JPH09264666A - Nitrogen and oxygen manufacturing system - Google Patents

Nitrogen and oxygen manufacturing system

Info

Publication number
JPH09264666A
JPH09264666A JP8076208A JP7620896A JPH09264666A JP H09264666 A JPH09264666 A JP H09264666A JP 8076208 A JP8076208 A JP 8076208A JP 7620896 A JP7620896 A JP 7620896A JP H09264666 A JPH09264666 A JP H09264666A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
nitrogen
raw material
carbon monoxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8076208A
Other languages
Japanese (ja)
Other versions
JP2872631B2 (en
Inventor
Yutaka Yoneda
豊 米田
Yoshinobu Chiba
禎伸 千葉
Takeshi Goto
毅 後藤
Hiroshi Matsuzaki
寛 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMA SANSO KK
Taiyo Toyo Sanso Co Ltd
Original Assignee
KASHIMA SANSO KK
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMA SANSO KK, Taiyo Toyo Sanso Co Ltd filed Critical KASHIMA SANSO KK
Priority to JP8076208A priority Critical patent/JP2872631B2/en
Publication of JPH09264666A publication Critical patent/JPH09264666A/en
Application granted granted Critical
Publication of JP2872631B2 publication Critical patent/JP2872631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrogen and oxygen manufacturing system to economically manufacture high purity liquid nitrogen containing no carbon monoxide by reducing an amount of a using catalyst for removing carbon monoxide as much as possible. SOLUTION: Raw material air 1 is fractionated and separated into nitrogen and oxygen by a fractionating tower 19. After a liquid nitrogen raw material 4a being a part of product nitrogen gas 4a sampled from the top part of a low pressure tower 21 of the fractionating tower 19 is compressed and boosted in three stages by compressors 36, 37, and 38, the liquid nitrogen raw material is liquefied through the passage of it through a heat-exchanger 40, an expansion valve 41, and a gas liquid separator 42 to manufacture liquid nitrogen 4f. In this case, by selectively passing a liquid nitrogen raw material 4b, passing through the first stage compressor 36, through one of catalyst towers, the liquid nitrogen raw material makes contact with a nickel catalyst to adsorb and remove carbon monoxide and thereafter, guided as high purity nitrogen gas 4c, containing no carbon monoxide, to the second stage compressor 37.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気を原料として
酸素及び窒素を精留により製造する窒素・酸素製造シス
テムであって、特に、製品窒素として窒素ガス及び液体
窒素を得ることができる窒素・酸素製造システムに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen / oxygen production system for producing oxygen and nitrogen by rectification from air as a raw material, and in particular, a nitrogen / oxygen production system capable of obtaining nitrogen gas and liquid nitrogen as product nitrogen. It relates to an oxygen production system.

【0002】[0002]

【従来の技術】この種の窒素・酸素製造システムは、一
般に、精留塔を備えた空気分離装置により原料空気を精
留,分離することによって窒素ガスと酸素ガス(又は液
体酸素)とを製造すると共に、空気分離装置で得られた
窒素ガスの一部を液体窒素製造装置により凝縮液化する
ことによって液体窒素を製造するように構成されてい
る。
2. Description of the Related Art This type of nitrogen / oxygen production system generally produces nitrogen gas and oxygen gas (or liquid oxygen) by rectifying and separating raw material air with an air separation device equipped with a rectification tower. In addition, a part of the nitrogen gas obtained by the air separation device is condensed and liquefied by the liquid nitrogen manufacturing device to manufacture liquid nitrogen.

【0003】すなわち、空気分離装置は、原料空気を、
これに本来的に含まれる二酸化炭素及び水分を吸着装置
により吸着除去した上、沸点近くまで冷却して精留塔に
導入し、精留塔における精留作用により、製品ガスであ
る窒素ガスと酸素ガス(又は液体酸素)とを得るように
構成されている。また、液体窒素製造装置は、液体窒素
原料として空気分離装置により得られた製品窒素ガスの
一部を使用するものであり、空気分離装置から導入され
た液体窒素原料を複数の圧縮機により段階的に昇圧させ
た上、液化点近くまで冷却し、膨張,気液分離させるこ
とにより、製品窒素である液体窒素を製造するように構
成されている。
That is, the air separation device converts raw material air into
Carbon dioxide and water originally contained in this are adsorbed and removed by an adsorption device, then cooled to near the boiling point and introduced into the rectification column, and the rectification action in the rectification column causes the product gases, nitrogen gas and oxygen. It is configured to obtain gas (or liquid oxygen). Further, the liquid nitrogen production device uses a part of the product nitrogen gas obtained by the air separation device as the liquid nitrogen raw material, and the liquid nitrogen raw material introduced from the air separation device is stepwise by a plurality of compressors. Liquid nitrogen, which is product nitrogen, is manufactured by increasing the pressure to 2, cooling to near the liquefaction point, expanding, and separating gas and liquid.

【0004】ところで、液体窒素は、近時、半導体製造
分野等において使用されることが多いため、一般に、高
純度であることが要求されている。これに対して、精留
塔で得られる製品窒素ガスについては、その用途上、液
体窒素のように高純度であることは要求されていない
し、その必要性も少ない。すなわち、窒素ガスは、これ
を製品として供与されたユーザにおいて、必要に応じて
適宜に高純度となすことができるものであるから、液体
窒素と異なって、製造段階で高純度なものとしておく必
要性は少ない。
By the way, since liquid nitrogen is often used in the field of semiconductor manufacturing in recent years, it is generally required to have high purity. On the other hand, the product nitrogen gas obtained in the rectification column is not required to have high purity like liquid nitrogen for its use, and its necessity is small. That is, since nitrogen gas can be made highly pure as needed by users who receive it as a product, it is necessary to make it highly pure at the manufacturing stage, unlike liquid nitrogen. There is little sex.

【0005】しかるに、精留塔から採取される製品窒素
ガスの一部を液体窒素原料として使用する上記システム
にあって、液体窒素製造装置により得られた液体窒素は
一酸化炭素を含んでいるため、半導体製造分野等におけ
る如く高純度であることが要求される用途には使用する
ことができない。すなわち、窒素と一酸化炭素とは沸点
が近似する(窒素が−195.8℃であるのに対し、一
酸化炭素は−191.5℃である)ため、標準型の精留
塔における精留作用によっては両者を完全に分離するこ
とが極めて困難である。したがって、空気分離装置から
採取される製品窒素ガスには一酸化炭素が含まれている
(一般に、0.5〜1.5molppmの一酸化炭素が
含まれている)ことになり、その結果、これを原料とす
る液体窒素にも当然に一酸化炭素が含まれることにな
る。
However, in the above system using a part of the product nitrogen gas collected from the rectification tower as the liquid nitrogen raw material, the liquid nitrogen obtained by the liquid nitrogen production apparatus contains carbon monoxide. However, it cannot be used for applications requiring high purity, such as in the field of semiconductor manufacturing. That is, since the boiling points of nitrogen and carbon monoxide are similar (nitrogen is −195.8 ° C., whereas carbon monoxide is −191.5 ° C.), rectification in a standard type rectification column is performed. Depending on the action, it is extremely difficult to completely separate the two. Therefore, the product nitrogen gas collected from the air separation device contains carbon monoxide (generally, contains 0.5 to 1.5 mol ppm of carbon monoxide), and as a result, this Naturally, carbon monoxide will also be included in the liquid nitrogen made from.

【0006】そこで、従来の窒素・酸素製造システムに
あっては、精留塔に供給する原料空気から予め一酸化炭
素を酸化除去しておくことによって、一酸化炭素を殆ど
含まない高純度の液体窒素を得るようにすることが提案
されている。すなわち、上記した吸着装置の入口側に、
白金,パラジウム等の貴金属触媒を装填した触媒塔を具
備する一酸化炭素酸化装置を設けて、原料空気を触媒塔
内において貴金属触媒と接触させることにより、これに
含まれる一酸化炭素を酸素との反応により二酸化炭素に
転化させ、この二酸化炭素を原料空気に本来的に含まれ
ている二酸化炭素(及び水分)と共に前記吸着装置で吸
着除去するようにするのである。
Therefore, in the conventional nitrogen / oxygen production system, a high-purity liquid containing almost no carbon monoxide is obtained by oxidizing and removing carbon monoxide from the feed air supplied to the rectification column in advance. It has been proposed to obtain nitrogen. That is, on the inlet side of the adsorption device described above,
By providing a carbon monoxide oxidizer equipped with a catalyst tower loaded with a noble metal catalyst such as platinum or palladium, and contacting the raw air with the noble metal catalyst in the catalyst tower, the carbon monoxide contained therein is exchanged with oxygen. By the reaction, it is converted into carbon dioxide, and this carbon dioxide is adsorbed and removed by the adsorption device together with carbon dioxide (and water) originally contained in the raw material air.

【0007】このようにして、一酸化炭素を含まない原
料空気を精留塔に供給させるようにすれば、精留塔から
一酸化炭素を殆ど含まない高純度の製品窒素ガスを得る
ことができる。その結果、かかる製品窒素ガスの一部を
原料として液体窒素製造装置で得られる液体窒素は、一
酸化炭素を殆ど含まない高純度のものとなり、高純度で
あることが要求される半導体製造分野等においても好適
に使用することができる。
In this way, by supplying the raw material air containing no carbon monoxide to the rectification column, a high-purity product nitrogen gas containing almost no carbon monoxide can be obtained from the rectification column. . As a result, the liquid nitrogen obtained by the liquid nitrogen manufacturing apparatus using a part of the product nitrogen gas as a raw material becomes a high purity containing almost no carbon monoxide, and the semiconductor manufacturing field etc. which is required to have a high purity. Can also be used favorably.

【0008】[0008]

【発明が解決しようとする課題】しかし、このような一
酸化炭素酸化装置を設けておく場合には、精留塔から採
取される窒素ガスの大半が、上記した如く高純度である
ことを要求されない又は必要とされない製品窒素ガスと
して使用されるものであるにも拘わらず、当該窒素ガス
の極く一部を原料として得られる液体窒素を一酸化炭素
を含まない高純度のものとしておくために、製品窒素ガ
ス及び液体窒素原料を含めたすべての精留生成物の原料
である空気から一酸化炭素を除去しておくことは、一酸
化炭素除去用触媒つまり一酸化炭素酸化用触媒である高
価な貴金属触媒の使用量が必要以上に多くなり、甚だ不
経済であり無駄である。このため、従来の窒素・酸素製
造システムにあっては、半導体製造分野等において必要
とされる高純度の液体窒素を経済的に製造することがで
きないでいるのが実情である。
However, in the case where such a carbon monoxide oxidation device is provided, it is required that most of the nitrogen gas collected from the rectification column has high purity as described above. Despite being used as a product nitrogen gas that is not required or required, in order to keep the liquid nitrogen obtained from a very small part of the nitrogen gas as a raw material with high purity that does not contain carbon monoxide. , It is a catalyst for carbon monoxide removal, that is, a catalyst for carbon monoxide oxidation, to remove carbon monoxide from air, which is a raw material for all rectification products including product nitrogen gas and liquid nitrogen raw material. The amount of precious noble metal catalyst used is unnecessarily large, which is extremely uneconomical and wasteful. Therefore, in the conventional nitrogen / oxygen production system, it is not possible to economically produce high-purity liquid nitrogen required in the semiconductor production field and the like.

【0009】本発明は、このような実情に鑑みてなされ
たもので、一酸化炭素を含まない高純度の液体窒素を、
一酸化炭素除去用触媒の使用量を可及的に少なくして経
済的に製造することができる窒素・酸素製造システムを
提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and a high-purity liquid nitrogen containing no carbon monoxide,
It is an object of the present invention to provide a nitrogen / oxygen production system which can be economically produced by reducing the amount of carbon monoxide removal catalyst used as much as possible.

【0010】[0010]

【課題を解決するための手段】この課題を解決した本発
明の窒素・酸素製造システムは、原料空気を窒素と酸素
とに精留,分離する空気分離装置と、空気分離装置で得
られた窒素ガスの一部を液体窒素原料として液体窒素を
製造する液体窒素製造装置と、空気分離装置から液体窒
素製造装置に導入された液体窒素原料に含まれる一酸化
炭素を触媒の作用により吸着除去する液体窒素原料精製
装置と、を具備するものである。
The nitrogen / oxygen production system of the present invention which has solved this problem is an air separation device for rectifying and separating raw material air into nitrogen and oxygen, and nitrogen obtained by the air separation device. A liquid nitrogen production apparatus that produces liquid nitrogen by using a part of the gas as a liquid nitrogen raw material, and a liquid that adsorbs and removes carbon monoxide contained in the liquid nitrogen raw material introduced from the air separation device to the liquid nitrogen production apparatus by the action of a catalyst. And a nitrogen source refining device.

【0011】かかる窒素・酸素製造システムにあって
は、液体窒素原料精製装置が、ニッケル触媒を装填した
触媒塔を具備するものであり、液体窒素原料に含まれる
一酸化炭素をニッケル触媒との接触により吸着除去させ
るものであることが好ましい。また、液体窒素製造装置
が、これに導入された液体窒素原料を複数段に亘って昇
圧させる複数の圧縮機を具備するものであり、液体窒素
原料精製装置が、一段目の圧縮機の出口部と二段目の圧
縮機の入口部との間に介装されていることが好ましい。
In such a nitrogen / oxygen production system, the liquid nitrogen raw material refining apparatus is provided with a catalyst tower loaded with a nickel catalyst, and carbon monoxide contained in the liquid nitrogen raw material is brought into contact with the nickel catalyst. It is preferable to remove by adsorption. Further, the liquid nitrogen production apparatus is provided with a plurality of compressors for increasing the pressure of the liquid nitrogen raw material introduced therein over a plurality of stages, and the liquid nitrogen raw material refining apparatus is an outlet part of the first stage compressor. It is preferably interposed between and the inlet of the second-stage compressor.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図4に基づいて具体的に説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
~ It demonstrates concretely based on FIG.

【0013】本発明に係る窒素・酸素製造システムは、
図1に示す如く、空気分離装置11と液体窒素製造装置
12と液体窒素原料精製装置13とを具備してなる。
The nitrogen / oxygen production system according to the present invention is
As shown in FIG. 1, it comprises an air separation device 11, a liquid nitrogen production device 12, and a liquid nitrogen raw material purification device 13.

【0014】空気分離装置11は、図1及び図2に示す
如く、原料空気1をエアフィルタ14,圧縮機15,水
洗塔16,吸着装置17,主熱交換器18を順次通過さ
せた上で精留塔19に導入して、精留塔19において窒
素と酸素とに精留,分離させることにより、製品ガスと
しての窒素ガス4及び酸素ガス7aを得るように構成さ
れている。
As shown in FIGS. 1 and 2, the air separation device 11 sequentially passes the raw material air 1 through the air filter 14, the compressor 15, the washing tower 16, the adsorbing device 17, and the main heat exchanger 18. The nitrogen gas 4 and the oxygen gas 7a as product gases are obtained by introducing them into the rectification column 19 and rectifying and separating nitrogen and oxygen in the rectification column 19.

【0015】すなわち、原料空気1は、エアフィルタ1
4で濾過された上、圧縮機15により適当圧力(吸着装
置17による吸着作用に必要な圧力(一般に、5kg/
cm 2 G程度))に昇圧されると共に水洗塔16で冷却
(一般に、10℃以下)された後、吸着装置17に導入
される。吸着装置17は、ゼオライト等の吸着剤を装填
した一対の吸着塔17a,17aからなり、原料空気1
を一方の吸着塔17aに導入させて吸着剤と接触させる
ことにより、原料空気1に含有されている不要成分であ
る水分及び二酸化炭素を吸着除去するようになってい
る。この吸着装置17にあっては、一方の吸着塔17a
が吸着工程を行なっている間において、他方の吸着塔1
7aが後述する再生用パージガス5の導入により吸着剤
の再生工程を行なうようになっており、かかる吸着工程
と再生工程とを両吸着塔17a,17aの間で一定サイ
クル毎に交互に繰り返して行なうように工夫されてい
る。
That is, the raw material air 1 is the air filter 1
After being filtered in step 4, the compressor 15 presses an appropriate pressure (adsorption device).
The pressure required for the adsorption by the device 17 (generally 5 kg /
cm TwoG))) and the water is cooled in the water washing tower 16.
(Generally below 10 ° C), then introduced into adsorption device 17
Is done. The adsorption device 17 is loaded with an adsorbent such as zeolite.
It consists of a pair of adsorption towers 17a, 17a
Is introduced into one of the adsorption towers 17a and brought into contact with the adsorbent.
As a result, it is an unnecessary component contained in the raw material air 1.
To absorb and remove water and carbon dioxide
You. In this adsorption device 17, one adsorption tower 17a
While performing the adsorption process, the other adsorption tower 1
7a is an adsorbent due to the introduction of a regeneration purge gas 5 described later.
It is designed to perform the regeneration process of
And the regeneration process between the adsorption towers 17a, 17a at a fixed cycle.
It is designed to be repeated alternately for each clou
You.

【0016】そして、吸着装置17を通過した原料空気
1は、主熱交換器18において沸点近くまで冷却された
上で、精留塔19に導入される。なお、主熱交換器18
は、原料空気1を後述する如く精留塔19から導出され
る低温ガス(製品窒素ガス4等)との熱交換により冷却
する内部寒冷方式のものである。
The raw material air 1 that has passed through the adsorption device 17 is cooled to near the boiling point in the main heat exchanger 18 and then introduced into the rectification column 19. The main heat exchanger 18
Is an internal refrigeration system in which the raw material air 1 is cooled by heat exchange with a low temperature gas (product nitrogen gas 4 etc.) which is discharged from the rectification column 19 as described later.

【0017】精留塔19は、図2に示す如く、これに導
入される原料空気1の圧力と同等の適当内圧(5kg/
cm2 G程度)で操作される下部塔たる高圧塔20と、
これより低圧とした適当内圧(0.5kg/cm2 G程
度)で操作される上部塔たる低圧塔21と、両塔20,
21間に介装された主凝縮蒸発器22とを具備して、原
料空気1を次のように精留,分離する。すなわち、主熱
交換器18を通過した原料空気1は高圧塔20の下部に
導入されて、高圧塔20内を上昇する間に、高圧塔20
の上部から供給された還流液体窒素3aとの向流接触に
より窒素濃度を高められていき、高圧塔20の上部に至
ったものは酸素含有量の低い窒素ガス2となる。この窒
素ガス2は、高圧塔20の上部から主凝縮蒸発器22に
導入され、低圧塔21の底部に滞留する液体酸素7との
熱交換により冷却凝縮されて、液体窒素3となる。この
液体窒素3は、その一部が上記還流液体窒素3aとして
高圧塔20の上部に還流されると共に、熱交換器23を
通過して低圧塔21の上部に導入される。
As shown in FIG. 2, the rectification column 19 has an appropriate internal pressure (5 kg / g) equivalent to the pressure of the raw material air 1 introduced therein.
a high pressure tower 20 which is a lower tower operated at about cm 2 G),
A lower pressure column 21, which is an upper column and is operated at an appropriate internal pressure (about 0.5 kg / cm 2 G) lower than this, both columns 20,
It is equipped with the main condenser evaporator 22 interposed between 21, and the raw material air 1 is rectified and separated as follows. That is, the raw material air 1 that has passed through the main heat exchanger 18 is introduced into the lower part of the high pressure column 20, and while rising in the high pressure column 20,
The nitrogen concentration is increased by the countercurrent contact with the reflux liquid nitrogen 3a supplied from the upper part of the column, and reaches the upper part of the high pressure column 20 to become the nitrogen gas 2 having a low oxygen content. This nitrogen gas 2 is introduced into the main condenser evaporator 22 from the upper part of the high pressure column 20, and is cooled and condensed by heat exchange with the liquid oxygen 7 retained in the bottom part of the low pressure column 21 to become liquid nitrogen 3. A part of the liquid nitrogen 3 is refluxed to the upper part of the high pressure column 20 as the above-mentioned reflux liquid nitrogen 3a, and is introduced into the upper part of the low pressure column 21 through the heat exchanger 23.

【0018】一方、高圧塔20内にその上部から供給さ
れた還流液体窒素3aは、上記した如く、高圧塔20内
を上昇してくる空気成分と向流接触しつつ下降していく
が、その間に空気との接触により酸素濃度を高められ
て、高圧塔20の底部に液体空気6(酸素濃度は、一般
に35〜40%程度である)となって滞留される。この
液体空気6の一部6aは、高圧塔20の底部から熱交換
器23を通過した上、低圧塔21の中間部に供給され
る。なお、精留塔19には、粗アルゴン塔24,高純ア
ルゴン塔25,ブロワ26,乾燥塔27,タンク28等
からなるアルゴン精製装置が付設されていて、低圧塔2
1の中間部に濃縮滞留するアルゴン等を再精製し、液体
アルゴン8としてタンク28に回収,貯蔵するように工
夫されている。
On the other hand, the reflux liquid nitrogen 3a supplied from the upper portion into the high-pressure column 20 descends while making countercurrent contact with the rising air component in the high-pressure column 20, as described above. The oxygen concentration is increased by contact with the air, and the liquid air 6 (oxygen concentration is generally about 35 to 40%) is retained at the bottom of the high-pressure column 20. A part 6 a of the liquid air 6 passes through the heat exchanger 23 from the bottom of the high pressure column 20, and is then supplied to the middle part of the low pressure column 21. The rectification column 19 is equipped with an argon purification device including a crude argon column 24, a high-purity argon column 25, a blower 26, a drying column 27, a tank 28, etc., and the low-pressure column 2
Argon or the like concentrated and accumulated in the intermediate portion of 1 is re-refined, and is collected and stored in the tank 28 as liquid argon 8.

【0019】而して、低圧塔21の中間部に供給された
液体空気6aのうち上昇成分は、低圧塔21の上部から
供給された還流液体窒素3との向流接触により窒素濃度
を高めつつ上昇して、低圧塔21の頂部では酸素濃度の
極めて低い窒素ガス4となる。この窒素ガス4は、低圧
塔21の頂部から採取されて主熱交換器18により常温
とされた上、製品窒素ガス供給路30から圧縮機31を
経て、製品窒素ガスとして所定の被供給箇所(コンビナ
ート等)に供給される。なお、低圧塔21の上部から
は、頂部に向かって上昇する窒素ガスの一部(頂部に到
達した製品窒素ガス4より酸素濃度は高い)5を採取し
て、この窒素ガス5を主熱交換器18及び加熱器5a,
5aを通過させた上で、再生用パージガスとして再生工
程にある吸着塔17aに導入させるようになっている。
また、高圧塔20の上部から採取されて主凝縮蒸発器2
2に導入される窒素ガス2の一部2aは、主熱交換器1
8を通過した後、膨張タービン32の制動部32aで昇
圧されると共に該タービン32のタービン部32bで膨
張されて寒冷を発生させた上で、低圧塔21の頂部から
主熱交換器18に向かう窒素ガス4に混入される。な
お、図1及び図2において32´は熱交換器である。
Thus, the rising component of the liquid air 6a supplied to the intermediate portion of the low pressure column 21 increases the nitrogen concentration by countercurrent contact with the reflux liquid nitrogen 3 supplied from the upper part of the low pressure column 21. Ascending, the nitrogen gas 4 having an extremely low oxygen concentration is formed at the top of the low-pressure column 21. This nitrogen gas 4 is sampled from the top of the low pressure column 21 and brought to room temperature by the main heat exchanger 18, and then passes through the product nitrogen gas supply passage 30 through the compressor 31 to a predetermined supply point (product nitrogen gas) ( It is supplied to the industrial complex). In addition, from the upper part of the low-pressure column 21, a part of the nitrogen gas rising toward the top (oxygen concentration is higher than the product nitrogen gas 4 reaching the top) 5 is collected, and the nitrogen gas 5 is subjected to main heat exchange. Vessel 18 and heater 5a,
After passing through 5a, it is introduced as a purge gas for regeneration into the adsorption tower 17a in the regeneration step.
In addition, the main condenser evaporator 2 collected from the upper part of the high-pressure column 20
A part 2a of the nitrogen gas 2 introduced into the main heat exchanger 1
After passing through 8, the pressure is increased by the braking portion 32a of the expansion turbine 32 and is expanded by the turbine portion 32b of the turbine 32 to generate cold, and then the top of the low pressure column 21 is directed to the main heat exchanger 18. It is mixed with nitrogen gas 4. In addition, in FIG. 1 and FIG. 2, 32 'is a heat exchanger.

【0020】一方、低圧塔21の中間部に供給された液
体空気6aのうち下降成分は、低圧塔21内を酸素濃度
を高めつつ下降していき、低圧塔21の下部では酸素ガ
ス7aとなり、更に液体酸素7となって低圧塔21の底
部に滞留することになる。そして、低圧塔21の下部か
ら採取された酸素ガス7aは、主熱交換器18を通過し
て常温化された上、製品酸素ガス供給路33から圧縮機
34を経て、製品酸素ガスとして所定の被供給箇所に供
給される。なお、低圧塔21の下部から採取される酸素
ガス7aには、低圧塔21の底部に滞留する液体酸素7
から揮散する(主凝縮蒸発器22を通過する窒素ガス2
との熱交換等によって蒸発する)酸素ガスも含まれる。
On the other hand, the descending component of the liquid air 6a supplied to the intermediate portion of the low pressure column 21 descends in the low pressure column 21 while increasing the oxygen concentration, and becomes oxygen gas 7a in the lower part of the low pressure column 21, Further, it becomes liquid oxygen 7 and stays at the bottom of the low pressure column 21. Then, the oxygen gas 7a collected from the lower part of the low pressure column 21 passes through the main heat exchanger 18 and is cooled to room temperature, and then passes through the compressor 34 from the product oxygen gas supply passage 33 to be a predetermined product oxygen gas. It is supplied to the supply destination. In addition, the oxygen gas 7 a collected from the lower part of the low pressure column 21 includes the liquid oxygen 7 a accumulated at the bottom of the low pressure column 21.
Volatilized from (nitrogen gas 2 passing through the main condenser evaporator 22)
Oxygen gas is also included.

【0021】液体窒素製造装置12は、図1及び図3に
示す如く、低圧塔21の頂部から採取された製品窒素ガ
ス4の一部4aを液体窒素原料として液体窒素4fを製
造するものであり、第1〜第3圧縮機36,37,38
aと第1及び第2膨張タービン38,39と熱交換器4
0と膨張弁41と気液分離器42と液体窒素タンク43
とを具備すると共に、後述する如く液体窒素原料精製装
置13を組み込んでなるものである。
As shown in FIGS. 1 and 3, the liquid nitrogen producing apparatus 12 produces liquid nitrogen 4f by using a part 4a of the product nitrogen gas 4 taken from the top of the low pressure column 21 as a liquid nitrogen raw material. , First to third compressors 36, 37, 38
a, first and second expansion turbines 38 and 39, and heat exchanger 4
0, expansion valve 41, gas-liquid separator 42, and liquid nitrogen tank 43
In addition to the above, the liquid nitrogen raw material refining apparatus 13 is incorporated as described later.

【0022】すなわち、液体窒素製造装置12には、製
品窒素ガス供給路30に分岐接続された液体窒素原料導
入路35から製品窒素ガス4の一部である液体窒素原料
4aが導入されるが、この液体窒素原料たる窒素ガス4
aは、まず、直列配置された第1〜第3圧縮機36,3
7,38aにより3段階に亘って順次圧縮,昇圧され
る。一般的には、第1圧縮機36により5〜6kg/c
2 G程度まで昇圧され、次いで第2圧縮機37により
32kg/cm2 G程度まで昇圧され、最終的に第3圧
縮機38aにより49kg/cm2 G程度まで昇圧され
る。なお、この例では、第3圧縮機38aとして、後述
する寒冷発生用の第1膨張タービン38の制動部を使用
している。
That is, the liquid nitrogen raw material 4a, which is a part of the product nitrogen gas 4, is introduced into the liquid nitrogen production apparatus 12 from the liquid nitrogen raw material introduction passage 35 which is branched and connected to the product nitrogen gas supply passage 30. This liquid nitrogen raw material is nitrogen gas 4
First, a is the first to third compressors 36, 3 arranged in series.
7, 38a sequentially compresses and boosts pressure in three stages. Generally, 5-6 kg / c depending on the first compressor 36
The pressure is increased to about m 2 G, then to about 32 kg / cm 2 G by the second compressor 37, and finally to about 49 kg / cm 2 G by the third compressor 38 a. In this example, the braking portion of the first expansion turbine 38 for generating cold, which will be described later, is used as the third compressor 38a.

【0023】そして、第3圧縮機38aを通過した窒素
ガス4eは、熱交換器40により液化点近くまで深冷さ
れた上、膨張弁41により膨張(ジュール・トムソン膨
張)されると共に気液分離器42により気体分と分離さ
れて、製品窒素たる液体窒素4fとして気液分離器42
から液体窒素タンク43に回収,貯蔵される。
The nitrogen gas 4e that has passed through the third compressor 38a is deep-cooled to near the liquefaction point by the heat exchanger 40, expanded by the expansion valve 41 (Joule-Thomson expansion), and separated into gas and liquid. The gas and liquid separator 42 is separated from the gas content by the container 42 to produce liquid nitrogen 4f which is product nitrogen.
Are collected and stored in the liquid nitrogen tank 43.

【0024】ところで、この例では、熱交換器40を内
部寒冷方式のものとしており、第2圧縮機37を通過し
て第3圧縮機38aに向かう窒素ガス4dの一部4g
を、第2膨張タービン39の制動部39aで圧縮,昇圧
させた上、第1及び第2膨張タービン38,39のター
ビン部38b,39bで膨張させて寒冷4hを発生さ
せ、これを熱交換器40に供給するように工夫してあ
る。なお、熱交換器40を通過した窒素ガス4hは第2
圧縮機37の入口側ラインに返戻されるようになってい
る。
By the way, in this example, the heat exchanger 40 is of an internal cold type, and a part 4 g of the nitrogen gas 4d passing through the second compressor 37 toward the third compressor 38a.
Is compressed and boosted by the braking part 39a of the second expansion turbine 39, and then expanded by the turbine parts 38b, 39b of the first and second expansion turbines 38, 39 to generate cold 4h, which is then transferred to the heat exchanger. It is devised to supply 40. The nitrogen gas 4h passing through the heat exchanger 40 is the second
It is designed to be returned to the inlet side line of the compressor 37.

【0025】液体窒素原料精製装置13は、図3及び図
4に示す如く、第1圧縮機36の出口部と第2圧縮機3
7の入口部との間に、触媒46を装填した一対の触媒塔
45a,45bを並列状に介装したもので、第1圧縮機
36を通過した窒素ガス4bを、選択された触媒塔45
a(又は触媒塔45b)を通過して、第2圧縮機37に
導入させるようになっている。触媒46としては、窒素
ガス中の一酸化炭素を吸着除去できるものであればよ
く、ニッケル,鉄等のベースメタル触媒を任意に使用す
ることができるが、一般には、対象窒素ガスが低圧塔2
1の頂部から採取された酸素濃度の極めて低い窒素ガス
4であることから、一酸化炭素の吸着除去作用に酸化の
ための酸素の共存を必要とせず且つ吸着操作及び再生操
作を容易に実施できるニッケル触媒(例えば、ニッケル
含有量:47wt%,径:3mm,長さ:3mmの円柱
ペレット状のもの)を使用することが好ましい。
As shown in FIGS. 3 and 4, the liquid nitrogen raw material refining apparatus 13 has an outlet of the first compressor 36 and the second compressor 3.
7, a pair of catalyst towers 45a and 45b in which a catalyst 46 is loaded are arranged in parallel with each other, and the nitrogen gas 4b passing through the first compressor 36 is fed to the selected catalyst tower 45.
It passes through a (or the catalyst tower 45b) and is introduced into the second compressor 37. Any catalyst can be used as long as it can adsorb and remove carbon monoxide in the nitrogen gas, and a base metal catalyst such as nickel or iron can be arbitrarily used. Generally, the target nitrogen gas is the low pressure column 2.
Since it is the nitrogen gas 4 having an extremely low oxygen concentration collected from the top of 1, the coexistence of oxygen for oxidation is not required for the adsorption and removal action of carbon monoxide, and the adsorption operation and the regeneration operation can be easily performed. It is preferable to use a nickel catalyst (for example, a columnar pellet having a nickel content of 47 wt%, a diameter of 3 mm and a length of 3 mm).

【0026】而して、第1圧縮機36を通過した窒素ガ
ス4bは、一方の触媒塔45aに導入されて、該触媒塔
45a内をこれに装填されたニッケル触媒46に接触し
つつ通過し、この間において、ニッケル触媒46との接
触により一酸化炭素が吸着除去されるようになってい
る。同時に、窒素ガス4bに含まれている微量の酸素も
吸着除去される。かかるニッケル触媒46による一酸化
炭素の吸着除去メカニズムは、化学量論比からすると大
幅に一酸化炭素の配位数が少ないニッケルカルボニル類
似化合物として、ニッケル触媒表面に化学吸着されるこ
とによるものと考えられる。ところで、ニッケル触媒4
6による一酸化炭素の吸着除去を効果的に行なうために
は、触媒塔45aに導入される窒素ガスの圧力及び温度
を適切に制御する必要があるが、温度については触媒塔
45aに付設したヒータ(図示せず)により制御する
(一般には、常温〜40℃程度に制御しておくことが好
ましい)ようになっている。一方、圧力については、一
般に、5〜6kg/cm2 Gとしておくことが好ましい
が、この例では、液体窒素原料4aが圧縮機36,3
7,38aにより複数段に亘って昇圧され、一段目の圧
縮機である第1圧縮機36による昇圧条件が上記した吸
着除去に必要な圧力条件に合致することから、触媒塔4
5aに導入させる窒素ガスの昇圧手段を格別設けず、第
1圧縮機36で昇圧された窒素ガス4bをそのまま触媒
塔45aに導入させるようにしている。なお、窒素ガス
4bは、触媒塔45a(又は触媒塔45b)内を0.3
m/sec程度の線速度で通過しつつニッケル触媒46
に接触するようにしておくことが好ましい。
Thus, the nitrogen gas 4b passing through the first compressor 36 is introduced into one catalyst tower 45a and passes through the inside of the catalyst tower 45a while being in contact with the nickel catalyst 46 loaded therein. During this time, carbon monoxide is adsorbed and removed by contact with the nickel catalyst 46. At the same time, a trace amount of oxygen contained in the nitrogen gas 4b is also adsorbed and removed. It is considered that the mechanism of adsorption and removal of carbon monoxide by the nickel catalyst 46 is due to chemical adsorption on the nickel catalyst surface as a nickel carbonyl-like compound having a significantly smaller number of carbon monoxide coordination numbers in terms of stoichiometric ratio. To be By the way, nickel catalyst 4
In order to effectively carry out the adsorption and removal of carbon monoxide by No. 6, it is necessary to properly control the pressure and temperature of the nitrogen gas introduced into the catalyst tower 45a. Regarding the temperature, a heater attached to the catalyst tower 45a is required. The temperature is controlled (not shown) (generally, it is preferable to control at room temperature to about 40 ° C.). On the other hand, the pressure is generally preferably set to 5 to 6 kg / cm 2 G, but in this example, the liquid nitrogen raw material 4 a is compressed by the compressors 36, 3
Since the pressure is increased in multiple stages by 7, 38a, and the pressure increasing condition by the first compressor 36 which is the first-stage compressor matches the pressure condition required for the adsorption removal described above, the catalyst tower 4
No special means for pressurizing the nitrogen gas to be introduced into 5a is provided, and the nitrogen gas 4b whose pressure has been increased by the first compressor 36 is directly introduced into the catalyst tower 45a. It should be noted that the nitrogen gas 4b is 0.3% in the catalyst tower 45a (or the catalyst tower 45b).
Nickel catalyst 46 while passing at a linear velocity of about m / sec
It is preferable to keep it in contact with.

【0027】したがって、液体窒素原料精製装置13に
よれば、第1圧縮機36を通過した窒素ガス4bを一酸
化炭素を除去した高純度の窒素ガス4cに精製した上
で、第2圧縮機37に導入させることができ、つまり第
2圧縮機37以降の液体窒素製造ラインにおいてはかか
る高純度の窒素ガスが流れることになり、最終的に一酸
化炭素を含まない高純度の液体窒素4fを得ることがで
きる。
Therefore, according to the liquid nitrogen raw material refining apparatus 13, the nitrogen gas 4b that has passed through the first compressor 36 is purified to the high-purity nitrogen gas 4c from which carbon monoxide has been removed, and then the second compressor 37. That is, the high-purity nitrogen gas flows in the liquid nitrogen production line after the second compressor 37, and finally high-purity liquid nitrogen 4f containing no carbon monoxide is obtained. be able to.

【0028】ところで、「ニッケル触媒46による一酸
化炭素の吸着除去が、上記した如く、ニッケルカルボニ
ル類似化合物としてニッケル触媒表面に化学吸着される
ことによると考えられること」及び「液体窒素原料4a
つまり触媒塔45aに導入される窒素ガス4bは、低圧
塔21の頂部から採取された酸素濃度の極めて低いもの
ではあるが、微量の酸素を含有しているものであるた
め、この微量の酸素がニッケル触媒46と反応して酸化
ニッケルを生成すること」から、一酸化炭素の吸着除去
作用を長期に亘って良好に維持しておくためには、吸着
機能が低下したニッケル触媒46を再生することが必要
となる。そこで、この例では、一方の触媒塔45a(又
は触媒塔45b)において吸着工程を行なっている間
に、他方の触媒塔45b(又は触媒塔45a)における
ニッケル触媒46を再生し、かかる吸着工程と再生工程
とを両触媒塔45a,45bの間で一定時間毎に交互に
繰り返して行なうように工夫してある。
By the way, "adsorption and removal of carbon monoxide by the nickel catalyst 46 is considered to be due to chemical adsorption on the nickel catalyst surface as a nickel carbonyl-like compound as described above" and "liquid nitrogen raw material 4a".
In other words, the nitrogen gas 4b introduced into the catalyst tower 45a has a very low oxygen concentration taken from the top of the low pressure tower 21, but since it contains a trace amount of oxygen, this trace amount of oxygen is Since it reacts with the nickel catalyst 46 to generate nickel oxide ”, in order to maintain a good adsorption and removal action of carbon monoxide over a long period of time, it is necessary to regenerate the nickel catalyst 46 having a reduced adsorption function. Is required. Therefore, in this example, the nickel catalyst 46 in the other catalyst tower 45b (or the catalyst tower 45a) is regenerated while performing the adsorption step in the one catalyst tower 45a (or the catalyst tower 45b), and It is devised that the regeneration step and the catalyst towers 45a and 45b are alternately repeated at regular intervals.

【0029】すなわち、一方の触媒塔45aにおいて吸
着工程を行なっている間においては、触媒塔45aから
第2圧縮機37に向かう高純度窒素ガス4cの一部4´
cを、水素供給装置47により所定量(1%程度)の水
素ガスを混入させた還元ガスとした上で、再生用パージ
ガスとして他方の触媒塔45bに供給させて、この触媒
塔45bのニッケル触媒46を適当な温度条件下(一般
に、150〜200℃)で再生する。すなわち、ニッケ
ル触媒46の表面を還元状態に再生するのである。この
とき、再生用パージガスとして上記した精製ガス4c以
外のものを使用することも可能であるが、一酸化炭素が
含まれるものは使用できないことから、精製ガス4cを
利用するのが再生作用上のみならず再生機構の小型化,
簡略化を図る上からも好ましい。そして、一定時間が経
過すると、窒素ガス4bを再生済みの触媒塔45bに導
入させると共に、パージガス4´cを吸着工程後の触媒
塔45aに供給させる。爾後、かかる吸着工程と再生工
程との切り換えを一定時間毎に繰り返して行なう。な
お、吸着工程と再生工程との切り換えは、装置ラインに
設けた弁ないしヒータ等をシーケンスプログラム装置に
より制御することにより自動的に行なうことができる
が、その切り換え時期はタイマにより設定しても、触媒
塔出口に設置した一酸化炭素濃度センサによる窒素ガス
4c中の一酸化炭素濃度に応じて制御するようにして
も、何れでもよい。また、再生処理済みのバージガス4
´cは冷却器48で適当温度に冷却された上で、系外に
排出される。また、図示していないが、精製ガスライン
等には必要に応じてフィルタ,流量計等が設けられる。
That is, while the adsorption step is being carried out in one catalyst tower 45a, a part 4'of the high-purity nitrogen gas 4c from the catalyst tower 45a toward the second compressor 37.
c is used as a reducing gas mixed with a predetermined amount (about 1%) of hydrogen gas by the hydrogen supply device 47, and then supplied to the other catalyst tower 45b as a purge gas for regeneration, and the nickel catalyst of the catalyst tower 45b is supplied. 46 is regenerated under suitable temperature conditions (generally 150-200 ° C). That is, the surface of the nickel catalyst 46 is regenerated to the reduced state. At this time, it is possible to use a gas other than the purified gas 4c described above as the purge gas for regeneration, but since the one containing carbon monoxide cannot be used, the purified gas 4c is used only for the purpose of regeneration. Without downsizing the playback mechanism,
It is also preferable in terms of simplification. Then, after a certain period of time, the nitrogen gas 4b is introduced into the regenerated catalyst tower 45b and the purge gas 4'c is supplied to the catalyst tower 45a after the adsorption step. After that, the switching between the adsorption process and the regeneration process is repeated at regular intervals. The adsorption process and the regeneration process can be switched automatically by controlling a valve or heater provided in the equipment line with a sequence program device, but even if the switching timing is set by a timer, Either control may be performed according to the carbon monoxide concentration in the nitrogen gas 4c by the carbon monoxide concentration sensor installed at the outlet of the catalyst tower. In addition, the recycled barge gas 4
′ C is cooled to an appropriate temperature by the cooler 48 and then discharged to the outside of the system. Although not shown, a filter, a flow meter, etc. are provided in the purified gas line or the like as needed.

【0030】このように、上記した窒素・酸素製造シス
テムにあっては、液体窒素製造装置12及びこれに組み
込んだ液体窒素原料精製装置13により、一酸化炭素
(及び酸素)を除去した液体窒素原料4a,4b,4c
…から液体窒素4fを製造するようにしているから、半
導体製造分野等において必要とされる高純度の液体窒素
を確実に得ることができる。しかも、液体窒素4fを製
造するに必要な液体窒素原料4a,4b,4c…が、精
留塔19で得られる製品窒素ガス4の一部であって、原
料空気1に比して極めて少量(例えば、原料空気の1/
10程度)であることから、冒頭で述べた如く一酸化炭
素酸化装置(及び吸着装置)により原料空気全量から一
酸化炭素を除去する場合に比して、一酸化炭素除去に必
要とされる触媒使用量を大幅に削減することができ、液
体窒素4fを含む製品窒素,酸素の製造を極めて経済的
に行なうことができる。
As described above, in the above-mentioned nitrogen / oxygen production system, the liquid nitrogen raw material from which carbon monoxide (and oxygen) has been removed by the liquid nitrogen production apparatus 12 and the liquid nitrogen raw material refining apparatus 13 incorporated therein. 4a, 4b, 4c
Since the liquid nitrogen 4f is manufactured from ..., High-purity liquid nitrogen required in the semiconductor manufacturing field can be reliably obtained. Moreover, the liquid nitrogen raw materials 4a, 4b, 4c ... Required for producing the liquid nitrogen 4f are a part of the product nitrogen gas 4 obtained in the rectification column 19, and are extremely small compared to the raw material air 1 ( For example, 1 / of the raw air
Since it is about 10), as compared with the case where carbon monoxide is removed from the total amount of feed air by the carbon monoxide oxidizing device (and the adsorbing device) as described at the beginning, the catalyst required for removing carbon monoxide. The amount used can be greatly reduced, and product nitrogen and oxygen containing liquid nitrogen 4f can be manufactured extremely economically.

【0031】なお、本発明は上記した実施の形態に限定
されるものではなく、本発明の基本原理を逸脱しない範
囲において、適宜に改良,変更することができる。例え
ば、本発明は、上記した内部寒冷方式のシステムに適用
される他、外部寒冷方式のシステムにも好適に適用する
ことができる。また、各装置11,12,13の構成も
任意である。さらに、液体窒素原料精製装置13は、液
体窒素製造装置12に組み込むことなく、これに至る液
体窒素原料4aの導入ラインに配設するようにしてもよ
い。
The present invention is not limited to the above-described embodiments, but can be appropriately improved and changed without departing from the basic principle of the present invention. For example, the present invention can be suitably applied not only to the above-mentioned internal cold type system but also to an external cold type system. Further, the configurations of the devices 11, 12, and 13 are also arbitrary. Further, the liquid nitrogen raw material refining apparatus 13 may be installed in the introduction line of the liquid nitrogen raw material 4a up to this, without being incorporated in the liquid nitrogen manufacturing apparatus 12.

【0032】[0032]

【実施例】上記した窒素・酸素製造システムを使用し
て、次のような条件で液体窒素4fを製造した。すなわ
ち、吸着装置17により水分,二酸化炭素を除去した7
4000Nm3 /h,5kg/cm2 Gの原料空気1を
主熱交換器18で沸点近くまで冷却して高圧塔20に導
入し、高圧塔20内を5kg/cm2 Gに且つ低圧塔2
1内0.5kg/cm2 Gに保持つつ、原料空気1を精
留塔19により窒素と酸素とに精留分離して、低圧塔2
1の頂部から0.5kg/cm2 Gの窒素ガス4を36
000Nm3 /h採取し、この窒素ガス4を主熱交換器
10で常温(28℃)とした上で、その一部4aを第1
圧縮機36に導入させた。このとき、第1圧縮機36に
導入させた窒素ガス4aの量は7300Nm3 /hであ
り、これに含まれる不純成分である一酸化炭素及び酸素
の濃度は、一酸化炭素:1molppm,酸素:0.0
1molppmであった。
EXAMPLE Liquid nitrogen 4f was produced under the following conditions using the above-mentioned nitrogen / oxygen production system. That is, the water and carbon dioxide were removed by the adsorption device 17
Raw material air 1 of 4000 Nm 3 / h, 5 kg / cm 2 G was cooled to near the boiling point in the main heat exchanger 18 and introduced into the high-pressure column 20, and the inside of the high-pressure column 20 was reduced to 5 kg / cm 2 G and the low-pressure column 2
While maintaining 0.5 kg / cm 2 G inside 1, the raw air 1 is rectified and separated into nitrogen and oxygen by the rectification column 19, and the low pressure column 2
From the top of 1 to 36 kg of nitrogen gas 4 of 0.5 kg / cm 2 G
000 Nm 3 / h was sampled, the nitrogen gas 4 was brought to room temperature (28 ° C.) in the main heat exchanger 10, and a part 4 a thereof was first
It was introduced into the compressor 36. At this time, the amount of the nitrogen gas 4a introduced into the first compressor 36 was 7300 Nm 3 / h, and the concentrations of carbon monoxide and oxygen as impure components contained therein were carbon monoxide: 1 molppm and oxygen: 0.0
It was 1 molppm.

【0033】そして、この窒素ガス4aを第1圧縮機3
6により5.8kg/cm2 Gに圧縮,昇圧させると共
に、常温近くまで(28℃)で冷却させた上で、円柱ペ
レット状のニッケル触媒46(Ni含有量:47wt
%,径:3mm,長さ:3mm)を充填させた触媒塔4
5aに導入させ、触媒塔45a内を線速度0.3m/s
ecで通過させて、ニッケル触媒46との接触により一
酸化炭素及び酸素を吸着除去させた。
The nitrogen gas 4a is fed to the first compressor 3
6, the pressure was increased to 5.8 kg / cm 2 G, the pressure was increased, and the temperature was cooled to near room temperature (28 ° C.). Then, the columnar nickel catalyst 46 (Ni content: 47 wt.
%, Diameter: 3 mm, length: 3 mm)
5a, and a linear velocity of 0.3 m / s in the catalyst tower 45a.
The carbon monoxide and oxygen were adsorbed and removed by contact with the nickel catalyst 46.

【0034】次いで、触媒塔45aを通過した窒素ガス
4c(他方の触媒塔45bの再生用パージガスとして使
用する窒素ガス4´cを除く)を第2圧縮機37により
32kg/cm2 Gに圧縮,昇圧させ、更に第3圧縮機
である第1膨張タービン38の制動部38aにより49
kg/cm2 Gまで圧縮,昇圧させた上、熱交換器40
により液化点近くまで深冷させた後、膨張弁41及び気
液分離器42を通過させることにより、気体換算で70
00Nm3 /hの液体窒素4fを得た。
Next, the nitrogen gas 4c (excluding the nitrogen gas 4'c used as a purge gas for regeneration of the other catalyst tower 45b) passing through the catalyst tower 45a is compressed to 32 kg / cm 2 G by the second compressor 37, The pressure is increased, and the pressure is increased to 49 by the braking unit 38a of the first expansion turbine 38 which is the third compressor.
After compressing and increasing the pressure to kg / cm 2 G, heat exchanger 40
After being deeply cooled to near the liquefaction point by passing through the expansion valve 41 and the gas-liquid separator 42, 70
Liquid nitrogen 4f of 00 Nm 3 / h was obtained.

【0035】このとき、気液分離器42から液体窒素タ
ンク43へと流下する液体窒素4fを、還元ガス分析計
(トレース・アナリティカル社製のRGA−5型)によ
り連続的に測定したところ、一酸化炭素は定量限界値で
ある0.001molppm以下を持続した。また、日
立東京エレクトロニクス社製のAPI−MSを使用して
酸素分析したところ、酸素濃度は0.001molpp
m以下であった。このことから、高純度の液体窒素4f
が得られることが確認された。
At this time, the liquid nitrogen 4f flowing down from the gas-liquid separator 42 to the liquid nitrogen tank 43 was continuously measured by a reducing gas analyzer (RGA-5 type manufactured by Trace Analytical Co.). Carbon monoxide maintained 0.001 molppm or less, which is the limit value of quantification. Further, when oxygen analysis was performed using API-MS manufactured by Hitachi Tokyo Electronics Co., the oxygen concentration was 0.001 molpp.
It was m or less. From this, high purity liquid nitrogen 4f
It was confirmed that

【0036】ところで、比較例として、上記窒素・酸素
製造システムから液体窒素原料精製装置12を取り外し
て、第1圧縮機36の出口部と第2圧縮機37の入口部
とを直結すると共に、吸着装置17の上流側ラインに、
冒頭で述べた一酸化炭素酸化装置(貴金属触媒を装填し
た触媒塔を備えたもの)を組み込んで、上記したと同一
の条件で同一量の液体窒素を得た。この比較例において
は、実施例と同等の高純度液体窒素を得るために、実施
例の場合に比して極めて多量の貴金属触媒を必要とし
た。具体的には、実施例におけるニッケル触媒46の使
用量の略10倍であった。このことは、比較例では、一
酸化炭素を吸着除去する対象ガスが74000Nm3
hの原料空気であって、実施例における当該対象ガスで
ある窒素ガスの量(7300Nm3 /h)の約10倍と
なっていることからも、容易に理解できるであろう。
By the way, as a comparative example, the liquid nitrogen raw material refining apparatus 12 is removed from the nitrogen / oxygen production system, the outlet of the first compressor 36 and the inlet of the second compressor 37 are directly connected, and adsorption is performed. In the upstream line of the device 17,
The carbon monoxide oxidizer described in the beginning (equipped with a catalyst column loaded with a noble metal catalyst) was incorporated to obtain the same amount of liquid nitrogen under the same conditions as described above. In this comparative example, in order to obtain high-purity liquid nitrogen equivalent to that of the example, an extremely large amount of noble metal catalyst was required as compared with the case of the example. Specifically, it was about 10 times the amount of nickel catalyst 46 used in the examples. This means that in the comparative example, the target gas for adsorbing and removing carbon monoxide was 74000 Nm 3 /
It can be easily understood from the fact that the raw material air of h is about 10 times the amount of nitrogen gas which is the target gas in the example (7300 Nm 3 / h).

【0037】[0037]

【発明の効果】以上の説明からも理解できるように、請
求項1の発明によれば、一酸化炭素を含まない高純度の
液体窒素を、ニッケル触媒等の一酸化炭素除去用触媒を
多量に必要とすることなく、極めて経済的に製造するこ
とができる。しかも、触媒使用量が少ないことから、触
媒塔を含む液体窒素原料精製装置を可及的に小型化する
ことができ、延いては窒素・酸素製造システム全体を冒
頭で述べた如く原料空気全量を対象とする一酸化炭素酸
化装置を設ける場合に比して大幅に小型化することがで
きる。
As can be understood from the above description, according to the invention of claim 1, a large amount of high-purity liquid nitrogen containing no carbon monoxide is added to the catalyst for removing carbon monoxide such as a nickel catalyst. It can be manufactured very economically without the need. Moreover, since the amount of catalyst used is small, it is possible to miniaturize the liquid nitrogen raw material refining device including the catalyst tower as much as possible, and as a result, the entire nitrogen / oxygen production system is supplied with the total amount of raw material air as described at the beginning. The size can be greatly reduced as compared with the case where the target carbon monoxide oxidation device is provided.

【0038】また、請求項2の発明によれば、液体窒素
原料が酸素濃度の低いものである等、液体窒素原料の性
状に拘わらず、一酸化炭素を効果的に吸着除去し得て、
高純度の液体窒素を効率よく製造することができる。
According to the second aspect of the invention, carbon monoxide can be effectively adsorbed and removed regardless of the properties of the liquid nitrogen raw material, such as the liquid nitrogen raw material having a low oxygen concentration.
High-purity liquid nitrogen can be efficiently produced.

【0039】さらに、請求項3の発明によれば、一酸化
炭素を効果的に吸着除去するために必要な昇圧手段とし
て、液体窒素製造装置の一部(一段目の圧縮機であり、
具体的には上記した第1圧縮機36)を利用することか
ら、格別の昇圧手段を必要とせず、液体窒素原料精製装
置ないし窒素・酸素製造システムをより小型化,簡略化
することができる。
Further, according to the invention of claim 3, as a pressurizing means necessary for effectively adsorbing and removing carbon monoxide, a part of the liquid nitrogen production apparatus (the first stage compressor,
Specifically, since the above-mentioned first compressor 36) is used, no special pressurizing means is required, and the liquid nitrogen raw material refining apparatus or the nitrogen / oxygen production system can be made smaller and simpler.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒素・酸素製造システムの一例を
示す系統図である。
FIG. 1 is a system diagram showing an example of a nitrogen / oxygen production system according to the present invention.

【図2】図1の要部(空気分離装置)の拡大図である。FIG. 2 is an enlarged view of a main part (air separation device) of FIG.

【図3】図1の要部(液体窒素製造装置及び液体窒素原
料精製装置)の拡大図である。
FIG. 3 is an enlarged view of a main part (a liquid nitrogen manufacturing apparatus and a liquid nitrogen raw material refining apparatus) of FIG.

【図4】図3の要部(液体窒素原料精製装置)の詳細図
である。
FIG. 4 is a detailed view of a main part (liquid nitrogen raw material refining apparatus) of FIG.

【符号の説明】[Explanation of symbols]

1…原料空気、4…製品窒素ガス、4a,4b…一酸化
炭素を含有する窒素ガス(液体窒素原料)、4c,4
d,4e…一酸化炭素を吸着除去された窒素ガス(液体
窒素原料)、4f…液体窒素、7a…製品酸素ガス、1
1…空気分離装置、12…液体窒素製造装置、13…液
体窒素原料精製装置、36…第1圧縮機(一段目の圧縮
機)、37…第2圧縮機(二段目の圧縮機)、45a,
45b…触媒塔、46…ニッケル触媒。
1 ... Raw material air, 4 ... Product nitrogen gas, 4a, 4b ... Nitrogen gas containing carbon monoxide (liquid nitrogen raw material), 4c, 4
d, 4e ... Nitrogen gas from which carbon monoxide has been adsorbed and removed (liquid nitrogen raw material), 4f ... Liquid nitrogen, 7a ... Product oxygen gas, 1
DESCRIPTION OF SYMBOLS 1 ... Air separation apparatus, 12 ... Liquid nitrogen manufacturing apparatus, 13 ... Liquid nitrogen raw material purification apparatus, 36 ... 1st compressor (1st stage compressor), 37 ... 2nd compressor (2nd stage compressor), 45a,
45b ... Catalyst tower, 46 ... Nickel catalyst.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年4月1日[Submission date] April 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】[0032]

【実施例】上記した窒素・酸素製造システムを使用し
て、次のような条件で液体窒素4fを製造した。すなわ
ち、吸着装置17により水分,二酸化炭素を除去した7
4000Nm3 /h,5kg/cm2 Gの原料空気1を
主熱交換器18で沸点近くまで冷却して高圧塔20に導
入し、高圧塔20内を5kg/cm2 Gに且つ低圧塔2
1内0.5kg/cm2 Gに保持つつ、原料空気1を精
留塔19により窒素と酸素とに精留分離して、低圧塔2
1の頂部から0.5kg/cm2 Gの窒素ガス4を36
000Nm3 /h採取し、この窒素ガス4を主熱交換器
18で常温(28℃)とした上で、その一部4aを第1
圧縮機36に導入させた。このとき、第1圧縮機36に
導入させた窒素ガス4aの量は7300Nm3 /hであ
り、これに含まれる不純成分である一酸化炭素及び酸素
の濃度は、一酸化炭素:1molppm,酸素:0.0
1molppmであった。
EXAMPLE Liquid nitrogen 4f was produced under the following conditions using the above-mentioned nitrogen / oxygen production system. That is, the water and carbon dioxide were removed by the adsorption device 17
Raw material air 1 of 4000 Nm 3 / h, 5 kg / cm 2 G was cooled to near the boiling point in the main heat exchanger 18 and introduced into the high-pressure column 20, and the inside of the high-pressure column 20 was reduced to 5 kg / cm 2 G and the low-pressure column 2
While maintaining 0.5 kg / cm 2 G inside 1, the raw air 1 is rectified and separated into nitrogen and oxygen by the rectification column 19, and the low pressure column 2
From the top of 1 to 36 kg of nitrogen gas 4 of 0.5 kg / cm 2 G
000 Nm 3 / h was sampled and this nitrogen gas 4 was used as the main heat exchanger.
After making room temperature (28 ° C) at 18 , part 4a is first
It was introduced into the compressor 36. At this time, the amount of the nitrogen gas 4a introduced into the first compressor 36 was 7300 Nm 3 / h, and the concentrations of carbon monoxide and oxygen as impure components contained therein were carbon monoxide: 1 molppm and oxygen: 0.0
It was 1 molppm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 毅 茨城県行方郡潮来町日の出3−2−35 (72)発明者 松崎 寛 茨城県行方郡潮来町日の出5−6−14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Goto, 3-2-35 Hinode, Itako-cho, Ikata-gun, Ikata-ken 5-6-14 Inventor Hiroshi Matsuzaki, 5-6-14 Hinode, Itako-cho, Whereabout-gun, Ibaraki Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を窒素と酸素とに精留,分離す
る空気分離装置と、空気分離装置で得られた窒素ガスの
一部を液体窒素原料として液体窒素を製造する液体窒素
製造装置と、空気分離装置から液体窒素製造装置に導入
された液体窒素原料に含まれる一酸化炭素を触媒の作用
により吸着除去する液体窒素原料精製装置と、を具備す
ることを特徴とする窒素・酸素製造システム。
1. An air separation device for rectifying and separating raw material air into nitrogen and oxygen, and a liquid nitrogen production device for producing liquid nitrogen using a part of nitrogen gas obtained by the air separation device as liquid nitrogen raw material. And a liquid nitrogen raw material refining device for adsorbing and removing carbon monoxide contained in the liquid nitrogen raw material introduced into the liquid nitrogen producing device from the air separation device by the action of a catalyst. .
【請求項2】 液体窒素原料精製装置が、ニッケル触媒
を装填した触媒塔を具備するものであり、液体窒素原料
に含まれる一酸化炭素をニッケル触媒との接触により吸
着除去させるものであることを特徴とする、請求項1に
記載する窒素・酸素製造システム。
2. A liquid nitrogen raw material purification apparatus is provided with a catalyst tower loaded with a nickel catalyst, and carbon monoxide contained in the liquid nitrogen raw material is adsorbed and removed by contact with the nickel catalyst. The nitrogen / oxygen production system according to claim 1, which is characterized.
【請求項3】 液体窒素製造装置が、これに導入された
液体窒素原料を複数段に亘って昇圧させる複数の圧縮機
を具備するものであり、液体窒素原料精製装置が、一段
目の圧縮機の出口部と二段目の圧縮機の入口部との間に
介装されていることを特徴とする、請求項1又は請求項
2に記載する窒素・酸素製造システム。
3. The liquid nitrogen production apparatus is provided with a plurality of compressors for increasing the pressure of the liquid nitrogen raw material introduced therein in plural stages, and the liquid nitrogen raw material purification apparatus is a first stage compressor. The nitrogen / oxygen production system according to claim 1 or 2, wherein the nitrogen / oxygen production system is interposed between the outlet of the second compressor and the inlet of the second-stage compressor.
JP8076208A 1996-03-29 1996-03-29 Nitrogen / oxygen production system Expired - Fee Related JP2872631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8076208A JP2872631B2 (en) 1996-03-29 1996-03-29 Nitrogen / oxygen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8076208A JP2872631B2 (en) 1996-03-29 1996-03-29 Nitrogen / oxygen production system

Publications (2)

Publication Number Publication Date
JPH09264666A true JPH09264666A (en) 1997-10-07
JP2872631B2 JP2872631B2 (en) 1999-03-17

Family

ID=13598760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8076208A Expired - Fee Related JP2872631B2 (en) 1996-03-29 1996-03-29 Nitrogen / oxygen production system

Country Status (1)

Country Link
JP (1) JP2872631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916383A1 (en) * 1997-10-31 1999-05-19 Praxair Technology, Inc. Cryogenic system for producing ultra-high purity nitrogen
JP2009243739A (en) * 2008-03-31 2009-10-22 Taiyo Nippon Sanso Corp Method and device for producing liquefied nitrogen
CN104390427A (en) * 2014-10-21 2015-03-04 杭州福斯达实业集团有限公司 High-temperature and low-temperature expansion energy-saving nitrogen production device and nitrogen production method
CN109126358A (en) * 2017-06-27 2019-01-04 清远先导材料有限公司 The purifying technique and purifying plant of special gas
WO2021179980A1 (en) * 2020-03-11 2021-09-16 苏州市兴鲁空分设备科技发展有限公司 Fully-liquefied gas separation equipment and process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916383A1 (en) * 1997-10-31 1999-05-19 Praxair Technology, Inc. Cryogenic system for producing ultra-high purity nitrogen
JP2009243739A (en) * 2008-03-31 2009-10-22 Taiyo Nippon Sanso Corp Method and device for producing liquefied nitrogen
CN104390427A (en) * 2014-10-21 2015-03-04 杭州福斯达实业集团有限公司 High-temperature and low-temperature expansion energy-saving nitrogen production device and nitrogen production method
CN109126358A (en) * 2017-06-27 2019-01-04 清远先导材料有限公司 The purifying technique and purifying plant of special gas
CN109126358B (en) * 2017-06-27 2024-02-20 昆明先导新材料科技有限责任公司 Purification process and purification device for special gas
WO2021179980A1 (en) * 2020-03-11 2021-09-16 苏州市兴鲁空分设备科技发展有限公司 Fully-liquefied gas separation equipment and process

Also Published As

Publication number Publication date
JP2872631B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
KR100247865B1 (en) Process for recovering high-purity hydrogen and high-purity carbon monoxide
US4983194A (en) Production of high purity argon
JP3351815B2 (en) Purification method of inert gas
US5110569A (en) Low temperature purification of gases
EP1762294A2 (en) Gas purification
CA2741289C (en) Helium recovery process
CA2291388C (en) Purification of gases
US6093379A (en) Purification of gases
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
CS145292A3 (en) Process for preparing extremely pure argon
JPS61222905A (en) Manufacture of oxygen-rich air
US5683492A (en) Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen
EP3208563A1 (en) Method for argon production via cold pressure swing adsorption
JPH06234511A (en) Method and apparatus for purification using compression heat
US20030064014A1 (en) Purification of gases by pressure swing adsorption
JP3306517B2 (en) Air liquefaction separation apparatus and method
JP2872631B2 (en) Nitrogen / oxygen production system
EP1060774A1 (en) Purification of gases
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
EP1005895A1 (en) Purification of gases
JPH10130009A (en) Purifying method of gaseous carbon dioxide and device therefor
JP3424100B2 (en) Method for purifying krypton and xenon
JPH0230607A (en) Production of highly pure nitrogen
JPH05220319A (en) Device for removing hydrocarbon impurity from gas
KR19980070370A (en) Catalytic Removal of Acetylene During Separation of Air

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees