JP2904217B2 - Water treatment filter manufacturing method - Google Patents

Water treatment filter manufacturing method

Info

Publication number
JP2904217B2
JP2904217B2 JP16252389A JP16252389A JP2904217B2 JP 2904217 B2 JP2904217 B2 JP 2904217B2 JP 16252389 A JP16252389 A JP 16252389A JP 16252389 A JP16252389 A JP 16252389A JP 2904217 B2 JP2904217 B2 JP 2904217B2
Authority
JP
Japan
Prior art keywords
powder
iron
base material
water
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16252389A
Other languages
Japanese (ja)
Other versions
JPH0330895A (en
Inventor
健吾 妹尾
洋三 竹村
俶將 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16252389A priority Critical patent/JP2904217B2/en
Publication of JPH0330895A publication Critical patent/JPH0330895A/en
Application granted granted Critical
Publication of JP2904217B2 publication Critical patent/JP2904217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば水中の有機ハロゲン化合物または難
分解性汚濁成分を還元分解除去する水処理フィルターの
製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a water treatment filter for reducing and decomposing and removing, for example, organic halogen compounds or hardly decomposable pollutants in water.

従来の技術 水処理技術としては、例えば活性炭を用いる吸着
法、触媒を用いる酸化還元法、エアバブリングにて
揮散させる曝気法、オゾンにて酸化させるオゾン処理
法、水酸化物として共沈分離させる凝集処理法などが
知られている。工業用水学会誌(工業用水)、No.357
(1988)、p2〜7は、の触媒法に関するもので還元剤
として鉄粉を用い、これを1,1,2,2−テトラクロロエタ
ンを含有する水に一定量点火すれば、1,1,2,2−テトラ
クロロエタンは、還元分解除去される事が記載されてい
る。
2. Description of the Related Art Water treatment techniques include, for example, an adsorption method using activated carbon, a redox method using a catalyst, an aeration method of volatilizing by air bubbling, an ozone treatment method of oxidizing with ozone, and coagulation by coprecipitation and separation as hydroxide. Processing methods and the like are known. Journal of the Japan Society of Industrial Water (Industrial Water), No.357
(1988), p2 to p7 relate to the catalytic method of using iron powder as a reducing agent and igniting a certain amount of water containing 1,1,2,2-tetrachloroethane to obtain 1,1, It is described that 2,2-tetrachloroethane is removed by reductive decomposition.

発明が解決しようとする課題 このような水処理技術を水中の有機ハロゲン化合物ま
たは難分解性汚濁成分の除去技術に適用すると、は、
活性炭の特性から何でも吸着するため、水中の目的成分
以外の無害物質も吸着除去し効率が悪い。更に廃棄時に
燃焼させると、吸着した該成分が大気中に揮散し、さら
には塩素ガス、ホスゲン、ダイオキシン等の二次有害物
質を生成する危険性がある。は、触媒の酸化還元効率
の持続性が短期のものが多いため、実用向きでない。
は、大気中への汚染物質の揮散に過ぎず根本的な解決手
段にはならない。は、オゾン発生機を必要とする上、
有害なオゾンの残存が考えられ、装置規模が大きくなり
過ぎる。は、有機ハロゲン化合物を生成する前駆物質
の除去などの対症療法的な方法であり、該成分を直接除
去する方法ではない等の問題がある。
Problems to be solved by the invention When such a water treatment technique is applied to a technique for removing an organic halogen compound or a persistent pollutant component in water,
Because it adsorbs anything due to the characteristics of activated carbon, harmless substances other than target components in water are also adsorbed and removed, resulting in poor efficiency. Further, if burned at the time of disposal, there is a danger that the adsorbed components volatilize into the atmosphere and further generate secondary harmful substances such as chlorine gas, phosgene, and dioxin. Is not suitable for practical use because the oxidation-reduction efficiency of the catalyst is often short-term.
Is merely a volatilization of pollutants into the atmosphere and is not a fundamental solution. Requires an ozone generator,
The harmful ozone may remain, and the scale of the apparatus becomes too large. Is a symptomatic treatment such as removal of a precursor that produces an organic halogen compound, and has a problem that it is not a method of directly removing the component.

又、前記の鉄粉による還元分解に関する公知技術は、
表面を活性化する処理工程上、分は取扱い難いだけでな
く、カラム等に充填して水処理フィルターとして用いる
と、還元体が粉体であるために処理水を通過すると、充
填層内にショートパスを生じやすく、充填した鉄粉と有
害物質とが均一に接触しないため、分解効率が悪い等の
欠点がある。
In addition, the known technology relating to the reductive decomposition by the iron powder is as follows:
In the process of activating the surface, not only is it difficult to handle the components, but if it is packed in a column or the like and used as a water treatment filter, the reductant is a powder, and when the treated water passes through the treated water, a short circuit occurs in the packed layer. There is a disadvantage that the iron powder and the harmful substance do not easily come into contact with each other easily, and the decomposition efficiency is poor.

課題を解決するための手段 上記課題を、本発明は、三次元網目状多孔体を酸化膜
溶解水溶液と接触せしめ、酸化膜を溶解除去し、該多孔
体を形成している骨格表層部を鉄より構成することを特
徴とする、水処理フィルターの製造方法を提供すること
により、解決する。
Means for Solving the Problems In order to solve the above problems, the present invention provides a method for bringing a three-dimensional mesh-like porous body into contact with an aqueous solution of an oxide film, dissolving and removing the oxide film, and removing the skeleton surface layer forming the porous body with iron. The problem is solved by providing a method for producing a water treatment filter, characterized by comprising:

有害物質を含む水処理技術として有害塩素化合物の水
処理例を説明する。
An example of water treatment of harmful chlorine compounds will be described as a water treatment technique containing harmful substances.

0価の鉄は、人体にう有害とされる有機塩素化合物と
下記の反応を起こして有機塩素化合物を無害化するた
め、極めて効果的な還元処理剤である。即ち、下記のご
とき反応により無害化することができる。
Zero-valent iron is an extremely effective reducing agent because it causes the following reaction with an organic chlorine compound harmful to the human body and renders the organic chlorine compound harmless. That is, it can be rendered harmless by the following reaction.

しかし、Feは溶存酸素を含む水中では0価の状態で存
在することは困難で、一般には2価あるいは3価の酸化
物に変化して前記の化学反応や還元が起こりにくい。
However, it is difficult for Fe to be present in a state of zero valence in water containing dissolved oxygen, and in general, Fe is changed to a divalent or trivalent oxide, and the above-described chemical reaction and reduction are unlikely to occur.

本発明者等は、簡易な手段でFe0の還元状態を維持す
る方法を研究した結果、鉄からなるフィルター表層部
(表面)に存在する鉄の酸化被膜を溶解除去することに
よって達成できることを知得した。
The present inventors have studied a method of maintaining the reduced state of Fe 0 by a simple means, and have found that it can be achieved by dissolving and removing an oxide film of iron present on the surface layer (surface) of the filter made of iron. I got it.

酸化膜溶解水溶液としては塩酸、過酸化水素、硝酸、
硫酸、りん酸、ふっ酸、クロム酸、ぎ酸、酢酸、アスコ
ルビン酸等の1〜70%水溶液と接触することによりフィ
ルター表層部の酸化被膜を除去する。またこれらの酸の
2種類以上の混合物も同様の作用を有する。
Hydrochloric acid, hydrogen peroxide, nitric acid,
The oxide film on the surface layer of the filter is removed by contact with a 1 to 70% aqueous solution of sulfuric acid, phosphoric acid, hydrofluoric acid, chromic acid, formic acid, acetic acid, ascorbic acid and the like. A mixture of two or more of these acids has a similar effect.

即ち、フィルター表層部が鉄よりなる表層部にはFe0
が保持される。
That is, the surface layer of the filter is made of Fe 0
Is held.

これらの方法でフィルターの表層部に維持されたFe0
を溶存酸素を含む水中において有機塩素化合物の還元処
理剤として長期間使用する際には、常時あるいは必要の
都度間欠的に、フィルターに前記の水溶液を流すか、処
理した後Fe0の状態を維持するために鉄の酸化電位より
も低い電位に分極させ続ける。これにより、Fe0は、長
期間にわたって生成され、保持できる。
Fe 0 retained on the surface of the filter by these methods
When used for a long time as a reduction agent for the organic chlorine compounds in water containing dissolved oxygen, intermittently each time constantly or necessary, or maintain flow aqueous solution of the filter, the state of the Fe 0 after processing To keep the potential lower than the oxidation potential of iron. Thereby, Fe 0 can be generated and retained for a long period of time.

又フィルターに疑製陽極として例えば、アルミニウム
等を付着、混在せしめて表層部をFe0に保持する。
Also for example, as false-made anode filter, attaching aluminum, holding the surface layer portion to Fe 0 and allowed to mix.

更にフィルター表面にFe0を生成せしめる他の方法と
しては、鉄からなるフィルターを還元雰囲気中例えば、
水素気流中で加熱還元処理することによっても、達成す
ることができる。このようなフィルターは、還元剤であ
る鉄が構造体となっており、容易に酸化膜除去でき、ま
た処理水のショートパスがなく処理水中の有害物質と均
一に接触でき分解除去が効率的にできる。
Another method of generating Fe 0 on the filter surface is, for example, a filter made of iron in a reducing atmosphere, for example,
It can also be achieved by heat reduction treatment in a hydrogen stream. Such a filter has a structure of iron, a reducing agent, and can easily remove an oxide film.There is no short path of treated water, and it can contact uniformly with harmful substances in treated water to efficiently decompose and remove. it can.

次に三次元網目多孔体構造の一例を挙げる。 Next, an example of a three-dimensional mesh porous body structure will be described.

平均粒径50μ以下の鉄粉、酸化鉄粉、表面を酸化した
鉄粉を単独であるいは混合して、あるいは炭素粉末を添
加混合して母材用粉末として使用する。母材用粉末のC
とOの関係が後で述べる(1)式となるように調整した
後、結合剤と混練し有機質三次元多孔材に塗着し、更に
熱処理を行い自己還元焼結反応を行なわしめる。
Iron powder having an average particle size of 50 μm or less, iron oxide powder, and iron powder having an oxidized surface are used alone or as a mixture, or carbon powder is added and mixed, and used as a base material powder. Base material powder C
After adjusting so that the relationship between and O becomes the formula (1) described later, the mixture is kneaded with a binder, applied to an organic three-dimensional porous material, and further subjected to a heat treatment to perform a self-reduction sintering reaction.

酸化鉄粉は例えば製鉄所の製鋼ダスト、熱延スケール
を粉砕して製造する事ができる。表面を酸化させた鉄粉
は、例えば鉄粉、鋳鉄を湿式粉砕して得られる。湿式粉
砕法による鉄片は、粉砕中に発火や爆発等がないために
安全であり、又表面が酸化していない鉄粉よりも安価に
製造できる。
The iron oxide powder can be produced, for example, by pulverizing steelmaking dust and hot-rolled scale from an ironworks. The iron powder having the oxidized surface is obtained by, for example, wet-pulverizing iron powder or cast iron. Iron pieces obtained by the wet pulverization method are safe because they do not ignite or explode during pulverization, and can be manufactured at lower cost than iron powder whose surface is not oxidized.

粉砕する鉄が合金元素であるMn、Ni、Cr、Cu、P、Au
を含有する場合は、これ等の合金元素を含有する鉄粉や
表面を酸化させた鉄粉がえられるが、これらの合金元素
は焼結金属多孔体の骨格の強度等を向上させるために好
ましい。またこれ等の合金元素を含有する粉末を母材用
粉末を添加させると同様の効果が得られる。
Iron to be crushed is an alloy element Mn, Ni, Cr, Cu, P, Au
In the case of containing, iron powder containing these alloy elements or iron powder whose surface is oxidized can be obtained, and these alloy elements are preferable for improving the strength and the like of the skeleton of the porous sintered metal body. . The same effect can be obtained by adding a powder containing these alloying elements to a powder for a base material.

母材用粉末にはまた、必要に応じて炭素粉末を添加し
て使用する。炭素粉末は例えば電極やコークスを粉砕し
て得られる。鉄粉、酸化鉄粉、表面を酸化させた鉄粉を
単独であるいは混合してあるいは炭素粉末を添加混合し
て、炭素と酸素の含有量が、 但し、 [C]:母材用粉末の炭素含有量(重量%)、 [O]:母材用粉末の酸素含有量(重量%) の母材用粉末を製造する。炭素含有量が2.1%以上の鉄
はセメンタイトが粉砕核となるため粉砕し易く、粉末が
安価に製造できるが、この粉末は炭素を2.1%以上含有
するため、炭素粉末を添加混合する事なく使用できる。
Carbon powder is added to the base material powder, if necessary. The carbon powder is obtained by, for example, grinding an electrode or coke. Iron powder, iron oxide powder, iron powder with oxidized surface alone or mixed or by adding and mixing carbon powder, the content of carbon and oxygen, Here, [C]: a base material powder having a carbon content (% by weight) of the base material powder and [O]: an oxygen content (% by weight) of the base material powder. Iron with a carbon content of 2.1% or more is easily crushed because cementite becomes a crushing core, and powder can be produced at low cost. However, since this powder contains 2.1% or more carbon, it is used without adding carbon powder and mixing. it can.

粉体を高圧プレスで加圧しないで塗着状態のままで焼
結するため、粒子結合が不十分で、焼結後の多孔体の形
状維持が困難となり易い。この方法では熱処理で、Fe3C
と鉄の低融点の液相を生成せしめ、液相焼結化によっ
て、強固に粒子を結合するが母材用粉末中にCを2.1%
を以上含有させると、鉄とFe3Cの共晶が生成し、液相焼
結化させ易い。
Since the powder is sintered in a coated state without being pressed by a high-pressure press, the particle bonding is insufficient, and it tends to be difficult to maintain the shape of the porous body after sintering. In the heat treatment in this method, Fe 3 C
A low-melting liquid phase of iron and iron is generated, and the liquid phase sintering binds the particles firmly, but C in the base material powder is 2.1%.
Is contained, a eutectic of iron and Fe 3 C is generated, and liquid phase sintering is easily performed.

熱処理では自己還元反応を起させ、母材用粉末中の酸
素によって炭素含有量を低減させる。母材用粉末中の
[O]の含有量が4/3([C]−2)以下では脱炭の進
行が不十分で、焼結後の母材の炭素含有量が高く、熱歪
等当でが割れ易い脆い多孔体となる。
In the heat treatment, a self-reduction reaction is caused, and the carbon content is reduced by oxygen in the base material powder. If the content of [O] in the base material powder is 4/3 ([C] -2) or less, the progress of decarburization is insufficient, the carbon content of the base material after sintering is high, and thermal strain etc. It becomes a brittle porous body that is easily broken.

又母材用粉末中の[O]の含有量が4/3([C]+
7)以上では、焼結後の母材中の未還元酸化物が多くな
って、多孔体は崩壊し易い。
In addition, the content of [O] in the base material powder was 4/3 ([C] +
7) Above, the unreduced oxide in the base material after sintering increases, and the porous body is likely to collapse.

母材用粉末中の[O]の含有量を、4/3([C]−
2)〜4/3([C]+7)に調整すると、靭性の優れた
健全な鉄系の金属多孔体が得られる。
The content of [O] in the base material powder was 4/3 ([C]-
When adjusted to 2) to 4/3 ([C] +7), a sound iron-based metal porous body having excellent toughness can be obtained.

次に母材用粉末は結合剤と混練し有機質三次元多孔材
の骨格に塗着する。結合剤は有機系では例えば、CMCや
ポリアクリル酸を、又無機系では例えば水ガラスを用い
る事ができるが、母材用粉末をこれらの結合剤の水溶液
と混練する。
Next, the base material powder is kneaded with a binder and applied to the skeleton of the organic three-dimensional porous material. As the binder, for example, CMC or polyacrylic acid can be used in an organic system, and, for example, water glass can be used in an inorganic system. The base material powder is kneaded with an aqueous solution of these binders.

有機質三次元多孔材とは、熱処理での加熱で熱分解あ
るいは昇華して除去できる多孔材で、例えばウレタンフ
ォームや三次元織物という。
The organic three-dimensional porous material is a porous material that can be removed by thermal decomposition or sublimation by heating in heat treatment, and is, for example, urethane foam or three-dimensional fabric.

母材用粉末と結合剤との混練物は、スプレーや浸漬に
よって有機質三次元多孔材の骨格に塗着される。粒度が
50μ以下の母材用粉末は結合剤との混練によって粘調な
スラリー状となるため、有機質三次元多好材の骨格に均
一な厚さに塗着せしめる事ができる。
The kneaded product of the base material powder and the binder is applied to the skeleton of the organic three-dimensional porous material by spraying or dipping. Granularity
Since the base material powder having a size of 50 μm or less becomes a viscous slurry by kneading with a binder, it can be applied to the skeleton of the organic three-dimensional multi-layered material in a uniform thickness.

熱処理では、母材用粉末が炭素を十分含有しているた
め、加熱炉の雰囲気は一般の焼結合金の場合と異なり、
還元性雰囲気による必要はなく、非酸化性のアルゴンガ
スや窒素ガスの雰囲気で十分である。有機質三次元多孔
材がウレタンフォームの場合は、100〜350℃で30分加熱
すると有機質三次元多孔材は除去される。
In the heat treatment, the atmosphere of the heating furnace is different from that of general sintered alloys because the base material powder contains sufficient carbon.
It is not necessary to use a reducing atmosphere, and an atmosphere of non-oxidizing argon gas or nitrogen gas is sufficient. When the organic three-dimensional porous material is urethane foam, the organic three-dimensional porous material is removed by heating at 100 to 350 ° C. for 30 minutes.

更に600〜1200℃に約1時間加熱すると、液相焼結化
や自己還元反応や仕上げ焼結化によって、母材が鉄であ
る焼結金属多孔体が得られる。
Further heating at 600 to 1200 ° C. for about 1 hour gives a sintered metal porous body whose base material is iron by liquid phase sintering, self-reduction reaction and finish sintering.

このような多孔体の表面積、空孔等の調整は、上記有
機質三次元多孔材の表面積により調整することができ
る。
Such adjustment of the surface area, pores and the like of the porous body can be adjusted by the surface area of the organic three-dimensional porous material.

実施例 次に本発明の実施例を比較例とともに挙げる。Examples Next, examples of the present invention will be described together with comparative examples.

注1:三次元網目多孔体は、粒鉄を湿式粉砕し、平均粒径
10μmの粒体とし、これを水とCMCで混練し、空孔2mmの
ウレタンフォームにスプレー法にて塗着し、乾燥(100
℃)、脱脂(200℃)、自己還元(800℃)、焼結(1100
℃)の熱処理を窒素雰囲気中で行い、成分(%)、C:0.
05%、Si:0.05%、Mn:0.38%、P:0.009%、S:0.015%、
O:0.01%、Fe:残の多孔体を使用。
Note 1: The three-dimensional mesh porous material is obtained by wet-milling granular iron, and the average particle size
Granules of 10 μm were kneaded with water and CMC, applied to urethane foam with 2 mm pores by a spray method, and dried (100
℃), degreasing (200 ℃), self-reduction (800 ℃), sintering (1100
C) in a nitrogen atmosphere, and the composition (%), C: 0.
05%, Si: 0.05%, Mn: 0.38%, P: 0.009%, S: 0.015%,
O: 0.01%, Fe: The remaining porous material is used.

注2:処理水溶液は40%に加温して使用。Note 2: The treatment aqueous solution is heated to 40% before use.

注3:処理結果は、上記多孔体をフィルターとし、クロロ
ホルム10ppm含有水を1.0/分の流速で1時間循環さ
せ、フィルターを通過して出てくる水中のクロロホルム
濃度をECDガスクロマトグラフ分析装置により測定した
結果。
Note 3: The treatment results are obtained by using the above porous material as a filter, circulating water containing 10 ppm of chloroform at a flow rate of 1.0 / min for 1 hour, and measuring the concentration of chloroform in the water coming out of the filter using an ECD gas chromatograph. Result.

注4:比較例は、上記鉄粉を充填槽内(直径100mm、高さ3
00mm)に充填し、上記クロロホルム含有水を同様に循環
させた。
Note 4: In the comparative example, the above iron powder was filled in a filling tank (diameter 100 mm, height 3
00 mm), and the chloroform-containing water was circulated in the same manner.

発明の効果 本発明により、排水などの汚水浄化を確実にでき、か
つ本発明フィルターは長期間に亘り使用することができ
る。又極めて安価なコストで水処理ができる。更に有機
ハロゲン化合物等難分解性汚濁水の処理も確実にできる
等の優れた効果が得られる。
Effect of the Invention According to the present invention, sewage such as wastewater can be reliably purified, and the filter of the present invention can be used for a long period of time. Also, water treatment can be performed at extremely low cost. In addition, excellent effects such as reliable treatment of hardly decomposable polluted water such as organic halogen compounds can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 1/70 B01D 39/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C02F 1/70 B01D 39/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三次元網目状多孔体を酸化膜溶解水溶液と
接触せしめ、酸化膜を溶解除去し、該多孔体を形成して
いる骨格表層部を鉄より構成することを特徴とする、水
処理フィルターの製造方法。
1. A method comprising: bringing a three-dimensional mesh-like porous body into contact with an aqueous solution of an oxide film to dissolve and remove the oxide film; and forming a surface layer of the skeleton forming the porous body from iron. Manufacturing method of treatment filter.
JP16252389A 1989-06-27 1989-06-27 Water treatment filter manufacturing method Expired - Fee Related JP2904217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252389A JP2904217B2 (en) 1989-06-27 1989-06-27 Water treatment filter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252389A JP2904217B2 (en) 1989-06-27 1989-06-27 Water treatment filter manufacturing method

Publications (2)

Publication Number Publication Date
JPH0330895A JPH0330895A (en) 1991-02-08
JP2904217B2 true JP2904217B2 (en) 1999-06-14

Family

ID=15756242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252389A Expired - Fee Related JP2904217B2 (en) 1989-06-27 1989-06-27 Water treatment filter manufacturing method

Country Status (1)

Country Link
JP (1) JP2904217B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1151807A4 (en) 1999-07-29 2004-08-18 Hazama Gumi Soil purification agent and method for purifying soil
CN104759635B (en) * 2015-03-12 2016-09-14 中国科学院福建物质结构研究所 A kind of preparation method of loaded nano zero-valent iron composite material
CN106365244B (en) * 2016-11-21 2019-07-19 南京大学 A kind of suspended liquid Fe-contg complex reagent and preparation method thereof and the method for efficiently removing selenate in water removal

Also Published As

Publication number Publication date
JPH0330895A (en) 1991-02-08

Similar Documents

Publication Publication Date Title
JP4676898B2 (en) Arsenic removal method and arsenic removal treatment agent in contaminated water
EP2897911B1 (en) Method for use of new iron powder composition
Ileri et al. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: Identification of reaction by-products and pathways
JP2008043921A (en) Method for removing arsenic in polluted water and arsenic-removing treatment agent
KR100913615B1 (en) Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby
JP2904217B2 (en) Water treatment filter manufacturing method
Sarntanayoot et al. Iron nanoparticle-modified water treatment residues for adsorption of As (III) and As (V) and their cement-based solidification/stabilization
JP2901278B2 (en) Water treatment filter and method for producing the same
JP2795507B2 (en) Water treatment method
JP6832551B2 (en) Cesium adsorbent and environmental treatment method using it
JPH0219406A (en) Manufacture of iron porous body
JP4218939B2 (en) Method for producing magnetic ceramic balls having strong reducing properties
JPH03106496A (en) Sewage treatment
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP2002020806A (en) Method for producing iron powder for removing contamination
JP4833505B2 (en) Iron powder for purification
JPH09935A (en) Catalyst for treatment of water
KR100582474B1 (en) Iron-Based cleaning powder
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP4786936B2 (en) Organohalogen compound treatment material
JP4106545B2 (en) Iron composite particle powder for the purification treatment of soil and groundwater containing an organic halogen compound, its production method, a purification agent containing the iron composite particle powder, its production method and a purification method for soil and groundwater containing an organic halogen compound
JP4921856B2 (en) Purifying material for decomposition of organic halogen compounds and use thereof
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JPS61247604A (en) Oxygen generator
Davidescu et al. Novel Adsorbent Used for Cesium Removal from Aqueous Solutions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees