numata
茂生 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009256129A priority Critical patent/JP2011101553A/en
Publication of JP2011101553A publication Critical patent/JP2011101553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To level off power load on a week-by-week basis. <P>SOLUTION: An energy storage system includes a heat-accumulating tank and a storage battery, and stores generated power from a photovoltaic power generator in the heat-accumulating tank or the storage battery to level off a power load. The energy storage system includes a database which associates past daily weather and temperature forecast data with past daily power load record data to store the associated data, a forecast data acquisition means which acquires data of weather and temperature forecast of one week since the current day, a similar data extraction means which extracts from the database the past daily weather and temperature forecast data similar to data of weather and temperature forecast of one week from the current day, and a control means which reads out the past daily power load record data associated with the extracted past daily weather and temperature forecast data to regard the past daily power load record data as data of power load estimation of one week from the current day, and based on the data of power load estimation, carries out control over charge and discharge of the storage battery and heat source operation control for accumulating heat in the heat-accumulating tank. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力負荷を平準化するエネルギー貯蔵システムに関する。   The present invention relates to an energy storage system for leveling a power load.

我が国では、太陽光発電を2005年度の10倍(2020年度に1300万kW)、40倍(2030年度に5300万kW)導入を目指す「低炭素社会行動計画」が2008年7月に閣議決定された。さらに2009年4月には経済危機対策として2020年の導入目標が20倍に引き上げられた。具体的動きとしては、9省庁共同で、道路や学校に加え、病院・福祉施設・警察署などの公共施設への太陽光発電導入拡大に取り組むアクションプランが進められている。   In Japan, the Cabinet decided in July 2008 the “Low Carbon Society Action Plan” that aims to introduce solar power generation 10 times that of FY2005 (13 million kW in FY2020) and 40 times (53 million kW in FY2030). It was. Furthermore, in April 2009, the target for introduction in 2020 was raised 20 times as a measure against the economic crisis. As a specific move, an action plan is being promoted in cooperation with nine ministries and agencies to expand the introduction of solar power generation to public facilities such as hospitals, welfare facilities, and police stations, in addition to roads and schools.

太陽光発電の導入量が増加すると、需要の少ない時期(軽負荷期)には発電量が需要を上回り、電力の余剰が発生する恐れがある。図3は、資源エネルギー庁資料「新エネルギーの大量導入に伴う影響とその対応策について」(平成20年9月8日付)掲載の電力会社の立場から見た説明図である。電力会社への逆潮流に伴い、電力会社配電網の電圧上昇が発生し、電気事業法施行規則により規定されている適性値(101±6V)を逸脱する恐れもある。他の需要家の電圧を適正に維持するために、例えば、太陽光発電の出力抑制する対策が採られることも考えられる。発電時にCO排出のない自然エネルギーに基づく電力を抑制することは、心情的に受け入れにくい感がある。 When the amount of photovoltaic power generation increases, the amount of power generation exceeds the demand during periods when demand is low (light load period), and there is a risk of surplus electricity. FIG. 3 is an explanatory diagram viewed from the standpoint of an electric power company published in the Agency for Natural Resources and Energy document “Effects of Mass Energy Introduction and Countermeasures” (September 8, 2008). With the reverse power flow to the electric power company, the voltage of the electric power company distribution network rises, and there is a risk of deviating from the suitability value (101 ± 6V) defined by the Enforcement Regulations of the Electricity Business Law. In order to maintain the voltage of other consumers appropriately, for example, a measure for suppressing the output of solar power generation may be taken. Suppressing electric power based on natural energy without CO 2 emissions during power generation seems to be unacceptably emotionally acceptable.

個別の建物等の需要家における状況を見ると、太陽光発電の導入出力に応じて、晴天日の週末や休業日には余剰電力が発生することになる。この一方で、電力会社と需要家との契約形態の一つに、「負荷平準化+省エネルギーの推進」を目的として「実量制」がある。「実量制」の契約内容は、(1)契約電力が500kW未満であること、(2)契約電力は当月を含む過去1年間の各月の最大需要電力のうちで最も大きい値とする、(3)最大需要電力とは30分毎に計量した電力のうち月間で最も大きい値を指す、というものである(図4参照)。すなわち、需要家に電力料金低減の方策として、負荷平準化し、電力需要ピークを削減するモチベーションが発生することになる。   Looking at the situation of consumers such as individual buildings, surplus power will be generated on weekends and closed days on sunny days according to the installed output of solar power generation. On the other hand, one of the contract forms between electric power companies and customers is the “actual amount system” for the purpose of “load leveling + promotion of energy saving”. The contract contents of “actual amount system” are: (1) Contract power is less than 500 kW, (2) Contract power is the largest value among the maximum demand power of each month for the past one year including this month. (3) The maximum demand power refers to the largest monthly value among the power measured every 30 minutes (see FIG. 4). In other words, as a measure for reducing the electricity charge, consumers will be motivated to level the load and reduce the power demand peak.

なお、先行技術として、太陽光発電出力を平滑化し、タイムシフトを可能にするために、蓄電池モジュールと太陽電池モジュールを並列接続し、前記蓄電池モジュールと太陽電池モジュールの間にスイッチを備える太陽電池ストリングを、DC/AC変換装置を介して系統に接続した太陽光発電システムである。そして前記スイッチにより、前記太陽電池モジュールと蓄電池モジュールの合成出力または前記太陽電池モジュールの出力を切り替え取り出すことにより、太陽光発電出力を平滑化し、タイムシフトを可能にする太陽光発電システムが知られている(例えば、特許文献1参照)。   In addition, as a prior art, in order to smooth the photovoltaic power generation output and enable time shift, a storage battery module and a solar battery module are connected in parallel, and a solar battery string including a switch between the storage battery module and the solar battery module Is a photovoltaic power generation system connected to the system via a DC / AC converter. And a photovoltaic power generation system that smoothes the photovoltaic power generation output and enables time shift by switching and taking out the combined output of the solar cell module and the storage battery module or the output of the solar cell module by the switch is known. (For example, refer to Patent Document 1).

特開2007−201257号公報JP 2007-201257 A

ところで、太陽光発電の大量導入時代において、上述の二つの状況を解決する方策の一つとして、需要家における一週間単位での電力負荷平準化システムの導入が考えられる。契約電力に比べて電力需要が小さい休日に電力利用によりエネルギー貯蔵し、平日の昼間に需要ピークカットを行い、電力需要ピーク削減に資するシステムである。エネルギー貯蔵形態は、電気・熱・水素等が考えられる。現時点での現実的手法としては、蓄熱と蓄電との組合せが考えられる。蓄熱技術は、熱の発生側と暖房あるいは冷房等の熱の需要側との時間的ギャップを解消することで排熱や自然エネルギーの利用可能性を拡大する等、熱需要の平準化や省エネルギーに大きく寄与する。現在、我が国で実用に供されている蓄熱システムは、建物内の限られたスペースを使用した、昼夜間の時間的熱需要ギャップの解消を目的としたものがほとんどである。また実施例はおおくないものの、季節間ギャップの解消を対象とした長期の蓄熱システムも開発されている。具体的には、地中地盤蓄熱システムは、未利用地下の帯水層及び地盤の熱容量と断熱性を利用し、夏期に利用価値の少ない排熱を蓄熱して冬期の暖房や給湯の熱源に用いることで、年間を通じた熱需要の平準化と省エネルギーが目的である。   By the way, in the era of mass introduction of photovoltaic power generation, as one of the measures for solving the above-mentioned two situations, introduction of a power load leveling system in units of one week in a consumer can be considered. It is a system that saves energy by using power during holidays when power demand is small compared to contract power, cuts demand during the daytime on weekdays, and helps reduce power demand peak. The energy storage form may be electricity, heat, hydrogen, or the like. As a realistic method at the present time, a combination of heat storage and power storage can be considered. Thermal storage technology can be used to level out heat demand and save energy, such as expanding the availability of waste heat and natural energy by eliminating the time gap between the heat generation side and the heat demand side such as heating or cooling. A big contribution. Currently, most of the heat storage systems in practical use in Japan are intended to eliminate the gap between daytime and nighttime heat demand using limited space in buildings. In addition, although there are not many examples, a long-term heat storage system has been developed to eliminate the seasonal gap. Specifically, the underground ground heat storage system uses the heat capacity and heat insulation of unused underground aquifers and ground, and stores waste heat that has little utility value in the summer to serve as a heat source for heating and hot water supply in the winter. By using it, the purpose is to level out heat demand and save energy throughout the year.

本発明は、このような事情に鑑みてなされたもので、一週間単位で電力負荷を平準化することができるエネルギー貯蔵システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an energy storage system capable of leveling a power load on a weekly basis.

本発明は、蓄熱槽と蓄電池を備え、太陽光発電装置の発電電力を前記蓄熱槽または蓄電池に蓄えることにより電力負荷を平準化するエネルギー貯蔵システムであって、過去の日毎の天気・気温予報データと、過去の日毎の電力負荷実績データとを関係付けて記憶するデータベースと、当日から1週間後の天気・気温予報データを取得する予報データ取得手段と、前記当日から1週間後の天気・気温予報データと類似する過去の日毎の天気・気温予報データを前記データベースから抽出する類似データ抽出手段と、前記抽出した過去の日毎の天気・気温予報データに関係付けられている前記過去の日毎の電力負荷実績データを読み出し、該過去の日毎の電力負荷実績データを当日から1週間後の電力負荷予測データとし、該電力負荷予測データに基づいて、前記蓄電池の充放電制御と、前記蓄熱槽に蓄熱するための熱源運転制御を行う制御手段とを備えたことを特徴とする。   The present invention is an energy storage system comprising a heat storage tank and a storage battery, and leveling the power load by storing the generated power of the photovoltaic power generation device in the heat storage tank or storage battery, and the past daily weather / temperature forecast data And a database for storing past power load performance data for each day, forecast data acquisition means for acquiring weather / temperature forecast data one week after the day, and weather / temperature one week after the day Similar data extracting means for extracting past daily weather / temperature forecast data similar to the forecast data from the database, and the past daily power related to the extracted past daily weather / temperature forecast data Load actual load data is read, and the past power load actual data for each day is used as power load predicted data one week after the current day. Based on, characterized by comprising a charging and discharging control of the battery, and control means for heat source operation control for heat storage in the heat storage tank.

本発明によれば、一週間単位で電力負荷を平準化することができるという効果が得られる。   According to the present invention, it is possible to obtain an effect that the power load can be leveled on a weekly basis.

本発明の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of this invention. 電力負荷予測手法を示す説明図である。It is explanatory drawing which shows an electric power load prediction method. 太陽光発電大量導入に伴う余剰電力の発生を示す説明図である。It is explanatory drawing which shows generation | occurrence | production of the surplus electric power accompanying solar power generation mass introduction. 実量制での契約電力の決め方を示す説明図である。It is explanatory drawing which shows how to determine contract electric power by a real quantity system. 一週間単位での電力負荷平準化イメージを示す説明図である。It is explanatory drawing which shows the electric power load leveling image per week.

以下、図面を参照して、本発明の一実施形態によるエネルギー貯蔵システムを説明する。図1は同実施形態の構成を示すブロック図である。この図において、符号1は、コンピュータで構成し、エネルギー貯蔵システムの動作を制御する制御装置である。符号2は、電力会社から供給される電力の供給元である。符号3は、太陽光発電装置である。符号4は、充放電制御対象の蓄電池である。符号5は、運転制御対象の熱源機器である。符号6は、蓄熱槽である。符号11は、入力した太陽光発電出力情報、熱需要情報及び天気・気温予報情報を記憶する取得情報データベースである。符号12は、電力会社11からの買電電力情報と太陽光発電出力情報をモニタリングするモニタリング部である。符号13は、休日当日の出力を予測する休日当日出力予測部である。符号14は、一週間毎の熱需要を予測する週間熱需要予測部である。符号15は、蓄電池4のSOC(State Of Charge)を管理して充放電の制御を行う蓄電池充放電制御部である。符号16は、熱需要と太陽光発電出力の予測結果に基づいて熱源機器5の運転制御を行う熱源運転制御部である。   Hereinafter, an energy storage system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment. In this figure, reference numeral 1 is a control device configured by a computer and controlling the operation of the energy storage system. Reference numeral 2 denotes a supply source of electric power supplied from the electric power company. Reference numeral 3 denotes a solar power generation device. Reference numeral 4 denotes a storage battery subject to charge / discharge control. Reference numeral 5 denotes a heat source device subject to operation control. Reference numeral 6 denotes a heat storage tank. Reference numeral 11 denotes an acquisition information database that stores input photovoltaic power generation output information, heat demand information, and weather / temperature forecast information. Reference numeral 12 denotes a monitoring unit that monitors purchased power information and solar power generation output information from the power company 11. Reference numeral 13 denotes a holiday day output predicting unit for predicting an output on the holiday day. Reference numeral 14 denotes a weekly heat demand prediction unit that predicts a heat demand for each week. Reference numeral 15 denotes a storage battery charge / discharge control unit that manages the SOC (State Of Charge) of the storage battery 4 and controls charge / discharge. The code | symbol 16 is a heat source operation control part which performs operation control of the heat source apparatus 5 based on the prediction result of a heat demand and photovoltaic power generation output.

次に、図2を参照して、図1に示す週間熱需要予測部14が一週間の熱需要(電力負荷)予測を行う動作を説明する。まず、取得情報データベース11には、過去の日毎の天気・気温の予報データと日毎の電力の負荷実績のデータが関係付けられて蓄積されるともに、当日から一週間分の天気・気温の予報データが蓄積される。この取得情報の蓄積は、日毎に行われて、当日から1週間後の天気・気温予報データが、この1週間の電力の負荷実績データと関係付けられて、過去の日毎の天気・気温の予報データと日毎の電力の負荷実績のデータとなって蓄積されていく。   Next, with reference to FIG. 2, the operation | movement in which the weekly heat demand prediction part 14 shown in FIG. 1 estimates the heat demand (electric power load) for one week is demonstrated. First, in the acquisition information database 11, past daily weather / temperature forecast data and daily power load data are stored in association with each other, and weather / temperature forecast data for one week from the current day. Is accumulated. Accumulation of this acquired information is performed every day, and the weather / temperature forecast data one week after the current day is related to the power load data of this week, and the weather / temperature forecast for the past day. It is accumulated as data and data on the load of power every day.

週間熱需要予測部14は、ニューラルネットワークを使用して、取得情報データベース11に記憶されている当日から1週間後の天気・気温予報データと類似する過去の天気・気温の予報データを取得情報データベース11から抽出する。類似している過去の天気・気温の予報データが存在しない場合は、最も似ている過去の天気・気温の予報データを抽出する。そして、週間熱需要予測部14は、抽出した過去の1週間分の天気・気温の予報データに関係付けられている1週間分の電力の負荷実績のデータを取得情報データベース11から読み出して、週間電力負荷予測結果情報として出力する。この週間電力負荷予測結果情報が当日から1週間後の熱需要の予測結果となる。   The weekly heat demand forecasting unit 14 uses a neural network to obtain past weather / temperature forecast data similar to the weather / temperature forecast data one week after the current date stored in the acquisition information database 11. 11 to extract. When there is no similar past weather / temperature forecast data, the most similar past weather / temperature forecast data is extracted. Then, the weekly heat demand prediction unit 14 reads out the data of the load load of the electric power for one week related to the extracted weather / temperature forecast data for the past one week from the acquired information database 11, and Output as power load prediction result information. This weekly power load prediction result information becomes a prediction result of heat demand one week after the current day.

このように、過去の天気・気温予報データと電力の負荷実績データとを関係付けて蓄積しておき、電力負荷を予測するべき1週間の天気・気温予報データに類似している過去の天気・気温予報データに関係付けられている電力の負荷実績を予測するべき電力負荷とするようにしたため、精度の高い電力負荷予測を行うことが可能となる。   In this way, past weather / temperature forecast data and power load record data are stored in association with each other, and past weather / temperature forecast data similar to the one-week weather / temperature forecast data for which power load should be predicted are stored. Since the load of power related to the temperature forecast data is set as the power load to be predicted, it is possible to perform highly accurate power load prediction.

次に、図1を参照して、図1に示す制御装置1の動作を説明する。まず、モニタリング部12は、電力会社2からの買電電力情報と太陽光発電装置3の太陽光発電出力情報とを入力し、入力した買電電力情報と太陽光発電出力情報とを蓄電池充放電制御部15へ出力する。蓄電池充放電制御部15は、買電電力情報と太陽光発電出力情報とに基づいて、太陽発電装置3が発電した電力を蓄電池4に蓄えるための蓄電池SOC管理を行う。これにより、太陽光発電装置3の発電電力のうち、余った電力が蓄電池4に蓄えられることになる。   Next, the operation of the control device 1 shown in FIG. 1 will be described with reference to FIG. First, the monitoring unit 12 inputs the purchased power information from the electric power company 2 and the photovoltaic power generation output information of the photovoltaic power generation device 3, and charges and discharges the input purchased power information and the photovoltaic power generation output information. Output to the control unit 15. The storage battery charge / discharge control unit 15 performs storage battery SOC management for storing the power generated by the solar power generation device 3 in the storage battery 4 based on the purchased power information and the photovoltaic power generation output information. Thereby, surplus electric power among the electric power generated by the solar power generation device 3 is stored in the storage battery 4.

一方、取得情報データベース11には、太陽光発電出力の実績情報と熱需要の実績情報とが逐一蓄積されていく。休日当日出力予測部13は、取得情報データベース11に蓄積される太陽光発電出力情報と天気予報データとを参照して、休日当日の太陽光発電出力を予測し、予測した太陽光発電出力値を熱源運転制御部16へ出力する。また、週間熱需要予測部14は、前述した処理動作によって、1週間の熱需要(電力負荷)予測を行い、予測した電力負荷の値を熱源運転制御部16へ出力する。熱源運転制御部16は、週間熱需要予測部14が出力する1週間分の電力負荷予測値(熱需要)と、休日当日出力予測部13が出力する太陽光発電出力予測値とに基づいて、熱源機器5の運転計画を作成し、この運転計画に基づいて、熱源機器5の運転指令を出力する。このとき、熱源運転制御部16は、蓄電池充放電制御部15の充放電制御状況の情報を入力して、この充放電制御状況に応じた熱源機器5の運転計画を作成する。また、蓄電池充放電制御部15は、熱源運転制御部16の熱源運転指令の情報を入力して、この熱源運転指令の情報に応じた充放電制御を行う。   On the other hand, in the acquired information database 11, the actual power output information and the heat demand actual information are accumulated one by one. The holiday day output prediction unit 13 refers to the photovoltaic power output information and weather forecast data stored in the acquisition information database 11 to predict the solar power output on the holiday day, and sets the predicted photovoltaic power output value. Output to the heat source operation control unit 16. Further, the weekly heat demand prediction unit 14 performs one-week heat demand (electric power load) prediction by the above-described processing operation, and outputs the predicted electric power load value to the heat source operation control unit 16. The heat source operation control unit 16 is based on the one-week power load prediction value (heat demand) output by the weekly heat demand prediction unit 14 and the photovoltaic power generation output prediction value output by the holiday day output prediction unit 13. An operation plan for the heat source device 5 is created, and an operation command for the heat source device 5 is output based on the operation plan. At this time, the heat source operation control unit 16 inputs information on the charge / discharge control status of the storage battery charge / discharge control unit 15 and creates an operation plan of the heat source device 5 according to the charge / discharge control status. Further, the storage battery charge / discharge control unit 15 inputs information on the heat source operation command of the heat source operation control unit 16 and performs charge / discharge control according to the information on the heat source operation command.

このように、図1に示す制御装置1は、週末の休日に、需要家が導入した太陽光発電の余剰電力を利用して(電力会社に逆潮流させない)熱源機器5を運転し、蓄熱する。また、休日当日が雨天だった場合や、休日当日の太陽光発電の出力予測が万一外れた場合は、契約電力と実負荷との差分の範囲内で電力会社からの買電電力で熱源機器を運転し、蓄熱する。さらに、設備する蓄熱槽6と蓄電池4の貯蔵損失性能に応じて、例えば、蓄熱槽6に貯蔵した熱エネルギーを月曜日・火曜日・水曜日の三日間の電力需要ピーク時間帯のピークカットに利用し、木曜日・金曜日の二日間のピークカットに対しては蓄電池に貯蔵した電気エネルギーを利用することも可能である。   As described above, the control device 1 shown in FIG. 1 operates the heat source device 5 using the surplus power of the solar power generation introduced by the consumer (does not cause the power company to reverse flow) on weekends and stores heat. . Also, if the day of the holiday is rainy, or if the solar power generation output forecast on the day of the holiday is out of the range, the heat source equipment is purchased from the power company within the range of the difference between the contract power and the actual load. To store heat. Furthermore, according to the storage loss performance of the heat storage tank 6 and the storage battery 4 to be installed, for example, the heat energy stored in the heat storage tank 6 is used for peak cuts in the power demand peak hours for three days on Monday, Tuesday, and Wednesday, It is also possible to use the electrical energy stored in the storage battery for two-day peak cuts on Thursday and Friday.

蓄電池4は充放電速度に優れている為利用しやすいが、蓄電池4の構築費用は、蓄熱槽6の構築費用の約1.5倍である。蓄熱槽6を併用することでコスト高の蓄電池容量を削減することができる。また、ピークカットの際に速いエネルギー放出が必要になる負荷に限定した分だけ、蓄電池4を設備すればよい。   Although the storage battery 4 is easy to use because of its excellent charge / discharge speed, the construction cost of the storage battery 4 is about 1.5 times the construction cost of the heat storage tank 6. The combined use of the heat storage tank 6 can reduce the cost of the storage battery. Moreover, what is necessary is just to equip the storage battery 4 only for the part limited to the load which needs quick energy discharge | release in the case of peak cut.

以上説明したように、太陽光発電の大量導入時代において、晴天日の週末や休業日に余剰電力が発生した際の電力供給先になり、電力会社への逆潮流を防止でき、電力会社が負担する電力管理を軽減できる。また、需要家側にとっても、太陽光発電によるグリーン電力を有効活用できる上、一週間単位での負荷平準化に寄与するため、平日中間の電力需要ピークを削減できるため、電力会社との契約電力削減が可能となり、ひいては電力料金低減の利点がある。さらに電力会社は約款にて平日に比べて、休日の電力量単価を安く設定しており、その差分に基づく経済性メリットがある。   As explained above, in the era of large-scale introduction of solar power generation, it becomes a power supply destination when surplus power is generated on weekends and closed days on sunny days, preventing reverse power flow to the power company and burdening the power company Power management can be reduced. In addition, customers can effectively use green power from solar power generation and contribute to load leveling on a weekly basis. Reduction is possible, which in turn has the advantage of reducing electricity charges. In addition, the electric power company sets the unit price of electric power on holidays less than the weekday in the contract, and there is an economic advantage based on the difference.

なお、図1に示す制御装置1の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりエネルギー貯蔵管理処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。   It is noted that a program for realizing the function of the control device 1 shown in FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by a computer system and executed to store energy. Management processing may be performed. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer system” includes a WWW system having a homepage providing environment (or display environment). The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。   The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

発電機による余剰電力を貯蔵することによって、電力負荷を平準化することが不可欠な用途にも適用できる。   By storing surplus power by the generator, it can be applied to applications where it is essential to level the power load.

1・・・制御装置、11・・・取得情報データベース、12・・・モニタリング部、13・・・休日当日出力予測部、14・・・週間熱需要予測部、15・・・蓄電池充放電制御部、16・・・熱源運転制御部、2・・・電力供給元(電力会社)、3・・・太陽光発電装置、4・・・蓄電池、5・・・熱源機器、6・・・蓄熱槽   DESCRIPTION OF SYMBOLS 1 ... Control apparatus, 11 ... Acquisition information database, 12 ... Monitoring part, 13 ... Holiday day output prediction part, 14 ... Weekly heat demand prediction part, 15 ... Storage battery charge / discharge control , 16 ... Heat source operation control unit, 2 ... Power supply source (electric power company), 3 ... Solar power generation device, 4 ... Storage battery, 5 ... Heat source device, 6 ... Heat storage Tank

Claims (1)

蓄熱槽と蓄電池を備え、太陽光発電装置の発電電力を前記蓄熱槽または蓄電池に蓄えることにより電力負荷を平準化するエネルギー貯蔵システムであって、
過去の日毎の天気・気温予報データと、過去の日毎の電力負荷実績データとを関係付けて記憶するデータベースと、
当日から1週間後の天気・気温予報データを取得する予報データ取得手段と、
前記当日から1週間後の天気・気温予報データと類似する過去の日毎の天気・気温予報データを前記データベースから抽出する類似データ抽出手段と、
前記抽出した過去の日毎の天気・気温予報データに関係付けられている前記過去の日毎の電力負荷実績データを読み出し、該過去の日毎の電力負荷実績データを当日から1週間後の電力負荷予測データとし、該電力負荷予測データに基づいて、前記蓄電池の充放電制御と、前記蓄熱槽に蓄熱するための熱源運転制御を行う制御手段と
を備えたことを特徴とするエネルギー貯蔵システム。
An energy storage system comprising a heat storage tank and a storage battery, and leveling the power load by storing the generated power of the solar power generation device in the heat storage tank or storage battery,
A database for storing past weather / temperature forecast data for each past day and past power load record data for each past day;
Forecast data acquisition means for acquiring weather / temperature forecast data one week after the day,
Similar data extraction means for extracting past daily weather / temperature forecast data similar to the weather / temperature forecast data one week after the day from the database;
Read the past daily power load actual data related to the extracted past daily weather / temperature forecast data, and use the past daily power load actual data for one week from the current day. An energy storage system comprising: charge / discharge control of the storage battery based on the power load prediction data; and control means for performing heat source operation control for storing heat in the heat storage tank.
JP2009256129A 2009-11-09 2009-11-09 Energy storage system Pending JP2011101553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256129A JP2011101553A (en) 2009-11-09 2009-11-09 Energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256129A JP2011101553A (en) 2009-11-09 2009-11-09 Energy storage system

Publications (1)

Publication Number Publication Date
JP2011101553A true JP2011101553A (en) 2011-05-19

Family

ID=44192234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256129A Pending JP2011101553A (en) 2009-11-09 2009-11-09 Energy storage system

Country Status (1)

Country Link
JP (1) JP2011101553A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002794A (en) * 2011-06-21 2013-01-07 Central Research Institute Of Electric Power Industry Device, method and program of managing operation
WO2013028608A1 (en) * 2011-08-19 2013-02-28 Qualcomm Incorporated Facilitating distributed power production units in a power group to store power for power conditioning during an anticipated temporary power production disruption
CN103997065A (en) * 2014-06-09 2014-08-20 北京东润环能科技股份有限公司 Load prediction system and method
JP2014180134A (en) * 2013-03-14 2014-09-25 Shimizu Corp Power management system, and power management method
CN104077206A (en) * 2014-07-17 2014-10-01 华东建筑设计研究院有限公司 Temperature predicting method for water heating system
JP2015156764A (en) * 2014-02-21 2015-08-27 富士電機株式会社 Method and program for creating study data used for estimating actual load of distribution system, and actual load estimation device and method of distribution system
JP2016059134A (en) * 2014-09-08 2016-04-21 清水建設株式会社 Power management system and power management method
WO2016092774A1 (en) * 2014-12-09 2016-06-16 株式会社デンソー Power supply system
JP6172346B1 (en) * 2016-06-17 2017-08-02 積水ハウス株式会社 Energy management system
WO2018043862A1 (en) * 2016-08-31 2018-03-08 주식회사 그리드위즈 On-site ess management device
CN107785929A (en) * 2017-10-13 2018-03-09 中国华能集团清洁能源技术研究院有限公司 A kind of solar energy thermal-power-generating station power prediction system and operation method
CN110752614A (en) * 2019-11-07 2020-02-04 山东大学 Energy storage system control method and system
CN111466064A (en) * 2017-10-12 2020-07-28 通用电气公司 Temperature control of an energy storage system
CN111969603A (en) * 2020-08-17 2020-11-20 内蒙古科技大学 Micro-energy network system and cooperative optimization operation control method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538051A (en) * 1991-07-24 1993-02-12 Hitachi Ltd Method and apparatus for predicting power demand
JPH08322147A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Demand prediction system
JPH1169656A (en) * 1997-08-07 1999-03-09 N T T Facilities:Kk Stationary energy storage device
JPH11346438A (en) * 1998-06-01 1999-12-14 Fuji Electric Co Ltd Predicting method for demand for electric power
JP2005011694A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method of cogeneration system
JP2005031927A (en) * 2003-07-11 2005-02-03 Hitachi Ltd Device and method for predicting power demand
JP2007201257A (en) * 2006-01-27 2007-08-09 Sharp Corp Photovoltaic generating system
JP2009213338A (en) * 2008-03-06 2009-09-17 Osaka Gas Co Ltd Power consumption estimating system
JP2009240080A (en) * 2008-03-27 2009-10-15 Nippon Telegr & Teleph Corp <Ntt> Device and method for preparing operation plan of energy system
JP2009240150A (en) * 2007-12-28 2009-10-15 Osaka Gas Co Ltd Vehicle and energy-supplying system
JP2009261114A (en) * 2008-04-16 2009-11-05 Meidensha Corp Operation program creation device of distributed power supply system, and creation method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538051A (en) * 1991-07-24 1993-02-12 Hitachi Ltd Method and apparatus for predicting power demand
JPH08322147A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Demand prediction system
JPH1169656A (en) * 1997-08-07 1999-03-09 N T T Facilities:Kk Stationary energy storage device
JPH11346438A (en) * 1998-06-01 1999-12-14 Fuji Electric Co Ltd Predicting method for demand for electric power
JP2005011694A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method of cogeneration system
JP2005031927A (en) * 2003-07-11 2005-02-03 Hitachi Ltd Device and method for predicting power demand
JP2007201257A (en) * 2006-01-27 2007-08-09 Sharp Corp Photovoltaic generating system
JP2009240150A (en) * 2007-12-28 2009-10-15 Osaka Gas Co Ltd Vehicle and energy-supplying system
JP2009213338A (en) * 2008-03-06 2009-09-17 Osaka Gas Co Ltd Power consumption estimating system
JP2009240080A (en) * 2008-03-27 2009-10-15 Nippon Telegr & Teleph Corp <Ntt> Device and method for preparing operation plan of energy system
JP2009261114A (en) * 2008-04-16 2009-11-05 Meidensha Corp Operation program creation device of distributed power supply system, and creation method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002794A (en) * 2011-06-21 2013-01-07 Central Research Institute Of Electric Power Industry Device, method and program of managing operation
WO2013028608A1 (en) * 2011-08-19 2013-02-28 Qualcomm Incorporated Facilitating distributed power production units in a power group to store power for power conditioning during an anticipated temporary power production disruption
US8855828B2 (en) 2011-08-19 2014-10-07 Qualcomm Incorporated Facilitating distributed power production units in a power group to store power for power conditioning during an anticipated temporary power production disruption
JP2014180134A (en) * 2013-03-14 2014-09-25 Shimizu Corp Power management system, and power management method
JP2015156764A (en) * 2014-02-21 2015-08-27 富士電機株式会社 Method and program for creating study data used for estimating actual load of distribution system, and actual load estimation device and method of distribution system
CN103997065A (en) * 2014-06-09 2014-08-20 北京东润环能科技股份有限公司 Load prediction system and method
CN104077206B (en) * 2014-07-17 2017-04-05 华东建筑设计研究院有限公司 The temperature predicting method of hot-water heating system
CN104077206A (en) * 2014-07-17 2014-10-01 华东建筑设计研究院有限公司 Temperature predicting method for water heating system
JP2016059134A (en) * 2014-09-08 2016-04-21 清水建設株式会社 Power management system and power management method
WO2016092774A1 (en) * 2014-12-09 2016-06-16 株式会社デンソー Power supply system
JP2016111871A (en) * 2014-12-09 2016-06-20 株式会社デンソー Power supply system
JP6172346B1 (en) * 2016-06-17 2017-08-02 積水ハウス株式会社 Energy management system
JP2017225300A (en) * 2016-06-17 2017-12-21 積水ハウス株式会社 Energy management system
WO2018043862A1 (en) * 2016-08-31 2018-03-08 주식회사 그리드위즈 On-site ess management device
US10978875B2 (en) 2016-08-31 2021-04-13 Gridwiz Inc On-site ESS management device
CN111466064A (en) * 2017-10-12 2020-07-28 通用电气公司 Temperature control of an energy storage system
US11848425B2 (en) 2017-10-12 2023-12-19 General Electric Company Temperature control for energy storage system
CN107785929A (en) * 2017-10-13 2018-03-09 中国华能集团清洁能源技术研究院有限公司 A kind of solar energy thermal-power-generating station power prediction system and operation method
CN107785929B (en) * 2017-10-13 2020-07-17 中国华能集团清洁能源技术研究院有限公司 Solar thermal power station power prediction system and operation method
CN110752614A (en) * 2019-11-07 2020-02-04 山东大学 Energy storage system control method and system
CN110752614B (en) * 2019-11-07 2021-05-07 山东大学 Energy storage system control method and system
CN111969603A (en) * 2020-08-17 2020-11-20 内蒙古科技大学 Micro-energy network system and cooperative optimization operation control method thereof

Similar Documents

Publication Publication Date Title
JP2011101553A (en) Energy storage system
Kumar et al. Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India
Parra et al. Optimum community energy storage system for PV energy time-shift
US8471406B2 (en) Controllable energy utilization system and associated method
Wu et al. Application value of energy storage in power grid: A special case of China electricity market
US9639904B2 (en) Systems and methods for minimizing energy costs for a power consumption system that has access to off-grid resources
Danish et al. A coherent strategy for peak load shaving using energy storage systems
US9614374B2 (en) Method for controlling energy storage system
Iqbal et al. Design and Analysis of a Stand‐Alone PV System for a Rural House in Pakistan
Keller et al. Electricity system and emission impact of direct and indirect electrification of heavy-duty transportation
KR101319254B1 (en) Smart micro-grid operating system and method
Alkhalidi et al. Renewable energy curtailment practices in Jordan and proposed solutions
Härtel et al. Cost assessment of storage options in a region with a high share of network congestions
Mishra et al. Integrating energy storage in electricity distribution networks
Lu et al. Unit commitment in power systems with plug‐in hybrid electric vehicles
CN102156918B (en) Smart grid broadcast system and method
Sepehri et al. Energy and emissions analysis of ice thermal energy storage in the western US
Khowaja et al. Quantifying the emissions impact of repurposed electric vehicle battery packs in residential settings
Kato et al. Autonomous scheduling of heat-pump water heaters for mitigating voltage rise caused by photovoltaic power generation systems
JP6369965B1 (en) Power supply method, information processing program, and power supply apparatus
Anderson et al. Resilient renewable energy microgrids
Kabalci Power system flexibility and resiliency
Nguyen et al. Optimum schedule and size of BESS in the low voltage network with high penetration of solar rooftops to maintain voltages within acceptable limit
US20150349393A1 (en) Management of high-temperature batteries
Yilmaz The Prediction of Electrical Vehicles' Growth Rate and Management of Electrical Energy Demand in Turkey

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111