JPH04149010A - Method for refining noble gas - Google Patents

Method for refining noble gas

Info

Publication number
JPH04149010A
JPH04149010A JP2273321A JP27332190A JPH04149010A JP H04149010 A JPH04149010 A JP H04149010A JP 2273321 A JP2273321 A JP 2273321A JP 27332190 A JP27332190 A JP 27332190A JP H04149010 A JPH04149010 A JP H04149010A
Authority
JP
Japan
Prior art keywords
gas
impurities
hydrogen
rare gas
getter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2273321A
Other languages
Japanese (ja)
Other versions
JP2971116B2 (en
Inventor
Kenji Otsuka
健二 大塚
Noboru Takemasa
登 武政
Shinobu Kamiyama
上山 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2273321A priority Critical patent/JP2971116B2/en
Publication of JPH04149010A publication Critical patent/JPH04149010A/en
Application granted granted Critical
Publication of JP2971116B2 publication Critical patent/JP2971116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To efficiently remove impurities in noble gas and to obtain high purity noble gas by bringing the noble gas containing halogen, hydrogen halide, carbon halide, hydrocarbon halide as impurities into contact with Ca or Mg. CONSTITUTION:Noble gas such as He, Ne, Ar, etc., containing impurities is refined by bringing the gas into contact with metal Ca or metal Mg as a getter (it is preferable to use Ca or Mg activated in vacuum at 400-700 deg.C for 10-200min.) at >=400 deg.C, more preferably at >=550 deg.C. These impurities are halogen gas such as fluorine, chlorine, etc., hydrogen halide such as hydrogen fluoride, hydrogen chloride, etc., or compds. comprising hydrocarbons with substitution of halogen for part or whole of hydrogen. When the concn. of impurities is high, the gas is further brought into contact with Zr, Zr-alloy, Ti or Ti alloy to remove impurities such as N2, hydrocarbon, CO, CO2, O2, H2, H2O, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は、希ガスの精製方法に関し、さらに詳細には不
純物として特にハロゲン系のガスを含有するヘリウム、
ネオン、アルゴン、クリプトン、キセノンなどの零族元
素、すなわち、希ガス中の不純物を、ゲッター金属を用
いて効率よく除去し、精製するための希ガスの精製方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying a rare gas, and more specifically, it relates to a method for purifying a rare gas, and more specifically, it relates to a method for purifying a rare gas, and more specifically, a method for purifying a rare gas such as helium or helium containing a halogen-based gas as an impurity.
The present invention relates to a method for purifying a zero group element such as neon, argon, krypton, xenon, etc., in which impurities in a rare gas are efficiently removed and purified using a getter metal.

希ガス類は、その化学的性質が似通っているため、いず
れの希ガスもゲッターを用いて精製することが常法とな
っている。
Since rare gases have similar chemical properties, it is a common practice to purify all rare gases using getters.

希ガス中でヘリウムやアルゴンは近年目覚しく発展しつ
つある半導体製造工業で盛んに用いられており、その純
度向上への要求は益々強くなっている。また、ネオン、
クリプトン、キセノンは特殊なランプなどを製造するた
めに不可欠のガスであり、これらのガスは特に高価なこ
ともあって、−度使用したガスを循環して使うことが多
い。この場合には循環ガス中の不純物を除去して高純度
に精製することも必要である。
Among rare gases, helium and argon are actively used in the semiconductor manufacturing industry, which has been rapidly developing in recent years, and the demand for improving their purity is becoming stronger and stronger. Also, neon,
Krypton and xenon are essential gases for manufacturing special lamps and the like, and because these gases are especially expensive, used gases are often recycled. In this case, it is also necessary to remove impurities from the circulating gas and purify it to a high degree of purity.

希ガス中に一般的に含有されている不純物として窒素、
炭化水素、一酸化炭素、二酸化炭素、酸素、水素および
水蒸気などがあり、これらをPPbオーダーまで除去し
て高純度に精製することが望まれている。
Nitrogen is an impurity commonly contained in rare gases.
There are hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen, water vapor, etc., and it is desired to remove these to the order of PPb and refine them to high purity.

一方、最近に至り、これらの不純物と同時に希ガス中に
含有されるハロゲン系の不純物の除去に対する要望も半
導体製造工業を中心に拡大しつつあり、特に、エキシマ
レーザ−用のガスや半導体製造の各工程に使用される希
ガスおよび特殊なランプの製造時に使用される高価な希
ガスの循環システムなどにおいて高純度精製に対する要
望が強い。
On the other hand, recently, there has been a growing demand for the removal of these impurities as well as halogen-based impurities contained in rare gases, especially in the semiconductor manufacturing industry. There is a strong demand for high-purity purification in rare gases used in each process and in circulation systems for expensive rare gases used in the manufacture of special lamps.

[従来の技術] ゲッターとしては、バリウムなどを用いる蒸発型とチタ
ン系およびジルコニウム系などの非蒸発型があるが、希
ガスの精製には通常は非蒸発型ゲッター剤が多く用いら
れている。
[Prior Art] There are two types of getters: evaporable getters using barium and the like, and non-evaporable getters such as titanium and zirconium getters, but non-evaporable getters are usually used to purify rare gases.

従来、非蒸発型のゲッター剤を用い、希ガス中の窒素、
炭化水素、一酸化炭素、二酸化炭素、酸素、水素および
水蒸気などの不純物を除去し、希ガスを精製する方法と
して、ゲッター剤としてチタンおよびチタン系合金を使
用し、1000°C程度の高温で希ガスと接触させる方
法、ジルコニウムまたはジルコニウム系合金をゲッター
剤に使用し、300〜700℃程度の温度で希ガスと接
触させる方法などが一般的に用いられている。これらの
ゲッター剤としては、例えば特開昭62−3008号公
報によるZr−V−Fe三元合金、特開平2−1180
45号公報のZr−AI−V三元合金、英国特許137
0208号のZr−Ti−Ni三元合金、ジャーナルオ
ブザレスコモンメタル誌、53巻(1977)第1.1
7〜131頁に記載されたZr (Cox 、 V+−
X)2およびZr(FeX、 Vt−X)2で示される
三元合金を使用したもの、さらには、二元合金ゲッター
として、米国特許2,926,981号ではZr−Ti
合金などが知られている。
Conventionally, non-evaporable getter agents were used to remove nitrogen in rare gases,
Titanium and titanium-based alloys are used as getter agents to remove impurities such as hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen, and water vapor, and purify rare gases. Commonly used methods include contacting with a gas, and using zirconium or a zirconium-based alloy as a getter agent and contacting with a rare gas at a temperature of about 300 to 700°C. These getter agents include, for example, the Zr-V-Fe ternary alloy disclosed in JP-A-62-3008, JP-A-2-1180;
Zr-AI-V ternary alloy of Publication No. 45, British Patent No. 137
Zr-Ti-Ni ternary alloy No. 0208, Journal of the Less Common Metals, Vol. 53 (1977) No. 1.1
Zr (Cox, V+-
X)2 and Zr(FeX, Vt-X)2, and as a binary alloy getter, U.S. Pat.
Alloys are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記したように、これらのゲッターはい
ずれも水素、水分、窒素、炭化水素、一酸化炭素、二酸
化炭素または酸素の除去を目的としたものであって、ハ
ロゲンまたはハロゲン系化合物などの不純物の除去を対
象とするものではない。
However, as mentioned above, all of these getters are intended to remove hydrogen, moisture, nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, or oxygen, and are intended to remove impurities such as halogen or halogen-based compounds. It is not intended for removal.

仮に、これらのゲッターを用いてハロゲン化合物の除去
をおこなう場合には、900℃以上のような高温を必要
とするばかりでなく、反応によって生成するチタンまた
はジルコニウムのハロゲン化物は高い蒸気圧を有するな
め、ゲッターから蒸散、脱離して精製ガス中に混入した
り、配管など装置の低温部で凝縮してガスの流路を閉塞
する虞れが生ずるなどの欠点があるため使用できない。
If these getters were to be used to remove halogen compounds, not only would a high temperature of 900°C or higher be required, but the titanium or zirconium halides produced by the reaction would have a high vapor pressure. However, it cannot be used because it has drawbacks such as evaporation and desorption from the getter and mixing in the purified gas, or condensation in low-temperature parts of the equipment such as piping, which may clog the gas flow path.

このようにハロゲン系の不純物の除去を含めて希ガスを
効率良く精製する方法は未だに知られていない。
As described above, there is still no known method for efficiently purifying rare gases including the removal of halogen-based impurities.

[課題を解決するための手段、作用コ 本発明者らはハロゲン系の不純物を含めて希ガス中の不
純物を効率よく除去し、高純度の精製希ガスを得るべく
鋭意研究を続けた結果、ゲッター剤としてカルシウムま
たはマグネシウムを用いること、および必要に応じ、こ
れに、チタン、ジルコニウム系のゲッター剤を併用する
ことにより目的を達成しうることを見い出し、本発明に
到達した。
[Means and Actions for Solving the Problems] As a result of our intensive research to efficiently remove impurities in rare gases, including halogen-based impurities, and obtain purified rare gases of high purity, we have found that: The present invention has been achieved based on the discovery that the object can be achieved by using calcium or magnesium as a getter agent and, if necessary, in combination with a titanium or zirconium getter agent.

すなわち本発明は、(1)不純物として少なくとも、ハ
ロゲン、ハロゲン化水素、ハロゲン化炭素およびハロゲ
ン化炭化水素の一種または二種以上を含有する希ガスを
、カルシウムまたはマグネシウムと接触させて、該希ガ
ス中に含有される不純物を除去することを特徴とする希
ガスの精製方法、および[21不純物として、■ハロゲ
ン、ハロゲン化水素、ハロゲン化炭素およびハロゲン化
炭化水素の一種または二種以上ならびに■窒素、炭化水
素、一酸化炭素、二酸化炭素、酸素、水素および水蒸気
の一種または二種以上を含有する希ガスをカルシウムま
たはマグネシウムと接触させた後、ジルコニウム、ジル
コニウム系合金、チタンまたはチタン系合金と接触させ
て、該希ガス中に含有される不純物を除去することを特
徴とする希ガスの精製方法である。
That is, the present invention provides (1) a rare gas containing at least one or more of halogen, hydrogen halide, halogenated carbon, and halogenated hydrocarbon as an impurity by contacting it with calcium or magnesium; A rare gas purification method characterized by removing impurities contained therein, and [21 impurities include: ■ one or more of halogens, hydrogen halides, halogenated carbons, and halogenated hydrocarbons, and ■ nitrogen. , a noble gas containing one or more of hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen, and water vapor is brought into contact with calcium or magnesium, and then contacted with zirconium, zirconium-based alloys, titanium, or titanium-based alloys. This is a rare gas purification method characterized by removing impurities contained in the rare gas.

本発明において、主に除去の対象となるハロゲン系の不
純物としては例えば、ふつ素、塩素、臭素などのハロゲ
ンガス、ぶつ化水素、塩化水素、トリフロロメタン、テ
トラフロロエタン、トリクロロメタン、テトラクロロエ
タンなど炭化水素中の水素の一部または全部がハロゲン
で置換された形の化合物などである。
In the present invention, halogen-based impurities that are mainly removed include halogen gases such as fluorine, chlorine, and bromine, hydrogen fluoride, hydrogen chloride, trifluoromethane, tetrafluoroethane, trichloromethane, and tetrachloroethane. These include compounds in which some or all of the hydrogen in a hydrocarbon is replaced with a halogen.

これらの、ハロゲン系物質を含む不純物を除去するため
のゲッター剤(以下ゲッター剤Aと記す)として使用さ
れるカルシウム、マグネシウムとしては、金属カルシウ
ムまたは金属マグネシウムなどであり、通常は市販品で
よく、容易に入手することができる。これらの金属は通
常は、粒状として、または、100メツシユ程度の微細
粒としたものをペレット状に成型した形態でゲッター剤
Aとして使用される。
Calcium and magnesium used as a getter agent (hereinafter referred to as getter agent A) for removing these impurities including halogen-based substances include metallic calcium or metallic magnesium, and are usually commercially available products. It can be easily obtained. These metals are usually used as the getter agent A in the form of particles or in the form of pellets made from fine particles of about 100 meshes.

ゲッター剤Aはそのまま使用することもてきるが、希ガ
スの精製に先立って、あらかじめ真空中または希ガス中
において、例えば400〜700℃程度で10〜200
分間活性化処理を施すことが好ましい。
Getter agent A can be used as it is, but before purifying the rare gas, it must be heated for 10 to 200 minutes at about 400 to 700°C in a vacuum or in a rare gas.
It is preferable to perform an activation treatment for a minute.

ゲッター剤Aは希ガスの精製筒に充填され、通常は40
0℃以上、好ましくは550℃以上に加熱した状態で使
用され、精製筒内に原料希ガスを流すことにより、希ガ
ス中のハロゲン、ハロゲン化水素、ハロゲン化炭素、ハ
ロゲン化炭化水素などの不純物は、その他の不純物とと
もに反応によってゲッター剤Aに捕捉され、希ガス中か
ら除去され、希ガスは連続的に高純度に精製される。
Getter agent A is filled in a rare gas purification cylinder, and usually 40
Impurities such as halogens, hydrogen halides, halogenated carbons, and halogenated hydrocarbons are removed from the rare gas by flowing the raw material rare gas into the refining cylinder. is captured by the getter agent A together with other impurities and removed from the rare gas, and the rare gas is continuously purified to a high purity.

本発明において、ゲッター剤Aにより、希ガス中のハロ
ゲン、ハロゲン化合物などと同時に水素、水分、窒素、
一酸化炭素、二酸化炭素、酸素、などの不純物も除去さ
れるが、これらの不純物の濃度が高い場合や精製にさら
に完全を期すなめには、ゲッター剤Aの下流側にチタン
またはジルコニウム系のゲッター剤(以下ゲッター剤B
と記す)を設け、希ガスをゲッター剤Aと接触させてハ
ロゲン系の不純物を除去した後、引続き、ゲッター剤B
と接触させることにより、ゲッター剤Aで充分に除去し
切れなかった窒素、炭化水素、一酸化炭素、二酸化炭素
、酸素、水素および水蒸気などの不純物を完全に除去す
ることができる。
In the present invention, getter agent A allows hydrogen, moisture, nitrogen,
Impurities such as carbon monoxide, carbon dioxide, and oxygen are also removed, but if the concentration of these impurities is high or for more complete purification, a titanium or zirconium-based getter may be added downstream of getter agent A. agent (hereinafter referred to as getter agent B)
After removing halogen-based impurities by bringing the rare gas into contact with getter agent A, the getter agent B is subsequently added.
By contacting with the gettering agent, impurities such as nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen, and water vapor that were not sufficiently removed by getter agent A can be completely removed.

ゲッター剤Bとしては、ジルコニウム、ジルコニウム含
有合金、チタンおよびチタン含有合金などであり、例え
ば、単体ではジルコニウムスポンジ、チタンスポンジ、
合金ではZr−Fe、Zr−Ti + Zi−Ni二元
合金およびZr−V−Fe 、 ZrAIV多元合金な
ど従来公知のゲッター剤の他、本発明者らによるZr−
V二元合金、Zr−V−CrおよびZr−V−Niなど
の多元合金(特願平〇2−242586号)が好適であ
る。
Examples of the getter agent B include zirconium, zirconium-containing alloys, titanium, and titanium-containing alloys. For example, as a single substance, zirconium sponge, titanium sponge,
For alloys, in addition to conventionally known getter agents such as Zr-Fe, Zr-Ti + Zi-Ni binary alloys, Zr-V-Fe, and ZrAIV multi-component alloys, Zr-
Multicomponent alloys such as V binary alloy, Zr-V-Cr and Zr-V-Ni (Japanese Patent Application No. 242586/1999) are suitable.

次に本発明を図面により例示して、具体的に説明する。Next, the present invention will be specifically explained with reference to the drawings.

第1図は本発明に使用される希ガスの精製袋Wのフロー
シートである。
FIG. 1 is a flow sheet of a rare gas purification bag W used in the present invention.

第1図において、ガスの入口1および出口2を有し、内
部にゲッター剤3が充填され、かつ、加熱用ヒーター4
が配設された精製筒5の入口1には原料希ガス供給管6
が接続され、出口2には冷却器7が接続されている。ま
た、冷却器7の下流には精製ガス抜出し管8が接続され
ている。
In FIG. 1, it has a gas inlet 1 and an outlet 2, is filled with a getter agent 3, and has a heating heater 4.
A raw material rare gas supply pipe 6 is connected to the inlet 1 of the refining cylinder 5 in which a
is connected to the outlet 2, and a cooler 7 is connected to the outlet 2. Further, a purified gas extraction pipe 8 is connected downstream of the cooler 7.

ゲッター剤3としてはゲッター剤A単独または条件によ
ってゲッター剤AとBの両者が充填される。ゲッター剤
AとBとを同時に使用する場合にはゲッター剤Aが精製
筒のガスの入口側ゲッター剤Bがガスの出口側に充填さ
れる。
The getter agent 3 may be filled with getter agent A alone or with both getter agents A and B depending on the conditions. When getter agents A and B are used at the same time, getter agent A is filled in the gas inlet side of the purification cylinder, and getter agent B is filled in the gas outlet side of the purification cylinder.

また、本発明に使用する装置として、ゲッターAとBと
を同時に使用する場合に、これらを第1図のように一つ
の精製筒に充填してもよいが、ゲッター剤AとBとをそ
れぞれ別の筒に充填し、ゲッター剤Aの筒がガスの上流
側、ゲッター剤Bの筒が下流側となるように両者を接続
した2筒形の精製装置としてもよい。
Furthermore, when using the getter agents A and B at the same time in the apparatus used in the present invention, they may be filled in one purification cylinder as shown in FIG. It is also possible to use a two-cylindrical purification apparatus in which separate cylinders are filled and the two cylinders are connected so that the cylinder for getter agent A is on the upstream side of the gas and the cylinder for getter agent B is on the downstream side of the gas.

希ガスの精製に際しては、加熱用ヒーター4で精製筒5
を所定の温度に加熱した状態で、原料希ガスが供給管6
から入口1を経て精製筒5内に供給される。精製筒5に
入った希ガスはゲッター剤3と接触することにより、不
純物はゲッター剤3と反応して除去される。不純物が除
去されたガスは、出口2を経て冷却器7に入り、ここで
所定の温度にまで冷却されたのち精製ガスの抜き出し管
8を経由して使用に供される。
When refining a rare gas, the refining cylinder 5 is heated using a heating heater 4.
is heated to a predetermined temperature, the raw material rare gas is supplied to the supply pipe 6.
is supplied into the refining cylinder 5 through the inlet 1. When the rare gas that has entered the purification cylinder 5 comes into contact with the getter agent 3, impurities are removed by reacting with the getter agent 3. The gas from which impurities have been removed enters the cooler 7 through the outlet 2, where it is cooled to a predetermined temperature and then sent for use via the purified gas extraction pipe 8.

[発明の効果コ 本発明により、従来の方法では除去することが困難であ
った希ガス中のハロゲン、ハロゲン化水素、ハロゲン化
炭素、ハロゲン化炭化水素などの不純物を効率良く除去
することが可能となった。
[Effects of the invention] The present invention makes it possible to efficiently remove impurities such as halogens, hydrogen halides, halogenated carbons, and halogenated hydrocarbons in rare gases, which were difficult to remove using conventional methods. It became.

また、チタンまたはジルコニウム系のゲッタi剤を併用
することにより、その他の不純物も完全に除去され、極
めて高純度な精製希ガスを得ることができる。
Furthermore, by using a titanium or zirconium-based getter agent in combination, other impurities can be completely removed, making it possible to obtain a purified rare gas with extremely high purity.

さらに、精製中にゲッター剤のハロゲン化物などが蒸散
、凝縮して配管など低温部でガス流路を閉塞するような
こともなく、安全であり、しかも、精製装置は比較的小
型であり、半導体製造工場のクリーンルーム内など費用
負担の大きな場所への設置も容易である。
Furthermore, it is safe because the halides of the getter agent will not evaporate or condense during purification and block the gas flow path in low-temperature parts such as piping, and the purification equipment is relatively small and semiconductors It is also easy to install in places where the cost burden is high, such as inside the clean room of a manufacturing factory.

[実施例] 実施例1 第1図に示したと同様の構成の装置で、外径17.3韻
、内径14關のステンレス管製の精製筒に、市販の粒状
カルシウム(純度99%)を振るい分けて得た4〜10
メツシユとしたゲッター剤Aを600龍充填した後、ヘ
リウム気流中720℃で3時間活性化処理をおこなった
[Example] Example 1 Using an apparatus having the same configuration as shown in Fig. 1, commercially available granular calcium (99% purity) was sprinkled into a refining cylinder made of stainless steel pipe with an outer diameter of 17.3 mm and an inner diameter of 14 mm. 4-10 obtained by dividing
After filling 600 tons of getter agent A in the form of a mesh, activation treatment was performed at 720° C. for 3 hours in a helium stream.

引続き、精製筒の温度を600℃に調節しながらマスフ
ローコントローラーを用いて不純物として、四ふっ化炭
素が10ppm +四塩化炭素が10ppm 、塩化水
素が10ppm 、となるように添加したヘリウムガス
を0.8’l/min、圧力4Kgf/cnfで供給し
て連続的に精製をおこない、精製筒の出口ガスをTCD
ガスクロマトグラフにより分析した。
Subsequently, while adjusting the temperature of the refining column to 600°C, helium gas added as impurities using a mass flow controller so that carbon tetrafluoride is 10 ppm, carbon tetrachloride is 10 ppm, and hydrogen chloride is 10 ppm is added to 0. Continuous purification is performed by supplying at 8'l/min and pressure of 4Kgf/cnf, and the outlet gas of the purification cylinder is transferred to TCD.
Analyzed by gas chromatography.

その結果、ガスを流し始めてから1300時間経過後に
四ふっ化炭素の破過が認められた。この間には、その他
の不純物の破過は認められず、また、精製筒出口ガスの
配管の閉塞なども発生しなかった。
As a result, breakthrough of carbon tetrafluoride was observed 1300 hours after the gas started flowing. During this period, no other impurities were observed to break through, and no blockage of the purification tube outlet gas piping occurred.

実施例2 市販の削り状マグネシウム(純度97%以上)をゲッタ
ー剤Aとし、実施例1で使用したと同じ精製筒に充填し
、活性化温度を600℃で3時間、精製温度を500℃
とした他は実施例1と同様にして精製をおこない、精製
筒出口ガスの分析をおこなった。
Example 2 Commercially available magnesium shavings (purity of 97% or higher) were used as getter agent A, and the same purification cylinder used in Example 1 was filled with the activation temperature at 600°C for 3 hours and the purification temperature at 500°C.
Purification was carried out in the same manner as in Example 1, except that the purification tube outlet gas was analyzed.

その結果、ガスを流し始めてから1000時間後に四ふ
り化炭素の破過が認められた。この間、その他の不純物
の破過は認められず、また、精製筒出口ガスによる配管
の閉塞なども見られなかった。
As a result, breakthrough of carbon tetrafluoride was observed 1000 hours after the gas started flowing. During this time, no breakthrough of other impurities was observed, and no clogging of the piping by the gas at the outlet of the purification tube was observed.

実施例3 第1図に示したと同様の構成での装置で、外径25mm
、内径19m+の石英製の精製筒に市販の粒状カルシウ
ム(純度99%以上)を振るい分けて得た4〜10メツ
シユのゲッター剤Aを600■充填し、さらにその下流
側にZr80重量%、Fe2O重量%からなる合金で6
〜14メツシユのゲッター剤Bを200+am充填した
後、ヘリウム気流中720°Cで3時間活性化処理をお
こなった。
Example 3 A device with the same configuration as shown in Fig. 1, with an outer diameter of 25 mm.
A quartz refining tube with an inner diameter of 19 m+ was filled with 600 μm of getter agent A of 4 to 10 meshes obtained by sorting commercially available granular calcium (99% purity or higher), and further downstream of it, 80% by weight of Zr and Fe2O were added. In an alloy consisting of 6% by weight
After filling ~14 meshes of getter agent B at 200+ am, activation treatment was performed at 720° C. for 3 hours in a helium stream.

引続き、精製筒の温度を600℃に調節しながらマスフ
ローコントローラーを用いて不純物濃度を、四ふっ化炭
素10ppm 、四塩化炭素10ppm、塩化水素10
ppm 、酸素lppm、窒素5ppm+、メタンlp
pm、水素lppm−一酸化炭素lppm、二酸化炭素
lppm、水分5ppmに調節したヘリウムガスを1.
64ρ/−、圧力4Kgf/−で供給して連続的に精製
をおこない、精製筒出口ガスの分析をおこなった。ガス
中の各不純物は、FIDガスクロマトグラフによりメタ
ン、一酸化炭素および二酸化炭素を、TCDガスクロマ
トグラフにより四ふっ化炭素、四塩化炭素、塩化水素お
よび窒素を、また、RGAB型還元性ガス分析計により
水素を、ハーシェPPb酸素分析計により酸素を、さら
にパナメトリック露点計により水蒸気を、それぞれ分析
した。
Subsequently, while adjusting the temperature of the refining column to 600°C, the impurity concentration was adjusted to 10 ppm of carbon tetrafluoride, 10 ppm of carbon tetrachloride, and 10 ppm of hydrogen chloride using a mass flow controller.
ppm, oxygen lppm, nitrogen 5ppm+, methane lp
pm, hydrogen 1ppm - carbon monoxide 1ppm, carbon dioxide 1ppm, moisture 5ppm helium gas adjusted to 1.
64 ρ/- and a pressure of 4 Kgf/- for continuous purification, and the gas at the outlet of the purification tube was analyzed. Each impurity in the gas was analyzed using an FID gas chromatograph to detect methane, carbon monoxide, and carbon dioxide, a TCD gas chromatograph to detect carbon tetrafluoride, carbon tetrachloride, hydrogen chloride, and nitrogen, and an RGAB type reducing gas analyzer to detect impurities. Hydrogen, oxygen using a Hershe PPb oxygen analyzer, and water vapor using a panametric dew point meter were analyzed.

その結果、ガスを流し始めてから1100時間経過後に
窒素の破過か最初に認められた。この間、その他の不純
物の破過は認められず、また、精製筒出口ガスの配管の
閉塞などは発生しなかった。
As a result, nitrogen breakthrough was first observed 1,100 hours after gas flow started. During this period, no other impurities were observed to break through, and no blockage of the purification cylinder outlet gas piping occurred.

比較例1 実施例1に用いたと同じ構成の精製筒に、ゲッター剤と
してFe2O重量%、Zr80重量%からなる合金で、
 6〜14メツンユのゲッター剤Bを 600 mm充
填した他は、実施例1と同様にしてヘリウムカスの精製
をおこない、精製筒出口ガスの分析をおこなった。
Comparative Example 1 In a refining cylinder having the same configuration as that used in Example 1, an alloy consisting of Fe2O weight % and Zr 80 weight % as a getter agent,
Helium scum was purified in the same manner as in Example 1, except that 600 mm of getter agent B of 6 to 14 mt was filled, and the gas at the outlet of the purification tube was analyzed.

その結果、ガスを流し始めた直後から四ふつ化炭素が検
出された。
As a result, carbon tetrafluoride was detected immediately after the gas started flowing.

比較例2 実施例3と同じ構成の装置で、ゲッター剤として6〜1
4闘メツンユのスポンジチタン(ゲッター剤B)を60
0關充填した他は実施例1と同様の操作をおこなって精
製筒出口ガスの分析をおこなった。
Comparative Example 2 Using an apparatus with the same configuration as Example 3, 6 to 1 was used as a getter agent.
4. 60 Metsunyu Sponge Titanium (Getter Agent B)
The same operation as in Example 1 was performed except that the refining tube outlet gas was analyzed.

その結果、カスを流し始めた直後がら四ふっ化炭素が検
出された。引続き、精製筒の温度を600°Cから徐々
に−Eげていったところ、950℃に達した時点から出
口精製ガス中には四ふっ化炭素が検出されなくなった。
As a result, carbon tetrafluoride was detected immediately after the waste began to be flushed away. Subsequently, the temperature of the refining column was gradually raised to -E from 600°C, and from the time it reached 950°C, carbon tetrafluoride was no longer detected in the outlet purified gas.

しかしながら、そのままの状態で精製を続けたところ、
2時間後に分析用配管の閉塞か発生した。
However, when refining was continued in that state,
Two hours later, a blockage occurred in the analysis piping.

比較例3 実施例3と同じ構成の精製装置を用い、ゲッター剤とし
て6〜14メツシユのスポンジジルコニウム(ゲッター
剤B)を600關充填した他は、実施例3と同様の操作
をおこなって精製筒出口ガスの分析をおこなった。
Comparative Example 3 Using a refining apparatus with the same configuration as in Example 3, the same operations as in Example 3 were performed except that 600 squares of sponge zirconium (getter agent B) of 6 to 14 meshes were filled as a getter agent. The outlet gas was analyzed.

その結果、ガスを流し始めた直後がら四ふっ化炭素が検
出された。引続き、精製筒の温度を600°Cから徐々
に上げていっなところ、900 ’Cに達した時点から
出口精製ガス中には四ふっ化炭素が検出されなくなった
。しかしながら、そのままの状態で精製を続けたところ
、3時間後に分析用配管の閉塞か発生した。
As a result, carbon tetrafluoride was detected immediately after the gas started flowing. Subsequently, the temperature of the refining column was gradually raised from 600°C, and from the time it reached 900'C, carbon tetrafluoride was no longer detected in the outlet purified gas. However, when purification was continued in this state, the analysis piping was blocked after 3 hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は希ガスの精製装置のフローシートである。 図面の各番号は以下の通りである。 1、入口  2.出口  3.ゲッター剤4、加熱用ヒ
ーター  5.精製筒 6、原料ガス供給管  7.冷却管 8、精製ガス抜出し管
FIG. 1 is a flow sheet of a rare gas purification device. The drawing numbers are as follows. 1. Entrance 2. Exit 3. Getter agent 4, heating heater 5. Purification tube 6, raw material gas supply pipe 7. Cooling pipe 8, purified gas extraction pipe

Claims (2)

【特許請求の範囲】[Claims] (1)不純物として少なくとも、ハロゲン、ハロゲン化
水素、ハロゲン化炭素およびハロゲン化炭化水素の一種
または二種以上を含有する希ガスを、カルシウムまたは
マグネシウムと接触させて、該希ガス中に含有される不
純物を除去することを特徴とする希ガスの精製方法。
(1) A rare gas containing at least one or more of halogen, hydrogen halide, halogenated carbon, and halogenated hydrocarbon as an impurity is brought into contact with calcium or magnesium to be contained in the rare gas. A rare gas purification method characterized by removing impurities.
(2)不純物として、[1]ハロゲン、ハロゲン化水素
、ハロゲン化炭素およびハロゲン化炭化水素の一種また
は二種以上、および[2]窒素、炭化水素、一酸化炭素
、二酸化炭素、酸素、水素および水蒸気の一種または二
種以上を含有する希ガスをカルシウムまたはマグネシウ
ムと接触させた後、ジルコニウム、ジルコニウム系合金
、チタンまたはチタン系合金と接触させて、該希ガス中
に含有される不純物を除去することを特徴とする希ガス
の精製方法。
(2) Impurities include [1] one or more of halogens, hydrogen halides, halogenated carbons, and halogenated hydrocarbons, and [2] nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen, hydrogen, and A rare gas containing one or more types of water vapor is brought into contact with calcium or magnesium, and then brought into contact with zirconium, a zirconium alloy, titanium, or a titanium alloy to remove impurities contained in the rare gas. A method for purifying a rare gas, characterized by the following.
JP2273321A 1990-10-15 1990-10-15 Noble gas purification method Expired - Fee Related JP2971116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273321A JP2971116B2 (en) 1990-10-15 1990-10-15 Noble gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273321A JP2971116B2 (en) 1990-10-15 1990-10-15 Noble gas purification method

Publications (2)

Publication Number Publication Date
JPH04149010A true JPH04149010A (en) 1992-05-22
JP2971116B2 JP2971116B2 (en) 1999-11-02

Family

ID=17526255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273321A Expired - Fee Related JP2971116B2 (en) 1990-10-15 1990-10-15 Noble gas purification method

Country Status (1)

Country Link
JP (1) JP2971116B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597393A1 (en) * 1992-11-09 1994-05-18 Japan Pionics Co., Ltd. Process for cleaning harmful gas
JPH06340405A (en) * 1993-03-31 1994-12-13 Kobe Steel Ltd Method for removing halide in rare gas
US6299670B1 (en) 1999-06-10 2001-10-09 Saes Pure Gas, Inc. Integrated heated getter purifier system
WO2006016105A1 (en) * 2004-08-13 2006-02-16 The Boc Group Plc Method and apparatus for purifying a noble gas containing a halogen compound
WO2007042749A1 (en) * 2005-10-07 2007-04-19 Edwards Limited Method of treating a gas stream
WO2008065633A1 (en) * 2006-12-01 2008-06-05 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Xenon retrieval system and retrieval device
JP2011093716A (en) * 2009-10-27 2011-05-12 Japan Pionics Co Ltd Method for refining rare gas
EP2703756A1 (en) * 2012-08-30 2014-03-05 Linde Aktiengesellschaft Obtaining high-purity krypton and/or xenon
CN109879259A (en) * 2019-04-12 2019-06-14 山东非金属材料研究所 A kind of ultra-pure xenon, krypton purification system and purification process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597393A1 (en) * 1992-11-09 1994-05-18 Japan Pionics Co., Ltd. Process for cleaning harmful gas
JPH06340405A (en) * 1993-03-31 1994-12-13 Kobe Steel Ltd Method for removing halide in rare gas
US6299670B1 (en) 1999-06-10 2001-10-09 Saes Pure Gas, Inc. Integrated heated getter purifier system
WO2006016105A1 (en) * 2004-08-13 2006-02-16 The Boc Group Plc Method and apparatus for purifying a noble gas containing a halogen compound
KR101340117B1 (en) * 2005-10-07 2013-12-10 에드워즈 리미티드 Method of treating a gas stream
JP2009511738A (en) * 2005-10-07 2009-03-19 エドワーズ リミテッド Gas flow treatment method
WO2007042749A1 (en) * 2005-10-07 2007-04-19 Edwards Limited Method of treating a gas stream
US8834824B2 (en) 2005-10-07 2014-09-16 Edwards Limited Method of treating a gas stream
WO2008065633A1 (en) * 2006-12-01 2008-06-05 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Xenon retrieval system and retrieval device
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device
JP2011093716A (en) * 2009-10-27 2011-05-12 Japan Pionics Co Ltd Method for refining rare gas
EP2703756A1 (en) * 2012-08-30 2014-03-05 Linde Aktiengesellschaft Obtaining high-purity krypton and/or xenon
CN109879259A (en) * 2019-04-12 2019-06-14 山东非金属材料研究所 A kind of ultra-pure xenon, krypton purification system and purification process

Also Published As

Publication number Publication date
JP2971116B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP2980425B2 (en) Noble gas purification method
US6238636B1 (en) Process and systems for purification of boron trichloride
US20080242912A1 (en) Methods and Apparatus for Providing a High Purity Acetylene Product
US8343262B2 (en) System for preventing contaminants from reaching a gas purifier
JPH04149010A (en) Method for refining noble gas
JP3462560B2 (en) Hydrogen gas purification method
JP2001506960A (en) Method for purifying cryogenic fluids by filtration and adsorption
JPS62119104A (en) Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
JPS59107910A (en) Method for purifying gaseous argon
JPH0733417A (en) Purifying method for rare gas
JP2977606B2 (en) Noble gas purification method
JP2005503987A (en) Method and apparatus for purifying hydrogen bromide
JP2004339187A (en) Method for purification and film-forming of perfluoro-compound
JP3260853B2 (en) Noble gas purification method
JP2971122B2 (en) Noble gas purification method
JP3324799B2 (en) Noble gas purification method
JPH04209709A (en) Purification of dilute gas
JPH04209708A (en) Purification of dilute gas
JP2015006982A (en) Method for producing nitrogen monoxide/nitrogen gaseous mixture intended for medical field
JPS62265105A (en) Method and device for purifying chalcogenide material
JP3166930B2 (en) Noble gas purification equipment
JPH02293310A (en) Equipment for high-purity refining of rare gas
JPS59116109A (en) Method for purifying gaseous argon
JP2002068717A (en) Method of refining nitrogen trifluoride
JP3708980B2 (en) How to remove moisture from gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees