JP2017225300A - Energy management system - Google Patents

Energy management system Download PDF

Info

Publication number
JP2017225300A
JP2017225300A JP2016120654A JP2016120654A JP2017225300A JP 2017225300 A JP2017225300 A JP 2017225300A JP 2016120654 A JP2016120654 A JP 2016120654A JP 2016120654 A JP2016120654 A JP 2016120654A JP 2017225300 A JP2017225300 A JP 2017225300A
Authority
JP
Japan
Prior art keywords
power
next day
unit
power generation
purchase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120654A
Other languages
Japanese (ja)
Other versions
JP6172346B1 (en
Inventor
哲文 堤
Tetsufumi Tsutsumi
哲文 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2016120654A priority Critical patent/JP6172346B1/en
Priority to AU2017204048A priority patent/AU2017204048A1/en
Application granted granted Critical
Publication of JP6172346B1 publication Critical patent/JP6172346B1/en
Publication of JP2017225300A publication Critical patent/JP2017225300A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an economical energy management system by storing electric power capable of covering a shortage of power consumption in future based on changes in weathers on that day and the next day.SOLUTION: In an energy management system 1, if a solar radiation intensity on that day is equal to or higher than a predetermined solar radiation intensity and weather report data of the next day acquired by a control section 26 are equal to or lower than the predetermined solar radiation intensity, power is supplied and stored in a large-scale power storage part 23 in accordance with a method selected based on a predetermined economical rationality determination between power generation by a power generation facility 21 and power purchase by a power purchase part 29 for a previously forecasted shortage of a power amount on the next day. If the solar radiation intensity on that day is equal to or lower than the predetermined solar radiation intensity and the weather report data of the next day acquired by the control section 26 are equal to or lower than the predetermined solar radiation intensity, power is supplied and the stored in the large scale power storage part 23 to a full charge level in accordance with the method selected based on the predetermined economical rationality determination between the power generation by the power generation facility 21 or the power purchase by the power purchase part 29.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電部を有するエリアのエネルギーマネジメントシステムであり、蓄電部の放充電を制御するエネルギーマネジメントシステムに関する。   The present invention relates to an energy management system for an area having a power storage unit, and relates to an energy management system that controls discharge / charge of the power storage unit.

従来より、自然エネルギーを利用した分散電源の発電量の予測に、天気予報を用いて行うものが知られている(特許文献1、特許文献2、特許文献3参照)。例えば、特許文献1は、天気予報に基づいて日射強度を予測して、太陽光発電の発電量を予測し、当該発電量と需要計画に基づいて、燃料電池の運転計画を決定することが記載されている。また、特許文献2及び特許文献3には、天気予報に基づいて太陽光発電の予測発電量及び所定条件下での予測電力需要を特定して、太陽光発電又は商用電源により将来の電力供給不足分に対して予め蓄電するシステムが記載されている。   2. Description of the Related Art Conventionally, what is performed using a weather forecast to predict the amount of power generated by a distributed power source using natural energy is known (see Patent Document 1, Patent Document 2, and Patent Document 3). For example, Patent Literature 1 describes that the solar radiation intensity is predicted based on a weather forecast, the power generation amount of solar power generation is predicted, and the operation plan of the fuel cell is determined based on the power generation amount and the demand plan. Has been. Further, Patent Document 2 and Patent Document 3 specify the predicted power generation amount of solar power generation and the predicted power demand under a predetermined condition based on the weather forecast, and the future power supply shortage by solar power generation or commercial power supply A system for pre-charging the minutes is described.

特開2005−86953号公報JP 2005-86953 A 特開2010−213507号公報JP 2010-213507 A 特開2014−107992号公報JP 2014-107992 A

ところで、上述のような従来技術に記載のエネルギーマネジメントシステムは、予測対象日の天気予報に基づいて、当該対象日の太陽光発電の発電量は予測するものであるので、前日の天候の影響を加味して判断するものではない。また、特許文献1においては、電力需要の予測を需要者の申告に頼るものであるので、当該申告が適切になされない場合には需要予測が外れるおそれがある。また、特許文献2、3においては、予測される太陽光発電による発電量が需要予測に足りない分を、事前に太陽光発電又は商業電源から充電するものであるので、前日の天候によっては商業電源からの買電が不合理に大きくなるおそれがある。   By the way, the energy management system described in the related art as described above predicts the amount of photovoltaic power generation on the target day based on the weather forecast on the target day. It is not a judgment that takes into account. Moreover, in patent document 1, since prediction of an electric power demand is based on a report of a consumer, when the said report is not made appropriately, there exists a possibility that a demand prediction may remove | deviate. Further, in Patent Documents 2 and 3, since the amount of power generation due to the predicted solar power generation is insufficient for the demand prediction, it is charged in advance from the solar power generation or the commercial power source. There is a risk that the purchase of power from the power supply may become unreasonably large.

本発明は、当日の及び翌日の天気の変化に基づいて将来の電力消費量の不足をまかなうことができる電力を蓄電することができ、経済的なエネルギーマネジメントシステムを提供することを目的とする。   An object of the present invention is to provide an economical energy management system that can store electric power that can cover a shortage of future power consumption based on changes in the weather on the current day and the next day.

本発明の第1のエネルギーマネジメントシステムは、太陽光発電部と、燃料を消費して電力を発電する発電設備と、電力を蓄電する蓄電部と、系統から電力を購入する買電部と、電力消費施設と、天気予報データを取得するデータ受信部と、前記蓄電部の放充電を制御する制御部と、を備えたエネルギーマネジメントシステムであって、当日が所定の日射強度以上の天候であり、且つ前記制御部が取得した翌日の天気予報データが所定の日射強度以下の天候の場合に、予め予想される翌日の不足電力量を前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電し、当日が所定の日射強度以下の天候であり、且つ前記制御部が取得した翌日の天気予報データが所定の日射強度以下の天候の場合に、前記発電設備による発電又は前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して、前記蓄電部に満充電まで蓄電することを特徴としている。   A first energy management system of the present invention includes a solar power generation unit, a power generation facility that generates power by consuming fuel, a power storage unit that stores power, a power purchase unit that purchases power from a system, An energy management system comprising a consumption facility, a data receiving unit for obtaining weather forecast data, and a control unit for controlling the charging / discharging of the power storage unit, wherein the day is weather with a predetermined solar radiation intensity or more, And in the case where the weather forecast data of the next day acquired by the control unit is a weather of a predetermined solar radiation intensity or less, among the power generation by the power generation equipment and the power purchase by the power purchase unit, the power consumption of the next day predicted in advance, Electric power is supplied by a method selected based on a predetermined economic rationality judgment and stored in the power storage unit, and the weather is less than a predetermined solar radiation intensity on the current day, and the next day's weather forecast acquired by the control unit When the data is weather with a predetermined solar radiation intensity or less, power is supplied by a method selected based on a predetermined economic rationality judgment among power generation by the power generation facility or power purchase by the power purchase unit, and the power storage It is characterized by storing electricity until the battery is fully charged.

また、本発明の第2のエネルギーマネジメントシステムは、第1のエネルギーマネジメントシステムの特徴に加えて、前記予め予想される不足電力量は、翌日の前記太陽光発電部の予測発電量、及び翌日の前記電力消費施設の予測電力消費量を含むデータに基づいて制御部が算出する値であり、制御部は、翌日の前記太陽光発電部の予測発電量を、制御部が取得した翌日の天気予報データ、季節データ、及び前記太陽光発電部の位置データを含むデータに基づいて算出し、制御部は、翌日の前記電力消費施設の予測電力消費量は、制御部が取得した翌日の天気予報データ、季節データ、及び休日情報を有する暦データを含むデータに基づいて算出することを特徴としている。   Further, in the second energy management system of the present invention, in addition to the features of the first energy management system, the insufficient power amount predicted in advance is the predicted power generation amount of the photovoltaic power generation unit on the next day, and the next day It is a value calculated by the control unit based on data including the predicted power consumption of the power consuming facility, and the control unit calculates the predicted power generation amount of the solar power generation unit on the next day by the weather forecast for the next day acquired by the control unit. Calculated based on data including data, seasonal data, and position data of the photovoltaic power generation unit, and the control unit calculates the predicted power consumption of the power consumption facility on the next day by the weather forecast data on the next day acquired by the control unit. The calculation is based on data including seasonal data and calendar data having holiday information.

さらに、本発明の第3のエネルギーマネジメントシステムは、第1又は第2のエネルギーマネジメントシステムの特徴に加えて、前記所定の経済合理性判断は、買電単価が所定価格以下となる買電ピーク値以下の範囲で前記買電部による電力購入により前記蓄電部に蓄電し、当該買電ピーク値を超える場合に前記発電設備による発電により前記蓄電部に蓄電するものであることを特徴としている。   Furthermore, in the third energy management system of the present invention, in addition to the characteristics of the first or second energy management system, the predetermined economic rationality judgment is based on a power purchase peak value at which a power purchase unit price is a predetermined price or less. In the following range, power is stored in the power storage unit by purchasing power from the power purchase unit, and when the power purchase peak value is exceeded, power is stored in the power storage unit by power generation by the power generation facility.

本発明の第4のエネルギーマネジメントシステムは、第1又は第2のエネルギーマネジメントシステムの特徴に加えて、前記所定の経済合理性判断は、前記発電設備による発電の単価と、買電単価が所定価格以下となる買電ピーク値以下の範囲での前記買電部による電力購入の単価とを、時間帯毎にそれぞれ比較し、単価が低くなるほうを優先して前記蓄電部への蓄電に用いるものであることを特徴としている。   In the fourth energy management system of the present invention, in addition to the characteristics of the first or second energy management system, the predetermined economic rationality judgment is made by determining that the unit price of power generation by the power generation facility and the unit price of power purchase are a predetermined price. Compared with the unit price of power purchase by the power purchase unit within the range below the power purchase peak value, which is below, for each time zone, the one with a lower unit price is given priority for power storage to the power storage unit It is characterized by being.

本発明の第5のエネルギーマネジメントシステムは、第1から第4のいずれかのエネルギーマネジメントシステムの特徴に加えて、前記制御部は、複数の住宅を有するエリアから前記電力消費施設に対して行われる電力融通量を制御するものであり、前記制御部は、取得した翌日の天気予報データが所定の日射強度以上の天候の場合に、前記複数の住宅を有するエリアから前記電力消費施設に対して行われる翌日の予測電力融通量を予測し、予め予測される電力融通量の予測値を含む情報に基づいて、翌日の不足電力量が予想される場合に、前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電することを特徴としている。   In the fifth energy management system of the present invention, in addition to the features of any one of the first to fourth energy management systems, the control unit is performed from the area having a plurality of houses to the power consuming facility. When the acquired weather forecast data for the next day is weather having a predetermined solar radiation intensity or more, the control unit controls the power consumption facility from the area having the plurality of houses. The predicted power accommodation amount of the next day is predicted, and when the insufficient power amount of the next day is predicted based on information including a predicted value of the predicted power accommodation amount, the power generation by the power generation facility and the power purchase unit Among the power purchases by, power is supplied by a method selected based on a predetermined economic rationality judgment and stored in the power storage unit.

本発明の第1のエネルギーマネジメントシステムは、当日が所定の日射強度以上の天候であり、且つ翌日の天気予報データが所定の日射強度以下の天候の場合には、予想される翌日の不足電力量を予め蓄電部に蓄電するものであるとともに、当日が所定の日射強度以下の天候であり、且つ翌日の天気予報データが所定の日射強度以下の天候の場合には、蓄電部に満充電まで蓄電するので、所定の日射強度以下の天気が連続する場合、例えばくもりが連続する場合には、不足電力量を予測する処理をおこなうことなく、蓄電部を満充電まで蓄電できるので、不要な処理でシステムに余計な負担を掛けることなく連続する2日の天候を考慮したエネルギーマネジメントを行うことができる。また、蓄電部への蓄電は、前記発電設備による発電又は前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して、前記蓄電部に蓄電しているので、太陽光発電部による発電量が少ない場合にも蓄電部へ蓄電することができる。そして、発電設備による発電と買電部による電力購入を併用することで、電力購入のピークを抑えてより経済的な蓄電を行うことができる。   In the first energy management system of the present invention, if the current day is a weather of a predetermined solar radiation intensity or more and the weather forecast data of the next day is a weather of a predetermined solar radiation intensity or less, an expected shortage of electric power for the next day Is stored in the power storage unit in advance, and if the weather is less than or equal to the predetermined solar radiation intensity on the day and the weather forecast data for the next day is less than or equal to the predetermined solar radiation intensity, Therefore, when the weather below the predetermined solar radiation intensity continues, for example, when cloudy weather continues, the power storage unit can be charged to full charge without performing the process of predicting the amount of insufficient power. Energy management can be performed in consideration of the weather on two consecutive days without placing an extra burden on the system. The power storage unit stores power in the power storage unit by supplying power by a method selected based on a predetermined economic rationality judgment among power generation by the power generation facility or power purchase by the power purchase unit. Therefore, even when the amount of power generated by the solar power generation unit is small, it can be stored in the power storage unit. Then, by combining the power generation by the power generation facility and the power purchase by the power purchase unit, it is possible to suppress the peak of the power purchase and perform more economical power storage.

第2のエネルギーマネジメントシステムによると、制御部は、翌日の太陽光発電部の予測発電量を、翌日の天気予報データ、季節データ、及び太陽光発電部の位置データを含むデータに基づいて算出し、翌日の電力消費施設の予測電力消費量を、翌日の天気予報データ、季節データ、及び休日情報を有する暦データを含むデータに基づいて算出し、翌日の太陽光発電部の予測発電量、及び翌日の電力消費施設の予測電力消費量を含むデータに基づいて予め予想される不足電力量を算出するので、より正確な予測発電量及び電力消費量を算出することができる。   According to the second energy management system, the control unit calculates the predicted power generation amount of the next day's photovoltaic power generation unit based on data including the next day's weather forecast data, seasonal data, and position data of the photovoltaic power generation unit. The predicted power consumption of the next day's power consumption facility is calculated based on the following day's weather forecast data, seasonal data, and data including calendar data having holiday information, the predicted power generation amount of the next day's photovoltaic power generation unit, and Since the power shortage amount predicted in advance is calculated based on data including the predicted power consumption amount of the power consumption facility on the next day, more accurate predicted power generation amount and power consumption amount can be calculated.

さらに、第3のエネルギーマネジメントシステムによると、所定の経済合理性判断は、買電単価が所定価格以下となる買電ピーク値以下の範囲で買電部による電力購入により蓄電部に蓄電し、買電ピーク値を超える場合には発電設備による発電により蓄電部に蓄電するものであるので、買電部による電力購入を平準化しつつ、足りない電力は発電設備による発電で補えるので、簡単な処理で経済合理性の高い判断をすることができ、より経済的に蓄電することができる。   Furthermore, according to the third energy management system, the predetermined economic rationality judgment is made by storing power in the power storage unit by purchasing power from the power purchase unit within the range of the power purchase peak value where the power purchase unit price is below the predetermined price. If the electricity peak value is exceeded, power is stored in the power storage unit by power generation from the power generation facility, so the power purchase by the power purchase unit is leveled and the insufficient power can be compensated by power generation by the power generation facility. It is possible to make a judgment with high economic rationality and to store electricity more economically.

第4のエネルギーマネジメントシステムによると、所定の経済合理性判断は、発電設備による発電の単価と、買電単価が所定価格以下となる買電ピーク値以下の範囲での買電部による電力購入の単価とを、時間帯毎にそれぞれ比較し、単価が低くなるほうを優先して蓄電部への蓄電に用いるものであるので、時間帯毎に買電単価が変更される料金体系の場合にも発電設備の発電と買電部による電力購入とを経済的に合理的に選択することができる。   According to the fourth energy management system, the predetermined economic rationality judgment is based on the unit price of power generation by the power purchaser within the range of the unit price of power generation by the power generation facility and the power purchase peak value where the unit price of power purchase is below the predetermined price. The unit price is compared for each time zone, and the one with a lower unit price is used for power storage to the power storage unit. It is possible to economically and rationally select power generation by the power generation facility and power purchase by the power purchase unit.

第5のエネルギーマネジメントシステムは、複数の住宅を有するエリアから電力消費施設に対して行われる電力融通量を制御するものであり、翌日の天気予報データが所定の日射強度以上の天候の場合に、翌日の予測電力融通量を予測し、当該電力融通量の予測値を含む情報に基づいて、翌日の電力消費施設に電力の不足が予想される場合に、前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電するので、翌日の天気予報データが所定の日射強度未満の場合には、複数の住宅を有するエリアに電力の余剰は発生しないので翌日の予測電力融通量を予測せず、不要な処理でシステムに余計な負担を掛けることなく電力融通を考慮したエネルギーマネジメントを行うことができる。また、発電設備による発電と買電部による電力購入を併用することで、電力購入のピークを抑えてより経済的な蓄電を行うことができる。   The fifth energy management system controls the amount of power interchange performed from the area having a plurality of houses to the power consuming facility, and when the weather forecast data for the next day is a weather with a predetermined solar radiation intensity or more, The predicted power accommodation amount of the next day is predicted, and when power shortage is expected in the power consumption facility of the next day based on information including the predicted value of the power accommodation amount, power generation by the power generation facility and the power purchase unit Power supply by the method selected based on a predetermined economic rationality judgment, power is supplied and stored in the power storage unit, so that if the next day's weather forecast data is less than a predetermined solar radiation intensity, a plurality of Since there is no surplus of power in the area where the house is located, energy that takes into account the power interchange without predicting the predicted power interchange amount of the next day and without placing an unnecessary burden on the system with unnecessary processing Nejimento can be carried out. Further, by combining the power generation by the power generation facility and the power purchase by the power purchase unit, it is possible to suppress the peak of the power purchase and perform more economical power storage.

複数の住宅を有する第一エリア、電力消費施設を有する第二エリア、及びエネルギーマネジメントシステムの全体構成を説明するブロック図。The block diagram explaining the 1st area which has a some house, the 2nd area which has a power consumption facility, and the whole structure of an energy management system. 翌日の第二エリアの電力不足を考慮して大規模蓄電部に蓄電する処理のルーチンを示すフローチャート。The flowchart which shows the routine of the process accumulate | stored in a large-scale electrical storage part in consideration of the power shortage of the 2nd area of the next day. 翌日昼間処理Aのルーチンを示すフローチャート。The flowchart which shows the routine of the daytime process A on the next day. 第二エリアの翌日の電力不足量予測処理Aのルーチンを示すフローチャート。The flowchart which shows the routine of the electric power shortage prediction process A of the next day of a 2nd area. 電力融通量予測処理のルーチンを示すフローチャート。The flowchart which shows the routine of an electric power accommodation amount prediction process. 翌日昼間処理Bのルーチンを示すフローチャート。The flowchart which shows the routine of the daytime process B on the next day. 第二エリアの翌日の電力不足量予測処理Bのルーチンを示すフローチャート。The flowchart which shows the routine of the electric power shortage amount prediction process B on the next day of a 2nd area. 経済合理性判断の別のルーチンを示すフローチャート。The flowchart which shows another routine of economic rationality judgment. 本日及び翌日の天候が所定の日射強度未満である場合の第二エリアの電力需給を示すグラフ。The graph which shows the electric power supply and demand of the 2nd area when the weather of today and the next day is less than predetermined solar radiation intensity. 本日が所定の日射強度以上で、翌日が所定の日射強度未満である場合の第二エリアの電力需給を示すグラフ。The graph which shows the electric power supply-and-demand of the 2nd area when today is more than predetermined solar radiation intensity and the next day is less than predetermined solar radiation intensity. 本日が所定の日射強度未満で、翌日が所定の日射強度以上である場合の第二エリアの電力需給を示すグラフ。The graph which shows the electric power supply-and-demand of the 2nd area when today is less than predetermined solar radiation intensity and the next day is more than predetermined solar radiation intensity. 本日及び翌日の天候が所定の日射強度以上である場合の第二エリアの電力需給を示すグラフ。The graph which shows the electric power supply and demand of the 2nd area when the weather of today and the next day is more than predetermined solar radiation intensity.

以下、本発明に係るエネルギーマネジメントシステム1の最良の実施形態について、各図を参照しつつ説明する。本実施形態のエネルギーマネジメントシステム1は、複数の住宅11を有する第一エリア10から、1以上の電力消費施設を有する第二エリア20への電力融通量を制御するエネルギーマネジメントシステム1である。   Hereinafter, the best embodiment of the energy management system 1 according to the present invention will be described with reference to the drawings. The energy management system 1 of the present embodiment is an energy management system 1 that controls the amount of power interchange from a first area 10 having a plurality of houses 11 to a second area 20 having one or more power consuming facilities.

図1に記載のように、第一エリア10に設けられた各住宅11には、第一太陽光発電部12及び宅内蓄電部13が設けられている。第一太陽光発電部12は、各住宅11の屋根に設置されている。第一太陽光発電部12は、本実施形態においては、容量が2kWの太陽電池及び3.5kWの太陽電池のいずれかが住宅11毎にそれぞれ選択されて設置されている。また、宅内蓄電部13は、容量が8kWhのリチウムイオン蓄電池である。なお、第一太陽光発電部12の太陽電池容量や宅内蓄電部13の容量はこれに限定されるものではなく、例えば、各住宅11毎に異なる容量の第一太陽光発電部12又は宅内蓄電部13であっても良い。   As shown in FIG. 1, each house 11 provided in the first area 10 is provided with a first solar power generation unit 12 and a home power storage unit 13. The first solar power generation unit 12 is installed on the roof of each house 11. In the present embodiment, the first solar power generation unit 12 is installed by selecting either a solar battery with a capacity of 2 kW or a solar battery with a capacity of 3.5 kW for each house 11. The home power storage unit 13 is a lithium ion storage battery having a capacity of 8 kWh. The solar cell capacity of the first solar power generation unit 12 and the capacity of the home power storage unit 13 are not limited to this, and for example, the first solar power generation unit 12 or the home power storage having a different capacity for each house 11. It may be part 13.

第二エリア20には、発電設備21、第二太陽光発電部22、大規模蓄電部23、電力消費施設24、及びCEMS(community energy management system)サーバ25が設けられている。発電設備21は、本実施形態においては、ガスエンジンコージェネレーション発電設備である。なお、発電設備21はこれに限定されるものではない。例えば、コージェネレーション、すなわち電気と熱を同時に供給するものに限定されず、単に電気のみを供給する発電設備21であっても良い。また、天然ガス、液化天然ガス、石油などの化石燃料を用いた発電のほか、例えば水素などを用いた燃料電池であっても良い。発電設備21は天候に影響されずに発電できるものであれば、どのような発電設備21であっても良い。   In the second area 20, a power generation facility 21, a second photovoltaic power generation unit 22, a large-scale power storage unit 23, a power consumption facility 24, and a CEMS (community energy management system) server 25 are provided. In this embodiment, the power generation facility 21 is a gas engine cogeneration power generation facility. The power generation equipment 21 is not limited to this. For example, it is not limited to cogeneration, that is, the one that supplies electricity and heat at the same time, and may be the power generation equipment 21 that supplies only electricity. In addition to power generation using fossil fuels such as natural gas, liquefied natural gas, and petroleum, a fuel cell using, for example, hydrogen may be used. The power generation facility 21 may be any power generation facility 21 as long as it can generate power without being affected by the weather.

第二太陽光発電部22は、容量が900kWの太陽電池である。なお、本発明における「太陽光発電部」は、本実施形態では第二太陽光発電部22に相当する。第二エリア20内の電力消費施設24の屋上などに設置される。また、大規模蓄電部23は、本実施形態においては、イオンの酸化還元反応(reduction-oxidation reaction)を溶液のポンプ循環によって進行させて、充電と放電を行う流動電池であるレドックスフロー蓄電池である。レドックスフロー蓄電池は、燃焼性・爆発性の物質を使用・発生しないので安全性に優れている。また、レドックスフロー蓄電池は、放充電サイクルに制限が無く、電解液の寿命が半永久的であることによって長寿命である。そして、ほぼ溶液のタンクの増設だけで電池容量を増やすことができるので大型設備に適している。なお、本発明における「蓄電部」は、本実施形態では大規模蓄電部23に相当する。   The second photovoltaic power generation unit 22 is a solar cell having a capacity of 900 kW. The “solar power generation unit” in the present invention corresponds to the second solar power generation unit 22 in the present embodiment. It is installed on the roof of the power consumption facility 24 in the second area 20. Further, in the present embodiment, the large-scale power storage unit 23 is a redox flow storage battery that is a fluid battery that performs charging and discharging by causing a reduction-oxidation reaction of ions to proceed by pump circulation of a solution. . Redox flow batteries are safe because they do not use or generate flammable or explosive substances. In addition, the redox flow storage battery has a long life because there is no limit on the discharge and charge cycle, and the life of the electrolyte is semi-permanent. Since the battery capacity can be increased only by adding a solution tank, it is suitable for a large facility. The “power storage unit” in the present invention corresponds to the large-scale power storage unit 23 in the present embodiment.

電力消費施設24は、例えばオフィスビル、商業施設、工場などの住宅11に比べて電力消費量が大きい施設である。これらの電力消費施設24は第二エリア20内に1又は複数設けられており、住宅11における電力需要とは異なるタイミングで需要が増減する。   The power consumption facility 24 is a facility that consumes a larger amount of power than the house 11 such as an office building, a commercial facility, or a factory. One or a plurality of these power consumption facilities 24 are provided in the second area 20, and the demand increases or decreases at a timing different from the power demand in the house 11.

CEMSサーバ25は、少なくとも制御部26、データ受信部27、記憶部28を有しており、これらが1台のパソコン内に存在していてもよく、または、それぞれ、物理的に分離して存在していてもよい。   The CEMS server 25 has at least a control unit 26, a data reception unit 27, and a storage unit 28, which may exist in one personal computer or are physically separated from each other. You may do it.

データ受信部27は、インターネット3やLAN(Local Area Network)に接続されるインターフェースであり、第一エリア10及び第二エリア20の各部からそれぞれの状態を示すデータを受け付けるとともに、図示しない外部サーバからエネルギーマネジメントに必要なデータを受け付ける。具体的には、データ受信部27は、外部の天気予報サーバからインターネット3を介して天気予報データを受け付ける。また、データ受信部27は、各住宅11の宅内蓄電部13から放充電量データ及び蓄電量データを受け付ける。また、データ受信部27は、第一太陽光発電部12の発電量の実測値を受け付ける。さらにデータ受信部27は、第一エリア10における総消費電力量の実測値を受け付ける。   The data receiving unit 27 is an interface connected to the Internet 3 or a LAN (Local Area Network). The data receiving unit 27 receives data indicating each state from each unit of the first area 10 and the second area 20 and from an external server (not shown). Accept data required for energy management. Specifically, the data receiving unit 27 receives weather forecast data from the external weather forecast server via the Internet 3. In addition, the data receiving unit 27 receives the discharge amount data and the storage amount data from the in-home storage unit 13 of each house 11. In addition, the data receiving unit 27 receives an actual measurement value of the power generation amount of the first solar power generation unit 12. Further, the data receiving unit 27 receives an actual measurement value of the total power consumption in the first area 10.

データ受信部27は、また、発電設備21の発電量、大規模蓄電部23の蓄電量及び放充電量データを受け付ける。さらに、データ受信部27は、第二太陽光発電部22の発電量の実測値及び第二エリア20における総消費電力量の実測値を受け付ける。また、データ受信部27は、少なくとも翌日の天気予報データを受け付けている。   The data receiving unit 27 also receives the power generation amount of the power generation facility 21, the power storage amount of the large-scale power storage unit 23, and the discharge amount data. Further, the data receiving unit 27 receives the actual measurement value of the power generation amount of the second solar power generation unit 22 and the actual measurement value of the total power consumption in the second area 20. Further, the data receiving unit 27 accepts at least the weather forecast data for the next day.

制御部26は、図示しないがCPU(Central Processing Unit)やメモリーから構成されるコンピュータであり、データ受信部27が受け付けたデータに基づいて、第一エリア10及び第二エリア20の各部を制御する。制御部26は、第一エリア10に余剰電力があるか否か判断する処理を行い、余剰電力が有る場合には第二エリア20に電力融通するか否かを判断する処理を行い、電力が不足する場合には、電力を補う処理を行う。また、記憶部28は、曜日情報や祝日情報を含む暦情報、などの情報を記憶している。   Although not shown, the control unit 26 is a computer including a CPU (Central Processing Unit) and a memory, and controls each unit of the first area 10 and the second area 20 based on data received by the data receiving unit 27. . The control unit 26 performs a process of determining whether or not there is surplus power in the first area 10. If there is surplus power, the control unit 26 performs a process of determining whether or not to allow power to be supplied to the second area 20. If it is insufficient, a process to supplement power is performed. Further, the storage unit 28 stores information such as calendar information including day information and holiday information.

また買電部29は、例えば図示しないが制御部26の決定に従って電力会社から電力を購入するサーバである。なお、制御部26が買電部29の役割を兼ねるものであっても良い。   The power purchase unit 29 is a server that purchases electric power from an electric power company in accordance with the determination of the control unit 26 (not shown). Note that the control unit 26 may also serve as the power purchase unit 29.

第一エリア10の各住宅11及び第二エリア20の各施設は、既存の送電網4により接続されており、各住宅11は既存の送電網4を介して、電力会社から買電できるとともに、電力会社に対して売電できる。また、第二エリア20では、買電部29によって電力会社から必要な電力を一括受電している。   Each house 11 in the first area 10 and each facility in the second area 20 are connected by an existing power transmission network 4, and each house 11 can purchase power from an electric power company through the existing power transmission network 4. Power can be sold to electric power companies. In the second area 20, the power purchase unit 29 collectively receives necessary power from the power company.

次に、以上のように構成されるエネルギーマネジメントシステム1の主に制御部26が行う処理について説明する。まず、データ受信部27が天気予報データを取得し、制御部26は翌日の予想される天候を把握する(S100)。次に制御部26は、本日の天候が所定の日射強度未満の天候であるか否か判断する(S101)。具体的には、例えば第二太陽光発電部22の近傍に図示しない照度センサを有して当該照度センサから送信されたデータに基づいて所定の日射強度未満であるか判断してもよく、または、第二太陽光発電部22の発電量の実測値に基づいて所定の日射強度未満であるか判断しても良い。また、午前中などの場合には、午後以降の天気予報データに基づいて本日の天候が所定の日射強度未満であるか否か判断しても良い。なお、「所定の日射強度以上」とは、本実施形態においては天候が晴れである場合の日射強度以上であり、「所定の日射強度未満」とは、本実施形態においては天候が曇りである場合の日射強度以下である。   Next, the process which the control part 26 mainly performs of the energy management system 1 comprised as mentioned above is demonstrated. First, the data receiving unit 27 acquires weather forecast data, and the control unit 26 grasps the expected weather for the next day (S100). Next, the control unit 26 determines whether or not today's weather is less than a predetermined solar radiation intensity (S101). Specifically, for example, an illuminance sensor (not shown) may be provided in the vicinity of the second solar power generation unit 22, and based on data transmitted from the illuminance sensor, it may be determined whether the intensity is less than a predetermined solar radiation intensity, or Further, it may be determined whether or not the solar radiation intensity is less than a predetermined solar radiation intensity based on the actual measurement value of the power generation amount of the second solar power generation unit 22. Further, in the morning, for example, it may be determined whether or not today's weather is less than a predetermined solar radiation intensity based on weather forecast data after the afternoon. In the present embodiment, “greater than or equal to the predetermined solar radiation intensity” is equal to or higher than the solar radiation intensity when the weather is clear, and “below the predetermined solar radiation intensity” means that the weather is cloudy in the present embodiment. The solar radiation intensity is less than the case.

本日の天候が所定の日射強度未満の天候であると判断すると(S101:YES)、翌日の天候が所定の日射強度未満の天候であるか否か判断する(S102)。すなわち、天気予報データに基づいて、翌日の天候が、曇り、雨、又は雪などの天候である場合には、所定の日射強度未満の天候であると判断する(S102:YES)。一方、翌日の天候が、晴又は快晴である場合には、所定の日射強度以上の天候であると判断する(S102:NO)。   If it is determined that the current day's weather is less than the predetermined solar radiation intensity (S101: YES), it is determined whether the next day's weather is less than the predetermined solar radiation intensity (S102). That is, based on the weather forecast data, if the next day's weather is cloudy, rainy, or snowy, it is determined that the weather is less than the predetermined solar radiation intensity (S102: YES). On the other hand, when the next day's weather is clear or clear, it is determined that the weather is equal to or greater than the predetermined solar radiation intensity (S102: NO).

翌日の天候が所定の日射強度未満の天候であると判断すると(S102:YES)、本日及び翌日が所定の日射強度未満の天候であるので、図9のグラフに示すように、翌日必要な電力を、翌日の昼間だけでは調達しきれないので、本日の日没から深夜帯にかけて、図9にAで示すように大規模蓄電部23に満充電まで充電する処理を行う(S103)。具体的には、まず買電部29が電力会社から電力を購入し、買電ピーク値に至るか、又は大規模蓄電部23が満充電になるまで電力を購入する。ここで、買電ピーク値は、例えば電力会社と契約する契約電力の値であり、この買電ピーク値を超えて電力を購入することが契約上できない、又は、この買電ピーク値を超えて電力を購入する場合、電力会社に支払う料金の買電単価が高くなる値をいう。   If it is determined that the next day's weather is below the predetermined solar radiation intensity (S102: YES), the current day and the next day are weather below the predetermined solar radiation intensity, and as shown in the graph of FIG. Can not be procured only in the daytime of the next day, so that from the sunset of today to midnight, the large-scale power storage unit 23 is charged to full charge as shown by A in FIG. 9 (S103). Specifically, the power purchase unit 29 first purchases power from the power company and purchases power until the power purchase peak value is reached or the large-scale power storage unit 23 is fully charged. Here, the power purchase peak value is, for example, the value of contract power contracted with an electric power company, and it is not possible to purchase power exceeding this power purchase peak value or it exceeds this power purchase peak value. When purchasing power, it means a value that increases the unit price of the power paid to the power company.

買電ピーク値又は大規模蓄電部23が満充電になるまで電力を購入すると(S103)、大規模充電部は満充電になったか否か判断する(S104)。大規模充電部が満充電になったと判断すると(S104:YES)、翌日昼間処理A(S106)に処理を進める。一方、大規模充電部が満充電となっていないと判断すると(S104:NO)、次に制御部26は、発電設備21に発電をさせて、大規模蓄電部23が満充電になるまで充電する(S105)。このように、買電単価が所定価格以下となる買電ピーク値以下の範囲で前記買電部29による電力購入により前記蓄電部に蓄電し、当該買電ピーク値を超える場合に前記発電設備21による発電により前記蓄電部に蓄電するので、電力会社から購入する電力量が買電ピーク値を越えることが無く、経済的に蓄電することができる。なお、ここで「所定価格」は、例えば発電設備21による発電単価である。また、ステップ103からステップ105は、本発明における「所定の経済合理性判断」である。   When power is purchased until the power purchase peak value or the large-scale power storage unit 23 is fully charged (S103), the large-scale charging unit determines whether or not it is fully charged (S104). If it is determined that the large-scale charging unit is fully charged (S104: YES), the process proceeds to daytime processing A (S106) on the next day. On the other hand, if it is determined that the large-scale charging unit is not fully charged (S104: NO), then the control unit 26 causes the power generation facility 21 to generate power and charges the large-scale power storage unit 23 until it is fully charged. (S105). As described above, when the power purchase unit price is equal to or lower than the power purchase peak value at which the power purchase unit price is equal to or lower than the predetermined price, power is stored in the power storage unit by the power purchase by the power purchase unit 29. Therefore, the amount of power purchased from the power company does not exceed the power purchase peak value and can be stored economically. Here, the “predetermined price” is a unit price of power generation by the power generation facility 21, for example. Steps 103 to 105 are “predetermined economic rationality determination” in the present invention.

以上のようにして大規模蓄電部23を満充電にした後、翌日昼間処理Aに処理を進める(S106)。図3に示す翌日昼間処理Aは、翌日の日中に行われる処理である。この処理では、まず、第二太陽光発電部22による発電が行われる(S201)。翌日の天候は所定の日射強度未満であるので、第二太陽光発電部22の発電量は少ない。次に発電設備21による発電を行い(S202)、さらに、買電部29により一括受電で電力を購入する(S203)。しかし、第二太陽光発電部22の発電量が少ないため、第二太陽光発電部22による発電、発電設備21による発電、買電部29による一括受電では、図9のBに示すように不足が生じ、大規模蓄電部23による放電を行い(S204)、不足分を補う。   After the large-scale power storage unit 23 is fully charged as described above, the process proceeds to daytime process A the next day (S106). Next-day daytime processing A shown in FIG. 3 is processing performed during the day of the next day. In this process, power generation by the second solar power generation unit 22 is first performed (S201). Since the next day's weather is less than the predetermined solar radiation intensity, the power generation amount of the second photovoltaic power generation unit 22 is small. Next, power generation is performed by the power generation facility 21 (S202), and further, the power purchase unit 29 purchases power by collective power reception (S203). However, since the amount of power generated by the second solar power generation unit 22 is small, power generation by the second solar power generation unit 22, power generation by the power generation facility 21, and collective power reception by the power purchase unit 29 are insufficient as shown in FIG. Occurs, and the large-scale power storage unit 23 is discharged (S204) to compensate for the shortage.

このように、図9のAに示すように本日及び翌日の天候が所定の日射強度未満である場合には、本日の日没後に、所定の経済合理性判断に基づいて発電設備21による発電及び/又は買電部29による一括受電により第二エリア20の電力需要を上回る電力を供給して、大規模蓄電部23が満充電になるまで充電するので、翌日に当該大規模蓄電部23から放電することで、不足する電力を補うことができる。   Thus, as shown in A of FIG. 9, when the weather of today and the next day is less than the predetermined solar radiation intensity, the power generation by the power generation facility 21 based on the predetermined economic rationality judgment after the sunset of today / Or supply power exceeding the power demand of the second area 20 by collective power reception by the power purchase unit 29 and charging until the large-scale power storage unit 23 is fully charged, so that the large-scale power storage unit 23 is discharged the next day. By doing so, the power shortage can be compensated.

図2に戻って、翌日昼間処理Aが終わると(S106)、本ルーチンを終了させる。なお、本ルーチンは、例えば30分おきに定常的に行われる処理であり、天気予報の変更などがあった場合には、30分毎に行われる処理が変更される。   Returning to FIG. 2, when the daytime processing A is completed the next day (S106), this routine is terminated. Note that this routine is a process that is regularly performed, for example, every 30 minutes, and when the weather forecast is changed, the process that is performed every 30 minutes is changed.

ステップ102に戻って、翌日が所定の日射強度未満でないと判断すると(S102:NO)、すなわち、本日は所定の日射強度未満であるが、翌日は所定の日射強度以上であるので、翌日の第二エリア20の電力不足量の予測処理A(S107)を行う。第二エリア20の電力不足量の予測処理Aは、翌日が所定日射強度以上の天候であると予測される場合に行われる処理である。第二エリア20の電力不足量の予測処理Aでは、制御部26は、まず、各種のデータを取得する(S300)。具体的には、制御部26は、記憶部28に記憶されている情報から翌日の天気予報データ、季節データ、第二太陽光発電部22の位置データ、休日情報を有する暦データを取得する。暦データは、曜日や祝日等の電力需要に影響のある情報である。例えば電力消費施設24がオフィスビルや工場である場合には、休日等に電力需要が下がる。   Returning to step 102, if it is determined that the next day is not less than the predetermined solar radiation intensity (S102: NO), that is, the current day is less than the predetermined solar radiation intensity, but the next day is equal to or higher than the predetermined solar radiation intensity. Prediction process A (S107) of the power shortage in the two areas 20 is performed. The power shortage prediction process A in the second area 20 is a process that is performed when the next day is predicted to be weather having a predetermined solar radiation intensity or more. In the prediction process A of the power shortage amount in the second area 20, the control unit 26 first acquires various data (S300). Specifically, the control unit 26 obtains the next day's weather forecast data, season data, position data of the second solar power generation unit 22, and calendar data having holiday information from the information stored in the storage unit 28. The calendar data is information that affects power demand such as days of the week and holidays. For example, when the power consumption facility 24 is an office building or a factory, the power demand decreases on a holiday or the like.

そして、各種のデータを取得すると(S300)、次に、第二太陽光発電部22の発電量を予測する(S301)。具体的には、制御部26は、翌日の天気予報データ、季節データ、太陽光発電部の位置データなどの情報から翌日の日射強度を予測して、第二太陽光発電部22の発電量を予測する。そして、第二太陽光発電部22の発電量、発電設備21の最大発電量、及び買電ピーク値の和を算出して(S302)、第二エリア20に翌日供給可能な電力量を予測する。   And if various data are acquired (S300), next, the electric power generation amount of the 2nd photovoltaic power generation part 22 will be estimated (S301). Specifically, the control unit 26 predicts the next day's solar radiation intensity from information such as the next day's weather forecast data, season data, and position data of the solar power generation unit, and determines the power generation amount of the second solar power generation unit 22. Predict. Then, the sum of the power generation amount of the second photovoltaic power generation unit 22, the maximum power generation amount of the power generation facility 21, and the power purchase peak value is calculated (S302), and the power amount that can be supplied to the second area 20 the next day is predicted. .

そして、次に、第二エリア20の翌日の消費電力量を予測する(S303)。具体的には、翌日の天気予報データ、季節データ、休日情報を有する暦データなどに基づいて、消費電力量を予測する。例えば天気予報データや季節データから気温を予測することや、休日情報から電力消費施設24としてのオフィス内でのエアコンの使用率など電力使用量が予測できる。   Next, the power consumption amount of the next day in the second area 20 is predicted (S303). Specifically, the power consumption is predicted based on the next day's weather forecast data, season data, calendar data having holiday information, and the like. For example, it is possible to predict the temperature from the weather forecast data and season data, and from the holiday information, the power consumption such as the usage rate of the air conditioner in the office as the power consumption facility 24 can be predicted.

そして次に、翌日の第二エリア20が電力不足であるか否か判断する(S304)。具体的には、ステップ302で算出した第二エリア20に翌日供給可能な電力量がステップ303で算出した第二エリア20の翌日の消費電力量よりも少ないか否か判断する。そして、翌日の第二エリア20が電力不足でないと判断すると(S304:NO)、そのままこの処理を終了する。一方、翌日の第二エリア20が電力不足であると判断すると(S304:YES)、次に、第一エリア10から第二エリア20への電力融通量を予測する処理を行う(S305)。具体的には、図5に示すような電力融通量予測処理を行う。図5は電力融通量予測処理のルーチンを示すフローチャートである。電力融通量予測処理では、まず、各種データを取得する(S400)。具体的には、制御部26は、記憶部28に記憶されている情報から翌日の天気予報データ、季節データ、第一太陽光発電部12の位置データ、休日情報を有する暦データを取得する。   Next, it is determined whether or not the second area 20 of the next day is short of power (S304). Specifically, it is determined whether the amount of power that can be supplied to the second area 20 calculated in step 302 the next day is less than the power consumption of the second area 20 calculated in step 303 the next day. Then, if it is determined that the second area 20 of the next day is not short of power (S304: NO), this process is terminated as it is. On the other hand, if it is determined that the second area 20 of the next day is inadequate (S304: YES), next, a process of predicting the power accommodation amount from the first area 10 to the second area 20 is performed (S305). Specifically, a power accommodation amount prediction process as shown in FIG. 5 is performed. FIG. 5 is a flowchart showing a routine of power accommodation amount prediction processing. In the power accommodation amount prediction process, first, various data are acquired (S400). Specifically, the control unit 26 acquires the next day's weather forecast data, season data, position data of the first solar power generation unit 12, and calendar data having holiday information from the information stored in the storage unit 28.

そして、次に、第一太陽光発電部12の翌日の発電量を予測する処理を行う(S401)。具体的には、制御部26は、翌日の天気予報データ、季節データ、第一太陽光発電部12の位置データなどの情報から翌日の日射強度を予測して、第一太陽光発電部12の発電量を予測する。そして、次に第一エリア10の翌日の消費電力量を予測する処理を行う(S402)。具体的には、翌日の天気予報データ、季節データ、休日情報を有する暦データなどに基づいて、消費電力量を予測する。例えば天気予報データや季節データから気温を予測することや、天気予報データや休日情報から住宅11の居住者の在宅時間を予想して電力使用量が予測できる。   Next, a process of predicting the power generation amount of the next day of the first solar power generation unit 12 is performed (S401). Specifically, the control unit 26 predicts the solar radiation intensity of the next day from information such as the next day's weather forecast data, season data, and position data of the first solar power generation unit 12, and Predict power generation. Then, a process for predicting the power consumption of the next day in the first area 10 is performed (S402). Specifically, the power consumption is predicted based on the next day's weather forecast data, season data, calendar data having holiday information, and the like. For example, the power consumption can be predicted by predicting the temperature from the weather forecast data or season data, or by predicting the staying time of the resident of the house 11 from the weather forecast data or holiday information.

そして、次に、第一エリア10に翌日の余剰電力があるか否か判断する(S403)。具体的には、第一太陽光発電部12の翌日の発電量が第一エリア10の翌日の消費電力量よりも多い場合には余剰電力があると判断する。第一エリア10に余剰電力があると判断すると(S403:YES)、次に制御部26は電力融通制限内であるか否か判断する(S404)。本実施形態においては第一エリア10から第二エリア20への電力融通は既存の電力網4を用いて託送しているので、既存の電力網4への負荷から逆潮流が所定範囲に制限されているので、この範囲を超えては電力融通することができない。電力融通制限内ではないと判断すると(S404:NO)、そのまま処理を終了し、図4のステップ306に処理を進める。一方、電力融通制限内であると判断すると(S404:YES)、第一エリア10から第二エリア20に向けて行われる電力融通量の予測を行う(S405)。すなわち、第一太陽光発電部12の翌日の発電量が第一エリア10の翌日の消費電力量を上回る電力量であり、且つ、電力融通制限内の電力量を翌日の電力融通量として予測する。そして、この処理を終了し、図4のステップ306に処理を進める。   Next, it is determined whether there is surplus power for the next day in the first area 10 (S403). Specifically, when the power generation amount on the next day of the first solar power generation unit 12 is larger than the power consumption amount on the next day of the first area 10, it is determined that there is surplus power. If it is determined that there is surplus power in the first area 10 (S403: YES), then the control unit 26 determines whether it is within the power interchange limit (S404). In the present embodiment, power interchange from the first area 10 to the second area 20 is entrusted using the existing power network 4, so that the reverse power flow from the load on the existing power network 4 is limited to a predetermined range. Therefore, power interchange cannot be performed beyond this range. If it is determined that it is not within the power interchange limit (S404: NO), the process is terminated as it is, and the process proceeds to step 306 in FIG. On the other hand, if it is determined that it is within the power interchange limit (S404: YES), the amount of power interchange performed from the first area 10 to the second area 20 is predicted (S405). That is, the amount of power generated on the next day of the first solar power generation unit 12 is an amount of power that exceeds the amount of power consumed on the next day of the first area 10, and the amount of power within the power interchange limit is predicted as the amount of power interchange on the next day. . Then, this process ends, and the process proceeds to step 306 in FIG.

ステップ403に戻って、第一エリア10に余剰電力がないと判断すると(S403:NO)、すなわち第一太陽光発電部12の翌日の発電量が第一エリア10の翌日の消費電力量よりも少ない場合には、次に宅内蓄電部13に余剰があるか否か判断する(S406)。すなわち、宅内蓄電部13の蓄電残量が第一エリア10の電力不足を補った上でも残る場合には、宅内蓄電部13に余剰があると判断する。宅内蓄電部13に余剰がない場合には(S406:NO)、そのままこの処理を終了し、図4の306に処理を進める。一方、宅内蓄電部13に余剰があると判断すると(S406:YES)、次に、電力融通制限内か判断する(S407)。電力融通制限内であると判断すると(S407:YES)、宅内蓄電部13の余剰電力を放電量として予測し(S408)、この放電によって生じる余剰電力を翌日に第一エリア10から第二エリア20に向けての融通される電力融通量として算出し(S405)、この処理を終了し、図4のステップ306に処理を進める。一方、電力融通制限内でないと判断すると(S407:NO)、そのままこの処理を終了し、図4のステップ306に処理を進める。   Returning to step 403, if it is determined that there is no surplus power in the first area 10 (S <b> 403: NO), that is, the power generation amount on the next day of the first solar power generation unit 12 is larger than the power consumption on the next day in the first area 10. If the number is small, it is next determined whether or not there is a surplus in the home power storage unit 13 (S406). That is, if the remaining amount of power stored in the home power storage unit 13 remains after compensating for the power shortage in the first area 10, it is determined that there is a surplus in the home power storage unit 13. If there is no surplus in the home power storage unit 13 (S406: NO), this process is terminated as it is, and the process proceeds to 306 in FIG. On the other hand, if it is determined that there is a surplus in the home power storage unit 13 (S406: YES), it is then determined whether the power interchange is within the limit (S407). If it is determined that it is within the power interchange limit (S407: YES), the surplus power of the home power storage unit 13 is predicted as a discharge amount (S408), and surplus power generated by this discharge is converted from the first area 10 to the second area 20 on the next day. (S405), the process ends, and the process proceeds to step 306 in FIG. On the other hand, if it is determined that it is not within the power interchange limit (S407: NO), this process is terminated as it is, and the process proceeds to step 306 in FIG.

図4のステップ306では、電力不足量を予測する処理を行う。具体的には、ステップ302で算出した第二エリア20に翌日供給可能な電力量とステップ306で算出した翌日の電力融通量の予測値との合計がステップ303で算出した第二エリア20の翌日の消費電力量よりも少ない場合に、当該消費電力量のうち当該供給量及び融通量の合計を超える部分が翌日の第二エリア20の電力不足量となる。翌日の第二エリア20の電力不足量を算出すると(S306)、つぎに、当該第二エリア20は翌日電力不足であるか否か判断する(S307)。電力不足ではないと判断すると(S307:NO)、この処理を終了し、図2に戻って、翌日昼間処理(S108)を行う。   In step 306 of FIG. 4, a process for predicting the power shortage is performed. Specifically, the next day of the second area 20 calculated in step 303 is the sum of the amount of power that can be supplied to the second area 20 calculated in step 302 the next day and the predicted value of the next day's power interchange amount calculated in step 306. When the power consumption is less than the power consumption amount, the portion of the power consumption that exceeds the sum of the supply amount and the accommodation amount becomes the power shortage amount of the second area 20 on the next day. When the power shortage amount of the second area 20 of the next day is calculated (S306), it is then determined whether or not the second area 20 is short of power the next day (S307). If it is determined that there is no power shortage (S307: NO), this process ends, and the process returns to FIG. 2 to perform daytime processing (S108) on the next day.

翌日の第二エリア20が電力不足であると判断すると(S307:YES)、本日の日没から深夜帯にかけて、図11にAで示すように大規模蓄電部23にステップ306で算出した第二エリア20の翌日の電力不足量になるまでまで充電する処理を行う(S308)。具体的には、まず買電部29が電力会社から電力を購入し、買電ピーク値に至るか、又は大規模蓄電部23の蓄電残量が翌日の電力不足量を超えるまで電力を購入する。   If it is determined that the second area 20 of the next day is inadequate (S307: YES), the second power calculated in step 306 is calculated for the large-scale power storage unit 23 as indicated by A in FIG. A process of charging until the power shortage amount of the next day in the area 20 is performed (S308). Specifically, the power purchase unit 29 first purchases power from the power company and purchases power until the power purchase peak value is reached or until the remaining power storage amount of the large-scale power storage unit 23 exceeds the power shortage amount of the next day. .

そして、買電ピーク値又は大規模蓄電部23が翌日の電力不足量以上の電力を購入すると(S308)、大規模充電部の蓄電残量は翌日の電力不足量未満か否か判断する(S309)。大規模充電部の蓄電残量が翌日の電力不足量以上の場合、(S309:NO)、図2に戻って翌日昼間処理B(S108)に処理を進める。一方、大規模充電部の蓄電残量が翌日の電力不足量未満であると判断すると(S309:YES)、次に制御部26は、発電設備21に発電をさせて、大規模蓄電部23が翌日の電力不足量以上になるまで充電する(S310)。なお、ステップ308からステップ310は、本発明における「所定の経済合理性判断」である。   When the power purchase peak value or the large-scale power storage unit 23 purchases more power than the next day's power shortage (S308), it is determined whether or not the remaining power storage amount of the large-scale charging unit is less than the next day's power shortage (S309). ). When the amount of electricity stored in the large-scale charging unit is equal to or greater than the amount of power shortage on the next day (S309: NO), the process returns to FIG. 2 and proceeds to daytime processing B (S108) on the next day. On the other hand, if it is determined that the remaining amount of electricity stored in the large-scale charging unit is less than the power shortage amount of the next day (S309: YES), the control unit 26 causes the power generation facility 21 to generate power, and the large-scale power storage unit 23 The battery is charged until the power shortage amount on the next day is reached (S310). Steps 308 to 310 are “predetermined economic rationality determination” in the present invention.

図2に戻って、翌日昼間処理B(S108)は、図6に示すように、翌日の日中に行われる処理である。この処理では、まず、第二太陽光発電部22による発電が行われる(S501)。図11又は図12に示すように、翌日の天候は所定の日射強度以上であるので、第二太陽光発電部22の発電量は多い。次に発電設備21による発電を行い(S502)、さらに、買電部29により一括受電で電力を購入する(S503)。そして、図11のBに示すように不足が生じる場合には、第一エリア10からの電力融通でまかなう(S504)。所定の日射強度以上であるので第一エリア10の第一太陽光発電部12の発電量が多く、第一エリア10で余剰電力が発生している場合には、図11のCに示すように、第一エリア10からの電力融通によって第二エリア20に生じた余剰電力を大規模蓄電部23に充電する(S505)。そして、日没前後の太陽光発電量が少なくなる時間帯に、図11のDに示すように、昼間に充電した大規模蓄電部23から放電を行い(S506)、第二エリア20の不足分を補って、翌日昼間処理Bのルーチンを終了する。   Returning to FIG. 2, the next day daytime process B (S108) is a process performed during the day of the next day, as shown in FIG. In this process, first, power generation by the second solar power generation unit 22 is performed (S501). As shown in FIG. 11 or FIG. 12, since the next day's weather is not less than a predetermined solar radiation intensity, the amount of power generated by the second solar power generation unit 22 is large. Next, power generation is performed by the power generation facility 21 (S502), and further, the power purchase unit 29 purchases power by collective power reception (S503). And when shortage arises as shown to B of FIG. 11, it will cover by the electric power interchange from the 1st area 10 (S504). Since the amount of power generated by the first solar power generation unit 12 in the first area 10 is large because the solar radiation intensity is higher than the predetermined solar radiation intensity, and surplus power is generated in the first area 10, as shown in FIG. The surplus power generated in the second area 20 due to the power interchange from the first area 10 is charged in the large-scale power storage unit 23 (S505). Then, during the time period when the amount of photovoltaic power generation before and after sunset decreases, as shown in FIG. 11D, the large-scale power storage unit 23 charged in the daytime is discharged (S506), and the shortage of the second area 20 And the routine of daytime processing B on the next day is completed.

このように、図11のAに示すように翌日の天候が所定の日射強度以上である場合には、翌日第二エリア20で不足する電力量を予測し、本日の日没後に、所定の経済合理性判断に基づいて発電設備21による発電及び/又は買電部29による一括受電により大規模蓄電部23に翌日不足する電力量を充電するので、翌日に必要な電力を補うことができるとともに、不要な発電や買電をすることが無いので、経済的であり、電力の地産地消率を高めることができる。   Thus, as shown in FIG. 11A, when the next day's weather is equal to or higher than the predetermined solar radiation intensity, the amount of power shortage in the second area 20 the next day is predicted, and after the sunset of today, a predetermined economy Based on the rationality judgment, the large-scale power storage unit 23 is charged with the amount of power shortage the next day by the power generation by the power generation facility 21 and / or the collective power reception by the power purchase unit 29. Since there is no unnecessary power generation or purchase, it is economical and the local production and consumption rate of power can be increased.

図2のステップ101に戻って、本日の天候が所定の日射強度未満でないと判断すると(S101:NO)、翌日の天候が所定の日射強度未満であるか否か判断する(S109)。すなわち、天気予報データに基づいて、翌日の天候が、曇り、雨、又は雪などの天候である場合には、所定の日射強度未満の天候であると判断し(S109:YES)、翌日の天候が、晴又は快晴である場合には、所定の日射強度以上の天候であると判断する(S109:NO)。   Returning to step 101 of FIG. 2, if it is determined that today's weather is not less than the predetermined solar radiation intensity (S101: NO), it is determined whether the next day's weather is less than the predetermined solar radiation intensity (S109). That is, based on the weather forecast data, if the next day's weather is cloudy, rainy, or snowy, it is determined that the weather is less than a predetermined solar radiation intensity (S109: YES). However, when it is clear or clear, it is determined that the weather is equal to or higher than a predetermined solar radiation intensity (S109: NO).

翌日の天候が所定の日射強度未満であると判断すると(S109:YES)、翌日の第二エリア20の電力不足量の予測処理Bを実行する(S110)。図7に示すように、第二エリア20の電力不足量の予測処理Bは、本日が所定の日射強度以上で、且つ翌日が所定日射強度未満の天候であると予測される場合に行われる処理である。第二エリア20の電力不足量の予測処理Bは、図4に記載の第二エリア20の電力不足量の予測処理Aのステップ300からステップ303までが同様の処理であるので同一の符号を付して詳細な説明を省略する。第二エリア20の電力不足量の予測処理Bでは、制御部26は、まず、各種のデータを取得し(S300)、次に、第二太陽光発電部22の発電量を予測する(S301)。そして、第二太陽光発電部22の発電量、発電設備21の最大発電量、及び買電ピーク値の和を算出して(S302)、第二エリア20に翌日供給可能な電力量を予測する。そして、次に、第二エリア20の翌日の消費電力量を予測する(S303)。   When it is determined that the next day's weather is less than the predetermined solar radiation intensity (S109: YES), the power shortage prediction process B of the second area 20 of the next day is executed (S110). As shown in FIG. 7, the power shortage prediction process B in the second area 20 is a process performed when it is predicted that the weather today is equal to or higher than the predetermined solar radiation intensity and the next day is less than the predetermined solar radiation intensity. It is. The power shortage prediction process B in the second area 20 is the same as steps 300 to 303 in the power shortage prediction process A in the second area 20 shown in FIG. Therefore, detailed description is omitted. In the power shortage prediction process B of the second area 20, the control unit 26 first acquires various data (S300), and then predicts the power generation amount of the second solar power generation unit 22 (S301). . Then, the sum of the power generation amount of the second photovoltaic power generation unit 22, the maximum power generation amount of the power generation facility 21, and the power purchase peak value is calculated (S302), and the power amount that can be supplied to the second area 20 the next day is predicted. . Next, the power consumption amount of the next day in the second area 20 is predicted (S303).

そして次に、翌日の第二エリア20の電力不足量を予測する(S601)。具体的には、ステップ303で算出した第二エリア20の翌日の消費電力量からステップ302で算出した第二エリア20に翌日供給可能な電力量を除して翌日の第二エリア20の電力不足量を予測する。この第二エリア20の電力不足量の予測処理Bでは、第一エリア10から第二エリア20への電力融通量の予測をしない。すなわち、翌日の天候が所定の日射強度未満であるので、翌日の第一エリア10に余剰電力がほとんど発生しないので電力融通量を考慮して第二エリア20の翌日の電力不足量を判断する必要がない。このように、天気予報データにより把握した翌日の天候によって、電力融通量を算出する不要な工程を無くすることができる。   Next, the power shortage amount of the second area 20 on the next day is predicted (S601). Specifically, power shortage of the second area 20 on the next day is calculated by dividing the amount of power that can be supplied to the second area 20 calculated in step 302 from the power consumption on the next day of the second area 20 calculated in step 303. Predict the amount. In the power shortage prediction process B of the second area 20, the power interchange amount from the first area 10 to the second area 20 is not predicted. That is, since the next day's weather is less than the predetermined solar radiation intensity, almost no surplus power is generated in the first area 10 on the next day, so it is necessary to determine the amount of power shortage on the next day in the second area 20 in consideration of the power interchange amount. There is no. In this way, an unnecessary step of calculating the power accommodation amount can be eliminated according to the weather of the next day ascertained from the weather forecast data.

第二エリア20の電力不足量の予測処理Bを実行すると(S110)、次に、図10のグラフに示すように、翌日必要な電力を、翌日の昼間だけでは調達しきれないので、本日の日没から深夜帯にかけて、図10にAで示すように大規模蓄電部23に、第二エリア20の電力不足量の予測処理Bで算出された翌日の第二エリア20の電力不足量を超えるまで充電する処理を行う(S111)。具体的には、まず買電部29が電力会社から電力を購入し、買電ピーク値に至るか、又は、大規模蓄電部23の蓄電残量が翌日の第二エリア20の電力不足量を超えるまで電力を購入する。   When the prediction process B of the power shortage amount in the second area 20 is executed (S110), next, as shown in the graph of FIG. From sunset to midnight, as shown by A in FIG. 10, the large-scale power storage unit 23 exceeds the power shortage amount of the second area 20 of the next day calculated by the power shortage prediction process B of the second area 20. (S111). Specifically, first, the power purchase unit 29 purchases electric power from the electric power company and reaches the power purchase peak value, or the remaining amount of power stored in the large-scale power storage unit 23 is the amount of power shortage in the second area 20 on the next day. Purchase power until it exceeds.

買電ピーク値又は大規模蓄電部23が翌日の第二エリア20の電力不足量を超えるまで電力を購入すると(S111)、大規模充電部は翌日の第二エリア20の電力不足量を超えたか否か判断する(S112)。大規模充電部が翌日の第二エリア20の電力不足量を超えたと判断すると(S112:YES)、翌日昼間処理A(S106)に処理を進める。一方、大規模充電部が翌日の第二エリア20の電力不足量を超えていないと判断すると(S112:NO)、次に制御部26は、発電設備21に発電をさせて、大規模蓄電部23が翌日の第二エリア20の電力不足量を超えるまで充電する(S113)。ここで、ステップ111からステップ113は、本発明における「所定の経済合理性判断」である。   When purchasing power until the power purchase peak value or the large-scale power storage unit 23 exceeds the power shortage amount of the second area 20 the next day (S111), has the large-scale charging unit exceeded the power shortage amount of the second area 20 the next day? It is determined whether or not (S112). If it is determined that the large-scale charging unit has exceeded the power shortage amount of the second area 20 on the next day (S112: YES), the process proceeds to daytime processing A (S106) on the next day. On the other hand, when it is determined that the large-scale charging unit does not exceed the power shortage amount of the second area 20 on the next day (S112: NO), the control unit 26 then causes the power generation facility 21 to generate power and the large-scale power storage unit. It charges until 23 exceeds the power shortage amount of the second area 20 on the next day (S113). Here, Step 111 to Step 113 are “predetermined economic rationality determination” in the present invention.

以上のようにして大規模蓄電部23に翌日の第二エリア20の電力不足量を超えるまで充電にした後、翌日昼間処理Aに処理を進める(S106)。翌日昼間処理Aは図3に示した処理であり、前述と同一の処理であるので説明を省略する。翌日昼間処理Aを実行すると本ルーチンを終了させ、例えば30分おきに定常的に最初から処理を開始する。   As described above, after charging the large-scale power storage unit 23 until the power shortage amount of the second area 20 on the next day is exceeded, the process proceeds to the daytime process A on the next day (S106). The next daytime daytime process A is the process shown in FIG. When the daytime process A is executed on the next day, this routine is terminated, and the process is regularly started from the beginning, for example, every 30 minutes.

一方、ステップ109において、翌日の天候が所定の日射強度以上であると判断すると(S109:NO)、本日は所定の日射強度以上であり、翌日も所定の日射強度以上であるので、翌日の第二エリア20の電力不足量の予測処理A(S107)を行い、翌日昼間処理(S108)を行う。図3に示した翌日の第二エリア20の電力不足量の予測処理A(S107)及び図6に示した翌日昼間処理B(S108)は、前述した通りの処理であるので説明を省略する。   On the other hand, if it is determined in step 109 that the next day's weather is equal to or higher than the predetermined solar radiation intensity (S109: NO), the current day is higher than the predetermined solar radiation intensity, and the next day is also higher than the predetermined solar radiation intensity. Prediction process A (S107) of power shortage in two areas 20 is performed, and daytime processing (S108) is performed the next day. The power shortage prediction process A (S107) of the second area 20 of the next day shown in FIG. 3 and the next day daytime process B (S108) shown in FIG.

なお、所定の経済合理性判断は上述のステップ103からステップ105、ステップ111からステップ113、ステップ308からステップ310に記載のものに限定されるものではない。これらの処理に替えて図8にしめすような経済合理性判断であっても良い。図8の経済合理性判断では、まず、制御部26は買電部29による時間帯毎の買電単価が発電設備21による発電単価以下であるか否か判断する(S701)。時間帯毎の買電単価が発電単価以下であると判断すると(S701:YES)、買電部29により、所定の買電ピーク値まで電力購入を優先する(S702)。すなわち、発電設備21による発電をおこなうよりも買電部29によって電力会社から電力を購入したほうが安価であるので、買電部29による電力購入を優先する。そして、第二エリア20に更に電力不足があるか否か判断し(S703)、電力不足があると判断すると(S703:YES)、更に発電設備21による発電を行って不足電力を補う(S704)。一方、電力不足がないと判断すると(S703:NO)、そのまま経済合理性判断の処理を終了する。   The predetermined economic rationality judgment is not limited to those described in steps 103 to 105, steps 111 to 113, and steps 308 to 310 described above. An economic rationality judgment as shown in FIG. 8 may be used instead of these processes. In the economic rationality determination of FIG. 8, first, the control unit 26 determines whether or not the power purchase unit price by the power purchase unit 29 for each time period is equal to or less than the unit price of power generation by the power generation facility 21 (S701). If it is determined that the power purchase unit price for each time zone is equal to or less than the power generation unit price (S701: YES), the power purchase unit 29 gives priority to power purchase up to a predetermined power purchase peak value (S702). That is, since it is cheaper to purchase power from the power company by the power purchase unit 29 than to generate power by the power generation facility 21, the power purchase by the power purchase unit 29 is given priority. Then, it is determined whether or not there is a further power shortage in the second area 20 (S703). If it is determined that there is a power shortage (S703: YES), power generation by the power generation facility 21 is further performed to compensate for the power shortage (S704). . On the other hand, if it is determined that there is no power shortage (S703: NO), the economic rationality determination process is terminated.

一方、ステップ701に戻って、時間帯毎の買電単価が発電単価よりも高いと判断すると(S701:NO)、発電設備21による発電を優先する(S705)。すなわち、電力会社からの電力の購入よりも発電設備21による発電のほうが安価であるので、発電設備21による発電を優先する。そして、第二エリア20に更に電力不足があるか否か判断し(S706)、電力不足があると判断すると(S706:YES)、更に買電部29により電力会社から電力を購入して不足電力を補う(S707)。一方、電力不足がないと判断すると(S706:NO)、そのまま経済合理性判断の処理を終了する。この経済合理性判断は時間帯毎に処理を繰り返す。   On the other hand, returning to step 701, if it is determined that the unit price of power purchase for each time zone is higher than the unit price of power generation (S701: NO), priority is given to power generation by the power generation facility 21 (S705). That is, since the power generation by the power generation facility 21 is cheaper than the purchase of power from the power company, the power generation by the power generation facility 21 is given priority. Then, it is determined whether or not there is a further power shortage in the second area 20 (S706). If it is determined that there is a power shortage (S706: YES), the power purchase unit 29 further purchases power from the power company and runs out of power. (S707). On the other hand, if it is determined that there is no power shortage (S706: NO), the economic rationality determination process is terminated. This economic rationality judgment is repeated every time period.

所定の経済合理性判断をこのようにすると、発電設備21による発電の単価と、所定価格以下となる買電ピーク値以下の範囲での買電部29による電力購入の単価とを、時間帯毎にそれぞれ比較し、単価が低くなるほうを優先して蓄電部への蓄電に用いるものであるので、時間帯毎に買電単価が変更される料金体系の場合にも発電設備21の発電と買電部29による電力購入とを経済的に合理的に選択することができる。   When the predetermined economic rationality judgment is made in this way, the unit price of power generation by the power generation facility 21 and the unit price of power purchase by the power purchase unit 29 within the range of the power purchase peak value that is less than or equal to the predetermined price are determined for each time zone. Therefore, the lower unit price is used for power storage in the power storage unit. Therefore, even in the case of a charge system in which the power purchase unit price is changed for each time zone, It is possible to economically and rationally select power purchase by the electric unit 29.

以上のように本実施形態のエネルギーマネジメントシステム1は、例えばくもりが連続するような場合には、不足電力量を予測する処理をおこなうことなく、大規模蓄電部23を満充電まで蓄電できるので、不要な処理でシステムに余計な負担を掛けることなく連続する2日の天候を考慮したエネルギーマネジメントを行うことができる。また、大規模蓄電部23への蓄電は、発電設備21による発電又は買電部29による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給することができるので、電力購入のピークを抑えてより経済的な蓄電を行うことができる。   As described above, the energy management system 1 of the present embodiment can store the large-scale power storage unit 23 until full charge without performing the process of predicting the amount of insufficient power, for example, when cloudy weather continues. Energy management can be performed in consideration of two consecutive days of weather without unnecessary burden on the system with unnecessary processing. Moreover, since the electrical storage to the large-scale electrical storage part 23 can supply electric power by the method selected based on predetermined economic rationality judgment among the electric power generation by the power generation equipment 21 or the electric power purchase by the electric power purchase part 29, Electric power can be stored more economically by suppressing the peak of power purchase.

そして、翌日の天気予報データが所定の日射強度以上の天候の場合に、翌日の予測電力融通量を予測して、翌日の第二エリア20の電力の不足を判断し、発電設備21による発電及び買電部29による電力購入のうち、所定の経済合理性判断に基づいて選択した方法で電力を供給して蓄電部に蓄電することができるので電力融通量をも考慮したより正確且つ経済的に必要な電力を蓄電することができる。また、翌日の天気予報データが所定の日射強度未満の場合には、第一エリア10に余剰電力がないので電力融通量を予測せず、不要な処理でシステムに余計な負担を掛けることなく電力融通を考慮したエネルギーマネジメントを行うことができる。   Then, when the weather forecast data for the next day is a weather with a predetermined solar radiation intensity or more, the predicted power interchange amount for the next day is predicted, the lack of power in the second area 20 on the next day is determined, and the power generation by the power generation facility 21 Among power purchases by the power purchase unit 29, power can be supplied and stored in the power storage unit by a method selected based on a predetermined economic rationality judgment, so that more accurate and economical considering the power interchange amount. Necessary electric power can be stored. Further, when the weather forecast data for the next day is less than the predetermined solar radiation intensity, there is no surplus power in the first area 10, so the power interchange amount is not predicted, and the power is consumed without unnecessary burden on the system due to unnecessary processing. It is possible to perform energy management considering flexibility.

なお、本発明の実施の形態は上述の形態に限ることなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができることは云うまでもない。   Needless to say, the embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the idea of the present invention.

本発明に係るエネルギーマネジメントシステム11は、住宅エリアからオフィス商業エリアに電力を融通できるシステムとして好適に適用することができる。   The energy management system 11 according to the present invention can be suitably applied as a system capable of accommodating power from a residential area to an office commercial area.

1 エネルギーマネジメントシステム
10 第一エリア
11 住宅
20 第二エリア
21 発電設備
22 第二太陽光発電部(太陽光発電部)
23 大規模蓄電部(蓄電部)
24 電力消費施設
DESCRIPTION OF SYMBOLS 1 Energy management system 10 1st area 11 Housing 20 2nd area 21 Power generation equipment 22 2nd photovoltaic power generation part (solar power generation part)
23 Large-scale power storage unit (power storage unit)
24 Electricity consumption facilities

本発明の第1のエネルギーマネジメントシステムは、太陽光発電部と、燃料を消費して電力を発電する発電設備と、電力を蓄電する蓄電部と、系統から電力を購入する買電部と、電力消費施設と、天気予報データを取得するデータ受信部と、前記蓄電部の放充電を制御する制御部と、を備え当日が所定の日射強度以上の天候であり、且つ前記制御部が取得した翌日の天気予報データが所定の日射強度以下の天候の場合に、予め予想される翌日の不足電力量を前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電し、当日が所定の日射強度以下の天候であり、且つ前記制御部が取得した翌日の天気予報データが所定の日射強度以下の天候の場合に、前記発電設備による発電又は前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して、前記蓄電部に満充電まで蓄電するエネルギーマネジメントシステムであって、前記制御部は、複数の住宅を有するエリアから前記電力消費施設に対して行われる電力融通量を制御するものであり、前記制御部は、取得した翌日の天気予報データが所定の日射強度以上の天候の場合に、前記複数の住宅を有するエリアから前記電力消費施設に対して行われる翌日の予測電力融通量を予測し、予め予測される電力融通量の予測値を含む情報に基づいて、翌日の不足電力量が予想される場合に、前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電することを特徴としている。
A first energy management system of the present invention includes a solar power generation unit, a power generation facility that generates power by consuming fuel, a power storage unit that stores power, a power purchase unit that purchases power from a system, A consumption facility, a data receiving unit that acquires weather forecast data, and a control unit that controls the discharging and charging of the power storage unit, and the day is weather with a predetermined solar radiation intensity or more, and the control unit acquires When the weather forecast data for the next day is less than or equal to a predetermined solar radiation intensity, the insufficient power amount for the next day predicted in advance is used to determine the predetermined economic rationality among power generation by the power generation facility and power purchase by the power purchase unit. The electric power is supplied by the method selected on the basis and stored in the power storage unit, and the weather is less than a predetermined solar radiation intensity on the day, and the weather forecast data for the next day acquired by the control unit is a predetermined solar radiation intensity or less. in the case of Of the power generation or power purchase by the power purchase unit by the power generation facility, and powered by a method selected on the basis of a predetermined economic rationality determination, a energy management system to the power storage until full charge to said power storage unit The control unit controls the amount of power interchange performed to the power consuming facility from an area having a plurality of houses, and the control unit acquires the next day's weather forecast data for a predetermined solar radiation intensity. In the case of the above weather, based on the information including the predicted value of the predicted power accommodation amount predicted in advance from the area having the plurality of houses and predicted for the next day, which is performed on the power consuming facility. The method selected based on a predetermined economic rationality judgment among the power generation by the power generation facility and the power purchase by the power purchase unit when the next day's power shortage is expected Ri power supplies are characterized in that the power storage to the energy storage unit.

本発明の第1のエネルギーマネジメントシステムは、当日が所定の日射強度以上の天候であり、且つ翌日の天気予報データが所定の日射強度以下の天候の場合には、予想される翌日の不足電力量を予め蓄電部に蓄電するものであるとともに、当日が所定の日射強度以下の天候であり、且つ翌日の天気予報データが所定の日射強度以下の天候の場合には、蓄電部に満充電まで蓄電するので、所定の日射強度以下の天気が連続する場合、例えばくもりが連続する場合には、不足電力量を予測する処理をおこなうことなく、蓄電部を満充電まで蓄電できるので、不要な処理でシステムに余計な負担を掛けることなく連続する2日の天候を考慮したエネルギーマネジメントを行うことができる。また、蓄電部への蓄電は、前記発電設備による発電又は前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して、前記蓄電部に蓄電しているので、太陽光発電部による発電量が少ない場合にも蓄電部へ蓄電することができる。そして、発電設備による発電と買電部による電力購入を併用することで、電力購入のピークを抑えてより経済的な蓄電を行うことができる。
また、第1のエネルギーマネジメントシステムは、複数の住宅を有するエリアから電力消費施設に対して行われる電力融通量を制御するものであり、翌日の天気予報データが所定の日射強度以上の天候の場合に、翌日の予測電力融通量を予測し、当該電力融通量の予測値を含む情報に基づいて、翌日の電力消費施設に電力の不足が予想される場合に、前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電するので、翌日の天気予報データが所定の日射強度未満の場合には、複数の住宅を有するエリアに電力の余剰は発生しないので翌日の予測電力融通量を予測せず、不要な処理でシステムに余計な負担を掛けることなく電力融通を考慮したエネルギーマネジメントを行うことができる。また、発電設備による発電と買電部による電力購入を併用することで、電力購入のピークを抑えてより経済的な蓄電を行うことができる。
In the first energy management system of the present invention, if the current day is a weather of a predetermined solar radiation intensity or more and the weather forecast data of the next day is a weather of a predetermined solar radiation intensity or less, an expected shortage of electric power for the next day Is stored in the power storage unit in advance, and if the weather is less than or equal to the predetermined solar radiation intensity on the day and the weather forecast data for the next day is less than or equal to the predetermined solar radiation intensity, Therefore, when the weather below the predetermined solar radiation intensity continues, for example, when cloudy weather continues, the power storage unit can be charged to full charge without performing the process of predicting the amount of insufficient power. Energy management can be performed in consideration of the weather on two consecutive days without placing an extra burden on the system. The power storage unit stores power in the power storage unit by supplying power by a method selected based on a predetermined economic rationality judgment among power generation by the power generation facility or power purchase by the power purchase unit. Therefore, even when the amount of power generated by the solar power generation unit is small, it can be stored in the power storage unit. Then, by combining the power generation by the power generation facility and the power purchase by the power purchase unit, it is possible to suppress the peak of the power purchase and perform more economical power storage.
In addition, the first energy management system controls the amount of power exchanged to the power consuming facility from an area having a plurality of houses, and the next day's weather forecast data is a weather with a predetermined solar radiation intensity or more. If the power consumption facility of the next day is predicted to be insufficient based on the information including the predicted value of the power interchange amount, the power generation facility and the purchase Among power purchases by the electricity department, power is supplied by the method selected based on a predetermined economic rationality judgment and stored in the electricity storage part.If the weather forecast data for the next day is less than a predetermined solar radiation intensity, Since there is no surplus of power in an area with multiple houses, the estimated power capacity for the next day is not predicted, and energy is taken into consideration without unnecessary burden on the system due to unnecessary processing. It is possible to perform the ghee management. Further, by combining the power generation by the power generation facility and the power purchase by the power purchase unit, it is possible to suppress the peak of the power purchase and perform more economical power storage.

Claims (5)

太陽光発電部と、燃料を消費して電力を発電する発電設備と、電力を蓄電する蓄電部と、系統から電力を購入する買電部と、電力消費施設と、天気予報データを取得するデータ受信部と、前記蓄電部の放充電を制御する制御部と、を備えたエネルギーマネジメントシステムであって、
当日が所定の日射強度以上の天候であり、且つ前記制御部が取得した翌日の天気予報データが所定の日射強度以下の天候の場合に、予め予想される翌日の不足電力量を前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電し、
当日が所定の日射強度以下の天候であり、且つ前記制御部が取得した翌日の天気予報データが所定の日射強度以下の天候の場合に、前記発電設備による発電又は前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して、前記蓄電部に満充電まで蓄電することを特徴とするエネルギーマネジメントシステム。
Solar power generation unit, power generation facility that consumes fuel to generate power, power storage unit that stores power, power purchase unit that purchases power from the system, power consumption facility, and data for obtaining weather forecast data An energy management system comprising: a receiving unit; and a control unit that controls discharging / charging of the power storage unit,
If the current day is weather with a predetermined solar radiation intensity or more and the weather forecast data for the next day acquired by the control unit is a weather with a predetermined solar radiation intensity or less, the power generation facility will calculate the amount of power shortage predicted for the next day in advance. Among power generation and power purchase by the power purchase unit, supply power by a method selected based on a predetermined economic rationality judgment and store in the power storage unit,
When the weather is below the predetermined solar radiation intensity on the day and the weather forecast data for the next day acquired by the control unit is below the predetermined solar radiation intensity, the power generation by the power generation facility or the power purchase by the power purchasing unit Among these, an energy management system characterized in that electric power is supplied by a method selected based on a predetermined economic rationality judgment and the power storage unit is charged until it is fully charged.
前記予め予想される不足電力量は、翌日の前記太陽光発電部の予測発電量、及び翌日の前記電力消費施設の予測電力消費量を含むデータに基づいて制御部が算出する値であり、
制御部は、翌日の前記太陽光発電部の予測発電量を、制御部が取得した翌日の天気予報データ、季節データ、及び前記太陽光発電部の位置データを含むデータに基づいて算出し、
制御部は、翌日の前記電力消費施設の予測電力消費量は、制御部が取得した翌日の天気予報データ、季節データ、及び休日情報を有する暦データを含むデータに基づいて算出することを特徴とする請求項1に記載のエネルギーマネジメントシステム。
The insufficient power amount predicted in advance is a value calculated by the control unit based on data including the predicted power generation amount of the photovoltaic power generation unit on the next day and the predicted power consumption amount of the power consumption facility on the next day,
The control unit calculates the predicted power generation amount of the photovoltaic power generation unit the next day based on data including the weather forecast data of the next day acquired by the control unit, seasonal data, and position data of the solar power generation unit,
The control unit calculates the predicted power consumption of the power consuming facility the next day based on data including calendar data having weather forecast data, season data, and holiday information for the next day acquired by the control unit. The energy management system according to claim 1.
前記所定の経済合理性判断は、
買電単価が所定価格以下となる買電ピーク値以下の範囲で前記買電部による電力購入により前記蓄電部に蓄電し、当該買電ピーク値を超える場合に前記発電設備による発電により前記蓄電部に蓄電するものであることを特徴とする請求項1又は請求項2に記載のエネルギーマネジメントシステム。
The predetermined economic rationality judgment is
The power storage unit stores power in the power storage unit by purchasing power in the power purchase unit within a range of a power purchase peak value that is equal to or lower than a predetermined price, and the power storage unit generates power by the power generation facility when the power purchase peak value is exceeded. The energy management system according to claim 1, wherein the energy management system is one that stores electricity in the battery.
前記所定の経済合理性判断は、
前記発電設備による発電の単価と、買電単価が所定価格以下となる買電ピーク値以下の範囲での前記買電部による電力購入の単価とを、時間帯毎にそれぞれ比較し、単価が低くなるほうを優先して前記蓄電部への蓄電に用いるものであることを特徴とする請求項1又は請求項2に記載のエネルギーマネジメントシステム。
The predetermined economic rationality judgment is
The unit price of power generation by the power generation facility is compared with the unit price of power purchase by the power purchase unit within the range of the power purchase peak value where the power purchase unit price is less than or equal to a predetermined price. The energy management system according to claim 1, wherein the energy management system is used for power storage to the power storage unit with priority.
前記制御部は、複数の住宅を有するエリアから前記電力消費施設に対して行われる電力融通量を制御するものであり、
前記制御部は、取得した翌日の天気予報データが所定の日射強度以上の天候の場合に、前記複数の住宅を有するエリアから前記電力消費施設に対して行われる翌日の予測電力融通量を予測し、
予め予測される電力融通量の予測値を含む情報に基づいて、翌日の不足電力量が予想される場合に、前記発電設備による発電及び前記買電部による電力購入のうち、所定の経済合理性判断に基づいて選択した方法により電力を供給して前記蓄電部に蓄電することを特徴とする請求項1から請求項4のいずれかに記載のエネルギーマネジメントシステム。
The control unit controls the amount of power interchange performed from the area having a plurality of houses to the power consuming facility,
The control unit predicts a predicted power interchange amount for the next day performed from the area having the plurality of houses to the power consuming facility when the acquired weather forecast data for the next day is a weather with a predetermined solar radiation intensity or more. ,
Based on the information including the predicted value of the power accommodation amount predicted in advance, when the insufficient power amount of the next day is predicted, predetermined economic rationality among power generation by the power generation facility and power purchase by the power purchase unit The energy management system according to any one of claims 1 to 4, wherein electric power is supplied by a method selected based on the determination and stored in the power storage unit.
JP2016120654A 2016-06-17 2016-06-17 Energy management system Active JP6172346B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016120654A JP6172346B1 (en) 2016-06-17 2016-06-17 Energy management system
AU2017204048A AU2017204048A1 (en) 2016-06-17 2017-06-15 Energy management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120654A JP6172346B1 (en) 2016-06-17 2016-06-17 Energy management system

Publications (2)

Publication Number Publication Date
JP6172346B1 JP6172346B1 (en) 2017-08-02
JP2017225300A true JP2017225300A (en) 2017-12-21

Family

ID=59505134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120654A Active JP6172346B1 (en) 2016-06-17 2016-06-17 Energy management system

Country Status (1)

Country Link
JP (1) JP6172346B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054085A (en) * 2018-09-26 2020-04-02 清水建設株式会社 Power supply system and method of controlling the same
JP2020154353A (en) * 2019-03-18 2020-09-24 株式会社オーガニックnico Method for generating environment data in house
WO2020250867A1 (en) * 2019-06-13 2020-12-17 三菱重工エンジン&ターボチャージャ株式会社 Cogeneration system, control method, and program
WO2024057581A1 (en) * 2022-09-13 2024-03-21 株式会社日立製作所 Charge-state calculation device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032912A (en) * 2001-07-16 2003-01-31 Atsushi Iga Method of computing storage battery capacity and method of charging/discharging storage battery in system having storage battery combined with solar battery
JP2005086953A (en) * 2003-09-10 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> Energy supply and demand control method and device
JP2009159730A (en) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd Dc power distribution system
JP2010213507A (en) * 2009-03-11 2010-09-24 Chugoku Electric Power Co Inc:The Natural energy integrated power storage system and natural energy integrated power storage method
JP2011101553A (en) * 2009-11-09 2011-05-19 Shimizu Corp Energy storage system
JP2011250673A (en) * 2010-04-26 2011-12-08 Omron Corp Energy controller and control method
JP2012175825A (en) * 2011-02-22 2012-09-10 Mitsubishi Electric Corp Power management system
JP2013031271A (en) * 2011-07-27 2013-02-07 Solar Energy Solutions Inc Electric power input and output management system, and server and power distribution panel for the same
JP2013066329A (en) * 2011-09-20 2013-04-11 Sony Corp Secondary battery charging device, method of charging in secondary battery charging device, photovoltaic generator, method of power generation in photovoltaic generator, photovoltaic/secondary battery charging/generating device, electronic device, and electrical vehicle
JP2014107992A (en) * 2012-11-29 2014-06-09 Sekisui Chem Co Ltd Power control system
US20150012144A1 (en) * 2013-07-08 2015-01-08 Eaton Corporation Method and apparatus for optimizing a hybrid power system with respect to long-term characteristics by online optimization, and real-time forecasts, prediction or processing
JP2016127617A (en) * 2014-12-26 2016-07-11 三菱化学株式会社 Photovoltaic power generation system
JP6146624B1 (en) * 2016-06-17 2017-06-14 積水ハウス株式会社 Energy management system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032912A (en) * 2001-07-16 2003-01-31 Atsushi Iga Method of computing storage battery capacity and method of charging/discharging storage battery in system having storage battery combined with solar battery
JP2005086953A (en) * 2003-09-10 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> Energy supply and demand control method and device
JP2009159730A (en) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd Dc power distribution system
JP2010213507A (en) * 2009-03-11 2010-09-24 Chugoku Electric Power Co Inc:The Natural energy integrated power storage system and natural energy integrated power storage method
JP2011101553A (en) * 2009-11-09 2011-05-19 Shimizu Corp Energy storage system
JP2011250673A (en) * 2010-04-26 2011-12-08 Omron Corp Energy controller and control method
JP2012175825A (en) * 2011-02-22 2012-09-10 Mitsubishi Electric Corp Power management system
JP2013031271A (en) * 2011-07-27 2013-02-07 Solar Energy Solutions Inc Electric power input and output management system, and server and power distribution panel for the same
JP2013066329A (en) * 2011-09-20 2013-04-11 Sony Corp Secondary battery charging device, method of charging in secondary battery charging device, photovoltaic generator, method of power generation in photovoltaic generator, photovoltaic/secondary battery charging/generating device, electronic device, and electrical vehicle
JP2014107992A (en) * 2012-11-29 2014-06-09 Sekisui Chem Co Ltd Power control system
US20150012144A1 (en) * 2013-07-08 2015-01-08 Eaton Corporation Method and apparatus for optimizing a hybrid power system with respect to long-term characteristics by online optimization, and real-time forecasts, prediction or processing
JP2016127617A (en) * 2014-12-26 2016-07-11 三菱化学株式会社 Photovoltaic power generation system
JP6146624B1 (en) * 2016-06-17 2017-06-14 積水ハウス株式会社 Energy management system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054085A (en) * 2018-09-26 2020-04-02 清水建設株式会社 Power supply system and method of controlling the same
JP7134043B2 (en) 2018-09-26 2022-09-09 清水建設株式会社 Power system and power system control method
JP2020154353A (en) * 2019-03-18 2020-09-24 株式会社オーガニックnico Method for generating environment data in house
WO2020250867A1 (en) * 2019-06-13 2020-12-17 三菱重工エンジン&ターボチャージャ株式会社 Cogeneration system, control method, and program
WO2024057581A1 (en) * 2022-09-13 2024-03-21 株式会社日立製作所 Charge-state calculation device

Also Published As

Publication number Publication date
JP6172346B1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6172345B1 (en) Energy management system
Komarnicki et al. Electric energy storage system
JP5095495B2 (en) Electric power system and control method thereof
JP5353957B2 (en) Power supply system
US8509957B2 (en) Power supply system
JP6172346B1 (en) Energy management system
Zhang et al. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack
CN111869033B (en) Energy system, energy management server, energy management method, and computer-readable storage medium
JP5589890B2 (en) Power supply system
JP2013027214A (en) Power supply system
Simpson et al. Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis
JP5413134B2 (en) Electric power supply and demand control system in microgrid
WO2020153443A1 (en) Energy management system and method for controlling same
JP6148631B2 (en) Electric storage device discharge start time determination system
JP2017077151A (en) Building power consumption prediction system, control system of power storage device, and control method of power storage device
Yilmaz et al. A model predictive control for microgrids considering battery aging
JP2016063629A (en) Storage battery control device, storage battery control method and program
JP6146624B1 (en) Energy management system
JP2017220354A (en) Operation planning device, fuel cell device, operation planning method, and operation planning program
JP7032248B2 (en) Power management equipment and programs
JP2020061800A (en) Charging method and control device
AU2019213393B2 (en) Off-grid electrical power system
JP2008136259A (en) Network system, power supply system control method of the network system, and control program thereof
JP5969365B2 (en) Power control system
JP2017046428A (en) Power interchange system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250