JP2011096510A - Rare earth oxide superconducting wire material and method of manufacturing the same - Google Patents

Rare earth oxide superconducting wire material and method of manufacturing the same Download PDF

Info

Publication number
JP2011096510A
JP2011096510A JP2009249173A JP2009249173A JP2011096510A JP 2011096510 A JP2011096510 A JP 2011096510A JP 2009249173 A JP2009249173 A JP 2009249173A JP 2009249173 A JP2009249173 A JP 2009249173A JP 2011096510 A JP2011096510 A JP 2011096510A
Authority
JP
Japan
Prior art keywords
layer
substrate
rare earth
intermediate layer
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009249173A
Other languages
Japanese (ja)
Other versions
JP5380250B2 (en
Inventor
Yasuo Takahashi
保夫 高橋
Masaaki Yoshizumi
正晃 吉積
Teruo Izumi
輝郎 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
SWCC Corp
Original Assignee
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical International Superconductivity Technology Center
Priority to JP2009249173A priority Critical patent/JP5380250B2/en
Priority to US12/777,686 priority patent/US20110105336A1/en
Publication of JP2011096510A publication Critical patent/JP2011096510A/en
Application granted granted Critical
Publication of JP5380250B2 publication Critical patent/JP5380250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To improve the orientation of an IBAD layer by forming a bed layer by an MOD method. <P>SOLUTION: In a superconducting wire material 10 manufactured by forming a MOD-CZO layer 2, an IBS-GZO 3, an IBAD-MgO layer 4, a LMO layer 5, a PLD-CeO<SB>2</SB>layer 6 and a PLD-GdBCO superconductive layer 8 in this order on an electropolished substrate 1, the CeO<SB>2</SB>layer has the orientation of Δϕ=4.1 deg., which is almost the same as the case of using a mechanically polished substrate, and the GdBCO superconductive layer has an Ic value of Ic=249 A (Jc-5 MA/cm<SP>2</SP>), which is almost the same as the case of using a mechanically polished substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超電導マグネット、超電導ケーブル、電力機器等に有用な希土類系酸化物超電導線材及びその製造方法の改良に関する。   The present invention relates to a rare earth oxide superconducting wire useful for a superconducting magnet, a superconducting cable, a power device, and the like, and an improvement of a manufacturing method thereof.

希土類系酸化物超電導線材は、一般に金属基板上に2軸配向した酸化物層を少なくとも1層若しくは複数層形成し、その上に酸化物超電導層を、更に超電導層の表面保護と電気的接触の向上及び過通電時の保護回路としての役割を担う安定化層を積層した構造を有する。 A rare earth oxide superconducting wire is generally formed by forming at least one or more biaxially oriented oxide layers on a metal substrate, forming an oxide superconducting layer thereon, and further protecting the surface of the superconducting layer and making electrical contact. It has a structure in which a stabilization layer that plays a role as a protection circuit in the case of improvement and overcurrent is laminated.

この場合、超電導線材の臨界電流特性は超電導層の面内配向性に依存し、下地となる配向金属基板及び中間層の面内配向性と表面平滑性の影響を大きく受けることが知られている。   In this case, it is known that the critical current characteristic of the superconducting wire depends on the in-plane orientation of the superconducting layer and is greatly affected by the in-plane orientation and surface smoothness of the orientation metal substrate and the intermediate layer as a base. .

希土類系酸化物超電導体、例えば、YBaCu7−δ(以下YBCOと称する。)超電導体の結晶系は斜方晶であり、x軸、y軸、z軸の3辺の長さが異なり、単位胞の三辺間の角度もそれぞれ微妙に異なるために双晶を形成し易く、僅かな方位のずれが双晶粒界を発生させ通電特性を低下させるため、通電特性において材料の特性を発揮させるためには、結晶内のCuO面を揃えるだけでなく、面内の結晶方位をも揃えることが要求されることからBi系酸化物超電導体と比較してその線材化に困難が伴う。 Rare earth oxide superconductors, for example, YBa 2 Cu 3 O 7-δ (hereinafter referred to as YBCO) superconductors are orthorhombic and the length of three sides of the x-axis, y-axis, and z-axis However, the angle between the three sides of the unit cell is slightly different from each other, so it is easy to form twins.Small misorientation generates twin grain boundaries and deteriorates current conduction characteristics. In order to exhibit the characteristics, it is required not only to align the CuO plane in the crystal but also to align the crystal orientation in the plane, so that it is difficult to make the wire as compared with the Bi-based oxide superconductor. Accompany.

希土類系酸化物超電導体の結晶の面内配向性を高め、かつ面内の方位を揃えながら線材化する製法は、薄膜の製法と規を同一にしている。即ち、テープ状金属基板の上に面内配向度と方位を向上させた中間層を形成し、この中間層の結晶格子をテンプレートとして用いることによって、超電導層の結晶の面内配向度と方位を向上させるものである。   The manufacturing method for increasing the in-plane orientation of the crystal of the rare earth oxide superconductor and forming the wire while aligning the in-plane orientation is the same as the manufacturing method of the thin film. That is, by forming an intermediate layer with improved in-plane orientation and orientation on a tape-shaped metal substrate and using the crystal lattice of this intermediate layer as a template, the in-plane orientation and orientation of the superconducting layer crystals can be reduced. It is to improve.

希土類系酸化物超電導体は、現在、さまざまな製造プロセスで検討が行われ、テープ状金属基板の上に面内配向した中間層を形成した種々の2軸配向複合基板が知られており、上述のように、中間層上に形成される超電導層の臨界電流特性は下層の中間層の表面平滑性の影響を大きく受けることから、表面平滑な中間層を如何に形成するかが問題となる。   Rare earth oxide superconductors are currently studied in various manufacturing processes, and various biaxially oriented composite substrates in which an in-plane oriented intermediate layer is formed on a tape-like metal substrate are known. As described above, since the critical current characteristics of the superconducting layer formed on the intermediate layer are greatly affected by the surface smoothness of the lower intermediate layer, how to form the surface smooth intermediate layer becomes a problem.

現在、基板上に中間層を介して希土類系酸化物超電導層を配置した超電導体において、最も高い臨界電流特性を示す中間層の成膜方法の一つとして、IBAD(Ion Beam Assisted Deposition)法によるものが知られている。この方法は、多結晶の非磁性で高強度のテープ状Ni系基板(ハステロイ等)上に、このNi系基板の法線に対して一定の角度方向からイオンを照射しながら、ターゲットから発生した粒子をPLD(Pulsed Laser Deposition :パルスレーザー堆積)法で堆積させて、結晶粒径が細かく高配向性を有し、超電導体を構成する元素との反応を抑制する中間層(CeO、Y、YSZ:イットリア安定化ジルコニア)または2層構造の中間層(YSZまたはRxZr/CeOまたはY等:Rxは、Y、Nd、Sm、Gd、Ei、Yb、Ho、Tm、Dy、Ce、LaまたはErを示す。)を形成し、その上にCeOをPLD法で成膜するもので、このIBAD基板の上にYBCO層等をPLD法又はCVD法で成膜して超電導線材を製造する(例えば、特許文献1及び2参照。)。 Currently, in superconductors in which a rare earth oxide superconducting layer is disposed on a substrate via an intermediate layer, one of the methods for forming an intermediate layer that exhibits the highest critical current characteristics is the IBAD (Ion Beam Assisted Deposition) method. Things are known. This method was generated from a target while irradiating ions on a polycrystalline non-magnetic high-strength tape-like Ni-based substrate (Hastelloy, etc.) from a certain angle with respect to the normal of the Ni-based substrate An intermediate layer (CeO 2 , Y 2 ) that deposits particles by a PLD (Pulsed Laser Deposition) method and has a fine crystal grain size and high orientation, and suppresses a reaction with an element constituting a superconductor. O 3 , YSZ: yttria-stabilized zirconia) or an intermediate layer having a two-layer structure (YSZ or Rx 2 Zr 2 O 7 / CeO 2 or Y 2 O 3 etc .: Rx is Y, Nd, Sm, Gd, Ei, Yb , Ho, Tm, Dy, Ce, La or Er.), And CeO 2 is formed thereon by the PLD method. A YBCO layer or the like is formed on the IBAD substrate by the PLD method or the CVD method. Completed Producing a superconducting wire with (e.g., see Patent Documents 1 and 2.).

近年、金属基板上に上記のIBAD法による配向MgO中間層(以下、IBAD−MgOと称する。)を設けた複合基板が、高速で結晶性膜が得られ、かつ低コストであることから希土類系酸化物超電導線材用の複合基板として注目されている。   In recent years, since a composite substrate in which an oriented MgO intermediate layer (hereinafter referred to as IBAD-MgO) by the IBAD method is provided on a metal substrate, a crystalline film can be obtained at a high speed and the cost is low. It is attracting attention as a composite substrate for oxide superconducting wires.

IBAD−MgO膜は、膜厚が10nm以下の非常に薄い領域で良好な2軸配向性が得られることから高速化が可能な反面、成膜に用いる基板の平滑性がIBAD−MgO層の2軸配向に影響を与えることが知られており、このため、従来、機械加工により金属基板の表面を研磨することが行われており、例えば、機械研磨したRa≦2nmの平滑面を有する金属基板が用いられている。   The IBAD-MgO film can achieve high speed because good biaxial orientation can be obtained in a very thin region having a film thickness of 10 nm or less. On the other hand, the smoothness of the substrate used for film formation is 2 of the IBAD-MgO layer. It is known to affect the axial orientation, and for this reason, conventionally, the surface of a metal substrate has been polished by machining, for example, a metal substrate having a smooth surface of Ra ≦ 2 nm that has been mechanically polished. Is used.

一方、IBAD−MgO膜の配向性を向上させるために、金属基板上にIBAD−MgO膜の下地層(ベッド層)となる中間層を成膜し、このベッド層の上にIBAD−MgO層を形成することが検討されている。このベッド層は金属基板の構成元素の拡散を防止する機能も有する。   On the other hand, in order to improve the orientation of the IBAD-MgO film, an intermediate layer serving as a base layer (bed layer) of the IBAD-MgO film is formed on the metal substrate, and the IBAD-MgO layer is formed on the bed layer. It is being considered to form. This bed layer also has a function of preventing diffusion of constituent elements of the metal substrate.

以上のIBAD法によるMgO層のベッド層として、アモルファス層を用いる方法が知られており、これは、平滑なアモルファス表面を有する金属基板上に岩塩構造の2軸配向性を有する第1の薄膜からなるバッファー層を設け、このバッファー層をテンプレートとしてその上に超電導層からなる第2の膜を設けるもので、具体的には、表面平滑なSi又はSiOアモルファス層を有する基板上に、IBAD法により面内配向したMgO(100)層を成膜する。この金属基板として平滑表面を有するハステロイを用い、この上にアモルファス層、IBAD−MgO層及びYBCO層を成膜することにより、YBCO層のJc値を向上させることが報告されており、上記のアモルファス層は、例えば、ハステロイ等のNi合金の表面にレーザー加工、イオン損傷、高速機械加工、蒸着、イオン注入を施して形成されている(例えば、非特許文献1参照)。 As a bed layer of the MgO layer by the IBAD method described above, a method using an amorphous layer is known. This is based on a first thin film having a biaxial orientation of a rock salt structure on a metal substrate having a smooth amorphous surface. And a second film made of a superconducting layer is provided on the buffer layer as a template. Specifically, on a substrate having a smooth surface Si 3 N 4 or SiO 2 amorphous layer Then, an in-plane oriented MgO (100) layer is formed by the IBAD method. It has been reported that the Jc value of the YBCO layer can be improved by forming an amorphous layer, an IBAD-MgO layer, and a YBCO layer thereon using a Hastelloy having a smooth surface as the metal substrate. The layer is formed, for example, by performing laser processing, ion damage, high-speed machining, vapor deposition, or ion implantation on the surface of a Ni alloy such as Hastelloy (for example, see Non-Patent Document 1).

また、IBAD法によるMgO層のベッド層として岩塩構造の酸化物層を用いる方法が知られており、これは、基板上に配置された多結晶酸化物からなる第1のバッファー層と、この第1のバッファー層上に直接配置されたIBAD−MgO、IBAD−CeO、IBAD−(RE)((RE)は希土類元素)からなる2軸配向性の第2のバッファー層と、この第2のバッファー層上に配置された超電導層を設けたもので、具体的には、ハステロイ等のNi基合金基板上に、PLD法によるCeO、YSZからなる保護層、スパッタリング法、PLD法又は蒸着法によるMgO、NiO等の岩塩構造の酸化物からなる第1中間層及びIBAD法によるMgO、YSZ、CeO等からなる第2中間層を順次積層し、この上にYBCO層等を形成することにより、2軸配向した第2中間層上の超電導層の2軸配向性を向上させたものである(例えば、非特許文献2参照)。 Further, a method using an oxide layer having a rock salt structure as a bed layer of an MgO layer by the IBAD method is known, which includes a first buffer layer made of a polycrystalline oxide disposed on a substrate, and a first buffer layer. A biaxially oriented second buffer layer made of IBAD-MgO, IBAD-CeO 2 , IBAD- (RE) 2 O 3 ((RE) is a rare earth element) directly disposed on one buffer layer, and A superconducting layer disposed on the second buffer layer is provided. Specifically, on a Ni-based alloy substrate such as Hastelloy, a protective layer made of CeO 2 or YSZ by PLD method, sputtering method, PLD method or MgO by evaporation, MgO of the first intermediate layer and the IBAD method comprising an oxide of sodium chloride structure such as NiO, YSZ, sequentially stacking a second intermediate layer composed of CeO 2 or the like, YBC on this By forming the layer or the like, in which to improve the biaxial orientation of the superconducting layer on the second intermediate layer was biaxially oriented (e.g., see Non-Patent Document 2).

一方、IBAD法によるMgO層のベッド層として、スパッタリング法などの蒸着により成膜したAl/YやGdZr中間層を金属基板上に成膜する方法も知られている。 On the other hand, a method of forming an Al 2 O 3 / Y 2 O 3 or Gd 2 Zr 2 O 7 intermediate layer formed by vapor deposition such as sputtering as a bed layer of the MgO layer by the IBAD method is also known. It has been.

特開平4−329867号公報JP-A-4-329867 特開平4−331795号公報Japanese Patent Laid-Open No. 4-331895

US Patent 6,190,752 B1US Patent 6,190,752 B1 US Patent 7,071,149 B2US Patent 7,071,149 B2

以上述べたように、IBAD層の形成には機械加工により研磨した平滑表面を有する金属基板が用いられているが、この機械研磨金属基板は非常に平坦な表面が得られる反面、局部的な研磨不良による欠陥が問題となる上、非常に高コストであるという問題があり、また、スパッタリング法などの気相法により蒸着したベッド層は、中間層の形成に高価な成膜装置が必要であるため、コスト増の原因となるという問題があった。   As described above, a metal substrate having a smooth surface polished by machining is used to form the IBAD layer. This mechanically polished metal substrate can provide a very flat surface, but is locally polished. In addition to problems caused by defects, there is a problem that the cost is very high, and a bed layer deposited by a vapor phase method such as a sputtering method requires an expensive film forming apparatus for forming an intermediate layer. Therefore, there was a problem of causing an increase in cost.

以上のことから、MgO等の岩塩構造のIBAD層のベッド層を低コストで基板上に形成し、このベッド層の配向性を向上させて、IBAD層の配向性をさらに向上させる必要があり、このために機械研磨や気相法を使用せずに、ベッド層のさらなる平滑化が要求されている。   From the above, it is necessary to form a bed layer of an IBAD layer having a rock salt structure such as MgO on a substrate at low cost, to improve the orientation of the bed layer, and to further improve the orientation of the IBAD layer, For this reason, further smoothing of the bed layer is required without using mechanical polishing or a vapor phase method.

本発明は以上の問題を解決するためになされたもので、機械研磨や気相法等の高コストの方法を用いることなく、IBAD層の配向性をさらに向上させるために、ベッド層をMOD法により形成することにより、その表面の平滑性を向上させ、超電導特性に優れた希土類系酸化物超電導線材及びその製造方法を提供することを目的としている。   The present invention has been made to solve the above problems, and in order to further improve the orientation of the IBAD layer without using a high-cost method such as mechanical polishing or vapor phase method, the bed layer is formed by the MOD method. It is an object of the present invention to provide a rare earth-based oxide superconducting wire excellent in superconducting characteristics and a method for producing the same, by improving the smoothness of the surface.

以上の目的を達成するために、本発明の希土類系酸化物超電導線材は、基板上に複数の酸化物中間層を介して希土類系酸化物超電導層を配置した酸化物超電導線材において、中間層は、少なくとも基板上にMOD法により成膜された第1中間層及び少なくとも第1中間層上にIBAD法により成膜された第2中間層からなり、この第2中間層上に希土類系酸化物超電導層を配置するようにしたものである。   In order to achieve the above object, the rare earth oxide superconducting wire of the present invention is an oxide superconducting wire in which a rare earth oxide superconducting layer is disposed on a substrate via a plurality of oxide intermediate layers. , Comprising at least a first intermediate layer formed on the substrate by the MOD method and at least a second intermediate layer formed on the first intermediate layer by the IBAD method. The rare earth oxide superconductivity is formed on the second intermediate layer. Layers are arranged.

上記の希土類系酸化物超電導線材は、基板上に複数の酸化物中間層を介して希土類系酸化物超電導層を配置した酸化物超電導線材において、中間層は、少なくとも基板上にMOD法により成膜された第1中間層と、第1中間層上にテンプレート層を介してIBAD法により成膜された第2中間層からなり、第2中間層上にテンプレート層を介して希土類系酸化物超電導層を配置して製造することもできる。   The rare earth oxide superconducting wire is an oxide superconducting wire in which a rare earth oxide superconducting layer is arranged on a substrate via a plurality of oxide intermediate layers, and the intermediate layer is formed at least on the substrate by the MOD method. And a rare earth-based oxide superconducting layer on the second intermediate layer via the template layer. The second intermediate layer is formed on the first intermediate layer by the IBAD method via the template layer. Can also be manufactured.

以上の発明において、第1中間層として、[RE]−Zr−O系酸化物([RE]は、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Yb及びLuから選択された1又は2種以上の元素を示す。以下同じ。)、例えば、[RE]Zr又はYSZをMOD法により基板上に成膜することが好ましい。 In the above invention, as the first intermediate layer, [RE] -Zr-O-based oxide ([RE] is Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb And one or more elements selected from Lu. The same shall apply hereinafter.) For example, [RE] 2 Zr 2 O 7 or YSZ is preferably formed over the substrate by the MOD method.

上記の第1中間層は、膜厚20nm以上、300nm以下で、かつ、その表面粗さRaが3nm以下であることが望ましく、IBAD層からなる第2中間層は、表面粗さRaは3nm以下の中間層上に直接形成されることが好ましい。
第1中間層の膜厚が20nm未満であると金属基板の構成元素の拡散を防止することが不十分となり、一方、膜厚が増加(塗布回数が増加)するに従って平滑性は向上するが、この平滑性は所定の厚さ以上で飽和する傾向にあるため膜厚300nm以下とされる。
The first intermediate layer preferably has a film thickness of 20 nm or more and 300 nm or less and a surface roughness Ra of 3 nm or less. The second intermediate layer made of the IBAD layer has a surface roughness Ra of 3 nm or less. It is preferably formed directly on the intermediate layer.
When the film thickness of the first intermediate layer is less than 20 nm, it becomes insufficient to prevent the diffusion of the constituent elements of the metal substrate. On the other hand, as the film thickness increases (the number of coatings increases), the smoothness improves. Since this smoothness tends to be saturated at a predetermined thickness or more, the film thickness is set to 300 nm or less.

IBAD層からなる第2中間層は、MgO、Gd−Zr−O(GZO)、YSZ等により成膜されるが、特に、IBAD−MgOが、前述のように、高速で結晶性膜が得られる上、低コストである点から好ましい。   The second intermediate layer made of the IBAD layer is formed of MgO, Gd—Zr—O (GZO), YSZ or the like. In particular, IBAD-MgO can obtain a crystalline film at a high speed as described above. Moreover, it is preferable from the point of low cost.

本発明における希土類系酸化物超電導線層は、REBaCu(REは、Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbから選択された1又は2種以上の元素を示し、x≦2及びy=6.2〜7であり、以下、REBCOと称する。以下同じ。)からなるが、この超電導層は、MOD(Metal Organic Deposition:金属有機酸塩堆積)法、PLD法又はMOCVD法(Metal Organic Chemical Vapor Deposition)により成膜することができるが、成膜方法としては、特にTFA−MOD法が好適する。 The rare earth-based oxide superconducting wire layer in the present invention is REBa x Cu 3 O y (RE is 1 or 2 selected from Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb. The superconducting layer is composed of MOD (Metal Organic Deposition: metal organic acid salt), which represents an element of more than species, and is composed of x ≦ 2 and y = 6.2 to 7, hereinafter referred to as REBCO. A film can be formed by a deposition) method, a PLD method, or a MOCVD method (Metal Organic Chemical Vapor Deposition), and the TFA-MOD method is particularly preferable as the film forming method.

本発明においては、IBAD層のベッド層をMOD法により成膜することにより、表面の平滑性を向上させることができるため、平滑性の低い金属基板の使用が可能となり、研磨コストが低減されるとともに、非真空プロセスであるMOD法の採用により大幅な製造コスト低減が可能となり、IBAD層の配向性を機械研磨した金属基板に匹敵させることができ、優れた超電導特性を有する希土類系酸化物超電導線材を容易に製造することができる。   In the present invention, since the surface smoothness can be improved by forming the bed layer of the IBAD layer by the MOD method, a metal substrate with low smoothness can be used, and the polishing cost is reduced. In addition, the use of the MOD method, which is a non-vacuum process, makes it possible to significantly reduce the manufacturing cost, and the orientation of the IBAD layer can be made comparable to a mechanically polished metal substrate, and the superconducting rare earth oxide superconductivity. A wire can be easily manufactured.

本発明に係る第1中間層の一実施例に用いられるMOD−CZO層の塗布回数に対する表面粗さを示すグラフである。It is a graph which shows the surface roughness with respect to the frequency | count of application | coating of the MOD-CZO layer used for one Example of the 1st intermediate | middle layer which concerns on this invention. MOD−CZO層の焼成温度と重量変化及び温度差の関係を示すグラフである。It is a graph which shows the relationship between the calcination temperature of a MOD-CZO layer, a weight change, and a temperature difference. 本発明の一実施例における希土類系酸化物超電導線材の軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the axial direction of the rare earth type oxide superconducting wire in one Example of this invention. 本発明の他の実施例における希土類系酸化物超電導線材の軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the axial direction of the rare earth type oxide superconducting wire in the other Example of this invention.

本発明における[RE]−Zr−O系酸化物等の第1中間層は、MOD法により成膜されるが、このMOD法は、金属成分の有機化合物が均一に溶解した原料溶液を基板上に塗布した後、これを加熱して熱分解させることにより基板上に薄膜を形成する方法として知られており、非真空プロセスであることから低コストで高速成膜が可能であるため長尺のテープ状酸化物超電導線材の製造に適する利点を有する。   In the present invention, the first intermediate layer such as [RE] -Zr-O-based oxide is formed by a MOD method. This MOD method uses a raw material solution in which an organic compound of a metal component is uniformly dissolved on a substrate. It is known as a method of forming a thin film on a substrate by heating and thermally decomposing it, and since it is a non-vacuum process, it can be formed at low cost and at high speed, so It has an advantage suitable for manufacturing a tape-shaped oxide superconducting wire.

また、本発明におけるREBCO層は、前述のように好ましくはTFA−MOD法により成膜されるが、このTFA−MOD法は、MOD法におけるアルカリ土類金属(Ba等)の炭酸塩を経由する固相反応による高温熱処理を必要とせず、面内配向性に優れた超電導膜を得ることができる方法として知られており、フッ素を含む有機酸塩(例えば、TFA塩:トリフルオロ酢酸塩)を出発原料とし、水蒸気雰囲気中で熱処理を行うことにより、フッ化物の分解を経由して超電導体を成膜するものである。TFA−MOD法では、塗布膜の仮焼後に得られるフッ素を含むアモルファス前駆体と水蒸気との反応によりHFガスを発生しつつ超電導膜が成長する界面にHFに起因する液相を形成することにより基板界面から超電導体がエピタキシャル成長するため、HFガスを速やかに膜面から排出する必要があり、排出が不十分であると超電導体の結晶成長速度が抑制される。   The REBCO layer in the present invention is preferably formed by the TFA-MOD method as described above, and this TFA-MOD method passes through a carbonate of an alkaline earth metal (Ba or the like) in the MOD method. Known as a method capable of obtaining a superconducting film having excellent in-plane orientation without requiring high-temperature heat treatment by solid-phase reaction, an organic acid salt containing fluorine (for example, TFA salt: trifluoroacetate) A superconductor is formed through the decomposition of fluoride by performing heat treatment in a steam atmosphere as a starting material. In the TFA-MOD method, a liquid phase resulting from HF is formed at the interface where the superconducting film grows while generating HF gas by the reaction between the amorphous precursor containing fluorine obtained after calcining of the coating film and water vapor. Since the superconductor is epitaxially grown from the substrate interface, it is necessary to quickly discharge the HF gas from the film surface. If the discharge is insufficient, the crystal growth rate of the superconductor is suppressed.

従来、REBCO超電導体においては、仮焼プロセスにおけるHFガスの大量発生とREBCO層と中間層との反応によりBaCeOが生成してF元素を膜外に排出するのに多くの時間を有するという問題を回避するため、フッ素化合物を少なくすることが行われており、本発明においてもBaのモル比を、Ba<2の範囲、好ましくは1.3≦Ba≦1.8の範囲とすることが好ましい。 Conventionally, in the REBCO superconductor, there is a problem that it takes a lot of time to generate BaCeO 3 by discharging a large amount of HF gas in the calcining process and reaction between the REBCO layer and the intermediate layer and to discharge the F element out of the film. In order to avoid this, the fluorine compound is reduced, and in the present invention, the molar ratio of Ba is set to a range of Ba <2, preferably 1.3 ≦ Ba ≦ 1.8. preferable.

Baのモル比をその標準モル比(2)より小さくすることにより、Baの偏析が抑制され、結晶粒界でのBaべ一スの不純物の析出が抑制される結果、クラックの発生が抑制されるとともに、結晶粒間の電気的結合性が向上する。また、Baモル比を低減することにより、磁束ピンニング点であるYCuやCuOが形成される利点もある。 By making the molar ratio of Ba smaller than the standard molar ratio (2), the segregation of Ba is suppressed, and the precipitation of Ba-based impurities at the grain boundaries is suppressed, so that the generation of cracks is suppressed. In addition, electrical connectivity between crystal grains is improved. Further, by reducing the Ba molar ratio, there is an advantage that Y 2 Cu 2 O 5 and CuO which are magnetic flux pinning points are formed.

以上のTFA−MOD法によるREBCO超電導体の原料溶液としては、例えば、(a)REを含む金属有機酸塩溶液として、REを含むトリフルオロ酢酸塩、ナフテン酸塩、オクチル酸塩、レブリン酸塩、ネオデカン酸塩のいずれか1種以上を含む溶液、特に、REを含むトリフルオロ酢酸塩溶液、(b)Baを含む金属有機酸塩溶液として、Baを含むトリフルオロ酢酸塩の溶液及び(c)Cuを含む金属有機酸塩溶液として、Cuを含むナフテン酸塩、オクチル酸塩、レブリン酸塩、ネオデカン酸塩のいずれか1種以上を含む溶液が用いられる。   Examples of the raw material solution of the REBCO superconductor by the above TFA-MOD method include (a) a metal organic acid salt solution containing RE, trifluoroacetate, naphthenate, octylate, levulinate containing RE. A solution containing any one or more of neodecanoate, in particular, a trifluoroacetate solution containing RE, (b) a metal organic acid salt solution containing Ba, and a solution of trifluoroacetate salt containing Ba and (c ) As the metal organic acid salt solution containing Cu, a solution containing one or more of naphthenate, octylate, levulinate and neodecanoate containing Cu is used.

上記の原料溶液中には、Zr、Ce、Sn又はTiから選択された1種以上の元素を含む金属有機酸塩溶液を原料溶液に混合することが好ましく、これにより、REBCO超電導層内にZr等の酸化物をピンニング点として分散させることができ、特に、低磁界下でIc値の低下率が大きいYBCO超電導体の磁場特性を改善することができる。   In the raw material solution, it is preferable to mix a metal organic acid salt solution containing one or more elements selected from Zr, Ce, Sn, or Ti into the raw material solution, so that the Zr is contained in the REBCO superconducting layer. It is possible to disperse oxides such as those as pinning points, and in particular, it is possible to improve the magnetic field characteristics of a YBCO superconductor having a large decrease rate of Ic value under a low magnetic field.

即ち、TFA−MOD法は、気相成長と異なり前駆体からの相変態で結晶成長するため、導入した磁束ピンニング点は粗大化し易く、微細人工ピンニング点の導入は難しいという問題があるが、TFA−MOD法による原料溶液として、RE、Ba及びCuを含む金属有機酸塩溶液とBaと親和性の大きいZr、Ce、Sn又はTiから選択された少なくとも1種以上の金属を含む金属有機酸塩溶液からなる混合溶液を用いることにより50nm以下の酸化物粒子を磁束ピンニング点として分散させることができる(例えば、特開2009−164010号参照。)。   That is, the TFA-MOD method has a problem that, unlike vapor phase growth, crystal growth is caused by a phase transformation from a precursor, so that the introduced magnetic flux pinning point is likely to be coarse and the introduction of the fine artificial pinning point is difficult. -Metal organic acid salt containing at least one metal selected from Zr, Ce, Sn or Ti having high affinity with Ba as a metal organic acid salt solution containing RE, Ba and Cu as a raw material solution by the MOD method By using a mixed solution made of a solution, oxide particles of 50 nm or less can be dispersed as a magnetic flux pinning point (see, for example, JP 2009-164010 A).

REBCO超電導層は、超電導体を構成する金属元素を含む原料溶液を中間層上に塗布し、仮焼熱処理を施す工程を複数回繰り返して、結晶化熱処理後に所定の膜厚を有するように積層して形成される。   The REBCO superconducting layer is laminated so as to have a predetermined film thickness after crystallization heat treatment by applying a raw material solution containing a metal element constituting the superconductor on the intermediate layer and repeating the calcination heat treatment a plurality of times. Formed.

以上の発明において、基板にNi基合金を用いることが好ましく、例えば、NiにW、Mo、Cr、Fe、Cu、V、Sn及びZnから選択された1以上の元素を含むものを用いることができる。   In the above invention, it is preferable to use a Ni-based alloy for the substrate. For example, Ni containing one or more elements selected from W, Mo, Cr, Fe, Cu, V, Sn, and Zn is used. it can.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

実施例1
(MOD層の塗布回数と表面粗さ)
IBAD層のベッド層の材料として、Ni−W合金基板用バリア層として実績があるCZO(Ce−Zr−O)層をハステロイ基板上にMOD法により成膜し、その平滑性を調査した。
Example 1
(Number of MOD layer applications and surface roughness)
As a material for the bed layer of the IBAD layer, a CZO (Ce—Zr—O) layer, which has been proven as a barrier layer for a Ni—W alloy substrate, was formed on a Hastelloy substrate by the MOD method, and the smoothness thereof was investigated.

金属基板として、幅5mm、厚さ70μmのハステロイ基板の圧延上り基板(A)及びハステロイ基板を電解研磨した電解研磨基板(B)を用い、これらの基板上にCe及びZrのナフテン酸溶液をDIPコーティング法により塗布し、RTR(Reel-to-Reel)方式の連続焼成炉によりAr雰囲気中で500℃の温度で連続焼成して種々の膜厚のCZO層をハステロイ基板上に成膜し、塗布回数(回)に対する表面粗さ(Ra:nm)を原子間力顕微鏡(AMF)観察により測定した。   As a metal substrate, a rolled up substrate (A) having a width of 5 mm and a thickness of 70 μm and an electropolished substrate (B) obtained by electropolishing the Hastelloy substrate are used. A naphthenic acid solution of Ce and Zr is DIPed on these substrates. Apply by coating method, continuously fired at 500 ° C in Ar atmosphere by RTR (Reel-to-Reel) type continuous firing furnace to form CZO layers with various thickness on Hastelloy substrate The surface roughness (Ra: nm) with respect to the number of times (times) was measured by observation with an atomic force microscope (AMF).

上記の圧延上り基板(A)及び電解研磨基板(B)の塗布前の当初の表面粗さは、それぞれRa=12.3nm及び6.5nmであった。
MOD−CZO層の塗布回数(回)に対する表面粗さ(Ra:nm)を測定した結果を図1に示す。同図において、■及び●は、それぞれ圧延上り基板(A)及び電解研磨基板(B)の実測値である。
The initial surface roughness before application of the rolled up substrate (A) and the electropolished substrate (B) was Ra = 12.3 nm and 6.5 nm, respectively.
FIG. 1 shows the results of measuring the surface roughness (Ra: nm) with respect to the number of coatings (times) of the MOD-CZO layer. In the figure, ■ and ● are measured values of the rolled up substrate (A) and the electropolished substrate (B), respectively.

この結果から、圧延上り基板(A)及び電解研磨基板(B)のいずれに対しても、Ra値はCZO層の塗布回数に従って漸次減少する傾向が認められ、特に、電解研磨基板(B)の場合には塗布回数6〜7回程度でRa値が3nm程度まで低下し、従来、優れた超電導特性を示すことが知られている機械研磨基板(〜2nm)と同等程度の平滑性を示している。   From this result, for both the rolled up substrate (A) and the electropolished substrate (B), the Ra value tends to gradually decrease according to the number of times of application of the CZO layer, and in particular, the electropolished substrate (B). In some cases, the number of coatings is about 6 to 7 times, and the Ra value is reduced to about 3 nm, which shows smoothness equivalent to that of a mechanically polished substrate (up to 2 nm) that has been known to exhibit excellent superconducting properties. Yes.

また、MOD−CZO層の焼成温度の影響を示差熱熱重量同時測定装置を用いて、Ar雰囲気中での焼成温度と蒸発や化学変化によう重量変化(TG)及び温度差(熱電対の起電力差:μV)の関係を測定した。   In addition, the effect of the MOD-CZO layer firing temperature was measured using a differential thermothermal gravimetric simultaneous measurement device, and the change in weight (TG) and temperature difference (starting of thermocouple) The relationship of power difference: μV) was measured.

測定結果を図2に示す。Ar雰囲気中でMOD−CZO膜は400℃程度で熱分解し、約500℃で結晶化する。
(CeO層の平滑性)
中間層の配向性は、図3に示すように、Ra=6.5nmの電解研磨基板1上に、膜厚約80nmに成膜したMOD−CZO層2及びイオンビーム・スパッタ法(IBS)により(IBAD−MgO層の)テンプレート層として膜厚約110nmのGZO(GdZr)層3を成膜し、この上に膜厚5〜10nmのIBAD−MgO層4、スパッタリング法により(CeO層の)テンプレート層として膜厚約10nmのLaMnO(LMO)層5及びPLD法によりキャップ層として膜厚約0.5μmのCeO層6を順次成膜した後、このCeO層の配向性を評価した。
The measurement results are shown in FIG. In the Ar atmosphere, the MOD-CZO film is thermally decomposed at about 400 ° C. and crystallized at about 500 ° C.
(Smoothness of CeO 2 layer)
As shown in FIG. 3, the orientation of the intermediate layer is determined by MOD-CZO layer 2 formed on an electropolishing substrate 1 with Ra = 6.5 nm and a film thickness of about 80 nm and ion beam sputtering (IBS). A GZO (Gd 2 Zr 2 O 7 ) layer 3 having a thickness of about 110 nm is formed as a template layer (of the IBAD-MgO layer), and an IBAD-MgO layer 4 having a thickness of 5 to 10 nm is formed thereon by sputtering ( After a LaMnO 3 (LMO) layer 5 having a thickness of about 10 nm as a template layer (CeO 2 layer) and a CeO 2 layer 6 having a thickness of about 0.5 μm as a cap layer by the PLD method are sequentially formed, the CeO 2 layer The orientation was evaluated.

この複合基板7のCeO層6の面内配向性をX線回折(XRD)による半値幅(FWHM)で測定した結果、Δφ=4.1deg.を示した。この値は機械研磨基板を用いた場合のΔφ=〜4deg.と同程度である。
(REBCO層の特性)
以上のようにして形成した複合基板7のCeO層の上に、PLD法により膜厚約0.5μmのGdBCO超電導層8を成膜し、Jc値を77K、自己磁界中で直流四端子法により1μV/cmの電圧基準で評価した。
As a result of measuring the in-plane orientation of the CeO 2 layer 6 of the composite substrate 7 by the half width (FWHM) by X-ray diffraction (XRD), Δφ = 4.1 deg. showed that. This value is Δφ = ˜4 deg. When a mechanically polished substrate is used. It is about the same.
(Characteristics of REBCO layer)
On the CeO 2 layer of the composite substrate 7 formed as described above, the GdBCO superconducting layer 8 having a film thickness of about 0.5 μm is formed by the PLD method, the Jc value is 77K, and the direct current four-terminal method in a self magnetic field. Was evaluated based on a voltage reference of 1 μV / cm.

このようにして製造した希土類系酸化物超電導線材10は、図3に示すように、[PLD−CeO/LMO/IBAD−MgO/IBS−GZO/MOD−CZO/電解研磨基板]の構造を有し、GdBCO超電導層8は、Ic=249A(Jc〜5MA/cm)の値を示した。この値は機械研磨基板を用いた場合のJc=5〜6MA/cmと同程度であった。 The rare earth oxide superconducting wire 10 thus manufactured has a structure of [PLD-CeO 2 / LMO / IBAD-MgO / IBS-GZO / MOD-CZO / electrolytic polishing substrate] as shown in FIG. And the GdBCO superconducting layer 8 showed the value of Ic = 249A (Jc-5MA / cm < 2 >). This value was about the same as Jc = 5-6 MA / cm 2 when a mechanical polishing substrate was used.

実施例2
ハステロイ基板を電解研磨したRa=5nmの電解研磨基板を用い、この基板上に実施例1と同様にしてMOD−CZO層を成膜し、この上にIBAD−MgO層及びLMO層(テンプレート層)を成膜した後、このLMO層の上にCeO層を膜厚0.5μmに成膜して複合基板を製造した。
Example 2
Using a Ra = 5 nm electropolished substrate obtained by electropolishing a Hastelloy substrate, a MOD-CZO layer was formed on this substrate in the same manner as in Example 1, and an IBAD-MgO layer and an LMO layer (template layer) were formed thereon. Then, a CeO 2 layer was formed to a thickness of 0.5 μm on this LMO layer to manufacture a composite substrate.

さらにこの複合基板上のCeO層の上に、PLD法により膜厚約0.5μmのGdBCO超電導層を成膜した。 Further, a GdBCO superconducting layer having a film thickness of about 0.5 μm was formed on the CeO 2 layer on the composite substrate by the PLD method.

この[PLD−GdBCO/PLD−CeO/LMO/IBAD−MgO/MOD−CZO/電解研磨基板]構造の希土類系酸化物超電導線材20のCeO層の面内配向性及びIcを実施例1と同様の方法により測定した結果、それぞれΔφ=6.4deg.、Ic=180Aの値を示した。 The in-plane orientation and Ic of the CeO 2 layer of the rare earth-based oxide superconducting wire 20 having this [PLD-GdBCO / PLD-CeO 2 / LMO / IBAD-MgO / MOD-CZO / electrolytic polishing substrate] structure are shown in Example 1. As a result of measurement by the same method, Δφ = 6.4 deg. , Ic = 180A.

実施例3
図4に示すように、ハステロイ基板を電解研磨したRa=5nmの電解研磨基板31を用い、この基板上に実施例1と同様にしてMOD−CZO層32を成膜し、この上にIBAD−MgO層33及びLMO層34(テンプレート層)を成膜した後、このLMO層の上にCeO層35を膜厚1μmに成膜して複合基板36を製造した。
Example 3
As shown in FIG. 4, a Ra = 5 nm electropolished substrate 31 obtained by electropolishing a Hastelloy substrate was used, and a MOD-CZO layer 32 was formed on this substrate in the same manner as in Example 1, and IBAD- After the MgO layer 33 and the LMO layer 34 (template layer) were formed, a CeO 2 layer 35 was formed on the LMO layer to a thickness of 1 μm to manufacture a composite substrate 36.

さらにこの複合基板36上のCeO層35の上に、TFA−MOD法により膜厚約1.3μmのYBCO超電導層37を成膜した。 Further, a YBCO superconducting layer 37 having a film thickness of about 1.3 μm was formed on the CeO 2 layer 35 on the composite substrate 36 by TFA-MOD method.

この[MOD−YBCO/PLD−CeO/LMO/IBAD−MgO/MOD−CZO/電解研磨基板]構造の希土類系酸化物超電導線材30のCeO層35の面内配向性及びIcを実施例1と同様の方法により測定した結果、それぞれΔφ=4.6deg.、Ic=250Aの値を示した。 Example 1 shows the in-plane orientation and Ic of the CeO 2 layer 35 of the rare earth oxide superconducting wire 30 having the [MOD-YBCO / PLD-CeO 2 / LMO / IBAD-MgO / MOD-CZO / electrolytic polishing substrate] structure. As a result of measurement by the same method as above, Δφ = 4.6 deg. , Ic = 250A.

実施例4
ハステロイ基板を電解研磨したRa=5nmの電解研磨基板を用い、この基板上に実施例1と同様にしてMOD−CZO層、IBS−GZO層(テンプレート層)、IBAD−MgO層、LMO層(テンプレート層)を順次成膜した後、このLMO層の上にCeO層を膜厚0.5μmに成膜して複合基板を製造した。
Example 4
An Ra = 5 nm electropolished substrate obtained by electropolishing a Hastelloy substrate was used, and a MOD-CZO layer, an IBS-GZO layer (template layer), an IBAD-MgO layer, an LMO layer (template) were formed on this substrate in the same manner as in Example 1. Layer) was sequentially formed, and then a CeO 2 layer was formed to a thickness of 0.5 μm on this LMO layer to manufacture a composite substrate.

さらにこの複合基板上のCeO層の上に、それぞれ、PLD法により膜厚約0.5μmのGdBCO超電導層及びTFA−MOD法により膜厚約1.4μmのYBCO超電導層を成膜した。 Further, on the CeO 2 layer on the composite substrate, a GdBCO superconducting layer having a thickness of about 0.5 μm was formed by a PLD method and a YBCO superconducting layer having a thickness of about 1.4 μm by a TFA-MOD method, respectively.

この[PLD−GdBCO/PLD−CeO/LMO/IBAD−MgO/IBS−GZO/MOD−CZO/電解研磨基板]構造[1]及び[MOD−YBCO/PLD−CeO/LMO/IBAD−MgO/IBS−GZO/MOD−CZO/電解研磨基板]構造[2]の希土類系酸化物超電導線材のCeO層の面内配向性を実施例1と同様の方法により測定した結果、Δφ=4.9deg.の値を示し、またIc値は、それぞれ、構造[1]に対してIc=250A及び構造[2]に対してIc=303Aの値を示した。 This [PLD-GdBCO / PLD-CeO 2 / LMO / IBAD-MgO / IBS-GZO / MOD-CZO / electrolytic polishing substrate] structure [1] and [MOD-YBCO / PLD-CeO 2 / LMO / IBAD-MgO / IBS-GZO / MOD-CZO / electropolishing substrate] The in-plane orientation of the CeO 2 layer of the rare earth oxide superconducting wire having the structure [2] was measured by the same method as in Example 1. As a result, Δφ = 4.9 deg. . The Ic values were Ic = 250A for the structure [1] and Ic = 303A for the structure [2], respectively.

実施例5
ハステロイ基板を電解研磨したRa=5nmの電解研磨基板を用い、この基板上に実施例4と同様にしてMOD−CZO層、IBS−GZO層(テンプレート層)、IBAD−MgO層、LMO層(テンプレート層)を順次成膜した後、このLMO層の上にCeO層を膜厚1μmに成膜して複合基板を製造した。
Example 5
An electropolishing substrate with Ra = 5 nm obtained by electropolishing a Hastelloy substrate was used, and a MOD-CZO layer, an IBS-GZO layer (template layer), an IBAD-MgO layer, an LMO layer (template) were formed on this substrate in the same manner as in Example 4. Layer) was sequentially formed, and then a CeO 2 layer was formed to a thickness of 1 μm on this LMO layer to produce a composite substrate.

さらにこの複合基板上のCeO層の上に、TFA−MOD法により膜厚約1.4μmのYBCO超電導層を成膜した。 Further, a YBCO superconducting layer having a thickness of about 1.4 μm was formed on the CeO 2 layer on the composite substrate by the TFA-MOD method.

この[MOD−YBCO/PLD−CeO/LMO/IBAD−MgO/IBS−GZO/MOD−CZO/電解研磨基板]構造の希土類系酸化物超電導線材のCeO層の面内配向性及びIc値を実施例1と同様の方法により測定した結果、Δφ=4.2deg.Ic=330Aの値を示した。 The in-plane orientation and Ic value of the CeO 2 layer of the rare earth oxide superconducting wire having this [MOD-YBCO / PLD-CeO 2 / LMO / IBAD-MgO / IBS-GZO / MOD-CZO / electrolytic polishing substrate] structure As a result of measurement by the same method as in Example 1, Δφ = 4.2 deg. A value of Ic = 330A was shown.

以上の実施例2〜5の結果から、IBAD−MgO層のベッド層としてMOD−CZO層を成膜した希土類系酸化物超電導線材において、IBAD−MgO層のテンプレート層としてIBS−GZO層を成膜しない場合に、CeO層の配向性及びPLD−GdBCO層のIc値は、膜厚0.5μmでは機械研磨基板の場合に比較して若干低下するものの、膜厚1μmではCeO層の配向性及びTFA−YBCO層のIc値は機械研磨基板の場合と同等の値を示していることが認められた。 From the results of Examples 2 to 5 above, in the rare earth oxide superconducting wire in which the MOD-CZO layer is formed as the bed layer of the IBAD-MgO layer, the IBS-GZO layer is formed as the template layer of the IBAD-MgO layer. In this case, the orientation of the CeO 2 layer and the Ic value of the PLD-GdBCO layer are slightly lower than those of the mechanically polished substrate at the film thickness of 0.5 μm, but the orientation of the CeO 2 layer at the film thickness of 1 μm. It was confirmed that the Ic value of the TFA-YBCO layer showed the same value as that of the mechanically polished substrate.

一方、IBAD−MgO層のベッド層としてMOD−CZO層を成膜した希土類系酸化物超電導線材において、IBAD−MgO層のテンプレート層としてIBS−GZO層を成膜した場合には、CeO層の配向性は膜厚0.5μmで機械研磨基板の場合と同等の値を示す一方、PLD−GdBCO層のIc値は機械研磨基板の場合と同等の値を示し、TFA−YBCO層のIc値は機械研磨基板の場合と同等以上の値を示している。 On the other hand, in the rare-earth oxide superconducting wire in which the MOD-CZO layer is formed as the bed layer of the IBAD-MgO layer, when the IBS-GZO layer is formed as the template layer of the IBAD-MgO layer, the CeO 2 layer While the orientation is 0.5 μm and shows the same value as that of the mechanically polished substrate, the Ic value of the PLD-GdBCO layer shows the same value as that of the mechanically polished substrate, and the Ic value of the TFA-YBCO layer is The value is equal to or greater than that of the mechanically polished substrate.

さらに、CeO層の膜厚1μmの場合には、機械研磨基板の場合と同等の配向性を示すととともに、TFA−YBCO層のIc値は機械研磨基板の場合と同等以上の値を示している。 Furthermore, when the film thickness of the CeO 2 layer is 1 μm, the orientation is equal to that of the mechanically polished substrate, and the Ic value of the TFA-YBCO layer is equal to or greater than that of the mechanically polished substrate. Yes.

本発明によりIBAD層の表面平滑性をより向上させることができるため低コストの金属基板の使用が可能となり、優れた超電導特性を有する希土類系酸化物超電導線材を低コストで容易に製造することができ、超電導マグネット、超電導ケーブル及び電力機器等への超電導線の適用に有効である。   According to the present invention, the surface smoothness of the IBAD layer can be further improved, so that a low-cost metal substrate can be used, and a rare-earth oxide superconducting wire having excellent superconducting characteristics can be easily produced at a low cost. It is effective for the application of superconducting wires to superconducting magnets, superconducting cables and power equipment.

1、31 電解研磨基板
2、32 MOD−CZO層
3 GZO層
4、33 IBAD−MgO層
5、34 LaMnO(LMO)層
6、35 CeO
7、36 複合基板
8、GdBCO超電導層
10、30 希土類系酸化物超電導線材
37 YBCO超電導層
DESCRIPTION OF SYMBOLS 1, 31 Electropolishing substrate 2, 32 MOD-CZO layer 3 GZO layer 4, 33 IBAD-MgO layer 5, 34 LaMnO 3 (LMO) layer 6, 35 CeO 2 layer 7, 36 Composite substrate 8, GdBCO superconducting layer 10, 30 Rare earth oxide superconducting wire 37 YBCO superconducting layer

Claims (9)

基板上に複数の酸化物中間層を介して希土類系酸化物超電導層を配置した酸化物超電導線材において、前記中間層は、少なくとも前記基板上にMOD法により成膜された第1中間層及び少なくとも前記第1中間層上にIBAD法により成膜された第2中間層からなり、前記第2中間層上に希土類系酸化物超電導層を配置したことを特徴とする希土類系酸化物超電導線材。   In an oxide superconducting wire in which a rare earth-based oxide superconducting layer is disposed on a substrate via a plurality of oxide intermediate layers, the intermediate layer includes at least a first intermediate layer formed on the substrate by a MOD method and at least A rare earth-based oxide superconducting wire comprising a second intermediate layer formed on the first intermediate layer by an IBAD method, wherein a rare earth-based oxide superconducting layer is disposed on the second intermediate layer. 第1中間層は、[RE]−Zr−O系酸化物([RE]は、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Yb及びLuから選択された1又は2種以上の元素を示す。以下同じ。)又はYSZからなることを特徴とする請求項1記載の希土類系酸化物超電導線材。   The first intermediate layer is [RE] -Zr-O-based oxide ([RE] is selected from Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu. 1 or 2 or more elements. The same shall apply hereinafter) or YSZ. 第1中間層は、膜厚20nm以上、300nm以下であることを特徴とする請求項1又は2記載の希土類系酸化物超電導線材。   The rare earth-based oxide superconducting wire according to claim 1 or 2, wherein the first intermediate layer has a thickness of 20 nm or more and 300 nm or less. 第1中間層の表面粗さRaは3nm以下であることを特徴とする請求項1乃至3いずれか1項記載の希土類系酸化物超電導線材。   The rare earth-based oxide superconducting wire according to any one of claims 1 to 3, wherein the surface roughness Ra of the first intermediate layer is 3 nm or less. 第2中間層は、MgOからなることを特徴とする請求項1乃至4いずれか1項記載の希土類系酸化物超電導線材。   The rare earth-based oxide superconducting wire according to any one of claims 1 to 4, wherein the second intermediate layer is made of MgO. 希土類系酸化物超電導層は、REBaCu(REは、Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbから選択された1又は2種以上の元素を示し、x≦2及びy=6.2〜7である。以下同じ。)からなることを特徴とする請求項1乃至5いずれか1項記載の希土類系酸化物超電導線材。 The rare earth-based oxide superconducting layer is made of REBa x Cu 3 O y (RE is one or more elements selected from Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb. Wherein x ≦ 2 and y = 6.2 to 7. The same shall apply hereinafter.) The rare earth-based oxide superconducting wire according to any one of claims 1 to 5. 希土類系酸化物超電導層は、PLD、MOD法又はMOCVD法により形成された膜体からなることを特徴とする請求項1乃至6いずれか1項記載の希土類系酸化物超電導線材。   The rare earth-based oxide superconducting wire according to any one of claims 1 to 6, wherein the rare earth-based oxide superconducting layer is formed of a film formed by PLD, MOD, or MOCVD. 第1中間層と第2中間層との間及び/又は第2中間層と希土類系酸化物超電導層との間にテンプレート層を有することを特徴とする請求項1乃至7いずれか1項記載の希土類系酸化物超電導線材。   8. The template layer according to claim 1, further comprising a template layer between the first intermediate layer and the second intermediate layer and / or between the second intermediate layer and the rare earth-based oxide superconducting layer. Rare earth oxide superconducting wire. 基板上に、MOD法により膜厚20nm以上、300nm以下で3nm以下の表面粗さRaを有する[RE]−Zr−O系酸化物又はYSZからなる第1中間層を成膜した後、前記第1中間層上にIBAD法によりMgOからなる第2中間層を成膜し、次いで、前記第2中間層上にTFA−MOD法によりREBaCu超電導層を成膜することを特徴とする希土類系酸化物超電導線材の製造方法。 After forming a first intermediate layer made of [RE] -Zr-O-based oxide or YSZ having a surface roughness Ra of 20 nm or more and 300 nm or less and 3 nm or less on the substrate by the MOD method, A second intermediate layer made of MgO is formed on one intermediate layer by IBAD, and then a REBa x Cu 3 O y superconducting layer is formed on the second intermediate layer by TFA-MOD. A method for producing a rare earth oxide superconducting wire.
JP2009249173A 2009-10-29 2009-10-29 Rare earth oxide superconducting wire and method for producing the same Active JP5380250B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009249173A JP5380250B2 (en) 2009-10-29 2009-10-29 Rare earth oxide superconducting wire and method for producing the same
US12/777,686 US20110105336A1 (en) 2009-10-29 2010-05-11 Rare earth element oxide superconductive wire material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249173A JP5380250B2 (en) 2009-10-29 2009-10-29 Rare earth oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011096510A true JP2011096510A (en) 2011-05-12
JP5380250B2 JP5380250B2 (en) 2014-01-08

Family

ID=44113221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249173A Active JP5380250B2 (en) 2009-10-29 2009-10-29 Rare earth oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP5380250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003049A1 (en) 2012-06-27 2014-01-03 古河電気工業株式会社 Superconducting wire
CN109942293A (en) * 2019-03-21 2019-06-28 合肥学院 A kind of method that the combustion-supporting method of microwave prepares LMO-YSZ composite solid electrolyte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503994A (en) * 1995-04-19 1999-04-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア High temperature superconducting thick film
JP2007516353A (en) * 2003-06-09 2007-06-21 ユニバーシティ・オブ・フロリダ・リサーチ・ファンデーション・インコーポレーテッド Method for generating biaxially textured buffer layers and related articles, devices and systems
JP2007188756A (en) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center Rare earth based tape shape oxide superconductor
JP2008310986A (en) * 2007-06-12 2008-12-25 Internatl Superconductivity Technology Center Tape shape oxide superconductor
JP2010509738A (en) * 2006-11-10 2010-03-25 スーパーパワー インコーポレイテッド Superconducting article and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503994A (en) * 1995-04-19 1999-04-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア High temperature superconducting thick film
JP2007516353A (en) * 2003-06-09 2007-06-21 ユニバーシティ・オブ・フロリダ・リサーチ・ファンデーション・インコーポレーテッド Method for generating biaxially textured buffer layers and related articles, devices and systems
JP2007188756A (en) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center Rare earth based tape shape oxide superconductor
JP2010509738A (en) * 2006-11-10 2010-03-25 スーパーパワー インコーポレイテッド Superconducting article and manufacturing method
JP2008310986A (en) * 2007-06-12 2008-12-25 Internatl Superconductivity Technology Center Tape shape oxide superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003049A1 (en) 2012-06-27 2014-01-03 古河電気工業株式会社 Superconducting wire
CN103635978A (en) * 2012-06-27 2014-03-12 古河电气工业株式会社 Superconducting wire
JPWO2014003049A1 (en) * 2012-06-27 2016-06-02 古河電気工業株式会社 Superconducting wire
CN109942293A (en) * 2019-03-21 2019-06-28 合肥学院 A kind of method that the combustion-supporting method of microwave prepares LMO-YSZ composite solid electrolyte

Also Published As

Publication number Publication date
JP5380250B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5270176B2 (en) Re-based oxide superconducting wire and method for producing the same
JP4713012B2 (en) Tape-shaped oxide superconductor
US8409657B2 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP4800740B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
JP5244337B2 (en) Tape-shaped oxide superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
US20110105336A1 (en) Rare earth element oxide superconductive wire material and method of producing the same
JP2007188756A (en) Rare earth based tape shape oxide superconductor
WO2012056698A1 (en) Oxide superconductivity wire material and method of manufacturing thereof
KR20070093050A (en) Thick superconductor films with improved performance
US9362025B1 (en) Coated conductor high temperature superconductor carrying high critical current under magnetic field by intrinsic pinning centers, and methods of manufacture of same
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
JP5027054B2 (en) Y-based oxide superconducting wire
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
JP5503252B2 (en) Rare earth oxide superconducting wire
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP5939995B2 (en) Superconducting wire and method of manufacturing superconducting wire
US9070495B2 (en) Superconducting wire material and method for manufacturing superconducting wire material
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
JP2010086666A (en) Oxide superconducting wire and method of manufacturing the same
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP2009289667A (en) Oxide superconductive wire rod
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JP2013030491A (en) Method of manufacturing thick-film tape-like re-based (123) superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350