JP2011093716A - Method for refining rare gas - Google Patents

Method for refining rare gas Download PDF

Info

Publication number
JP2011093716A
JP2011093716A JP2009246008A JP2009246008A JP2011093716A JP 2011093716 A JP2011093716 A JP 2011093716A JP 2009246008 A JP2009246008 A JP 2009246008A JP 2009246008 A JP2009246008 A JP 2009246008A JP 2011093716 A JP2011093716 A JP 2011093716A
Authority
JP
Japan
Prior art keywords
getter material
rare gas
impurities
oxygen
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246008A
Other languages
Japanese (ja)
Other versions
JP5461144B2 (en
Inventor
Kenji Otsuka
健二 大塚
Noboru Takemasa
登 武政
Yoshio Yamashita
義雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2009246008A priority Critical patent/JP5461144B2/en
Publication of JP2011093716A publication Critical patent/JP2011093716A/en
Application granted granted Critical
Publication of JP5461144B2 publication Critical patent/JP5461144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining a rare gas that brings a rare gas containing impurities into contact with a getter material under heating to remove the impurities contained in the rare gas, wherein the increase of pressure drop is suppressed even when many impurities are contained in the rare gas. <P>SOLUTION: The rare gas containing impurities is brought into contact with a first getter material having lower reactivity with the impurities and higher porosity than a second getter material to remove oxygen from the rare gas, and then is brought into the second getter material having higher reactivity with the impurities and lower porosity than the first getter material to remove impurities other than oxygen from the rare gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、酸素、及び窒素、炭化水素、一酸化炭素、二酸化炭素、水素、水蒸気から選ばれる1種以上のガスを不純物として含む希ガスを、加熱下でゲッタ材と接触させて、該希ガスに含まれる不純物を除去する希ガスの精製方法に関する。   In the present invention, a rare gas containing oxygen and at least one gas selected from nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, and water vapor as an impurity is brought into contact with a getter material under heating, thereby The present invention relates to a method for purifying a rare gas that removes impurities contained in the gas.

半導体製造工程においては、ヘリウム、アルゴン等の希ガスが頻繁に使用されている。ヘリウム等の希ガスは、工業的には液体空気を分留する方法により製造されているが、これらの希ガスには、二酸化炭素、酸素等が数ppm〜数百ppm程度含まれている。半導体分野においては、これらの希ガスは、成膜技術の進歩とともに極めて高純度であることが強く要求されているとともに、多量に使用されることから、高純度で連続して半導体製造工程に供給することが可能な希ガスの精製方法が要求されている。   In semiconductor manufacturing processes, rare gases such as helium and argon are frequently used. A rare gas such as helium is industrially produced by a method of fractionating liquid air, and these rare gases contain carbon dioxide, oxygen, etc., in the order of several ppm to several hundred ppm. In the semiconductor field, these rare gases are strongly required to have extremely high purity as the film forming technology advances, and since they are used in large quantities, they are continuously supplied to the semiconductor manufacturing process with high purity. There is a need for a method of purifying a rare gas that can be performed.

このため、従来から不純物を含む希ガス(不活性ガス)を加熱下でゲッタ材と接触させて精製する方法が研究されており、例えばゲッタ材として、(1)鉄5〜40重量%及び残部ジルコニウムからなる合金ゲッタ材(特開平4−160010)、(2)バナジウム5〜90重量部及び残部ジルコニウムからなる合金ゲッタ材(特開平5−4809)、(3)バナジウム、ジルコニウム、及び鉄からなり重量組成が限定された合金ゲッタ材(特開平2−116607)等が開発されている。   For this reason, a method for purifying a rare gas (inert gas) containing impurities by heating it in contact with a getter material under heating has been studied. For example, as a getter material, (1) 5 to 40% by weight of iron and the balance Alloy getter material made of zirconium (Japanese Patent Laid-Open No. 4-160010), (2) Alloy getter material made of 5 to 90 parts by weight of vanadium and the remainder zirconium (Japanese Patent Laid-Open No. 5-4809), (3) Made of vanadium, zirconium and iron An alloy getter material (JP-A-2-116607) having a limited weight composition has been developed.

特開平4−160010号公報Japanese Patent Laid-Open No. 4-160010 特開平5−4809号公報Japanese Patent Laid-Open No. 5-4809 特開平2−116607号公報JP-A-2-116607

しかしながら、前述のようなゲッタ材を用いて希ガスを精製する際に、希ガスに不純物が多く含まれている場合、ゲッタ材の充填部において圧力損失が徐々に大きくなり、ゲッタ材に不純物の除去能力が残っていても圧力損失が大きくなりすぎて希ガスの精製を中止しなければならないことがあった。
従って、本発明が解決しようとする課題は、圧力損失が大きくなる原因を解明し、希ガスに不純物が多く含まれている場合であっても、圧力損失の上昇を抑制できる精製方法を提供することである。
However, when purifying a rare gas using the getter material as described above, if the rare gas contains a large amount of impurities, the pressure loss gradually increases in the filling portion of the getter material, and the getter material contains impurities. Even if the removal capability remains, the pressure loss becomes so large that the purification of the rare gas has to be stopped.
Therefore, the problem to be solved by the present invention is to elucidate the cause of the increase in pressure loss and to provide a purification method capable of suppressing an increase in pressure loss even when the rare gas contains a large amount of impurities. That is.

本発明者らは、この課題を解決すべく鋭意検討した結果、不純物として酸素が含まれる場合、ゲッタ材と酸素が反応しゲッタ材が粉化することにより、圧力損失の上昇が起こることを見出した。さらに、希ガスを、最初に不純物(酸素)に対する反応性が比較的に低く空隙率が高いゲッタ材と接触させて希ガスから主に酸素を除去した後、不純物(酸素)に対する反応性が比較的に高く空隙率が低いゲッタ材と接触させて効率よく希ガスから主に酸素以外の不純物を除去することにより、圧力損失の上昇を抑制できることを見出し、本発明の希ガスの精製方法に到達した。   As a result of intensive studies to solve this problem, the present inventors have found that when oxygen is contained as an impurity, the getter material and oxygen react to cause the getter material to be pulverized, thereby increasing the pressure loss. It was. In addition, after first removing oxygen from the rare gas by first contacting the rare gas with a getter material having a relatively low reactivity to the impurity (oxygen) and a high porosity, the reactivity to the impurity (oxygen) is compared. Found that the increase in pressure loss can be suppressed by efficiently removing mainly impurities other than oxygen from the noble gas efficiently by contacting with a getter material having a high porosity and a low porosity, and reached the noble gas purification method of the present invention. did.

すなわち本発明は、酸素、及び窒素、炭化水素、一酸化炭素、二酸化炭素、水素、水蒸気から選ばれる1種以上のガスを不純物として含む希ガスを、加熱下でゲッタ材と接触させて、該希ガスに含まれる不純物を除去する希ガスの精製方法であって、不純物を含む希ガスを、第2のゲッタ材よりも不純物に対する反応性が低く空隙率が高い第1のゲッタ材と接触させて該希ガスから酸素を除去した後、第1のゲッタ材よりも不純物に対する反応性が高く空隙率が低い第2のゲッタ材と接触させて該希ガスから酸素以外の不純物を除去することを特徴とする希ガスの精製方法である。   That is, the present invention is a method in which a rare gas containing oxygen and at least one gas selected from nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, and water vapor as an impurity is brought into contact with a getter material under heating. A method for purifying a noble gas that removes impurities contained in a noble gas, wherein the noble gas containing impurities is brought into contact with a first getter material having a lower reactivity to impurities and a higher porosity than the second getter material. Removing oxygen from the rare gas, and then removing impurities other than oxygen from the rare gas by contacting with a second getter material having a higher reactivity to impurities and a lower porosity than the first getter material. This is a characteristic noble gas purification method.

本発明の希ガスの精製方法により、不純物として少なくとも酸素が含まれる希ガスを精製する際に、空筒線速度を比較的に大きく設定しても、圧力損失の上昇を抑制できるようになった。その結果、例えば内径の小さな精製筒を用いても、圧力損失の上昇速度が遅くなり、精製筒の小型化を図ることができるようになった。   According to the method for purifying a rare gas of the present invention, when a rare gas containing at least oxygen as an impurity is purified, an increase in pressure loss can be suppressed even if the cylinder linear velocity is set to be relatively large. . As a result, even if, for example, a purification cylinder having a small inner diameter is used, the rate of increase in pressure loss is reduced, and the purification cylinder can be downsized.

本発明は、酸素、及び窒素、炭化水素、一酸化炭素、二酸化炭素、水素、水蒸気から選ばれる1種以上のガスを不純物として含む希ガスを、加熱下でゲッタ材と接触させて、該希ガスに含まれる不純物を除去する希ガスの精製方法に適用される。本発明に使用される精製装置としては、例えば図1のような精製筒を挙げることができる。本発明における希ガスは、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等であり、不純物として前記のガスが数ppm〜数百ppm程度含まれる希ガスである。   In the present invention, a rare gas containing oxygen and at least one gas selected from nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, and water vapor as an impurity is brought into contact with a getter material under heating, thereby The present invention is applied to a noble gas purification method for removing impurities contained in a gas. An example of the purification apparatus used in the present invention is a purification cylinder as shown in FIG. The rare gas in the present invention is helium, neon, argon, krypton, xenon, etc., and is a rare gas containing about several ppm to several hundred ppm of the gas as an impurity.

本発明の精製方法においては、精製筒に少なくとも2種類のゲッタ材が充填される。精製筒の上流側に充填される第1のゲッタ材としては、精製筒の下流側に充填される第2のゲッタ材と較べて、不純物(酸素)に対する反応性が低く空隙率が高いゲッタ材が用いられる。このような構成とすることにより、不純物の中でも反応性が高いガスである酸素は、第1のゲッタ材との接触により希ガスから除去され、反応性が低いその他の不純物は、第1のゲッタ材を通過し、第2のゲッタ材との接触により希ガスから除去される。   In the purification method of the present invention, the purification cylinder is filled with at least two types of getter materials. As the first getter material filled on the upstream side of the refining cylinder, the getter material having a low reactivity to impurities (oxygen) and a high porosity as compared with the second getter material filled on the downstream side of the refining cylinder. Is used. With this configuration, oxygen, which is a highly reactive gas among impurities, is removed from the rare gas by contact with the first getter material, and other impurities with low reactivity are removed from the first getter. It passes through the material and is removed from the noble gas by contact with the second getter material.

本発明の精製方法において、第1のゲッタ材としては、例えば、(1)単一の金属からなるゲッタ材、(2)鉄、コバルト、ニッケル、クロム、チタン、アルミニウム等、不純物に対する反応性が低い2種以上の金属から選ばれる合金からなるゲッタ材を挙げることができる。但し、これらは、第2のゲッタ材よりも空隙率を高く設定する必要がある。従って、本発明においては、入手が容易で廉価な単一の金属からなるゲッタ材を用いることが好ましく、さらにスポンジチタン、スポンジジルコニウム等、スポンジ状の単一の金属からなるゲッタ材を用いることがより好ましい。   In the purification method of the present invention, as the first getter material, for example, (1) a getter material made of a single metal, (2) reactivity with impurities such as iron, cobalt, nickel, chromium, titanium, aluminum, etc. Examples thereof include a getter material made of an alloy selected from two or more kinds of low metals. However, it is necessary to set the porosity higher than that of the second getter material. Therefore, in the present invention, it is preferable to use a getter material made of a single metal that is easily available and inexpensive, and further, a getter material made of a sponge-like single metal such as sponge titanium or sponge zirconium is used. More preferred.

また、第2のゲッタ材としては、例えば、ジルコニウム及びバナジウムを含む合金からなるゲッタ材、具体的には、ジルコニウム及びバナジウムのほか、鉄、コバルト、ニッケル、クロム、チタン、及びアルミニウムから選ばれる1種以上の金属を含む合金からなるゲッタ材を挙げることができる。第2のゲッタ材は、第1のゲッタ材より空隙率が小さく設定されたものであり、スポンジ状ではなく、球状、円柱状、角柱状、円筒状、角筒状、または粒状のものを使用することが好ましい。   The second getter material is, for example, a getter material made of an alloy containing zirconium and vanadium, specifically, 1 selected from iron, cobalt, nickel, chromium, titanium, and aluminum in addition to zirconium and vanadium. A getter material made of an alloy containing more than one kind of metal can be given. The second getter material has a lower porosity than the first getter material, and is not spongy, but a spherical, cylindrical, prismatic, cylindrical, rectangular tube, or granular material is used. It is preferable to do.

本発明の精製方法を実施する際には、通常は図1に示すような上流側に第1のゲッタ材の充填部2、下流側に第2のゲッタ材の充填部3が備えられた精製筒1が用いられるが、各々の充填部を別々に1個ずつ備えた2個の精製筒を用いることもできる。尚、図1のヒータ4は、第1のゲッタ材と第2のゲッタ材を別々に温度コントロールできるように2個設定されているが、1個のヒータで両方のゲッタ材を温度コントロールするように設定してもよい。各々の充填部に第1のゲッタ材と第2のゲッタ材が充填され、ヒータを所定の温度まで上昇させた後、不純物が含まれる希ガスが希ガス導入ライン5から供給され、精製された希ガスが精製希ガス抜出しライン6から得られる。   When carrying out the refining method of the present invention, usually a refining unit provided with a first getter material filling part 2 on the upstream side and a second getter material filling part 3 on the downstream side as shown in FIG. Although the cylinder 1 is used, it is also possible to use two purification cylinders each having one filling portion. The two heaters 4 in FIG. 1 are set so that the temperature of the first getter material and the second getter material can be controlled separately, but the temperature of both getter materials is controlled by one heater. May be set. Each filling portion is filled with the first getter material and the second getter material, and after raising the heater to a predetermined temperature, a rare gas containing impurities is supplied from the rare gas introduction line 5 and purified. A rare gas is obtained from the purified rare gas extraction line 6.

本発明の精製方法により、酸素、及び窒素、炭化水素、一酸化炭素、二酸化炭素、水素、水蒸気から選ばれる1種以上のガスを含む希ガスが、加熱下で第1のゲッタ材と接触すると、主に希ガス中の酸素がゲッタ材と反応し希ガスから除去されるとともに、ゲッタ材が粉化する。しかし、前述のように第1のゲッタ材は空隙率が大きいので、圧力損失の上昇を抑制することができる。次に、希ガスが第2のゲッタ材と接触すると、主に希ガス中の酸素以外の不純物がゲッタ材と反応し希ガスから除去される。酸素以外の不純物がゲッタ材と反応してもゲッタ材は粉化しないので、空隙率が小さくても圧力損失の上昇は起こらない。   When the rare gas containing oxygen and at least one gas selected from nitrogen, hydrocarbon, carbon monoxide, carbon dioxide, hydrogen, and water vapor is brought into contact with the first getter material under heating by the purification method of the present invention. Primarily, oxygen in the rare gas reacts with the getter material and is removed from the rare gas, and the getter material is pulverized. However, since the first getter material has a high porosity as described above, an increase in pressure loss can be suppressed. Next, when the rare gas comes into contact with the second getter material, impurities other than oxygen in the rare gas mainly react with the getter material and are removed from the rare gas. Even if impurities other than oxygen react with the getter material, the getter material is not pulverized. Therefore, even if the porosity is small, the pressure loss does not increase.

尚、本発明の精製方法においては、希ガス精製の際に、第1のゲッタ材の温度を第2のゲッタ材の温度よりも実質的に低くすることにより、第1のゲッタ材の不純物に対する反応性をさらに低下させて、本発明の効果をより向上させることができる。その場合、第1のゲッタ材の温度は、第2のゲッタ材の温度よりも5〜200℃低くなることが好ましい。具体的には、第1のゲッタ材と希ガスの接触温度は、通常は300〜700℃である。   In the refining method of the present invention, the temperature of the first getter material is substantially lower than the temperature of the second getter material during the purification of the rare gas, thereby preventing the impurities of the first getter material. The reactivity can be further reduced, and the effects of the present invention can be further improved. In that case, the temperature of the first getter material is preferably 5 to 200 ° C. lower than the temperature of the second getter material. Specifically, the contact temperature between the first getter material and the rare gas is usually 300 to 700 ° C.

また、本発明の精製方法において、希ガス精製の際の圧力には特に制限はなく、通常は1KPaのような減圧下ないし2MPa(絶対圧力)のような加圧下で処理可能であるが、通常は常圧ないし1MPa(絶対圧力)の加圧下で行なわれる。
また、第1のゲッタ材と希ガスの接触時間が、第2のゲッタ材と希ガスの接触時間よりも短く設定することが好ましい。第1のゲッタ材の充填長は、通常は30〜300mm、第2のゲッタ材の充填長は、通常は100〜1000mmである。精製の際の希ガスの空筒線速度は、通常は200cm/sec以下、好ましくは100cm/sec以下である。
In the purification method of the present invention, there is no particular limitation on the pressure during the purification of the rare gas, and the treatment can be usually performed under a reduced pressure such as 1 KPa to a pressurized pressure such as 2 MPa (absolute pressure). Is performed under normal pressure to 1 MPa (absolute pressure).
Further, the contact time between the first getter material and the rare gas is preferably set shorter than the contact time between the second getter material and the rare gas. The filling length of the first getter material is usually 30 to 300 mm, and the filling length of the second getter material is usually 100 to 1000 mm. The empty tube linear velocity of the rare gas during the purification is usually 200 cm / sec or less, preferably 100 cm / sec or less.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(精製装置の製作)
第1のゲッタ材として市販のスポンジチタンからなるゲッタ材を用い、第2のゲッタ材として、ジルコニウム70重量%、バナジウム30重量%となるように金属を混合し、高周波誘導加熱炉によりアルゴン減圧雰囲気下で溶解して合金塊を製作し、粒径1.7〜4mmに粉砕したゲッタ材を調製した。内径32mmのステンレス鋼(SUS316L)製の図1に示すような構成の精製筒の上流側に、第1のゲッタ材を充填長が50mmとなるように、下流側に第2のゲッタ材を充填長が450mmとなるように充填し、精製筒の内部をアルゴンガスで置換した。
[Example 1]
(Production of purification equipment)
A commercially available getter material made of sponge titanium is used as the first getter material, a metal is mixed so that the second getter material is 70 wt% zirconium and 30 wt% vanadium, and an argon reduced pressure atmosphere is generated by a high frequency induction heating furnace. An alloy lump was manufactured by melting below, and a getter material crushed to a particle size of 1.7 to 4 mm was prepared. The first getter material is filled upstream of a refined cylinder made of stainless steel (SUS316L) having an inner diameter of 32 mm as shown in FIG. 1, and the second getter material is filled downstream so that the filling length is 50 mm. The length was filled to 450 mm, and the inside of the purification cylinder was replaced with argon gas.

(アルゴンの精製試験)
予めアルゴン気流中600℃でゲッタ材の活性化処理を行なった。次に、ヒータによりゲッタ材を所定の温度に加熱した後、不純物として、酸素2.6ppm、窒素52ppm、メタン2.6ppm、一酸化炭素2.6ppm、二酸化炭素2.6ppm、水素2.6ppm、水蒸気65ppmを含むアルゴンを、希ガス導入ラインから0.4MPaの加圧下18L/minの流量で供給した。この間、精製希ガス抜出しラインから排出するガスの一部をサンプリングし、不純物が検出されないことをガスクロマトグラフにより確認するとともに、精製筒の圧力損失を測定した。その結果(時間の経過による圧力損失の増加状況)を図2に示す。尚、アルゴンの精製中、第1のゲッタ材の温度は480℃、第2のゲッタ材の温度は500℃であった。
(Argon purification test)
The getter material was activated in advance at 600 ° C. in an argon stream. Next, after the getter material is heated to a predetermined temperature by a heater, oxygen 2.6 ppm, nitrogen 52 ppm, methane 2.6 ppm, carbon monoxide 2.6 ppm, carbon dioxide 2.6 ppm, hydrogen 2.6 ppm, Argon containing 65 ppm of water vapor was supplied from a rare gas introduction line at a flow rate of 18 L / min under a pressure of 0.4 MPa. During this time, a part of the gas discharged from the purified rare gas extraction line was sampled, and it was confirmed by gas chromatography that no impurities were detected, and the pressure loss of the purification cylinder was measured. The results (increase in pressure loss over time) are shown in FIG. During the purification of argon, the temperature of the first getter material was 480 ° C., and the temperature of the second getter material was 500 ° C.

また、前述のアルゴンの精製試験において、第1のゲッタ材により不純物である酸素が充分に除去されていることを確認するために、第1のゲッタ材のみを充填したほかは前述と同様の精製装置を製作し、前述のアルゴンの精製試験と同様の試験を行なった。アルゴンの精製の際に第1のゲッタ材から排出されるガスを分析した結果、酸素は第1のゲッタ材により99%以上除去されていることがわかった。尚、酸素以外の不純物については、一酸化炭素、二酸化炭素、水素、及び水蒸気は少量除去されたが、窒素及びメタンはほとんど除去されなかった。   In the above-described argon purification test, the same purification as described above was performed except that only the first getter material was filled in order to confirm that oxygen as an impurity was sufficiently removed by the first getter material. An apparatus was manufactured and a test similar to the above-described argon purification test was performed. As a result of analyzing the gas discharged from the first getter material during the purification of argon, it was found that 99% or more of oxygen was removed by the first getter material. For impurities other than oxygen, a small amount of carbon monoxide, carbon dioxide, hydrogen, and water vapor was removed, but nitrogen and methane were hardly removed.

[実施例2]
実施例1の精製装置の製作において、第1のゲッタ材として市販のスポンジジルコニウムからなるゲッタ材を用いたほかは実施例1と同様にして精製装置を製作した。この精製装置を用いたほかは実施例1と同様にしてアルゴンの精製試験を行なった。その結果、時間の経過による圧力損失の増加状況は、ほぼ実施例1と同様であり、20000時間経過しても圧力損失の増加は10KPa未満であった。尚、この間、精製希ガス抜出しラインから排出するガスから、不純物は検出されなかった。
[Example 2]
In the production of the purification apparatus of Example 1, a purification apparatus was produced in the same manner as in Example 1 except that a commercially available getter material made of sponge zirconium was used as the first getter material. An argon purification test was conducted in the same manner as in Example 1 except that this purification apparatus was used. As a result, the increase in pressure loss over time was almost the same as in Example 1, and the increase in pressure loss was less than 10 KPa even after 20000 hours. During this time, no impurities were detected from the gas discharged from the purified rare gas extraction line.

[実施例3]
実施例1の精製装置の製作において、第1のゲッタ材として市販の球状チタンからなるゲッタ材を用いたほかは実施例1と同様にして精製装置を製作した。第1のゲッタ材の充填層の空隙率は、第2のゲッタ材の空隙率より約1.2倍大きかった。この精製装置を用いたほかは実施例1と同様にしてアルゴンの精製試験を行なった。その結果、時間の経過による圧力損失の増加状況は、実施例1より少し大きかったが、20000時間経過しても圧力損失の増加は50KPa未満であった。尚、この間、精製希ガス抜出しラインから排出するガスから、不純物は検出されなかった。
[Example 3]
In the production of the purification apparatus of Example 1, a purification apparatus was produced in the same manner as in Example 1 except that a commercially available getter material made of spherical titanium was used as the first getter material. The porosity of the packed layer of the first getter material was about 1.2 times larger than the porosity of the second getter material. An argon purification test was conducted in the same manner as in Example 1 except that this purification apparatus was used. As a result, the increase in pressure loss over time was slightly larger than that in Example 1, but the increase in pressure loss was less than 50 KPa even after 20000 hours. During this time, no impurities were detected from the gas discharged from the purified rare gas extraction line.

[実施例4]
実施例1の精製装置の製作において、第2のゲッタ材として、ジルコニウム70重量%、バナジウム25重量%、鉄5重量%の合金からなるゲッタ材を調製し用いたほかは実施例1と同様にして精製装置を製作した。この精製装置を用いたほかは実施例1と同様にしてアルゴンの精製試験を行なった。その結果、時間の経過による圧力損失の増加状況は、ほぼ実施例1と同様であり、20000時間経過しても圧力損失の増加は10KPa未満であった。尚、この間、精製希ガス抜出しラインから排出するガスから、不純物は検出されなかった。
[Example 4]
In the manufacture of the refining apparatus of Example 1, the same as in Example 1 except that a getter material made of an alloy of 70 wt% zirconium, 25 wt% vanadium and 5 wt% iron was prepared and used as the second getter material. A refining device was manufactured. An argon purification test was conducted in the same manner as in Example 1 except that this purification apparatus was used. As a result, the increase in pressure loss over time was almost the same as in Example 1, and the increase in pressure loss was less than 10 KPa even after 20000 hours. During this time, no impurities were detected from the gas discharged from the purified rare gas extraction line.

[実施例5]
実施例1の精製装置の製作において、第2のゲッタ材として、ジルコニウム70重量%、バナジウム25重量%、チタン5重量%の合金からなるゲッタ材を調製し用いたほかは実施例1と同様にして精製装置を製作した。この精製装置を用いたほかは実施例1と同様にしてアルゴンの精製試験を行なった。その結果、時間の経過による圧力損失の増加状況は、ほぼ実施例1と同様であり、20000時間経過しても圧力損失の増加は10KPa未満であった。尚、この間、精製希ガス抜出しラインから排出するガスから、不純物は検出されなかった。
[Example 5]
In the manufacture of the refining apparatus of Example 1, a getter material made of an alloy of 70% by weight of zirconium, 25% by weight of vanadium and 5% by weight of titanium was prepared and used as the second getter material. A refining device was manufactured. An argon purification test was conducted in the same manner as in Example 1 except that this purification apparatus was used. As a result, the increase in pressure loss over time was almost the same as in Example 1, and the increase in pressure loss was less than 10 KPa even after 20000 hours. During this time, no impurities were detected from the gas discharged from the purified rare gas extraction line.

[比較例1]
実施例1の精製装置の製作において、第1のゲッタ材を用いなかったほかは実施例1と同様にして精製装置を製作した。この精製装置を用いたほかは実施例1と同様にしてアルゴンの精製試験を行なった。その結果、図2に示すように、7000時間経過した後、圧力損失は急激に増加することが確認された。尚、ゲッタ材には不純物の除去能力が残っていたが、圧力損失増加のためアルゴンの精製を中止した。
[Comparative Example 1]
In the production of the purification apparatus of Example 1, a purification apparatus was produced in the same manner as in Example 1 except that the first getter material was not used. An argon purification test was conducted in the same manner as in Example 1 except that this purification apparatus was used. As a result, as shown in FIG. 2, it was confirmed that the pressure loss increased rapidly after 7000 hours. Although the getter material still had the ability to remove impurities, the purification of argon was stopped due to an increase in pressure loss.

以上のように、本発明の実施例の希ガスの精製方法は、不純物として酸素が含まれる希ガスを精製する際に、空筒線速度を比較的に大きく設定しても、圧力損失の上昇を抑制できることが確認された。   As described above, the method for purifying a rare gas according to the embodiment of the present invention increases the pressure loss even when the cylinder linear velocity is set relatively large when purifying a rare gas containing oxygen as an impurity. It was confirmed that it can be suppressed.

本発明に使用される精製装置の一例を示す構成図The block diagram which shows an example of the refiner | purifier used for this invention 本発明の実施例及び比較例の精製試験における、時間の経過による圧力損失の増加状況を示すグラフThe graph which shows the increase condition of the pressure loss by progress of time in the refinement | purification test of the Example and comparative example of this invention.

1 精製筒
2 第1のゲッタ材の充填部
3 第2のゲッタ材の充填部
4 ヒータ
5 希ガス導入ライン
6 精製希ガス抜出しライン
DESCRIPTION OF SYMBOLS 1 Purifying cylinder 2 Filling part of 1st getter material 3 Filling part of 2nd getter material 4 Heater 5 Noble gas introduction line 6 Purified noble gas extraction line

Claims (7)

酸素、及び窒素、炭化水素、一酸化炭素、二酸化炭素、水素、水蒸気から選ばれる1種以上のガスを不純物として含む希ガスを、加熱下でゲッタ材と接触させて、該希ガスに含まれる不純物を除去する希ガスの精製方法であって、不純物を含む希ガスを、第2のゲッタ材よりも不純物に対する反応性が低く空隙率が高い第1のゲッタ材と接触させて該希ガスから酸素を除去した後、第1のゲッタ材よりも不純物に対する反応性が高く空隙率が低い第2のゲッタ材と接触させて該希ガスから酸素以外の不純物を除去することを特徴とする希ガスの精製方法。   Oxygen and a rare gas containing at least one gas selected from nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, and water vapor as impurities are brought into contact with the getter material under heating and contained in the rare gas. A method for purifying a rare gas that removes impurities, wherein a rare gas containing impurities is brought into contact with a first getter material that has a lower reactivity to impurities and a higher porosity than the second getter material. After removing oxygen, the noble gas is characterized in that impurities other than oxygen are removed from the noble gas by contacting with a second getter material having a higher reactivity to impurities and a lower porosity than the first getter material. Purification method. 第1のゲッタ材が単一の金属からなるゲッタ材であり、第2のゲッタ材が合金からなるゲッタ材である請求項1に記載の希ガスの精製方法。   2. The method for purifying a rare gas according to claim 1, wherein the first getter material is a getter material made of a single metal, and the second getter material is a getter material made of an alloy. 第1のゲッタ材がスポンジ状の金属からなるゲッタ材である請求項2に記載の希ガスの精製方法。   The method for purifying a rare gas according to claim 2, wherein the first getter material is a getter material made of a spongy metal. 第2のゲッタ材が、ジルコニウム及びバナジウムを含む合金からなるゲッタ材である請求項1に記載の希ガスの精製方法。   The method for purifying a rare gas according to claim 1, wherein the second getter material is a getter material made of an alloy containing zirconium and vanadium. 第2のゲッタ材が、ジルコニウム及びバナジウムのほか、鉄、コバルト、ニッケル、クロム、チタン、及びアルミニウムから選ばれる1種以上の金属を含む合金からなるゲッタ材である請求項1に記載の希ガスの精製方法。   2. The rare gas according to claim 1, wherein the second getter material is a getter material made of an alloy containing at least one metal selected from iron, cobalt, nickel, chromium, titanium, and aluminum in addition to zirconium and vanadium. Purification method. 第1のゲッタ材と希ガスの接触温度が、第2のゲッタ材と希ガスの接触温度よりも低い請求項1に記載の希ガスの精製方法。   The method for purifying a rare gas according to claim 1, wherein a contact temperature between the first getter material and the rare gas is lower than a contact temperature between the second getter material and the rare gas. 第1のゲッタ材と希ガスの接触時間が、第2のゲッタ材と希ガスの接触時間よりも短い請求項1に記載の希ガスの精製方法。   The method for purifying a rare gas according to claim 1, wherein the contact time between the first getter material and the rare gas is shorter than the contact time between the second getter material and the rare gas.
JP2009246008A 2009-10-27 2009-10-27 Noble gas purification method Active JP5461144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246008A JP5461144B2 (en) 2009-10-27 2009-10-27 Noble gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246008A JP5461144B2 (en) 2009-10-27 2009-10-27 Noble gas purification method

Publications (2)

Publication Number Publication Date
JP2011093716A true JP2011093716A (en) 2011-05-12
JP5461144B2 JP5461144B2 (en) 2014-04-02

Family

ID=44111085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246008A Active JP5461144B2 (en) 2009-10-27 2009-10-27 Noble gas purification method

Country Status (1)

Country Link
JP (1) JP5461144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088760A (en) * 2021-04-02 2021-07-09 河北工程大学 Low-modulus high-strength biomedical titanium-zirconium-based alloy and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176578B1 (en) 2015-12-01 2024-05-01 Japan Agency for Marine-Earth Science and Technology Preprocessing apparatus and method for gas analysis
JP6765117B2 (en) * 2015-12-01 2020-10-07 国立研究開発法人海洋研究開発機構 Pretreatment equipment for gas analysis and pretreatment method for gas analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023434U (en) * 1988-06-16 1990-01-10
JPH02116607A (en) * 1988-09-26 1990-05-01 Saes Getters Spa Method and device for removing impurity gas from inert gas and for guaranteeing that hydrogen content is at very low level
JPH04149010A (en) * 1990-10-15 1992-05-22 Japan Pionics Co Ltd Method for refining noble gas
JPH04209709A (en) * 1990-11-29 1992-07-31 Japan Pionics Co Ltd Purification of dilute gas
JPH04209708A (en) * 1990-10-29 1992-07-31 Japan Pionics Co Ltd Purification of dilute gas
JPH04222381A (en) * 1990-02-02 1992-08-12 Air Prod And Chem Inc Manufacture of high-purity argon
JPH0733417A (en) * 1993-07-14 1995-02-03 Japan Pionics Co Ltd Purifying method for rare gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023434U (en) * 1988-06-16 1990-01-10
JPH02116607A (en) * 1988-09-26 1990-05-01 Saes Getters Spa Method and device for removing impurity gas from inert gas and for guaranteeing that hydrogen content is at very low level
JPH04222381A (en) * 1990-02-02 1992-08-12 Air Prod And Chem Inc Manufacture of high-purity argon
JPH04149010A (en) * 1990-10-15 1992-05-22 Japan Pionics Co Ltd Method for refining noble gas
JPH04209708A (en) * 1990-10-29 1992-07-31 Japan Pionics Co Ltd Purification of dilute gas
JPH04209709A (en) * 1990-11-29 1992-07-31 Japan Pionics Co Ltd Purification of dilute gas
JPH0733417A (en) * 1993-07-14 1995-02-03 Japan Pionics Co Ltd Purifying method for rare gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088760A (en) * 2021-04-02 2021-07-09 河北工程大学 Low-modulus high-strength biomedical titanium-zirconium-based alloy and preparation method thereof

Also Published As

Publication number Publication date
JP5461144B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5566815B2 (en) Gas purification method and gas purification apparatus
JP2980425B2 (en) Noble gas purification method
TWI409216B (en) Processing method and refining method of inert gas and gas processing cylinder
JP3462560B2 (en) Hydrogen gas purification method
JP5461144B2 (en) Noble gas purification method
FR2757421A1 (en) PROCESS FOR PURIFYING A CRYOGENIC FLUID BY FILTRATION AND / OR ADSORPTION
TW201100157A (en) Method of removing hydrocarbon impurities from a gas
WO1997014648A1 (en) Hydrogen purification using metal hydride getter material
EP0854111A2 (en) Apparatus for recovering, refining, and storing hydrogen gas
EP2858949B1 (en) Method for purification of ammonia, mixtures of nitrogen and hydrogen, or nitrogen, hydrogen and ammonia
JP2012106210A (en) Manufacturing method of palladium-alloy seamless capillary
JP2007045655A (en) Method and apparatus for refining gas
JP2010132486A (en) Hydrogen purification method and hydrogen-storing alloy reactor
JPH0733417A (en) Purifying method for rare gas
JP2004149392A (en) Method for refining carbon monoxide
JP3166930B2 (en) Noble gas purification equipment
JP2013194004A (en) Method for purifying dissolved acetylene
JP3324799B2 (en) Noble gas purification method
JP2977599B2 (en) Noble gas purification method
JP4608657B2 (en) Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier
JPH02293310A (en) Equipment for high-purity refining of rare gas
JPH0468291B2 (en)
MXPA05005629A (en) Gas supply and recovery for metal atomizer.
JP2005319345A (en) Inert gas refining agent and inert gas refining method
JP2002068717A (en) Method of refining nitrogen trifluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350