JPH0733417A - Purifying method for rare gas - Google Patents

Purifying method for rare gas

Info

Publication number
JPH0733417A
JPH0733417A JP19686593A JP19686593A JPH0733417A JP H0733417 A JPH0733417 A JP H0733417A JP 19686593 A JP19686593 A JP 19686593A JP 19686593 A JP19686593 A JP 19686593A JP H0733417 A JPH0733417 A JP H0733417A
Authority
JP
Japan
Prior art keywords
rare gas
getter material
zirconium
impurities
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19686593A
Other languages
Japanese (ja)
Inventor
Koichi Kitahara
宏一 北原
Kenji Otsuka
健二 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP19686593A priority Critical patent/JPH0733417A/en
Publication of JPH0733417A publication Critical patent/JPH0733417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To purify a rare gas efficiently, continuously for long time and in high purity by bringing the rare gas into contact with a zirconium or titanium based getter material under heating then bringing the rare gas into contact with a calcium or magnesium-based getter material. CONSTITUTION:The purifying method in which an impurity is removed from the rare gas containing at least a halogen compd. and nitrogen as an impurity to obtain a high purity rare gas is executed as follows. That is, the rare gas is brought into contact with the zirconium or titanium based getter material under heating, then the rare gas is brought into contact with the calcium or magnesium-based getter material under heating. The halogen compd's. to be removed from the rare gas are hydrogen halide, carbon halide, halogenated hydrocarbon and the halide of VIB group element, etc. The impurities which can be removed except the halogen compd. and the nitrogen are, for example, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, oxygen, steam, fluorine, chlorine and bromin, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希ガスの精製方法に関
し、さらに詳細には不純物として少なくともハロゲン化
合物系のガスおよび窒素を含有する希ガスの精製方法に
関する。ヘリウム、ネオン、アルゴン、クリプトン、キ
セノンなどの希ガス中に含まれる不純物は、高温下でゲ
ッター金属と反応させて固定し、希ガス中から除去する
精製方法が常法となっている。この方法は吸着式精製方
法と異なり、再生用のガスを使用しないため、高価な希
ガスを無駄に消費しない特徴がある。希ガス中でヘリウ
ムやアルゴンは近年目覚しく発展しつつある半導体製造
工業で盛んに用いられており、その純度向上への要求は
益々強くなっている。また、ネオン、クリプトン、キセ
ノンは特殊なランプなどを製造するために不可欠のガス
であり、これらのガスは特に高価なこともあって、一度
使用したガスを循環して使うことが多い。この場合には
循環ガス中の不純物を除去して高純度に精製することも
必要である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a rare gas, and more particularly to a method for purifying a rare gas containing at least a halogen compound gas and nitrogen as impurities. Impurities contained in a rare gas such as helium, neon, argon, krypton, and xenon are fixed by reacting with a getter metal at a high temperature and then removed from the rare gas. Unlike the adsorptive refining method, this method does not use a gas for regeneration, and thus has a feature that an expensive rare gas is not wasted. Helium and argon in rare gases are actively used in the semiconductor manufacturing industry, which has been developing remarkably in recent years, and the demand for improving the purity thereof is becoming stronger and stronger. Further, neon, krypton, and xenon are indispensable gases for manufacturing special lamps and the like, and since these gases are particularly expensive, the gas used once is often circulated and used. In this case, it is also necessary to remove impurities in the circulating gas and purify it to high purity.

【0002】希ガス中に一般的に含有されている不純物
には窒素、炭化水素、一酸化炭素、二酸化炭素、酸素、
水素および水蒸気などがあり、これらのppbオーダー
まで除去して高純度に精製することが望まれている。さ
らに、最近では、これらの不純物と同時に希ガス中に含
有されるハロゲン系の不純物の除去に対する要望も半導
体製造工業を中心に拡大しつつあり、特に、エキシマレ
ーザー用のガスや半導体製造の各工程に使用される希ガ
スおよび特殊なランプの製造時に使用される高価な希ガ
スの循環システムなどにおいて高純度に高収率で精製す
る要望が強い。
Impurities commonly contained in rare gases include nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen,
There are hydrogen and water vapor, and it is desired to remove them to the ppb order and purify them to high purity. Furthermore, recently, the demand for removal of halogen-based impurities contained in a rare gas at the same time as these impurities has been expanding mainly in the semiconductor manufacturing industry, and in particular, gas for excimer laser and each step of semiconductor manufacturing There is a strong demand for refining to a high purity and a high yield in a rare gas circulation system used in the production of rare gases used in the above and special lamps.

【0003】[0003]

【従来の技術】希ガスの精製には従来よりチタンまたは
ジルコニウム系のゲッター材が多用され、これらのゲッ
ター材は、希ガス中に通常含まれる窒素、炭化水素、一
酸化炭素、二酸化炭素、酸素、水素および水蒸気などの
不純物については効率よく除去することができる。しか
しながら、不純物としてハロゲン化合物が含まれる場合
には、これらの除去が困難であるため、ハロゲン化合物
除去用ゲッター技術の開発が数々研究されている。
2. Description of the Related Art Titanium or zirconium-based getter materials have been frequently used for refining rare gases, and these getter materials include nitrogen, hydrocarbons, carbon monoxide, carbon dioxide and oxygen which are usually contained in rare gases. Impurities such as hydrogen, water vapor, etc. can be removed efficiently. However, when a halogen compound is contained as an impurity, it is difficult to remove them, and therefore, many studies have been conducted on the development of getter technology for removing a halogen compound.

【0004】ハロゲン化合物を除去する方法としては、
本発明者らによるカルシウムまたはマグネシウムをゲ
ッター材とし、加熱下に希ガスと接触させる方法(特開
平4−149010号公報)、カルシウムまたはマグ
ネシウムと、ニッケル、コバルト、銅などからなる合
金、あるいは、Zr−Ni−(V、Mn、Feなど)か
らなる合金をゲッター材とし、加熱下に希ガスと接触さ
せる方法(特開平4−259348号公報)などが知ら
れている。
As a method for removing halogen compounds,
A method of using calcium or magnesium as a getter material by the present inventors and bringing it into contact with a rare gas under heating (JP-A-4-149010), an alloy of calcium or magnesium and nickel, cobalt, copper, or Zr. A method is known in which an alloy made of —Ni— (V, Mn, Fe, etc.) is used as a getter material and brought into contact with a rare gas under heating (Japanese Patent Laid-Open No. 4-259348).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、カルシ
ウム、マグネシウム系の合金やZr−Ni系多元合金の
ような合金ゲッター材では、カルシウム、マグネシウム
単体のゲッター材よりもハロゲン化合物の除去能力が小
さいばかりでなく、高温加熱を必要とするため、合金と
の反応によって生じたハロゲン化金属などの生成物の一
部が気化してゲッター材の下流に移動し、低温部で凝縮
して流路を閉塞し、短時間で差圧が上昇するという欠点
がある。
However, an alloy getter material such as a calcium-magnesium alloy or a Zr-Ni multi-component alloy has a smaller halogen compound removing ability than a getter material containing only calcium or magnesium. However, since high temperature heating is required, some of the products such as metal halides generated by the reaction with the alloy are vaporized and move to the downstream of the getter material, and are condensed in the low temperature part to block the flow path. However, there is a drawback that the differential pressure rises in a short time.

【0006】一方、ゲッター材としてカルシウムまたは
マグネシウムの単体を用いた場合には、上記の合金のよ
うに閉塞の原因となるハロゲン化金属などは生成せず、
また、合金ゲッター材の場合に比べてハロゲン化合物と
の反応性が高く、しかも化学量論的に100%近く反応
するためか、その除去能力は著しく大きいという利点が
ある。しかしながら、優れた除去能力のあるカルシウム
またはマグネシウムのゲッター材も希ガス中にハロゲン
化物以外の不純物が含まれる場合には、これらも同時に
除去することができるものの精製時間の経過とともにゲ
ッター材部での流路が狭まって差圧が次第に増大すると
いう問題のあることが判明した。
On the other hand, when a simple substance of calcium or magnesium is used as the getter material, a metal halide that causes clogging unlike the above alloys is not produced,
Further, it has an advantage that its removing ability is remarkably large, probably because it has a higher reactivity with a halogen compound than in the case of an alloy getter material and reacts in a stoichiometrically nearly 100% manner. However, even if the getter material of calcium or magnesium having an excellent removing ability also contains impurities other than halides in the rare gas, these can be removed at the same time, but with the progress of the purification time, the getter material part It was found that there is a problem that the flow path becomes narrow and the differential pressure gradually increases.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記のカル
シウム、マグネシウムなどのゲッター材における差圧上
昇の原因について究明を続けた結果、不純物成分に特に
窒素が含まれるときに差圧が増大するという事実をつき
とめるとともに、希ガスをこれらのゲッター材による処
理をおこなう前に、あらかじめ、希ガスをジルコニウ
ム、チタン系のゲッター材と接触させることにより、課
題を解決しうることを見い出し、本発明を完成した。す
なわち本発明は、不純物として少なくともハロゲン化合
物および窒素を含む希ガスから不純物を除去し、高純度
希ガスを得る希ガスの精製方法において、希ガスをジル
コニウムまたはチタン系のゲッター材と加熱下に接触さ
せ、次いで、カルシウムまたはマグネシウムのゲッター
材と加熱下に接触させることを特徴とする希ガスの精製
方法。
As a result of continuing investigation into the cause of the increase in the differential pressure in the getter materials such as calcium and magnesium described above, the present inventors have found that the differential pressure increases when the impurity component particularly contains nitrogen. In addition to finding the fact that the rare gas is treated with these getter materials, it was found that the problem can be solved by contacting the rare gas with a zirconium-titanium-based getter material in advance. Was completed. That is, in the present invention, in a method for purifying a rare gas in which impurities are removed from a rare gas containing at least a halogen compound and nitrogen as impurities to obtain a high-purity rare gas, the rare gas is contacted with a zirconium- or titanium-based getter material under heating. And then contacting with a calcium or magnesium getter material under heating, a method for purifying a noble gas.

【0008】本発明は不純物として少なくともハロゲン
化合物および窒素を含むヘリウム、ネオン、アルゴン、
クリプトン、キセノンなどの希ガスの精製に適用され
る。除去の対象となるハロゲン化合物としては、ハロゲ
ン化水素、ハロゲン化炭素、ハロゲン化炭化水素および
6B族元素のハロゲン化物、主に弗素、塩素系のハロゲ
ン化合物などであり、6B族元素としては硫黄、セレン
またはテルルなどである。例えば、HCl,HFなどの
ハロゲン化水素、CF4 、CCl4 などのハロゲン化炭
素、CHF3 、C2 2 4 、CHCl3 、C2 2
4 などのハロゲン化炭化水素、また、6B族元素のハ
ロゲン化物ではSF、SF2 、SF4、SF5 、S
6 、SeF、SeF4 、SeF6 、TeF4 、TeF
6 などが挙げられる。また、ハロゲン化合物および窒素
以外に除去しうる不純物としては、例えば炭化水素、一
酸化炭素、二酸化炭素、水素、酸素、水蒸気、弗素、塩
素、臭素などである。
According to the present invention, helium, neon, argon containing at least a halogen compound and nitrogen as impurities,
It is applied to the purification of noble gases such as krypton and xenon. The halogen compounds to be removed include hydrogen halides, carbon halides, halogenated hydrocarbons and halides of 6B group elements, mainly fluorine and chlorine type halogen compounds, and 6B group elements include sulfur, Such as selenium or tellurium. For example, hydrogen halides such as HCl and HF, carbon halides such as CF 4 and CCl 4 , CHF 3 , C 2 H 2 F 4 , CHCl 3 and C 2 H 2 C
For halogenated hydrocarbons such as l 4 and halides of 6B group elements, SF, SF 2 , SF 4 , SF 5 , S
F 6 , SeF, SeF 4 , SeF 6 , TeF 4 , TeF
6 and so on. In addition to halogen compounds and nitrogen, impurities that can be removed are, for example, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, oxygen, water vapor, fluorine, chlorine, bromine and the like.

【0009】本発明において、カルシウムまたはマグネ
シウムのゲッター材による処理に先立って希ガスと接触
せしめられるジルコニウムまたはチタン系のゲッター材
(以下ゲッター材Aと記す)は少くとも窒素を効率よく
除去しうるものであり、ジルコニウム、チタンまたはジ
ルコニウムとチタン、バナジウム、鉄、ニッケル、クロ
ム、コバルトなどの合金が使用される。合金では例えば
Zr−Ti、Zr−Fe、Zr−V、Zr−V−Fe、
Zr−V−Ni、Zr−V−Crなどの二元または多元
合金が好ましい。これらの金属および合金は、粒状また
は100メッシュ以上の微細粒で用いるか、100メッ
シュ程度の微細粒としたものをペレット状などに成型し
た形態で使用される。また精製に先立って、あらかじめ
真空中または希ガス中で、例えば400〜950℃程度
で10〜200分間活性化処理を施すことが好ましい。
In the present invention, a zirconium- or titanium-based getter material (hereinafter referred to as getter material A) which is brought into contact with a rare gas prior to treatment with a calcium or magnesium getter material can remove nitrogen at least efficiently. And zirconium, titanium or an alloy of zirconium and titanium, vanadium, iron, nickel, chromium, cobalt or the like is used. For alloys, for example, Zr-Ti, Zr-Fe, Zr-V, Zr-V-Fe,
Binary or multi-component alloys such as Zr-V-Ni and Zr-V-Cr are preferred. These metals and alloys are used in the form of granules or fine particles of 100 mesh or more, or in the form of pellets formed by making fine particles of about 100 mesh. Further, prior to the purification, it is preferable to carry out an activation treatment in advance in vacuum or in a rare gas at, for example, about 400 to 950 ° C. for 10 to 200 minutes.

【0010】また、カルシウムまたはマグネシウム系の
ゲッター材(以下ゲッター材Bと記す)としては、カル
シウムの単体またはマグネシウムの単体が好ましいが、
両者を混合したものであってもよい。通常は市販のカル
シウム、マグネシウムを使用することができ、粒状また
は100メッシュ以上の微細粒で用いるか、100メッ
シュ程度の微細粒としたものをペレット状に成型した形
態などで使用される。ゲッター材Bについても精製に先
立って、あらかじめ真空中または希ガス中において、例
えば400〜800℃程度で10〜200分間活性化処
理を施すことが好ましい。
The calcium or magnesium-based getter material (hereinafter referred to as getter material B) is preferably calcium alone or magnesium alone.
It may be a mixture of both. Usually, commercially available calcium and magnesium can be used, and they are used in the form of granules or fine particles of 100 mesh or more, or formed into pellets by making fine particles of about 100 mesh. Prior to purification, the getter material B is also preferably subjected to an activation treatment in advance in vacuum or in a rare gas at, for example, about 400 to 800 ° C. for 10 to 200 minutes.

【0011】希ガスの精製に際しては、ゲッター材Aが
精製筒の入口側に、ゲッター材Bが出口側に充填され、
精製筒を所定の温度に加熱しながら原料希ガスが流され
る。接触温度は希ガス中に含まれる不純物の種類、濃
度、ゲッター材の種類などによって異なり一概に特定は
できないが、ゲッター材Aでは、通常は300〜900
℃、好ましくは400〜850℃である。接触温度が9
00℃を超えると不純物としてハロゲン化合物が含まれ
ているとゲッター材Aの金属との反応による生成物が気
化し、下流で詰まりを生ずる恐れがあり、300℃より
も低くなると不純物の除去能力が低下する恐れがある。
In refining the rare gas, the getter material A is filled in the inlet side of the refining cylinder, and the getter material B is filled in the outlet side.
The raw material rare gas is caused to flow while heating the refining cylinder to a predetermined temperature. The contact temperature varies depending on the type and concentration of impurities contained in the rare gas, the type of getter material, etc., and cannot be specified unconditionally, but in the getter material A, it is usually 300 to 900.
C., preferably 400 to 850.degree. Contact temperature is 9
If the temperature exceeds 00 ° C and the halogen compound is contained as an impurity, the product of the reaction of the getter material A with the metal may be vaporized to cause clogging in the downstream, and if the temperature is lower than 300 ° C, the ability to remove impurities may be reduced. It may decrease.

【0012】また、ゲッター材Bでは、例えば、カルシ
ウムを用いる場合には通常は150〜800℃、好まし
くは400〜800℃、マグネシウムを用いる場合には
通常は150〜620℃、好ましくは350〜620℃
の範囲で選択される。接触温度が150℃よりも低いと
含有される不純物の種類などによっては除去能力が低下
する。本発明において、ゲッター材AおよびBは、通常
は前記のように同じ精製筒に充填されるが、ハロゲン化
合物の不純物の種類などによってはゲッター材をそれぞ
れ別の精製筒に充填し、ゲッター材Aが上流側、ゲッタ
ー材Bが下流側となるように連結し、それぞれを所望の
温度に設定して精製をおこなってもよい。
In the getter material B, for example, when calcium is used, it is usually 150 to 800 ° C., preferably 400 to 800 ° C. When magnesium is used, it is usually 150 to 620 ° C., preferably 350 to 620. ℃
The range is selected. When the contact temperature is lower than 150 ° C., the removing ability is lowered depending on the kind of impurities contained. In the present invention, the getter materials A and B are usually packed in the same purification column as described above, but the getter materials may be filled in different purification columns depending on the type of impurities of the halogen compound. May be connected on the upstream side, and the getter material B may be connected on the downstream side, and each may be set to a desired temperature for purification.

【0013】次に本発明を図面により例示して、さらに
具体的に説明する。図1は本発明に使用される希ガスの
精製装置のフローシートである。図1において、ガスの
入口1および出口2を有し、下部にゲッター材Bが充填
され、その上流にはゲッター材Aが充填され、且つ、加
熱用ヒーター3が配置された精製筒4の入口1には、原
料希ガスの供給管5、出口2側には冷却器6が接続され
ている。また、冷却器6の下流には精製ガスの抜出し管
7が接続されて希ガスの精製装置となっている。
Next, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a flow sheet of a rare gas refining apparatus used in the present invention. In FIG. 1, an inlet 1 and an outlet 2 for gas, a lower portion is filled with a getter material B, an upstream thereof is filled with a getter material A, and an inlet of a purification cylinder 4 in which a heater 3 for heating is arranged. 1, a raw material rare gas supply pipe 5 is connected, and a cooler 6 is connected to the outlet 2 side. A refined gas extraction pipe 7 is connected downstream of the cooler 6 to form a rare gas refiner.

【0014】希ガスの精製に際しては、加熱用ヒーター
3で精製筒4を所定の温度に加熱した状態で、原料希ガ
スが供給管7から入口を経て精製筒4内に供給される。
精製筒4に入った希ガスは、先ずゲッター材Aと接触す
ることにより、希ガス中に含まれる窒素がゲッター材A
と反応して確実に除去される。同時にハロゲン化合物以
外の不純物である炭化水素、一酸化炭素、二酸化炭素、
水素、酸素などの一部または大部分も除去される。窒素
が除去されたガスは、ゲッター材Bと反応してハロゲン
化合物およびゲッター材Aで除去されなかった他の不純
物が確実に除去され、出口2を経て冷却器6に入り、こ
こで所定の温度にまで冷却され、精製ガスの吹き出し管
7を経由して目的の用途に供される。
When refining the rare gas, the raw material rare gas is supplied from the supply pipe 7 into the refining cylinder 4 through the inlet while the refining cylinder 4 is heated to a predetermined temperature by the heater 3 for heating.
The rare gas that has entered the refining cylinder 4 first comes into contact with the getter material A, so that the nitrogen contained in the rare gas is contained in the getter material A.
Reacts with and is reliably removed. At the same time, hydrocarbons, carbon monoxide, carbon dioxide, which are impurities other than halogen compounds,
Some or most of hydrogen, oxygen, etc. are also removed. The nitrogen-removed gas reacts with the getter material B to surely remove halogen compounds and other impurities not removed by the getter material A, and then enters the cooler 6 through the outlet 2 where a predetermined temperature is reached. It is cooled down to 1, and supplied to the intended use via the purified gas blowing pipe 7.

【0015】[0015]

【実施例】【Example】

実施例1 図1で示したと同じ構成の装置で、外径17.3mm、
内径14mmのステンレス管製の精製筒に、ハロゲン化
合物除去用のゲッター材Bとして市販の粒状カルシウム
(純度99%)をふるい分けた4〜10メッシュのもの
を500mm、その上流に窒素除去用のゲッター材Aと
して市販のフェロジルコ合金(鉄20〜25重量%、残
部ジルコニウム)で6〜14メッシュのものを100m
m充填した。
Example 1 An apparatus having the same configuration as shown in FIG. 1 and having an outer diameter of 17.3 mm,
500 mm of 4 to 10 mesh, which is obtained by sieving commercially available granular calcium (purity 99%) as a getter material B for removing halogen compounds into a refining cylinder made of a stainless steel tube with an inner diameter of 14 mm, and a getter material for removing nitrogen upstream thereof. A commercially available ferro zirco alloy (iron 20 to 25% by weight, balance zirconium) having a mesh of 6 to 14 is 100 m.
m filled.

【0016】引続き、ヘリウム気流中720℃で3時間
活性化処理をおこなった後、精製筒の温度を700℃に
調節して精製をおこなった。不純物として、ハロゲン化
合物中で最も除去が困難な四フッ化炭素(CF4 )を1
00ppm、六フッ化硫黄(SF6 )を30ppm、お
よび差圧増加の原因となっていた窒素を50ppmの濃
度になるようにマスフローコントローラを用いてヘリウ
ムガスに添加し、0.89NL/min、圧力4kgf
/cm2 で供給して連続的に精製をおこないながら精製
筒の出口ガスをTCDガスクロマトグラフにより分析し
た。その結果、精製開始から300時間経過後に四フッ
化炭素の破過を認めたが、この間に、その他の不純物の
破過は認められず、また精製筒出口ガス配管の閉塞も発
生しなかった。また、精製筒の入口と出口の間の差圧
は、精製開始時で0.2kgf/cm2 、四フッ化炭素
の破過時で0.3kgf/cm2 であった。
Subsequently, after performing activation treatment at 720 ° C. for 3 hours in a helium gas stream, the temperature of the purification column was adjusted to 700 ° C. for purification. Carbon tetrafluoride (CF 4 ), which is the most difficult to remove among halogen compounds, is used as an impurity.
Add 00 ppm, sulfur hexafluoride (SF 6 ) to 30 ppm, and nitrogen, which was the cause of the increase in differential pressure, to helium gas using a mass flow controller to a concentration of 50 ppm, and add 0.89 NL / min pressure. 4 kgf
The gas at the outlet of the purifying column was analyzed by TCD gas chromatograph while continuously purifying by supplying the gas at a rate of / cm 2 . As a result, breakthrough of carbon tetrafluoride was recognized after 300 hours had passed from the start of purification, but during this period, breakthrough of other impurities was not recognized, and clogging of the purification cylinder outlet gas pipe did not occur. Further, the pressure difference between the inlet and the outlet of the purification column is, 0.2 kgf / cm 2 at the time of purification starting was 0.3 kgf / cm 2 at the time of breakthrough of carbon tetrafluoride.

【0017】実施例2 カルシウムの代わりに市販の削り状マグネシウム(純度
97%以上)をハロゲン化物除去のゲッター材Bとし、
活性化を600℃で3時間、精製温度を500℃とした
他は実施例1と同様にして精製をおこない、精製筒出口
ガスの分析をおこなった。その結果、ガスを流し始めて
から130時間後に四フッ化炭素の破過を認めたが、こ
の間に、その他の不純物の破過を認められず、また、精
製筒出口ガス配管の閉塞も発生しなかった。また、精製
筒の入口と出口の間の差圧は、精製開始時で0.2kg
f/cm2 、四フッ化炭素の破過時で0.3kgf/c
2 であった。
Example 2 Instead of calcium, commercially available shaving magnesium (purity of 97% or more) was used as a getter material B for removing halides.
Purification was performed in the same manner as in Example 1 except that activation was carried out at 600 ° C. for 3 hours and the purification temperature was 500 ° C., and the gas at the outlet of the purification cylinder was analyzed. As a result, breakthrough of carbon tetrafluoride was observed 130 hours after starting to flow the gas, but during this period, breakthrough of other impurities was not observed and clogging of the gas pipe at the outlet of the refining cylinder did not occur. It was Also, the differential pressure between the inlet and outlet of the refining cylinder is 0.2 kg at the start of refining.
f / cm 2 , 0.3 kgf / c when breakthrough of carbon tetrafluoride
It was m 2 .

【0018】比較例1 窒素除去用ゲッター材Aを充填しなかった他は実施例1
と同様にしてヘリウムガスの精製をおこなった。その結
果、精製開始から300時間経過後に四フッ化炭素の破
過を認めたが、この間に、その他の不純物の破過は認め
られず、また精製筒出口ガス配管の閉塞も発生しなかっ
た。しかしながら、精製筒の入口と出口の間の差圧は精
製開始時で0.2kgf/cm2 であったものが、四フ
ッ化炭素の破過時には1.3kgf/cm2 まで上昇し
た。
Comparative Example 1 Example 1 except that the getter material A for nitrogen removal was not filled.
The helium gas was purified in the same manner as in. As a result, breakthrough of carbon tetrafluoride was recognized after 300 hours had passed from the start of purification, but during this period, breakthrough of other impurities was not recognized, and clogging of the purification cylinder outlet gas pipe did not occur. However, those pressure difference between the inlet and the outlet of the purification column was 0.2 kgf / cm 2 at the time of refining the start, at the time of breakthrough of carbon tetrafluoride was increased to 1.3 kgf / cm 2.

【0019】比較例2 窒素除去用のゲッター材Aを充填しなかった他は実施例
2と同様にしてヘリウムガスの精製をおこなった。その
結果、精製開始から120時間経過後に四フッ化炭素の
破過を認めたが、この間に、その他の不純物の破過は認
められず、また精製筒出口ガス配管の閉塞も発生しなか
った。しかしながら、精製筒の入口と出口の間の差圧は
精製開始時で0.2kgf/cm2 であったものが、四
フッ化炭素の破過時には1.1kgf/cm2 まで上昇
した。
Comparative Example 2 Helium gas was purified in the same manner as in Example 2 except that the getter material A for nitrogen removal was not filled. As a result, breakthrough of carbon tetrafluoride was observed 120 hours after the start of purification, but during this period, breakthrough of other impurities was not observed and clogging of the gas pipe at the outlet of the refining cylinder did not occur. However, those pressure difference between the inlet and the outlet of the purification column was 0.2 kgf / cm 2 at the time of refining the start, at the time of breakthrough of carbon tetrafluoride was increased to 1.1 kgf / cm 2.

【0020】[0020]

【発明の効果】本発明によって、カルシウム、マグネシ
ウムのゲッター材を単独で用いた場合に問題になってい
た精製筒の差圧の増大を確実に防止できるようになっ
た。従って、不純物としてハロゲン化合物および窒素な
どを含む希ガスをハロゲン化合物の除去能力の大きいカ
ルシウム、マグネシウムのゲッター材を用いて効率よく
長時間連続的に、しかも、高純度に精製することが可能
となった。
According to the present invention, it is possible to reliably prevent the increase in the differential pressure in the refining cylinder, which has been a problem when the calcium and magnesium getter materials are used alone. Therefore, it is possible to efficiently purify a rare gas containing a halogen compound and nitrogen as impurities by using a getter material of calcium and magnesium, which has a large ability to remove a halogen compound, continuously for a long time with high purity. It was

【0021】[0021]

【図面の簡単な説明】[Brief description of drawings]

【図1】希ガスの精製装置のフローシートFIG. 1 Flow sheet of rare gas refining equipment

【符号の説明】[Explanation of symbols]

1 入口 2 出口 3 加熱用ヒーター 4 精製筒 5 供給管 6 冷却器 7 抜出し管 A、B ゲッター材 1 inlet 2 outlet 3 heater for heating 4 refining cylinder 5 supply pipe 6 cooler 7 extraction pipe A, B getter material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】不純物として少なくともハロゲン化合物お
よび窒素を含む希ガスから不純物を除去し、高純度希ガ
スを得る希ガスの精製方法において、希ガスをジルコニ
ウムまたはチタン系のゲッター材と加熱下に接触させ、
次いで、カルシウムまたはマグネシウムのゲッター材と
加熱下に接触させることを特徴とする希ガスの精製方
法。
1. A method for purifying a rare gas, which comprises removing impurities from a rare gas containing at least a halogen compound and nitrogen as impurities to obtain a high-purity rare gas, wherein the rare gas is brought into contact with a zirconium- or titanium-based getter material under heating. Let
Next, a method for purifying a rare gas, which comprises contacting with a getter material of calcium or magnesium under heating.
【請求項2】ハロゲン化合物がハロゲン化水素、ハロゲ
ン化炭素、ハロゲン化炭化水素および6B族元素のハロ
ゲン化物の1種または2種以上である請求項1に記載の
精製方法。
2. The purification method according to claim 1, wherein the halogen compound is one kind or two or more kinds of a hydrogen halide, a carbon halide, a halogenated hydrocarbon and a halide of a Group 6B element.
【請求項3】ジルコニウムまたはチタン系のゲッター材
がジルコニウム、チタン、または、ジルコニウムとチタ
ン、バナジウム、鉄、ニッケル、クロム、コバルトの少
なくとも1種からなる二元または多元合金である請求項
1に記載の精製方法。
3. The zirconium- or titanium-based getter material is zirconium, titanium, or a binary or multi-element alloy composed of zirconium and at least one of titanium, vanadium, iron, nickel, chromium, and cobalt. Purification method.
【請求項4】希ガスとジルコニウムまたはチタン系のゲ
ッター材との接触温度が300〜900℃、カルシウム
またはマグネシウムのゲッター材との接触温度が150
〜800℃である請求項1に記載の精製方法。
4. The contact temperature between the rare gas and the getter material of zirconium or titanium is 300 to 900 ° C., and the contact temperature between the getter material of calcium or magnesium is 150.
The purification method according to claim 1, wherein the purification temperature is from about 800 ° C.
【請求項5】ハロゲン化合物および窒素以外の不純物
が、炭化水素、一酸化炭素、二酸化炭素、酸素、水素、
水蒸気、弗素、塩素または臭素の1種または2種以上で
ある請求項1に記載の精製方法。
5. Impurities other than halogen compounds and nitrogen are hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen,
The purification method according to claim 1, which is one or more of steam, fluorine, chlorine, or bromine.
【請求項6】ハロゲン化合物中のハロゲンが弗素または
塩素であり、6B族元素が硫黄、セレンまたはテルルで
ある請求項2に記載の精製方法。
6. The purification method according to claim 2, wherein the halogen in the halogen compound is fluorine or chlorine, and the Group 6B element is sulfur, selenium or tellurium.
JP19686593A 1993-07-14 1993-07-14 Purifying method for rare gas Pending JPH0733417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19686593A JPH0733417A (en) 1993-07-14 1993-07-14 Purifying method for rare gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19686593A JPH0733417A (en) 1993-07-14 1993-07-14 Purifying method for rare gas

Publications (1)

Publication Number Publication Date
JPH0733417A true JPH0733417A (en) 1995-02-03

Family

ID=16364942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19686593A Pending JPH0733417A (en) 1993-07-14 1993-07-14 Purifying method for rare gas

Country Status (1)

Country Link
JP (1) JPH0733417A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299746B1 (en) 1997-12-23 2001-10-09 Saes Getters, S.P.A. Getter system for purifying the confinement volume in process chambers
JP2004307261A (en) * 2003-04-07 2004-11-04 Central Glass Co Ltd Method for refining xenon difluoride
JP2011093716A (en) * 2009-10-27 2011-05-12 Japan Pionics Co Ltd Method for refining rare gas
JP2015071534A (en) * 2013-10-03 2015-04-16 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated System and method for xenon recovery
EP3176578A1 (en) 2015-12-01 2017-06-07 Japan Agency for Marine-Earth Science and Technology Preprocessing apparatus and method for gas analysis
JP2017106903A (en) * 2015-12-01 2017-06-15 国立研究開発法人海洋研究開発機構 Pretreatment device for gas analysis and pretreatment method for gas analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299746B1 (en) 1997-12-23 2001-10-09 Saes Getters, S.P.A. Getter system for purifying the confinement volume in process chambers
JP2004307261A (en) * 2003-04-07 2004-11-04 Central Glass Co Ltd Method for refining xenon difluoride
JP2011093716A (en) * 2009-10-27 2011-05-12 Japan Pionics Co Ltd Method for refining rare gas
JP2015071534A (en) * 2013-10-03 2015-04-16 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated System and method for xenon recovery
CN104550198A (en) * 2013-10-03 2015-04-29 气体产品与化学公司 System and method for xenon recovery
US10892132B2 (en) 2013-10-03 2021-01-12 Versum Materials Us, Llc System and method for xenon recovery
EP3176578A1 (en) 2015-12-01 2017-06-07 Japan Agency for Marine-Earth Science and Technology Preprocessing apparatus and method for gas analysis
JP2017106903A (en) * 2015-12-01 2017-06-15 国立研究開発法人海洋研究開発機構 Pretreatment device for gas analysis and pretreatment method for gas analysis

Similar Documents

Publication Publication Date Title
JP3279585B2 (en) Method for producing purified air
JP3351815B2 (en) Purification method of inert gas
JP2980425B2 (en) Noble gas purification method
KR20070116258A (en) Purification of nitrogen trifluoride
JPH11100203A (en) Treatment of gas flow and device therefor
JPH0733417A (en) Purifying method for rare gas
JP2971116B2 (en) Noble gas purification method
JPH06234511A (en) Method and apparatus for purification using compression heat
JPH10265216A (en) Purification of boron trichloride
JPS59107910A (en) Method for purifying gaseous argon
JP2977606B2 (en) Noble gas purification method
US5648569A (en) Purifaction of pentafluoroethanes
JPH02284618A (en) Method for reducing oxygen concentration
JP3260853B2 (en) Noble gas purification method
JP3324799B2 (en) Noble gas purification method
JP2011093716A (en) Method for refining rare gas
JPH04160010A (en) Method for refining rare gas
JP2753189B2 (en) Method for purifying krypton and xenon
US5852223A (en) Purification methods of pentafluoroethane
JPH09264666A (en) Nitrogen and oxygen manufacturing system
JP3650588B2 (en) Perfluoro compound recycling method
JPH07133981A (en) Method of refining krypton and xenon
JPH02272288A (en) Recovering method for argon
JP4994746B2 (en) COF2 manufacturing method and apparatus
JPH02293310A (en) Equipment for high-purity refining of rare gas