JPH03106496A - Sewage treatment - Google Patents

Sewage treatment

Info

Publication number
JPH03106496A
JPH03106496A JP24175089A JP24175089A JPH03106496A JP H03106496 A JPH03106496 A JP H03106496A JP 24175089 A JP24175089 A JP 24175089A JP 24175089 A JP24175089 A JP 24175089A JP H03106496 A JPH03106496 A JP H03106496A
Authority
JP
Japan
Prior art keywords
filter
waste liquors
iron
contact
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24175089A
Other languages
Japanese (ja)
Inventor
Kengo Senoo
妹尾 健吾
Yozo Takemura
竹村 洋三
Yoshimasa Igari
猪狩 俶将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24175089A priority Critical patent/JPH03106496A/en
Publication of JPH03106496A publication Critical patent/JPH03106496A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure the treatment of sewage and particularly that of difficultly decomposable putrescible waster liquors containing org. halide, etc., in a proper way, and use a porous filter over an extended period of time by a method wherein untreated waste liquors are made to contact with the filter whose framework is formed of the porous body of a three- dimensional network and consists of at least one kind of metals Fe, Mn, Mg, Zn, Al and Ti, thereby subjecting contaminants in the waste liquors being treated to reductive decomposition for their removal therefrom. CONSTITUTION:Untreated waste liquors are made to contact with the filter whose framework is formed of the porous body of a three-dimensional network and consists of at least one kind of metals Fe, Mn, Mg, Zn, Al and Ti, thereby subjecting contaminants in the waste liquors being treated to reductive decomposition for their removal therefrom. For example, an aq. solution for dissolving oxide film is brought into contact with iron oxide film existing on the surface of a filter consisting of iron to remove such film therefrom in order to retain Fe<0>. Such a filter as this permits a uniform contact with harmful substances in the waste liquors being treated without causing the short pass thereof, resulting in an efficient film removal by decomposition. In the case of the filter consisting of the aforesaid metal other than Fe, the waste liquors are subjected to the reductive decomposition by the same reaction to be made free from the harmful substance.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は,水処理方法に関するものである.従来の技術 例えばイ]機ハロゲン化合物を含有する水の処理技術と
しては、例えば■活性炭を用いる吸着法、■触媒を用い
る酸化黛元法,■エアバブリングにて揮散させる曝気法
、■オゾンにて酸化させるオゾン処理法、■水酸化物と
して共沈分離させる凝集処理法などが知られている.工
業用水学会誌(工業用水) , No.357(198
B)、p2〜7には、■の触媒法に関するもので量元剤
として鉄粉を用い,これを1.1,2.2−テトラクロ
ロエタンを含有する水に一定1.1−添加すれば、1,
1,2.2−テトラクロロエタンは、電元分解除去され
る餌が記藏されている. 発明が解決しようとする課題 このような水処押技術を水中の汚染物として,例えばイ
f機ハロゲン化合物または難分解性汚濁成分の除去技術
に適用すると、■は、活性炭の特性から何でも吸若する
ため、水中の11的成分以外の無書物質も吸着除去し効
率が悪い.更に廃棄時に燃焼させると,吸着した該成分
が大気中に揮散し、さらには塩素ガス、ホスゲン、ダイ
オキシン等の二次有害物質を生戊する危険性がある.■
は,触媒の酸化な元効率の持続性が短期のものが多いた
め,実川向きでない.■は,大気中への汚染物質の揮故
に過ぎず根木的な解決手段にはならない.■は,オゾン
発生機を必要とする上、有害なオゾンの残存が考えられ
、装置規模が大きくなり過ぎる.■は,有機ハロゲン化
合物を生威する前駆物質の除去などの対症療法的な方法
であり、該成分を直接除去する方法ではない等の問題が
ある. 又、前記の鉄粉による還元分解に関する公知技術は,表
面を活性化する処理工程上、鉄粉は取扱い難いだけでな
く、カラム等に充填して水処理フィルターとして用いる
と,還元体が粉体であるために処理水を通過すると、充
項層内にシ璽一トパスを生じやすく、充填した鉄粉と有
害物質とが均一に接触しないため,分解効率が悪い等の
欠点がある. 課題を解決するための手段 本発明は, (1)三次元網目状多孔体を形成している骨格をFe.
 )In. Mg. Zn. AQ. Tiの1種又は
2種以上の金属により構成したフィルターに処理水を接
触せしめて処理水中の汚染物を還元分解除去することを
特徴とする水処理方法, (2)汚染物が有機ハロゲン化合物又は難分解汚濁物質
である請求項l記藏の水処理方法、(3)三次元網目状
多孔体を形成している骨格をFe. Mn. Mg. 
Zn. AQ. Tiの1種又は2種以上の金属により
構成したフィルターに処理水を接触せしめ,さらに三次
元網目状多孔体に分極電圧をかけ,酸化防止しつつ、処
理水中の汚染物を還元分解除去することを特徴とする水
処理方法,である. イi害物質を含む汚染物水処理技術として,例えばイf
 41 ktl素化合物の本処理例を説11する.O価
の鉄は,人体に有害とされる有機塩素化合物と下記の反
応を起こして有機塩素化合物を無害化するため,極めて
効果的な還元処理剤である.例えばFeを還元剤とする
場合、下記のごとき反応により無害化することができる
. 3Fe+3H20+CICl3 →CH4  +  3
Fe2◆+ 30H″″ + 3Ct−クロロホルム 
メタン 4 Fa + 4H20 + CICI! 2 ・CH
CQ tテトラクロロエタン +cHA−co3+  4Fe”+  40H’″+ 
4Ci−エタン 3Fe + 3HzO + CICI :CCl 2ト
リクロロエチレン 4  CH2:CH2+  3Fe”+  30H− 
+  3Ci−エチレン エチレン しかし、Feは溶存酸素を含む水中では0価の状態で存
在することは困難で、一般には3価あるいは4価の酸化
物に変化して前記の化学反応や還元が起こりにくい. 本発明者等は、簡易な手段でFeOの還元状態を維持す
る方法を研究した結果,鉄からなるフィルター表J#部
(表面)に存在する鉄の酸化被膜を溶解除去することに
よって達成できることを知得した. 酸化膜溶解水溶液としては塩酸、過酸化水素,稍酸、硫
酸、りん酸、ふっ酸,クロム酸、ぎ酸、酢酸、アスコル
ビン酸等の1〜70%水溶液と接触することによりフィ
ルター表層部の酸化被膜を除去する.またこれらの酸の
2種類以上の混合物も同様の作用を右する.即ち、フィ
ルター表M9部が鉄よりなる表層部にはFeOが保持さ
れる.これらの方法でフィルターの表層部に維持された
Fe’を溶存酸素を含む水中において有機塩素化合物の
還元処理剤として長期間使用する際には、常時あるいは
必要の都度間欠的に、フィルターに前記の水溶液を流す
か,処理した後Fe’の状態をm持するために鉄の酸化
電位よりも低い電位に分極させ続ける.これにより、F
eOは、長期間にわたって生成され、保持できる. 又フィルターに犠牲陽極として例えば,アルミニウム、
亜鉛等を多孔体に付着させ,あるいは燃結金屁多孔体製
造時の母材用粉末中にアルミニウム、亜鉛等を混合し、
アルミ、亜鉛を含んだ多孔体とすることによって,表層
部をFe’に保持する.史にフィルター表面にFe’を
生成せしめる他の方法としては、鉄からなるフィルター
を還元雰囲気中例えば,水素気流中で加熱還元処理する
ことによっても,達成することができる.このようなフ
ィルターは,還元剤である鉄が構造体となっており、容
易に酸化膜除去でき,また処理水のショートパスがなく
処理水中の有害物質と均一に接触でき分解除去が効率的
にできる. このように鉄と処理水との接触による反応によって砧元
分解し,無害化するものであるが. Fe以外の前記本
発明の他の金属からなるフィルターにおいても同一反応
により処理水を還元分解し無害化することができる. ]二記のごとき有機塩素化合物の他、難分解性汚濁物質
としては,例えば,殺虫剤として農薬に用いられるイン
キサチオン,インフェンホス,ダイアジ/7、DDVP
,DEP,MEP,NAC等、殺菌剤として農薬に用い
られるイプロジオン、キヤブタン、チオファネートメチ
ル,ベノミル、TPN等,除草剤として農薬に用いられ
るアシュラム,ベンタゾン、ペンディメタリン,CAT
.SAP等がある. 三次元網目状の多孔体としては該金属の細線をフエルト
化したもの、ハニカムの交叉積層化したもの、平板に細
孔をあけたものを複数枚積層化したもの、有機質多孔体
に該金属粉末を塗着,焼結する方法によるもの等がある
が,経済的な反応の長い多孔体製造の一例を次に示す. 平均粒径50g以下の鉄粉,酸化鉄粉、表面を酸化した
鉄粉を単独であるいは混合して,あるいは炭素粉末を添
加混合して母材用粉末として使用する.母材用粉末のC
とOの関係が後で述べる(!)式となるように調整した
後,結合剤と混練し有機質三次元多孔材に塗着し.′3
I!に熱処理を行い自己還元焼結反応を行なわしめる. 酸化鉄粉は例えば製鉄所の製鋼ダスト,熱延スケールを
粉砕して製造することができる.表面を酸化させた鉄粉
は、例えば銑鉄,鋳鉄を湿式粉砕して得られる.湿式粉
砕法による鉄粉は,粉砕中に発火や爆発等がないために
安全であり,又表面が酸化していない鉄粉よりも安価に
製造できる.粉砕する鉄が合金元素である旧,旧、Cr
. Cu、P.Mを含有する場合は,これ等の合金元素
を含イ1する鉄粉や表面を酸化させた鉄粉が得られるが
,これらの合金元素は焼結金属多孔体の骨格の強度等を
向上させるために好ましい.またこれ等の合金元素を含
有する粉末を母材用粉末に添加させると同様の効果が得
られる. 母材用粉末にはまた,必要に応じて炭素粉末を添加して
使用する.炭素粉末は例えば電極やコークスを粉砕して
得られる.鉄粉,酸化鉄粉、表面を酸化させた鉄粉を単
独であるいは混合してあるいは炭各粉末を添加混合して
,炭素と酸素の含有罎が, 但し, [C1 :母材用粉末の炭素含有量(重量%),
INDUSTRIAL APPLICATION FIELD The present invention relates to a water treatment method. Conventional Techniques For example, a) Treatment techniques for water containing halogen compounds include: ■ adsorption method using activated carbon, ■ oxidation method using a catalyst, ■ aeration method using air bubbling to volatilize water, and ■ ozone treatment. Known methods include ozone treatment to oxidize, and coagulation treatment to co-precipitate and separate hydroxides. Journal of the Industrial Water Society (Industrial Water), No. 357 (198
B), pages 2 to 7 are related to the catalytic method in ①, and if iron powder is used as a quantity agent and a constant 1.1- is added to water containing 1,1,2,2-tetrachloroethane. ,1,
1,2,2-Tetrachloroethane is recorded as a bait that is removed by electrolytic decomposition. Problems to be Solved by the Invention When this water treatment technology is applied to the removal of contaminants in water, such as halogen compounds or persistent pollutant components, (2) it is possible to absorb and absorb anything due to the characteristics of activated carbon. Therefore, it also adsorbs and removes non-alcoholic substances other than the 11 components in the water, which is inefficient. Furthermore, if it is burned during disposal, there is a risk that the adsorbed components will volatilize into the atmosphere and produce secondary harmful substances such as chlorine gas, phosgene, and dioxins. ■
In many cases, the sustainability of the oxidation efficiency of the catalyst is short-term, so it is not suitable for practical use. ① is nothing more than the volatilization of pollutants into the atmosphere and is not a fundamental solution. (2) requires an ozone generator, and there is a possibility that harmful ozone may remain, making the equipment too large. Method (2) is a symptomatic method, such as removing precursors that cause organic halogen compounds, and has problems such as not being a method for directly removing the components. In addition, in the known technology for reductive decomposition using iron powder, the iron powder is not only difficult to handle due to the treatment process of activating the surface, but when packed in a column or the like and used as a water treatment filter, the reduced material becomes powder. Therefore, when it passes through the treated water, it tends to cause a seal pass in the packed layer, and the filled iron powder and harmful substances do not come into uniform contact, resulting in poor decomposition efficiency and other drawbacks. Means for Solving the Problems The present invention provides: (1) The skeleton forming the three-dimensional network porous body is made of Fe.
) In. Mg. Zn. AQ. A water treatment method characterized by bringing treated water into contact with a filter made of one or more metals such as Ti to reduce and decompose contaminants in the treated water, (2) when the contaminants are organic halogen compounds or (3) The skeleton forming the three-dimensional network porous body is made of Fe. Mn. Mg.
Zn. AQ. Treated water is brought into contact with a filter made of one or more metals such as Ti, and a polarization voltage is applied to the three-dimensional network porous material to prevent oxidation while reducing and decomposing contaminants in the treated water. This is a water treatment method characterized by: (i) As a technology for treating polluted water containing harmful substances, for example, (ii)
An example of this treatment of 41 ktl elementary compounds will be explained below. O-valent iron is an extremely effective reducing agent because it causes the following reaction with organic chlorine compounds that are considered harmful to the human body, rendering them harmless. For example, when Fe is used as a reducing agent, it can be made harmless by the following reaction. 3Fe+3H20+CICl3 →CH4 + 3
Fe2◆+ 30H″″ + 3Ct-chloroform
Methane 4 Fa + 4H20 + CICI! 2 ・CH
CQ ttetrachloroethane+cHA-co3+ 4Fe"+ 40H'"+
4Ci-ethane 3Fe + 3HzO + CICI: CCl 2 trichlorethylene 4 CH2: CH2+ 3Fe"+ 30H-
+ 3Ci - Ethylene However, it is difficult for Fe to exist in a zero-valent state in water containing dissolved oxygen, and it generally changes to trivalent or tetravalent oxides, making it difficult for the above chemical reactions and reduction to occur. .. As a result of researching a method of maintaining the reduced state of FeO using simple means, the present inventors found that this can be achieved by dissolving and removing the iron oxide film present on the J# part (surface) of the filter table made of iron. I learned it. The surface layer of the filter is oxidized by contacting with a 1-70% aqueous solution of hydrochloric acid, hydrogen peroxide, malignant acid, sulfuric acid, phosphoric acid, hydrofluoric acid, chromic acid, formic acid, acetic acid, ascorbic acid, etc. as an oxide film-dissolving aqueous solution. Remove the coating. A mixture of two or more of these acids also has the same effect. That is, FeO is retained in the surface layer of the filter surface M9 made of iron. When Fe' maintained on the surface layer of the filter by these methods is used as a reducing agent for organic chlorine compounds in water containing dissolved oxygen for a long period of time, the above-mentioned Either by flowing an aqueous solution or after treatment, the material is kept polarized to a potential lower than the oxidation potential of iron in order to maintain the Fe' state. As a result, F
eO can be produced and retained over long periods of time. Also, as a sacrificial anode in the filter, for example, aluminum,
Zinc, etc. is attached to the porous body, or aluminum, zinc, etc. are mixed into the powder for the base material when producing the sintered metal porous body,
By making it a porous body containing aluminum and zinc, the surface layer is retained as Fe'. Another method for producing Fe' on the surface of a filter is to heat and reduce a filter made of iron in a reducing atmosphere, for example in a hydrogen stream. These filters have a structure made of iron, which is a reducing agent, so they can easily remove the oxide film, and there is no short path for the treated water, so they can uniformly contact harmful substances in the treated water and decompose and remove them efficiently. can. In this way, the reaction between iron and treated water decomposes the metal and renders it harmless. Even in a filter made of a metal other than Fe according to the present invention, the treated water can be reductively decomposed and rendered harmless by the same reaction. ] In addition to organic chlorine compounds such as those mentioned above, examples of persistent pollutants include inxathion, infenphos, diazi/7, and DDVP, which are used in agricultural chemicals as insecticides.
, DEP, MEP, NAC, etc., iprodione, cabtan, thiophanate methyl, benomyl, TPN, etc., used in pesticides as fungicides, Ashram, bentazone, pendimethalin, CAT, used in pesticides as herbicides.
.. There are SAP etc. Three-dimensional mesh porous bodies include felted fine wires of the metal, cross-layered honeycombs, laminated flat plates with pores, and organic porous bodies made of the metal powder. There are methods such as coating and sintering, but the following is an example of an economical method for manufacturing porous materials that requires a long reaction time. Iron powder, iron oxide powder, and surface-oxidized iron powder with an average particle size of 50 g or less are used alone or in combination, or with carbon powder added and mixed as the base material powder. C of powder for base material
After adjusting the relationship between '3
I! Heat treatment is performed to cause a self-reducing sintering reaction. Iron oxide powder can be produced, for example, by pulverizing steel dust from a steel mill or hot rolling scale. Iron powder with an oxidized surface can be obtained, for example, by wet grinding of pig iron or cast iron. Iron powder produced using the wet grinding method is safe because there is no ignition or explosion during grinding, and it can be produced at a lower cost than iron powder whose surface is not oxidized. The iron to be crushed is an alloying element of old, old, Cr
.. Cu, P. When containing M, iron powder containing these alloying elements or iron powder with an oxidized surface can be obtained, but these alloying elements improve the strength of the skeleton of the sintered metal porous body. preferred for this reason. Similar effects can also be obtained by adding powders containing these alloying elements to the base material powder. Carbon powder is also added to the base material powder if necessary. Carbon powder can be obtained, for example, by crushing electrodes or coke. Iron powder, iron oxide powder, iron powder with an oxidized surface can be used alone or in combination, or by adding and mixing charcoal powder, to create a carbon and oxygen content. Content (weight%),

【O】
 :母材用粉末の酸素含力量(重量%)の母材用粉末を
製造する.炭素含有量が2.1%以上の鉄はセメンタイ
トが粉砕核となるため粉砕し易く,粉末が安価に製造で
きるが,この粉末は炭素を2.1%以上含有するため,
炭素粉末を添加混合することなく使用できる. 一般の粉末合金の製造法とは異なり、粉体を高圧プレス
で加圧しないで塗着状態のままで焼結するため,粒子結
合が不十分で,焼結後の多孔体の形状維持が困難となり
易い.この方法では熱処理で、Fe3Cと鉄の低融点の
液相を生或せしめ,液相焼結化によって,強−因に粒子
を結合するが,母材川粉末中にCを2.1%以上含有さ
せると,鉄とFe3Cの共晶が生成し、液相焼結化させ
易い.熱処理では自己還元反応を起こさせ,母材用粉末
中の酸素によって炭素含有量を低減させる.母材用粉末
中の[01の含有槍が4/3 ( [C] −2)以下
では脱炭の進−行が不十分で,焼結後の母材の炭素含有
κが高く,熱歪等で:情れ易い脆い多孔体となる.又母
材用粉末中の[0]の含有量が4/3( [C] +7
)以上では,焼結後の母材中の未還元酸化物が多くなっ
て、多孔体は崩壊し易い.上記威分領城で実施すること
によって、極めて比表面積の大きい(300m″/m″
以上)、シかも金属骨格中に,5鉢〜50ILのミクロ
空孔を多数含む反応性がよく,且つ靭性の優れた健全な
金属多孔体が確実に得られる. 又Fe以外の前記本発明の他の金属においても上記のご
とく、有機質三次元多孔材に塗着し、熱処理することに
よって得られる. 次に母材用粉末は結合剤と混練し、有m質三次元多孔材
の骨格に塗着する.結合剤は有機系では例えばCMCや
ポリアクリル酸を,又無機系では例えば木ガラスを用い
ることができるが,母材用粉末をこれらの結合剤の水溶
液と混練する.有機質三次元多孔材とは、熱処理での加
熱で熱分解あるいは昇華して除去できる多孔材で、例え
ばウレタンフォームや三次元織物をいう.母材用粉末と
結合剤との混線物は、スプレーや浸漬によって有m賀三
次元多孔材の骨格に塗着される.粒度が50紗以下の母
材用粉末は結合剤との混練によって粘調なスラリー状に
なるため、有Il賀三次元多孔材の骨格に均一な厚さに
塗着せしめることができる. 熱処理では、母材用粉末が炭素を十分に含有しているた
め、加熱炉の雰囲気は一般の焼結合金の場合と異なり、
砧元雰囲気にする必要はな〈,非酸化性のアルゴンガス
や窒素ガスの雰囲気で十分である.有機質三次元多孔材
がウレタンフォームの場合は. 100〜350℃で3
0分加熱すると有機賀三次元多孔材は除去される. 四に1300−1200℃に約1時間加熱すると,液相
焼結化や自己砧元反応や仕上げ焼結化によって、母材が
鉄である焼結金属多孔体が得られる.このような多孔体
の表面積、空孔等の調整は,上記イi機質三次元多孔材
の空孔率で調整することができる. 実施例 次に本発明の実施例を比較例とともに第1表に挙げる. 注1=三次元網目多孔体は、上記金属を湿式粉砕し、f
均粒径10μmの粒体とし、これを水とCMCで混練し
,空孔2厘量のウレタンフォームにスプレー法にて塗着
し、乾燥(100℃)、脱脂(200℃),自己還元(
700〜1000℃),焼結(1100℃)の熱処理を
窒素雰囲気中で行った. (Fe−All :5G/5
0、Fe−Mg:50/5G . Fe−Mn:50/
5G . Nn−Mg:50/50 .M−Ti−Zn
:3G/3G/40 . Ti−Mg−Fe:30/3
G/4G)注2=処理水は40℃に加温して使用.注3
:処理結果は,上記多孔体をフィルターとし、処理水を
 1.01 /分の流速で1時間循環させ、フィルター
を通過して出てくる水中の汚染物濃度をECOガスクロ
マトグラフ分析装置により測定した結果. 注4:比較例は,上記鉄粉を充項槽内(直径l00■,
高さ300mm )に充填し、上記汚染物含有水を同様
に循環させた. 発明の効果 本発明により、排水などの汚水浄化を確実にでき、かつ
多孔体フィルターも長期間に亘り使用することかできる
.又極めて安価なコストで水処理ができる.更に有機ハ
ロゲン化合物等難分解性汚濁水の処理も確実にできる等
の優れた効果が得られる.
【O】
: Produce a powder for the base material with the oxygen content (wt%) of the powder for the base material. Iron with a carbon content of 2.1% or more is easy to crush because cementite serves as the pulverization core, and powder can be produced at low cost.
Can be used without adding or mixing carbon powder. Unlike the manufacturing method of general powder alloys, the powder is sintered in its coated state without being pressurized with a high-pressure press, resulting in insufficient particle bonding and difficulty in maintaining the shape of the porous body after sintering. It is easy to become In this method, a low melting point liquid phase of Fe3C and iron is created through heat treatment, and the particles are strongly bonded together through liquid phase sintering. When it is included, a eutectic of iron and Fe3C is formed, which facilitates liquid phase sintering. During heat treatment, a self-reduction reaction occurs, and the carbon content is reduced by oxygen in the base material powder. If the content of [01 in the base material powder is less than 4/3 ([C] -2), decarburization will not proceed sufficiently, the carbon content κ of the base material after sintering will be high, and thermal strain will occur. etc.: It becomes a sensitive and brittle porous body. Also, the content of [0] in the base material powder is 4/3 ([C] +7
) or above, the amount of unreduced oxides in the base material increases after sintering, and the porous body tends to collapse. By implementing the above-mentioned Iwun Castle, the specific surface area is extremely large (300m''/m'').
(above), a healthy porous metal body with good reactivity and excellent toughness, containing a large number of micropores of 5 to 50 IL in the metal skeleton, can be reliably obtained. In addition, other metals according to the present invention other than Fe can also be obtained by applying the metal to an organic three-dimensional porous material and heat-treating it as described above. Next, the base material powder is kneaded with a binder and applied to the skeleton of the three-dimensional porous material. Organic binders such as CMC and polyacrylic acid, and inorganic binders such as wood glass can be used, and the base material powder is kneaded with an aqueous solution of these binders. Organic three-dimensional porous materials are porous materials that can be removed by thermal decomposition or sublimation during heat treatment, such as urethane foam and three-dimensional fabrics. The mixture of base material powder and binder is applied to the framework of the Ariga three-dimensional porous material by spraying or dipping. The base material powder with a particle size of 50 gauze or less becomes a viscous slurry when mixed with a binder, so it can be applied to the skeleton of the three-dimensional porous material to a uniform thickness. During heat treatment, the base material powder contains sufficient carbon, so the atmosphere in the heating furnace is different from that for general sintered alloys.
There is no need to create a pure atmosphere; an atmosphere of non-oxidizing argon or nitrogen gas is sufficient. When the organic three-dimensional porous material is urethane foam. 3 at 100-350℃
After heating for 0 minutes, the organic three-dimensional porous material is removed. Fourth, by heating to 1300-1200°C for about 1 hour, a sintered metal porous body whose base material is iron is obtained through liquid phase sintering, self-sintering reaction, and final sintering. The surface area, pores, etc. of such a porous body can be adjusted by adjusting the porosity of the three-dimensional porous material described in (i) above. Examples Next, Examples of the present invention are listed in Table 1 along with comparative examples. Note 1 = Three-dimensional network porous material is obtained by wet-pulverizing the above metal and f
Particles with an average particle size of 10 μm were prepared, kneaded with water and CMC, applied to urethane foam with 2 pores by spray method, dried (100°C), degreased (200°C), and self-reduced (
700-1000°C) and sintering (1100°C) were performed in a nitrogen atmosphere. (Fe-All: 5G/5
0, Fe-Mg: 50/5G. Fe-Mn:50/
5G. Nn-Mg: 50/50. M-Ti-Zn
:3G/3G/40. Ti-Mg-Fe: 30/3
G/4G) Note 2 = Treated water is heated to 40℃ before use. Note 3
: The treatment results were obtained by using the above porous body as a filter, circulating the treated water at a flow rate of 1.01/min for 1 hour, and measuring the concentration of contaminants in the water that passed through the filter using an ECO gas chromatograph analyzer. result. Note 4: In the comparative example, the above iron powder was placed in a filling tank (diameter 100cm,
300 mm in height), and the contaminated water was circulated in the same manner. Effects of the Invention According to the present invention, it is possible to reliably purify wastewater such as wastewater, and the porous filter can be used for a long period of time. Also, water treatment can be done at extremely low cost. Furthermore, excellent effects can be obtained, such as the ability to reliably treat water contaminated with organic halogen compounds and other substances that are difficult to decompose.

Claims (3)

【特許請求の範囲】[Claims] (1)三次元網目状多孔体を形成している骨格をFe、
Mn、Mg、Zn、Al、Tiの1種又は2種以上の金
属により構成したフィルターに処理水を接触せしめて処
理水中の汚染物を還元分解除去することを特徴とする水
処理方法。
(1) The skeleton forming the three-dimensional network porous body is made of Fe,
A water treatment method characterized by bringing treated water into contact with a filter made of one or more metals of Mn, Mg, Zn, Al, and Ti to reduce and decompose contaminants in the treated water.
(2)汚染物が有機ハロゲン化合物又は難分解汚濁物質
である請求項1記載の水処理方法。
(2) The water treatment method according to claim 1, wherein the contaminant is an organic halogen compound or a difficult-to-decompose pollutant.
(3)三次元網目状多孔体を形成している骨格をFe、
Mn、Mg、Zn、Al、Tiの1種又は2種以上の金
属により構成したフィルターに処理水を接触せしめ、さ
らに三次元網目状多孔体に分極電圧をかけ、酸化防止し
つつ、処理水中の汚染物を還元分解除去することを特徴
とする水処理方法。
(3) The skeleton forming the three-dimensional network porous body is made of Fe,
The treated water is brought into contact with a filter made of one or more metals such as Mn, Mg, Zn, Al, and Ti, and a polarization voltage is applied to the three-dimensional network porous material to prevent oxidation while removing the water in the treated water. A water treatment method characterized by removing pollutants by reduction and decomposition.
JP24175089A 1989-09-20 1989-09-20 Sewage treatment Pending JPH03106496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24175089A JPH03106496A (en) 1989-09-20 1989-09-20 Sewage treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24175089A JPH03106496A (en) 1989-09-20 1989-09-20 Sewage treatment

Publications (1)

Publication Number Publication Date
JPH03106496A true JPH03106496A (en) 1991-05-07

Family

ID=17078981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24175089A Pending JPH03106496A (en) 1989-09-20 1989-09-20 Sewage treatment

Country Status (1)

Country Link
JP (1) JPH03106496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596190B1 (en) 1999-07-29 2003-07-22 Hazama Corp. Remediation agent for contaminated soil and method for the remediation of soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596190B1 (en) 1999-07-29 2003-07-22 Hazama Corp. Remediation agent for contaminated soil and method for the remediation of soil

Similar Documents

Publication Publication Date Title
JP5700651B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
Bhatnagar et al. Adsorptive removal of 2, 4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement
CN109095590A (en) LaFe1-xCuxO3The method for handling residue in water Atrazine
JPH0741250B2 (en) How to treat water with ozone
He et al. One-step synthesis of natural montmorillonite/hematite composites with enhanced persulfate catalytic activity for sulfamethoxazole degradation: Efficiency, kinetics, and mechanism
Sarntanayoot et al. Iron nanoparticle-modified water treatment residues for adsorption of As (III) and As (V) and their cement-based solidification/stabilization
KR100913615B1 (en) Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby
JP2795507B2 (en) Water treatment method
JP2901278B2 (en) Water treatment filter and method for producing the same
JP2904217B2 (en) Water treatment filter manufacturing method
JPH03106496A (en) Sewage treatment
JP2005139328A (en) Remover of organochlorine compound and method for removing organochlorine compound
JPH0219406A (en) Manufacture of iron porous body
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
US10562791B2 (en) Process for preparation of granular material
JP2002020806A (en) Method for producing iron powder for removing contamination
CN109513266A (en) Poroid Particles dispersed iron for pollutant in treatment liquid and gas
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP3392749B2 (en) Method for removing dioxin and PCB from wastewater
ONURSAL Iron-Based Nanomaterials as Wastewater and Pollutant Adsorbents
JP4138559B2 (en) Method for treating organohalogen compounds
KR100582474B1 (en) Iron-Based cleaning powder
RU2473471C1 (en) Method of making boron nitride-based catalyst for cleaning effluents of phenol, catalyst thus made, and method of cleaning effluents of phenol using said catalyst
JPS61247604A (en) Oxygen generator
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water