JP2011098300A - Cleaning agent for ground water and soil, and method of manufacturing the same - Google Patents

Cleaning agent for ground water and soil, and method of manufacturing the same Download PDF

Info

Publication number
JP2011098300A
JP2011098300A JP2009255041A JP2009255041A JP2011098300A JP 2011098300 A JP2011098300 A JP 2011098300A JP 2009255041 A JP2009255041 A JP 2009255041A JP 2009255041 A JP2009255041 A JP 2009255041A JP 2011098300 A JP2011098300 A JP 2011098300A
Authority
JP
Japan
Prior art keywords
iron
magnetite
wustite
iron powder
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009255041A
Other languages
Japanese (ja)
Inventor
Tomoshige Ono
友重 尾野
Yukiko Ozaki
由紀子 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009255041A priority Critical patent/JP2011098300A/en
Publication of JP2011098300A publication Critical patent/JP2011098300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil cleaning agent, which can be manufactured by a simple method. <P>SOLUTION: A cleaning agent for ground water and soil polluted with a volatile organic halogen compound is a composite particle comprising iron (Fe), wustite (FeO), magnetite (Fe<SB>3</SB>O<SB>4</SB>), and hematite (Fe<SB>2</SB>O<SB>3</SB>), and is characterized in that the BET specific surface area is 0.5-5.0 m<SP>2</SP>/g, the ratio of the sum of peak intensities of wustite and magnetite to the total of peak intensities of iron, wustite, magnetite, and hematite in an X-ray diffraction spectrum is 0.4-1.0, and iron having a crystal grain size of 50 μm or more is contained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、揮発性有機ハロゲン化合物や重金属で汚染された地下水及び土壌を浄化するための浄化剤に関する。   The present invention relates to a purification agent for purifying groundwater and soil contaminated with volatile organic halogen compounds and heavy metals.

トリクロロエチレンやテトラクロロエチレンなど揮発性有機ハロゲン化合物で汚染された土壌や地下水を原位置で浄化する手法として鉄粉その他金属粉による還元分解法や、過硫酸や過酸化水素水を用いた酸化分解法などが実用化されている。   Methods for purifying soil and groundwater contaminated with volatile organic halogen compounds such as trichlorethylene and tetrachlorethylene in situ include reductive decomposition using iron powder and other metal powders, and oxidative decomposition using persulfuric acid and hydrogen peroxide. It has been put into practical use.

たとえば特許文献1では、地下水水位より深部に位置する土壌又は地下水水位より浅部に位置する土壌又は掘削した土壌であって、有機塩素系化合物で汚染された土壌に、鉄粉を添加・混合することにより、有機塩素系化合物を分解して前記土壌を浄化する土壌の無害化処理方法が開示されている。   For example, in Patent Document 1, iron powder is added to and mixed with soil that is located deeper than the groundwater level, soil that is shallower than the groundwater level, or soil that has been excavated and contaminated with organochlorine compounds. Thus, a soil detoxification method for decomposing organochlorine compounds and purifying the soil is disclosed.

そして、本工法に適した鉄粉として、0.1質量%以上の炭素を含み且つ、500cm/g以上の比表面積を有すると共に、50質量%以上が150μmのふるいを通過する粒度を有する鉄粉が記載されている。 And as iron powder suitable for this construction method, iron containing 0.1% by mass or more of carbon and having a specific surface area of 500 cm 2 / g or more, and 50% by mass or more of iron having a particle size passing through a 150 μm sieve. The powder is described.

鉄粉による有機塩素化合物の還元分解は、鉄粉表面において、分解対象物に電子を受け渡すことで、反応が進行すると考えられている。従って、分解対象物と接触確率を増やすために、鉄表面の面積が大きい、すなわち、比表面積が大きいものほど、分解速度は大きくなる。   In the reductive decomposition of an organic chlorine compound by iron powder, it is considered that the reaction proceeds by transferring electrons to the decomposition target on the surface of the iron powder. Therefore, in order to increase the probability of contact with an object to be decomposed, the decomposition rate increases as the area of the iron surface increases, that is, the specific surface area increases.

また、分解速度を大きくするために、比表面積を大きくするだけでなく、様々な手法が検討されている。たとえば、特許文献2には銅を含有する鉄粉が、特許文献3には、ほぼ球状の鉄粉の表面を覆うように銅が点在する銅被着鉄粉が、特許文献4には、Niを被着させた鉄粉が開示されている。何れの技術も、鉄粉表面に鉄より貴な金属を付着させることで、局部電池を形成し、鉄からの電子供給が起こりやすくしたものである。   In addition to increasing the specific surface area, various methods are being studied in order to increase the decomposition rate. For example, Patent Document 2 includes copper-containing iron powder, Patent Document 3 includes copper-coated iron powder interspersed with copper so as to cover the surface of a substantially spherical iron powder, and Patent Document 4 includes An iron powder coated with Ni is disclosed. In either technique, a local battery is formed by attaching a noble metal to iron on the surface of the iron powder, and electrons are easily supplied from the iron.

特許文献5および特許文献6には、α-Feとマグネタイトからなる鉄複合粒子粉末が、特許文献7には、酸化鉄を還元して得られる鉄粉粒子と非還元鉄粉粒子を混合してなる浄化剤が開示されている。   In Patent Document 5 and Patent Document 6, iron composite particle powder made of α-Fe and magnetite is mixed. In Patent Document 7, iron powder particles obtained by reducing iron oxide and non-reduced iron powder particles are mixed. A purifying agent is disclosed.

特開平11−235577号公報Japanese Patent Application Laid-Open No. 11-235577 特開2001−9475号公報JP 2001-9475 A 特開2003−339902号公報JP 2003-339902 A 特開2007−301548号公報JP 2007-301548 A 特開2004−141812号公報JP 2004-141812 A 特開2004−141853号公報JP 2004-141853 A 特開2005−199191号公報JP 2005-199191 A

上記のように、鉄粉による有機ハロゲン化化合物の還元分解では、その反応速度を大きくするためには、(1)比表面積を大きくする、(2)鉄粉表面に第2の導電性物質を被着させて、局部電池を形成する、などの方法がとられる。   As described above, in the reductive decomposition of an organic halide compound with iron powder, in order to increase the reaction rate, (1) the specific surface area is increased, (2) the second conductive material is added to the iron powder surface. A method such as depositing to form a local battery is taken.

特許文献1では、単純に比表面積を大きくすればよいとしているが、一般に比表面積を大きくするためには、粒子を細かくすればよいが、金属粉末を細粒化すると、自然発火する可能性があり、その取り扱いには、細心の注意が必要となる。   In Patent Document 1, it is said that the specific surface area should simply be increased. Generally, in order to increase the specific surface area, the particles may be made finer, but if the metal powder is made finer, there is a possibility of spontaneous ignition. Yes, handling it requires great care.

特許文献2〜4に開示された貴金属を鉄粉表面に被着させる技術は、その製造方法が比較的容易ではあるが、元々、Ni、CoやCuなど高価な金属を使用するため、浄化剤の価格が高くなる。また、昨今では、Niは、それ自体が環境汚染物質となる可能性も唱えられており、これら、貴金属を被着させた鉄粉を浄化用に使用することは、好ましくない。   The technique for depositing the noble metal on the surface of the iron powder disclosed in Patent Documents 2 to 4 is relatively easy to manufacture, but originally uses an expensive metal such as Ni, Co, Cu, etc. The price of will be higher. In recent years, it has been proposed that Ni itself becomes an environmental pollutant, and it is not preferable to use iron powder coated with a noble metal for purification.

特許文献5〜6では、鉄-マグネタイトの微粒子を浄化剤としているが、その製法は、酸化鉄を原料とし、水素還元して、微粒子の鉄粉を製造した後に、引き続き処理雰囲気を制御しながら徐酸化させ、鉄表面をマグネタイト化し、それにより発火を抑える効果を得ている。この方法では、酸化鉄の還元時に多量の水素を必要とし、また高温で処理することが必要となるため、製造コストがかかるし、一度還元した後に表面を酸化するため、製造プロセスも煩雑となっている。   In Patent Documents 5 to 6, iron-magnetite fine particles are used as a purifier, and the production method thereof uses iron oxide as a raw material, hydrogen reduction to produce fine iron powder, and then continuously controlling the treatment atmosphere. Slow oxidation is used to magnetize the iron surface, thereby suppressing ignition. This method requires a large amount of hydrogen at the time of reduction of iron oxide and requires treatment at a high temperature, which is expensive to manufacture and oxidizes the surface after reduction once, and the manufacturing process becomes complicated. ing.

また、特許文献7では、酸化鉄を還元して得られる鉄粉粒子と非還元鉄粉粒子を混合してなり、酸化鉄を還元して得られる鉄粉粒子が粒子の酸化状態の構成として、0価の鉄が55から100パーセント、酸化鉄( I I )が0から30パーセント、三二酸化鉄が0から15パーセント及び四三酸化鉄が0から45パーセントであり、非還元鉄粉粒子が粒子の酸化状態の構成として、0価の鉄が10から40パーセント、酸化鉄( I I ) が30から70パーセント、三二酸化鉄が0から15パーセント及び四三酸化鉄が10から30パーセントであることを特徴とする土壌浄化剤が紹介されているが、酸化鉄を還元する工程と所定の鉄粉調製後、これらを混合する工程を含み製造プロセスが煩雑となっている。   Moreover, in patent document 7, iron powder particle | grains obtained by reduce | restoring iron oxide and non-reduced iron powder particle | grains are mixed, and the iron powder particle | grains obtained by reduce | restoring iron oxide are as a structure of the oxidation state of particle | grains, Zero-valent iron is 55 to 100 percent, iron oxide (I I) is 0 to 30 percent, iron sesquioxide is 0 to 15 percent, and iron tetroxide is 0 to 45 percent. Oxidation state composition is 10 to 40 percent of zero-valent iron, 30 to 70 percent of iron oxide (I I), 0 to 15 percent of iron sesquioxide, and 10 to 30 percent of iron tetroxide However, the manufacturing process is complicated, including a step of reducing iron oxide and a step of mixing these after preparation of predetermined iron powder.

本発明は、簡便な方法で製造できる土壌浄化化剤を提供することを目的とする。   An object of this invention is to provide the soil purification agent which can be manufactured by a simple method.

本発明によれば、NiやCoなどの高価な金属を用いることなく、また、製造時に水素を用いることなく、安価に高い反応性を有する鉄−マグネタイト複合材を得ることができる。   According to the present invention, an iron-magnetite composite material having high reactivity can be obtained at low cost without using expensive metals such as Ni and Co, and without using hydrogen during production.

本発明の要旨は以下の通りである。   The gist of the present invention is as follows.

第一の発明は、鉄(Fe)とウスタイト(FeO)と、マグネタイト(Fe)と、ヘマタイト(Fe)とからなる複合粒子であって、BET法比表面積が0.5〜5.0m/g、X線回折スペクトルにおける鉄、ウスタイト、マグネタイト、ヘマタイトのピーク強度の総和に対するウスタイトとマグネタイトのピーク強度の和の比が、0.4〜1.0であり、且つ50μm以上の結晶粒径を有する鉄を含むことを特徴とする揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤である。 A first invention is a composite particle composed of iron (Fe), wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ), and has a BET specific surface area of 0.5. The ratio of the sum of the peak intensity of wustite and magnetite to the sum of the peak intensity of iron, wustite, magnetite and hematite in the X-ray diffraction spectrum of .about.5.0 m 2 / g is 0.4 to 1.0 and 50 μm A purification agent for groundwater and soil contaminated with a volatile organic halogen compound, characterized by containing iron having the above crystal grain size.

第二の発明は、酸化鉄粉と鉄粉とを(1:99)〜(80:20)の質量割合で混合し、窒素雰囲気中で、400〜900℃で熱処理することを特徴とする第一の発明に記載の揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤の製造方法である。   A second invention is characterized in that iron oxide powder and iron powder are mixed at a mass ratio of (1:99) to (80:20) and heat-treated at 400 to 900 ° C. in a nitrogen atmosphere. It is a manufacturing method of the ground water contaminated with the volatile organic halogen compound as described in one invention, and a soil purification agent.

第三の発明は、前記鉄粉を還元鉄粉とすることを特徴とする第二の発明に記載の揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤の製造方法である。   A third invention is the method for producing a ground water and soil purifier contaminated with a volatile organic halogen compound according to the second invention, wherein the iron powder is reduced iron powder.

本発明によれば、有機ハロゲン化合物などで汚染された地下水や土壌を短時間で浄化できる浄化剤を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the purification agent which can purify | clean the groundwater and soil contaminated with the organic halogen compound etc. in a short time can be provided.

第1の実施の形態は、鉄(Fe)とウスタイト(FeO)と、マグネタイト(Fe)と、ヘマタイト(Fe)とからなる複合粒子であって、BET比表面積が0.5〜5.0m/g、X線回折スペクトルにおける鉄、ウスタイト、マグネタイト、ヘマタイトのピーク強度の総和に対するウスタイトとマグネタイトのピーク強度の和の比が、0.4〜1.0であり、且つ50μm以上の結晶粒径を有する鉄を含むことを特徴とする揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤である。 The first embodiment is a composite particle made of iron (Fe), wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ), and has a BET specific surface area of 0.1. 5 to 5.0 m 2 / g, the ratio of the sum of the peak intensities of wustite and magnetite to the sum of the peak intensities of iron, wustite, magnetite and hematite in the X-ray diffraction spectrum is 0.4 to 1.0, and It is a groundwater and soil purifier contaminated with a volatile organic halogen compound characterized by containing iron having a crystal grain size of 50 μm or more.

本発明における浄化剤は、鉄、ウスタイト、マグネタイトおよびヘマタイトの複合粒子である。純粋なα−Feは、その反応速度も十分大きいと考えられるが、一方で、常温空気中で放置すると、表面に酸化被膜ができ、反応性が劣化する。また、比表面積の大きな微粒子では、発熱、発火の危険性もあるため、保管上の注意が必要となる。   The purifying agent in the present invention is a composite particle of iron, wustite, magnetite and hematite. Pure α-Fe is considered to have a sufficiently high reaction rate. On the other hand, when it is left in air at room temperature, an oxide film is formed on the surface and the reactivity deteriorates. In addition, since fine particles with a large specific surface area have a risk of heat generation and ignition, precautions for storage are required.

本発明では、鉄粉と酸化鉄を、不活性雰囲気中で熱処理して、鉄粉表面を酸化すると同時に酸化鉄を還元させて、ウスタイト、マグネタイトおよびヘマタイトを生じさせる。このため、鉄粉自体は、酸化被膜で覆われているため、上記課題を解決できる。   In the present invention, iron powder and iron oxide are heat-treated in an inert atmosphere to oxidize the iron powder surface and simultaneously reduce iron oxide to produce wustite, magnetite, and hematite. For this reason, since iron powder itself is covered with the oxide film, the said subject can be solved.

金属鉄もしくは、その複合粉を用いた場合、その反応速度を大きくするためには、粒子の比表面積を大きくすること、即ち、0.5m/g以上とする必要がある。それ未満では、反応速度は小さくなり、浄化には適さないからである。 When metallic iron or a composite powder thereof is used, in order to increase the reaction rate, it is necessary to increase the specific surface area of the particles, that is, 0.5 m 2 / g or more. If it is less than that, the reaction rate becomes small and is not suitable for purification.

一方5.0m/gを越えるものでは、常温空気中でも激しく酸化反応が進行し、発熱、発火の危険性があるため、保管上好ましくない。 On the other hand, if it exceeds 5.0 m 2 / g, the oxidation reaction proceeds vigorously even in room temperature air, and there is a risk of heat generation and ignition, which is not preferable for storage.

鉄、ウスタイト、マグネタイト、ヘマタイトの存在比には適正な値が存在する。すなわち、鉄、ウスタイト、マグネタイト、ヘマタイトのピーク強度の総和に対するウスタイト、マグネタイトのピーク強度の和の比が0.4〜1.0である。   There is an appropriate value for the abundance ratio of iron, wustite, magnetite, and hematite. That is, the ratio of the sum of the peak intensities of wustite and magnetite to the sum of the peak intensities of iron, wustite, magnetite and hematite is 0.4 to 1.0.

比が0.4未満では、反応速度が遅く、地下水や土壌の浄化には適さないからである。
一方、1.0超えでは、反応速度が速すぎるからである。
なおより好ましい範囲は、0.5〜1.0である。
If the ratio is less than 0.4, the reaction rate is slow and is not suitable for the purification of groundwater or soil.
On the other hand, if it exceeds 1.0, the reaction rate is too high.
A more preferable range is 0.5 to 1.0.

また、原料鉄粉をHによる仕上げ還元を行わない還元鉄粉とアトマイズ゛鉄粉とした場合、アトマイズ゛鉄粉は急冷されることにより、微細なマルテンサイト組織を有しており、低温の熱処理では50μm以上の粒径にまでは粒成長しないし、反応性も十分ではない。従って、この場合は高温での熱処理を行うことにより、50μm以上の結晶粒径を得られ、十分な反応速度を得ることができる。 In addition, when the raw iron powder is reduced iron powder and atomized iron powder that are not subjected to final reduction with H 2 , the atomized iron powder has a fine martensite structure due to being rapidly cooled, The heat treatment does not grow to a particle size of 50 μm or more, and the reactivity is not sufficient. Therefore, in this case, by performing heat treatment at a high temperature, a crystal grain size of 50 μm or more can be obtained, and a sufficient reaction rate can be obtained.

なお、結晶粒径が反応性に及ぼす影響は、定かではないが、より結晶性の高い(純度の高い)鉄の方が、反応性に富んでいると考えられる。   The influence of the crystal grain size on the reactivity is not clear, but iron with higher crystallinity (higher purity) is considered to be richer in reactivity.

第2の実施の形態は、上記浄化剤の製造方法に関する。   The second embodiment relates to a method for producing the purification agent.

本製造方法は、基本的には、不活性雰囲気中で熱処理を行い、酸化鉄を鉄粉で還元し、マグネタイトを発生させ、同時に鉄を酸化させて、マグネタイトもしくはウスタイトを得るものである。マグネタイトーFe複合材を製造する方法としては、微粒子の酸化鉄を水素還元し、微粒子の鉄粉を得た後に、引き続き、酸化雰囲気で、鉄粉表面を緩やかに酸化させる方法などがあるが、本発明の製造方法であれば、比較的、簡単かつ低コストで、マグネタイト-Fe複合材とすることができる。なお、酸化鉄粉と鉄粉の質量割合は、(1:99)〜(80:20)とする。本範囲を外れると所期の特性を得られない場合があるからである。   In this production method, heat treatment is basically performed in an inert atmosphere, iron oxide is reduced with iron powder to generate magnetite, and at the same time, iron is oxidized to obtain magnetite or wustite. As a method for producing a magnetite-Fe composite material, there is a method in which fine iron oxide is reduced by hydrogen to obtain fine iron powder and then the surface of the iron powder is gently oxidized in an oxidizing atmosphere. If it is the manufacturing method of this invention, it can be set as a magnetite-Fe composite material comparatively easily and at low cost. In addition, the mass ratio of iron oxide powder and iron powder shall be (1:99)-(80:20). This is because the desired characteristics may not be obtained if it is out of this range.

また、雰囲気温度を調整することで、ウスタイトも同時に出現できる。すなわち、その処理温度は、400℃以上である。高温にすると反応速度は大きくなるが、同時に焼結が進み、比表面積が小さくなるからである。また、熱処理後の粉砕にも負荷がかかることとなるので熱処理温度は、900℃以下である。   In addition, by adjusting the atmospheric temperature, wustite can also appear at the same time. That is, the processing temperature is 400 ° C. or higher. This is because when the temperature is increased, the reaction rate increases, but at the same time, the sintering proceeds and the specific surface area decreases. In addition, since a load is applied to the pulverization after the heat treatment, the heat treatment temperature is 900 ° C. or less.

ヘマタイト含有率が低すぎる場合には、X線回折スペクトル上、所望の強度比を得ることができない。また、高すぎる場合には、X線回折スペクトル上、所望の強度比を得られない、もしくは、所望の強度比を得るためには、長時間の熱処理が必要となるため経済的でない。   If the hematite content is too low, a desired intensity ratio cannot be obtained on the X-ray diffraction spectrum. On the other hand, if it is too high, a desired intensity ratio cannot be obtained on the X-ray diffraction spectrum, or a long-time heat treatment is required to obtain the desired intensity ratio, which is not economical.

JFEスチール社製の還元鉄粉K100T及びアトマイズ゛鉄粉300R、及びJFEケミカル社製酸化鉄粉を用い、表1に示すような配合で鉄粉と酸化鉄粉を混合し、これを、管状炉で、Nを原料1Kgにつき1L/minの割合で流通させ、毎分10℃/minで所定温度まで昇温し、所定温度で1Hr熱処理を行ったものを浄化剤とした。 Using reduced iron powder K100T and atomized iron powder 300R manufactured by JFE Steel, and iron oxide powder manufactured by JFE Chemical Co., iron powder and iron oxide powder are mixed in the composition shown in Table 1, and this is added to a tubular furnace. Then, N 2 was circulated at a rate of 1 L / min per 1 kg of the raw material, heated to a predetermined temperature at 10 ° C./min per minute, and subjected to 1 Hr heat treatment at the predetermined temperature was used as a purifier.

得られた浄化剤は、BET法による比表面積測定を行い、また、α−Fe、ウスタイト、マグネタイト、ヘマタイトのピーク強度を測定し、α−Fe、ウスタイト、マグネタイト、ヘマタイトのピーク強度の総和に対するウスタイトとマグネタイトのピーク強度の和の比を求めた。各ピーク強度をFe:鉄、W:ウスタイト、M:マグネタイト、H:ヘマタイトで表すと、その比は(W+M)/(Fe+W+M+H)と表される。   The obtained purification agent was subjected to specific surface area measurement by the BET method, and the peak intensity of α-Fe, wustite, magnetite and hematite was measured, and wustite relative to the sum of the peak intensity of α-Fe, wustite, magnetite and hematite. And the ratio of the sum of the peak intensities of magnetite. When each peak intensity is expressed as Fe: iron, W: wustite, M: magnetite, H: hematite, the ratio is expressed as (W + M) / (Fe + W + M + H).

また、得られた浄化剤を樹脂に埋込んで研磨し、エッチング後、光学顕微鏡により組織観察を行い、鉄中の結晶粒径を計測し、50μm以上の結晶粒径の有無を判定した。   Further, the obtained cleaning agent was embedded in a resin and polished, and after etching, the structure was observed with an optical microscope, the crystal grain size in iron was measured, and the presence or absence of a crystal grain size of 50 μm or more was determined.

浄化実験は、5mg/Lのトリクロロエチレン水溶液50mLを100mLバイアル瓶に入れ、これに、浄化剤5gを添加した後に密栓し、25℃、180rpmで、振盪し、所定時間後に、バイアル瓶ヘッドスペースのガス濃度を測定することで、トリクロロエチレン残存率(Ct/Ci)を求め、反応を擬一次反応とし、log(Ct/Ci) vs 時間(Hr)の傾きより、その反応速度定数(Hr-1)を求めた。なお、Ciはトリクロロエチレンの初期濃度を、Ctは時間tにおけるトリクロロエチレンの濃度を意味する。また、上記トリクロロエチレン水溶液には、支持電解質として、NaSOとCaCOを、それぞれ、80mg/L、40mg/Lに調整した。 In the purification experiment, 50 mL of a 5 mg / L trichlorethylene aqueous solution was placed in a 100 mL vial, and after adding 5 g of the cleaning agent, the cap was sealed, shaken at 25 ° C. and 180 rpm, and after a predetermined time, the gas in the vial headspace By measuring the concentration, the trichlorethylene residual rate (Ct / Ci) was obtained, the reaction was regarded as a pseudo-first order reaction, and the reaction rate constant (Hr −1 ) was determined from the slope of log (Ct / Ci) vs time (Hr). Asked. Ci means the initial concentration of trichlorethylene, and Ct means the concentration of trichlorethylene at time t. In the trichlorethylene aqueous solution, Na 2 SO 3 and CaCO 3 were adjusted to 80 mg / L and 40 mg / L, respectively, as supporting electrolytes.

Figure 2011098300
Figure 2011098300

表1から明らかなように、BET法比表面積が0.5〜5.0m2/g、X線回折スペクトルにおいてα−Fe、ウスタイト、マグネタイト、ヘマタイトのピーク強度の総和に対するウスタイトとマグネタイトのピーク強度の和の比が0.4〜1.0であり、かつ当該金属鉄の粒径が50μm以上であれば、トリクロロエチレンの分解反応の反応速度定数kは0.03Hr-1以上と、他のものに比較して大きいことがわかる。 As is apparent from Table 1, the BET method specific surface area is 0.5 to 5.0 m2 / g, and the peak intensity of wustite and magnetite with respect to the sum of the peak intensities of α-Fe, wustite, magnetite, and hematite in the X-ray diffraction spectrum. If the ratio of the sum is 0.4 to 1.0 and the particle diameter of the metallic iron is 50 μm or more, the reaction rate constant k of the decomposition reaction of trichlorethylene is 0.03 Hr −1 or more. It can be seen that it is large in comparison.

Claims (3)

鉄(Fe)と、ウスタイト(FeO)と、マグネタイト(Fe)と、ヘマタイト(Fe)とからなる複合粒子であって、BET法比表面積が0.5〜5.0m/g、X線回折スペクトルにおける鉄、ウスタイト、マグネタイト、ヘマタイトのピーク強度の総和に対するウスタイトとマグネタイトのピーク強度の和の比が、0.4〜1.0であり、且つ50μm以上の結晶粒径を有する鉄を含むことを特徴とする揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤。 It is a composite particle composed of iron (Fe), wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ), and has a BET specific surface area of 0.5 to 5.0 m 2. / G, the ratio of the sum of the peak intensities of wustite and magnetite to the sum of the peak intensities of iron, wustite, magnetite, and hematite in the X-ray diffraction spectrum is 0.4 to 1.0, and the crystal grain size is 50 μm or more. A cleansing agent for groundwater and soil contaminated with a volatile organic halogen compound, characterized by comprising iron having 酸化鉄粉と鉄粉とを(1:99)〜(80:20)の質量割合で混合し、窒素雰囲気中で、400〜900℃で熱処理することを特徴とする請求項1記載の揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤の製造方法。   The volatile property according to claim 1, wherein iron oxide powder and iron powder are mixed at a mass ratio of (1:99) to (80:20) and heat-treated at 400 to 900 ° C in a nitrogen atmosphere. A method for producing a purification agent for groundwater and soil contaminated with an organic halogen compound. 前記鉄粉を還元鉄粉とすることを特徴とする請求項2に記載の揮発性有機ハロゲン化合物で汚染された地下水及び土壌の浄化剤の製造方法。   The method for producing a purification agent for groundwater and soil contaminated with a volatile organic halogen compound according to claim 2, wherein the iron powder is reduced iron powder.
JP2009255041A 2009-11-06 2009-11-06 Cleaning agent for ground water and soil, and method of manufacturing the same Pending JP2011098300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255041A JP2011098300A (en) 2009-11-06 2009-11-06 Cleaning agent for ground water and soil, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255041A JP2011098300A (en) 2009-11-06 2009-11-06 Cleaning agent for ground water and soil, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011098300A true JP2011098300A (en) 2011-05-19

Family

ID=44189932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255041A Pending JP2011098300A (en) 2009-11-06 2009-11-06 Cleaning agent for ground water and soil, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011098300A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201809A (en) * 2006-05-22 2008-09-04 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material and method of treating soil or water therewith

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201809A (en) * 2006-05-22 2008-09-04 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material and method of treating soil or water therewith

Similar Documents

Publication Publication Date Title
EP1318103B1 (en) Iron particles for purifying contaminated soil or ground water
Nie et al. Photoassisted degradation of endocrine disruptors over CuOx–FeOOH with H2O2 at neutral pH
Nair et al. Halocarbon mineralization and catalytic destruction by metal nanoparticles
JP3867562B2 (en) Magnetite-iron composite powder mixture, production method thereof, and radio wave absorber
CN113546626B (en) Nano zero-valent iron-copper carbon microsphere material and preparation method thereof
EP1650168A1 (en) Iron composite particles for purifying soil or ground water, purifying agent containing the iron composite particles and method for purifying soil or ground water
JP2002161263A (en) Iron power for decomposing organic halogen compound, method for producing the same and method for making contaminated soil and/or contaminated underground water harmless
JP4479899B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP2011098300A (en) Cleaning agent for ground water and soil, and method of manufacturing the same
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP5982347B2 (en) Iron powder for purifying groundwater and method for producing the same
JP4433173B2 (en) Iron composite particle powder for purification treatment of soil and groundwater, production method thereof, purification agent containing the iron composite particle powder, production method thereof, and purification treatment method of soil and groundwater
JPH07247122A (en) Activated manganese dioxide and method for producing the same
JP2010242193A (en) Functional stainless steel nano ball and stainless steel nano ball catalyst
JP4833505B2 (en) Iron powder for purification
JP2002020806A (en) Method for producing iron powder for removing contamination
JP2004174480A (en) Method for manufacturing magnetic ceramic ball having strong reducing characteristic
KR20120043273A (en) Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
JP2904217B2 (en) Water treatment filter manufacturing method
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP3804680B2 (en) Purification of contaminated soil, water and gas with magnetite-iron composite powder
JP4786936B2 (en) Organohalogen compound treatment material
JP2901278B2 (en) Water treatment filter and method for producing the same
KR100582474B1 (en) Iron-Based cleaning powder
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702