JP2011092808A - Adsorbent and method for manufacturing the same - Google Patents

Adsorbent and method for manufacturing the same Download PDF

Info

Publication number
JP2011092808A
JP2011092808A JP2009246219A JP2009246219A JP2011092808A JP 2011092808 A JP2011092808 A JP 2011092808A JP 2009246219 A JP2009246219 A JP 2009246219A JP 2009246219 A JP2009246219 A JP 2009246219A JP 2011092808 A JP2011092808 A JP 2011092808A
Authority
JP
Japan
Prior art keywords
adsorbent
raw material
carbon
material mixture
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246219A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshimi
仁志 吉見
Masateru Aoki
正輝 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2009246219A priority Critical patent/JP2011092808A/en
Publication of JP2011092808A publication Critical patent/JP2011092808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which is composed mainly of silica/alumina with the capability of efficiently adsorbing even a volatile chemical substance which is hardly water-soluble, and to provide a method for manufacturing this kind of adsorbent. <P>SOLUTION: The adsorbent is manufactured through the following three processes: that is, (1) a mixing process to prepare a raw material mixture by mixing a waste molding sand containing a carbon component with a calcium phosphate compound and a dispersion medium, (2) a molding process to make a molded form of a desired shape by molding and drying the raw material mixture, and (3) a calcining process to obtain a calcined product containing carbon by calcining the molded form in a reducing atmosphere. These series of the processes can obtain the adsorbent as a calcined product containing the carbon with an excellent adsorption activity while preventing the carbon component from being lost. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、脱臭材その他の用途に使用可能な吸着材と、その製造方法とに関する。   The present invention relates to an adsorbent that can be used for deodorizing materials and other uses, and a method for producing the same.

従来、排ガスまたは排水中の悪臭成分や有害物質(これらを「被処理物質」と呼ぶ)を吸着し、被処理物質を有機物分解性の微生物によって生物学的に分解処理することで、排ガス等を無臭化または無害化する技術が種々提案されている。   Conventionally, by adsorbing malodorous components and harmful substances (referred to as "treated substances") in exhaust gas or wastewater, and biologically decomposing treated substances with organic-degradable microorganisms, Various techniques for deodorizing or detoxifying have been proposed.

例えば、特許文献1に開示の「脱臭材、脱臭材の製造方法および脱臭方法」では、鋳物砂に由来する多孔質シリカ・アルミナ担体にリン酸カルシウム化合物(例えば骨成分由来のヒドロキシアパタイト)を散在させて脱臭材を構成している。リン酸成分を担持し脱臭材からのリン酸成分の溶出を規制することで、脱臭材での微生物の付着性および繁殖性を向上させ、脱臭性能の長期持続を実現している。特許文献1によれば、かかる脱臭材は、鋳物砂、リン酸カルシウム化合物および水を混合した原料を粒状に成形(造粒)し、この成形物を通常の酸化雰囲気中で焼成することにより得られる。   For example, in “deodorizing material, method for producing deodorizing material and deodorizing method” disclosed in Patent Document 1, a calcium phosphate compound (for example, hydroxyapatite derived from bone component) is dispersed in a porous silica / alumina carrier derived from foundry sand. It constitutes a deodorizing material. By supporting the phosphoric acid component and regulating the elution of the phosphoric acid component from the deodorizing material, the adherence and propagation of microorganisms in the deodorizing material are improved, and long-term deodorization performance is realized. According to Patent Document 1, such a deodorizing material can be obtained by molding (granulating) a raw material in which foundry sand, a calcium phosphate compound and water are mixed into granules, and firing the molded product in a normal oxidizing atmosphere.

特開2006−116421号JP 2006-116421 A

特許文献1の脱臭材は、リン酸成分を多孔質体中に単に含浸させただけのもの(特許文献1の従来技術)に比べて生息微生物数の増加が観察され、持続的な脱臭性能の向上がみられたものの、即効的な脱臭性能は必ずしも十分であるとは言い難いものであった。その原因として、生物学的処理の前提となる悪臭成分や有害物質(被処理物質)の吸着・保持が不十分で、実際に生物学的処理に供される被処理物質の絶対量、つまり微生物に取り込まれる被処理物質の量が少ないことがあげられる。とりわけ、被処理物質がトルエンのような難水溶性の揮発性有機化合物(VOC)の場合には、特許文献1の脱臭材による脱臭効果が低くなってしまうおそれがある。被処理物質が揮発性で且つ難水溶性であることで、かかる被処理物質が微生物に取り込まれる機会が大幅に失われているためと考えられる。   In the deodorizing material of Patent Document 1, an increase in the number of inhabiting microorganisms is observed as compared with a material in which a porous material is simply impregnated with a phosphoric acid component (prior art of Patent Document 1). Although improvement was seen, it was difficult to say that immediate deodorization performance was always sufficient. The cause is the inadequate adsorption and retention of malodorous components and harmful substances (treated substances) that are preconditions for biological treatment, and the absolute amount of treated substances that are actually used for biological treatment, that is, microorganisms. This is because the amount of the substance to be treated incorporated into the slag is small. In particular, when the substance to be treated is a poorly water-soluble volatile organic compound (VOC) such as toluene, the deodorizing effect by the deodorizing material of Patent Document 1 may be reduced. It is considered that the opportunity for the substance to be treated to be taken up by the microorganisms is largely lost because the substance to be treated is volatile and hardly water-soluble.

本発明の目的は、難水溶性の揮発性化学物質でも効率的に吸着することができるシリカ・アルミナ主体の吸着材と、そのような吸着材の製造方法とを提供することにある。   An object of the present invention is to provide a silica / alumina-based adsorbent capable of efficiently adsorbing even a poorly water-soluble volatile chemical substance, and a method for producing such an adsorbent.

本発明は、炭素成分を含有する鋳物廃砂に分散媒を混合して原料混合物を調製する混合工程(又は、炭素成分を含有する鋳物廃砂にリン酸カルシウム化合物および分散媒を混合して原料混合物を調製する混合工程)と、前記原料混合物を成形および乾燥して所望形状の成形体とする成形工程と、前記成形体を還元雰囲気中で焼成して炭素含有の焼成物を得る焼成工程とを順に実施することを特徴とする吸着材の製造方法である。   The present invention provides a mixing step of preparing a raw material mixture by mixing a dispersion medium with a casting waste sand containing a carbon component (or mixing a calcium phosphate compound and a dispersion medium with a casting waste sand containing a carbon component to prepare a raw material mixture. A mixing step to be prepared), a molding step in which the raw material mixture is molded and dried to obtain a molded body having a desired shape, and a firing step in which the molded body is fired in a reducing atmosphere to obtain a carbon-containing fired product. It is the manufacturing method of the adsorbent characterized by implementing.

また、本発明は、炭素成分を含有する鋳物廃砂に分散媒を混合して原料混合物を調製し(又は、炭素成分を含有する鋳物廃砂にリン酸カルシウム化合物および分散媒を混合して原料混合物を調製し)、この原料混合物を成形および乾燥して所望形状の成形体とし、この成形体を還元雰囲気中で焼成することで炭素含有の焼成物として得られることを特徴とする吸着材である。   Further, the present invention prepares a raw material mixture by mixing a dispersion medium with casting waste sand containing a carbon component (or mixes a calcium phosphate compound and a dispersion medium with casting waste sand containing a carbon component to prepare a raw material mixture. The adsorbent is characterized in that the raw material mixture is molded and dried to form a molded body having a desired shape, and the molded body is fired in a reducing atmosphere to be obtained as a carbon-containing fired product.

本発明によれば、炭素成分を含有する鋳物廃砂をシリカ・アルミナの供給源として利用すると共に、かかる鋳物廃砂を主原料とした成形体を還元雰囲気中で焼成することにより、炭素成分の消失を防ぎつつ吸着活性に優れた炭素含有の焼成物としての吸着材を得ることができる。かかる吸着材は、難水溶性(疎水性)の揮発性化学物質でも効率的に吸着することができる。   According to the present invention, the waste carbon sand containing the carbon component is used as a silica / alumina supply source, and the molded body using the waste sand foundry as a main raw material is fired in a reducing atmosphere, thereby It is possible to obtain an adsorbent as a carbon-containing fired product excellent in adsorption activity while preventing disappearance. Such an adsorbent can efficiently adsorb even a poorly water-soluble (hydrophobic) volatile chemical substance.

(a)〜(c)は、成形体(又は吸着材)の形状例を示す斜視図である。(A)-(c) is a perspective view which shows the example of a shape of a molded object (or adsorbent).

本発明は、吸着材及びその製造方法に関するものであるが、これら物の発明及び方法発明に共通した要点は、炭素成分を含有する鋳物廃砂を主原料として使用すること、及び、成形体の焼成は還元雰囲気(非酸化雰囲気)中で行うことにある。即ち、本発明は、
炭素成分を含有する鋳物廃砂に分散媒を混合して原料混合物を調製する混合工程、
前記原料混合物を成形および乾燥して所望形状の成形体とする成形工程、および、
前記成形体を還元雰囲気中で焼成して炭素含有の焼成物を得る焼成工程
の少なくとも3工程を備えている。
The present invention relates to an adsorbent and a method for producing the same. The main points common to the inventions and method inventions of the present invention are the use of casting waste sand containing a carbon component as a main raw material, and The firing is performed in a reducing atmosphere (non-oxidizing atmosphere). That is, the present invention
A mixing step of preparing a raw material mixture by mixing a dispersion medium with waste sand containing a carbon component,
A molding step of molding and drying the raw material mixture to obtain a molded body having a desired shape, and
The molded body is fired in a reducing atmosphere to provide at least three steps of a firing step for obtaining a carbon-containing fired product.

主原料たる「鋳物廃砂」とは、少なくとも1回砂型造型及び鋳造に使用されたことがある鋳物砂をいい、この鋳物廃砂には、使用済み砂型をばらして得られる砂だけでなく、砂型の解体作業を行う鋳物工場に設置された集塵機で集められた集塵ダストも含まれる。砂型をばらして得られた砂も、集塵ダストも、「使用済みの鋳造用砂型から廃棄物として回収された鋳物廃砂」であることに変わりはない。一般に、鋳物工場で発生する鋳物廃砂には、約1割から約3割程度の炭素成分(例えばコークスなどの石炭粉)が含まれる。なお、集塵ダストは、その平均粒径が1〜200μm程度、より好ましくは3〜50μm程度と比較的小さいことから、鋳物廃砂として用いることが好ましい。   The “foundry waste sand” as the main raw material refers to foundry sand that has been used for sand mold making and casting at least once, and this foundry waste sand includes not only sand obtained by separating used sand molds, This includes dust collected by a dust collector installed at a foundry where sand molds are dismantled. Both the sand obtained by separating the sand mold and the dust collection dust are still “cast waste sand recovered as waste from the used casting sand mold”. Generally, about 10% to about 30% of carbon components (for example, coal powder such as coke) are contained in foundry sand generated in a foundry. The dust collecting dust has a relatively small average particle size of about 1 to 200 μm, more preferably about 3 to 50 μm, and therefore it is preferably used as foundry sand.

原料混合物を調製する際の分散媒としては、例えば水を使用できる。この分散媒は、鋳物廃砂をペースト状又はスラリー状にすることができると共に、成形工程で成形体を乾燥する際に概ね蒸発させることができるものであれば、水に限られない。   As a dispersion medium when preparing the raw material mixture, for example, water can be used. The dispersion medium is not limited to water as long as the waste sand can be made into a paste or slurry and can be evaporated substantially when the formed body is dried in the forming step.

また、原料混合物の調製に際しては、分散媒と共にリン酸カルシウム化合物を併用することができる。リン酸カルシウム化合物を併用した場合、本発明の吸着材は、特許文献1(特開2006−116421号)に開示されているような生物学的脱臭用の脱臭材として極めて適したものとなる。すなわち、リン酸カルシウム化合物は水溶性が小さく、吸着材(脱臭材)に接触している水分中にリン成分が少しずつ溶出するため、吸着材表面及びその周辺部が微生物にとって快適な栄養環境となると共に、この快適な栄養環境を長期にわたって維持することが可能となる。また、リン酸カルシウム化合物は、微生物との親和性が高いため、吸着材表面に対する微生物の担持性や付着性が向上する。これにより、吸着材(脱臭材)における単位面積当りの微生物の担持密度や付着密度が高められることにつながり、全体として脱臭性能を向上させることができる。   In preparing the raw material mixture, a calcium phosphate compound can be used in combination with the dispersion medium. When a calcium phosphate compound is used in combination, the adsorbent of the present invention is extremely suitable as a deodorizing material for biological deodorization as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2006-116421). In other words, the calcium phosphate compound has low water solubility, and the phosphorus component elutes little by little in the water in contact with the adsorbent (deodorant), so that the adsorbent surface and its surroundings provide a comfortable nutritional environment for microorganisms. This comfortable nutritional environment can be maintained over a long period of time. Moreover, since the calcium phosphate compound has high affinity with microorganisms, the supportability and adhesion of microorganisms to the surface of the adsorbent are improved. As a result, the carrying density and adhesion density of microorganisms per unit area in the adsorbent (deodorizing material) can be increased, and the deodorizing performance can be improved as a whole.

なお、リン酸カルシウム化合物としては、リン酸カルシウム〔Ca(PO〕、ヒドロキシアパタイト〔Ca10(PO(OH)〕、リン酸一水素カルシウム(CaHPO)、リン酸二水素カルシウム〔Ca(HPO〕、ピロリン酸カルシウム(Ca)、メタリン酸カルシウム〔Ca(PO〕、フッ素アパタイト〔Ca10(PO〕、リン酸4カルシウム(Ca)、Ca不足ヒドロキシアパタイト〔Ca10-X2X(PO(OH)〕等を例示することができるが、これらに限定されるものではない。また、リン酸カルシウム化合物のうち、リン酸カルシウム化合物として1種をそれぞれ単独で用いるようにしてもよいし、2種以上を併用するようにしてもよい。ここで一例を挙げると、ヒドロキシアパタイトとして、生物の骨成分を用いてもよい。なお、上述したリン酸カルシウム化合物として例示したものは全て難水溶性である。この場合の難水溶性とは、溶解度が0.1g/100g以下であることをいう。 In addition, as a calcium phosphate compound, calcium phosphate [Ca 3 (PO 4 ) 2 ], hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ], calcium monohydrogen phosphate (CaHPO 4 ), calcium dihydrogen phosphate [ Ca (H 2 PO 4 ) 2 ], calcium pyrophosphate (Ca 2 P 2 O 7 ), calcium metaphosphate [Ca (PO 3 ) 2 ], fluorapatite [Ca 10 (PO 4 ) 6 F 2 ], 4 calcium phosphate (Ca 4 P 2 O 9 ), Ca-deficient hydroxyapatite [Ca 10-X H 2X (PO 4 ) 6 (OH) 2 ] and the like can be exemplified, but are not limited thereto. Moreover, among the calcium phosphate compounds, one type may be used alone as the calcium phosphate compound, or two or more types may be used in combination. As an example, a biological bone component may be used as hydroxyapatite. In addition, all illustrated as a calcium phosphate compound mentioned above are hardly water-soluble. In this case, poorly water-soluble means that the solubility is 0.1 g / 100 g or less.

また、原料混合物の調製に際しては、分散媒と共に有機バインダーを併用しても良い。有機バインダーとしては、例えばメチルセルロースがあげられる。有機バインダーの使用は、成形工程における成形体の成形性向上に役立つ。   In preparing the raw material mixture, an organic binder may be used in combination with the dispersion medium. Examples of the organic binder include methyl cellulose. Use of the organic binder is useful for improving the moldability of the molded body in the molding process.

原料混合物調製時の配合割合は適宜定め得るが、例えば鋳物廃砂100重量部に対し、分散媒を5〜50重量部、リン酸カルシウム化合物については5〜30重量部、有機バインダーについては0.5〜10重量部、程度を配合することが好ましい。なお、混合工程では、混練機を使用することができる。   The blending ratio at the time of preparing the raw material mixture can be appropriately determined. For example, the dispersion medium is 5 to 50 parts by weight, the calcium phosphate compound is 5 to 30 parts by weight, and the organic binder is 0.5 to 0.5 parts by weight with respect to 100 parts by weight of the casting waste sand. It is preferable to blend 10 parts by weight. In the mixing step, a kneader can be used.

混合工程で調製された原料混合物は、成形および乾燥されて所望形状の成形体とされる(成形工程)。成形体の形状は、吸着材の使用目的に応じて任意に定め得るが、例えば、図1(a)に示すようなハニカム体、図1(b)に示すような4つの貫通孔付き四角柱状のラシヒリング、図1(c)に示すような1つの貫通孔付き円柱状のラシヒリング、粒状体、ひも状または短柱状のペレット等があげられる。   The raw material mixture prepared in the mixing step is molded and dried to form a molded body having a desired shape (molding step). The shape of the molded body can be arbitrarily determined according to the purpose of use of the adsorbent. For example, a honeycomb body as shown in FIG. 1 (a), a quadrangular prism shape with four through holes as shown in FIG. 1 (b), and the like. 1, a cylindrical Raschig ring with one through-hole as shown in FIG. 1C, a granular material, a string-like or short columnar pellet, and the like.

焼成工程では、成形体は還元雰囲気中で焼成される。「還元雰囲気」とは、非酸化雰囲気、つまり酸素が存在しないか、酸素が存在したとしてもその酸化作用が阻害又は抑制されるような雰囲気を意味する。このような還元雰囲気の具体例または具体的醸成方法としては、雰囲気全体を窒素、ヘリウム、アルゴン等の不活性ガスで満たすこと、成形体の周囲に活性炭等の酸素補足剤を配置して成形体の表面が直接酸素に触れないようにすること等があげられる。   In the firing step, the compact is fired in a reducing atmosphere. The “reducing atmosphere” means a non-oxidizing atmosphere, that is, an atmosphere in which oxygen is not present, or even if oxygen is present, its oxidizing action is inhibited or suppressed. As a specific example or a specific brewing method of such a reducing atmosphere, the whole atmosphere is filled with an inert gas such as nitrogen, helium or argon, and an oxygen scavenger such as activated carbon is disposed around the molded body. It is possible to prevent the surface of this material from being exposed to oxygen directly.

焼成時の加熱温度は、原料混合物の組合せや配合組成、成形体のサイズ、吸着材として必要とされる強度等に応じて適宜変更できる。一般的には、加熱温度の下限値としては、600℃、650℃、700℃、750℃を例示でき、加熱温度の上限値としては、950℃、900℃、850℃等を例示できる。従って、加熱温度は、例えば600〜950℃、650〜900℃、700〜850℃を採用することができるが、これらの加熱温度に特に限定されるものではない。なお、加熱時間は、加熱温度、成形体のサイズ、吸着材に必要とされる硬度等に応じて選択されるが、例えば10分間〜10時間、20分間〜5時間、1〜2時間に設定することができる。但し、これらの加熱時間に特に限定されるものではない。   The heating temperature at the time of firing can be appropriately changed according to the combination of the raw material mixture, the blending composition, the size of the molded body, the strength required as an adsorbent, and the like. In general, examples of the lower limit value of the heating temperature include 600 ° C, 650 ° C, 700 ° C, and 750 ° C, and examples of the upper limit value of the heating temperature include 950 ° C, 900 ° C, and 850 ° C. Accordingly, the heating temperature may be 600 to 950 ° C., 650 to 900 ° C., or 700 to 850 ° C., but is not particularly limited to these heating temperatures. The heating time is selected according to the heating temperature, the size of the molded body, the hardness required for the adsorbent, etc., and is set to, for example, 10 minutes to 10 hours, 20 minutes to 5 hours, or 1-2 hours. can do. However, the heating time is not particularly limited.

上記一連の工程(混合工程、成形工程、焼成工程)を経て、炭素含有の焼成物である吸着材が得られる。なお、この吸着材は、鋳物廃砂を主原料とすることから、シリカ及びアルミナを主成分として形成されている。また、シリカ及びアルミナ以外の成分として、鉄酸化物、マグネシウム酸化物、マンガン酸化物、ナトリウム酸化物、カリウム酸化物等の少なくとも1種の成分が含まれてもよい。   Through the series of steps (mixing step, molding step, firing step), an adsorbent that is a carbon-containing fired product is obtained. In addition, since this adsorbent uses casting foundry sand as a main raw material, it is formed mainly with silica and alumina. Moreover, as components other than silica and alumina, at least one component such as iron oxide, magnesium oxide, manganese oxide, sodium oxide, and potassium oxide may be included.

以上説明したように本発明によれば、炭素成分を含有する鋳物廃砂をシリカ・アルミナの供給源として利用すると共に、かかる鋳物廃砂を主原料とした成形体を還元雰囲気中で焼成することで、焼成物からの炭素成分の消失を防ぐことができる。それ故、本発明の吸着材は、吸着活性に優れた炭素含有の焼成物として得られ、その結果、難水溶性(疎水性)の揮発性化学物質であっても効率的に吸着することができるという優れた効果を奏する。   As described above, according to the present invention, casting waste sand containing a carbon component is used as a silica / alumina supply source, and a molded body using such casting waste sand as a main raw material is fired in a reducing atmosphere. Thus, the disappearance of the carbon component from the fired product can be prevented. Therefore, the adsorbent of the present invention is obtained as a carbon-containing fired product having excellent adsorption activity, and as a result, even a poorly water-soluble (hydrophobic) volatile chemical substance can be adsorbed efficiently. There is an excellent effect of being able to.

また、吸着材の製造に際し、鋳物廃砂と共にリン酸カルシウム化合物を併用した場合には、被処理物質(悪臭成分や有害物質)の吸着性向上のみならず、微生物の付着性および繁殖性をも向上させて脱臭性能(生物学的分解処理)の長期持続が図られる。つまり、微生物の馴致期間や環境変化等によって微生物の活性が一時的に低下するような場合でも、吸着性の高い脱臭材(吸着材)自体が、微生物活性が復活するまでの間、被処理物質を保持し続けることができるため、脱臭性能の長期的持続を達成することができる。   In addition, in the production of adsorbents, when a calcium phosphate compound is used in combination with waste casting sand, not only the adsorptivity of treated substances (bad odor components and harmful substances) is improved, but also the adhesion and reproduction of microorganisms are improved. Therefore, long-term deodorization performance (biological decomposition treatment) can be achieved. In other words, even when the activity of microorganisms temporarily decreases due to the period of acclimatization of microorganisms, environmental changes, etc., the deodorant with high adsorptivity (adsorbent) itself remains treated until the microbial activity is restored. Therefore, long-term deodorizing performance can be achieved.

本発明の実施例1及び2並びに比較例1及び2について説明する。なお、以下の実施例及び比較例において使用した原料は次のとおりである。
(1)鋳物廃砂
原料としての鋳物廃砂は、鋳物工場の集塵機で採取されたダスト廃棄物としての鋳物廃砂(集塵ダスト)である。この鋳物廃砂はシリカ及びアルミナを主成分とし、他に酸化鉄等の金属酸化物を含有すると共に、炭素質粉末粒子等の有機物質なども含有する。より具体的には、シリカ(SiO)を52.9質量%、アルミナ(Al)を15.5質量%、酸化鉄(Fe)を5.17質量%、酸化マグネシウム(MgO)を2.77質量%、酸化カルシウム(CaO)を2.05質量%、酸化マンガン(MnO)を0.076質量%、酸化ナトリウム(NaO)を1.70質量%、酸化カリウム(KO)を0.478質量%、硫黄(S)を0.228質量%、リン(P)を0.029質量%、炭素成分等に由来するIL(IgnitionLoss)を18.5質量%含む鋳物廃砂を使用した。
(2)骨リン酸カルシウム
原料としての骨リン酸カルシウムは、牛の骨の粉砕物から得た粉末状のリン酸カルシウム成分であって、ヒドロキシアパタイトを主成分とするものである。
Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 will be described. In addition, the raw material used in the following Examples and Comparative Examples is as follows.
(1) Foundry waste sand Foundry waste sand as a raw material is foundry waste sand (dust collection dust) as dust waste collected by a dust collector of a foundry. This foundry waste sand contains silica and alumina as main components, and also contains metal oxides such as iron oxide, and also contains organic substances such as carbonaceous powder particles. More specifically, silica (SiO 2) of 52.9 wt%, alumina (Al 2 O 3) 15.5 wt%, iron oxide (Fe 2 O 3) 5.17 wt%, magnesium oxide ( MgO) 2.77% by mass, calcium oxide (CaO) 2.05% by mass, manganese oxide (MnO) 0.076% by mass, sodium oxide (Na 2 O) 1.70% by mass, potassium oxide ( K 2 O) 0.478% by mass, sulfur (S) 0.228% by mass, phosphorus (P) 0.029% by mass, IL (Ignition Loss) derived from carbon components, etc. 18.5% by mass Foundry sand was used.
(2) Calcium Bone Phosphate Bone calcium phosphate as a raw material is a powdered calcium phosphate component obtained from a pulverized bovine bone, and is mainly composed of hydroxyapatite.

[実施例1]
105℃で2時間加熱乾燥した鋳物廃砂100gに骨リン酸カルシウム20gを添加して混合し、これに50mlの水を段階的に加え水分が均一分散するまで混練した。この混練物を陶芸用の注射器型成形器(いわゆる陶芸用クレイガン)に充填し、この成形器から押し出して、太さ4mm×長さ約15mmの短柱状ペレットを多数成形した。そして、これらのペレットを自然乾燥した後、還元性雰囲気の中で焼成した。
還元焼成に際しては、容積50mlの耐熱性容器にその容積の半分ほどのペレットを入れ、その上から活性炭を入れて耐熱性容器の残り半分の容積を活性炭で満たし、ペレットを活性炭中に埋没させた。この耐熱性容器に蓋をして閉蓋状態とすると共に、これを電気炉に移して800℃で2時間加熱した。耐熱性容器内の残存酸素は活性炭に捕捉されると共に熱によって炭化(酸化炭素化)されるため、耐熱性容器内のペレットは非酸化雰囲気での焼成(還元焼成)を受けることになる。かかる焼成の後、多数のペレット状焼成物を得た。これらの焼成物の外観は黒色を呈していた。外観が黒色であることは、後記比較例1との対比において実施例1のペレット状焼成物が焼成時に酸化を受けなかったことの何よりの証左となる。なお、自然乾燥後で還元焼成前の短柱状ペレットの重量を1としたときの実施例1のペレット状焼成物の重量比を表1に示す。また、実施例1のペレット状焼成物を蛍光X線分析した結果を表2に示す。
[Example 1]
20 g of calcium calcium phosphate was added to and mixed with 100 g of casting waste sand dried by heating at 105 ° C. for 2 hours, and 50 ml of water was added stepwise thereto and kneaded until the water was uniformly dispersed. This kneaded product was filled in a ceramic-type injection molder (so-called ceramic clay gun) and extruded from this molder to form a large number of short columnar pellets having a thickness of 4 mm and a length of about 15 mm. These pellets were naturally dried and then fired in a reducing atmosphere.
At the time of reduction firing, about half of the volume of the pellet was put into a heat-resistant container having a volume of 50 ml, and activated carbon was added from above to fill the remaining half of the heat-resistant container with activated carbon, and the pellet was buried in the activated carbon. . The heat resistant container was covered with a lid, and the lid was put into a closed state, which was transferred to an electric furnace and heated at 800 ° C. for 2 hours. Residual oxygen in the heat-resistant container is captured by activated carbon and carbonized (carbon oxide) by heat, so that the pellets in the heat-resistant container are subjected to firing (reduction firing) in a non-oxidizing atmosphere. After such firing, a large number of pellets were obtained. The appearance of these fired products was black. The fact that the appearance is black is a proof of the fact that the pellet-like fired product of Example 1 did not undergo oxidation during firing in comparison with Comparative Example 1 described later. Table 1 shows the weight ratio of the pellet-like fired product of Example 1 when the weight of the short columnar pellets after natural drying and before reduction firing is 1. Table 2 shows the result of fluorescent X-ray analysis of the pellet-like fired product of Example 1.

[比較例1]
比較例1は、実施例1における還元焼成を通常の酸化焼成に置換したものに相当する。即ち比較例1では、実施例1と全く同じ手順で短柱状ペレットの成形及び自然乾燥を行った。そして、乾燥後のペレットを酸化性雰囲気の中で焼成した。
酸化焼成に際しては、容積50mlの耐熱性容器にその容積の半分ほどのペレットを入れ、蓋をせずに開放状態とした。この耐熱性容器を電気炉に移して実施例1と同様に800℃で2時間加熱することで、多数のペレット状焼成物を得た。これらの焼成物の外観は、煉瓦色の焼き色が付いたものであった。外観が煉瓦色であることは、前記実施例1との対比において比較例1のペレット状焼成物が焼成時に酸化を受けたことの何よりの証左となる。なお、自然乾燥後で還元焼成前の短柱状ペレットの重量を1としたときの比較例1のペレット状焼成物の重量比を表1に示す。また、比較例1のペレット状焼成物を蛍光X線分析した結果を表2に示す。
[Comparative Example 1]
Comparative Example 1 corresponds to the reduction firing in Example 1 replaced with ordinary oxidation firing. That is, in Comparative Example 1, short columnar pellets were molded and naturally dried in exactly the same procedure as in Example 1. The dried pellets were fired in an oxidizing atmosphere.
At the time of oxidation firing, about half of the volume of the pellets was put in a heat-resistant container having a volume of 50 ml and opened without being covered. The heat-resistant container was transferred to an electric furnace and heated at 800 ° C. for 2 hours in the same manner as in Example 1 to obtain a large number of pellets. The appearances of these fired products were brick-colored. That the appearance is a brick color is a proof of the fact that the pellet-like fired product of Comparative Example 1 was oxidized during firing in comparison with Example 1. In addition, Table 1 shows the weight ratio of the pellet-like fired product of Comparative Example 1 when the weight of the short columnar pellets after natural drying and before reduction firing is 1. Table 2 shows the result of fluorescent X-ray analysis of the pellet-like fired product of Comparative Example 1.

[トルエン吸着試験]
実施例1および比較例1のペレット状焼成物について、VOCであるトルエンの吸着性能を測るため、次のような試験を行った。具体的には、しぼんだ状態のガス分析用サンプリングバッグ(いわゆるテドラーバッグ)(膨張時の最大容積3リットル)に試料(ペレット状焼成物)5gを入れ、続いて5000ppmのトルエン・空気混合ガスを3リットル充填し、密封状態で75分間放置した。その後、サンプリングバッグ内の残留ガスをシリンジでサンプリングし、ガスクロマトグラフでトルエン濃度を測定した。なお、ブランク試験として、サンプリングバッグ中に試料を入れることなく5000ppmのトルエン・空気混合ガス3リットルだけを充填し、75分間放置した場合についても測定した。そして、ブランク試験での75分後のトルエン濃度と、試料入りバッグでの75分後のトルエン濃度との差に基づいてトルエン吸着量(試料1gあたりのトルエン吸着mg数)を計算した。この吸着試験における実施例1および比較例1の測定結果を表3に示す。
[Toluene adsorption test]
In order to measure the adsorption performance of toluene as VOC, the pellets of Example 1 and Comparative Example 1 were subjected to the following tests. Specifically, 5 g of a sample (pellet-like fired product) is put into a sampling bag for gas analysis in a deflated state (so-called Tedlar bag) (maximum volume of 3 liters when expanded), followed by 3 parts of 5000 ppm toluene / air mixed gas. Filled with liter and left in a sealed state for 75 minutes. Thereafter, the residual gas in the sampling bag was sampled with a syringe, and the toluene concentration was measured with a gas chromatograph. In addition, as a blank test, it measured also when filling only 3 liters of 5000 ppm toluene-air mixed gas without putting a sample in a sampling bag, and leaving it to stand for 75 minutes. Based on the difference between the toluene concentration after 75 minutes in the blank test and the toluene concentration after 75 minutes in the sample bag, the toluene adsorption amount (mg of toluene adsorbed per 1 g of sample) was calculated. Table 3 shows the measurement results of Example 1 and Comparative Example 1 in this adsorption test.

Figure 2011092808
Figure 2011092808

Figure 2011092808
Figure 2011092808

Figure 2011092808
Figure 2011092808

[実施例1についての考察]
実施例1のトルエン吸着量が5.1mg/gであるのに対し、比較例1のトルエン吸着量は1.7mg/gに過ぎなかった。両者の比較から、通常の酸化焼成よりも還元焼成した方がトルエン吸着量に優れることがわかる。還元焼成の方がトルエン吸着性が良好である理由としては、還元焼成ゆえに焼成時に炭素分が焼失せず、焼成物内に残留する炭素分が吸着性を発揮するためと考えられる。表1の結果は、還元焼成による実施例1の方が酸化焼成による比較例1よりも焼成による重量減が少ないことを示しており、この結果は、還元焼成では炭素分があまり失われないことを示唆している。また、表2の結果は、実施例1の焼成物の方が比較例1の焼成物よりも炭素分含有量が多いこと示している。表1及び表2の結果はいずれも、「還元焼成では炭素分があまり失われず、焼成物内に残留する炭素分が吸着性を高める」との上記推察を裏付けるものと言える。
[Consideration on Example 1]
While the toluene adsorption amount of Example 1 was 5.1 mg / g, the toluene adsorption amount of Comparative Example 1 was only 1.7 mg / g. From a comparison between the two, it can be seen that the reduction calcination is superior to the ordinary oxidation calcination in terms of toluene adsorption. The reason why the reduced calcination has better toluene adsorptivity is thought to be because the carbon content does not burn out during the calcination because of the reduction calcination, and the carbon content remaining in the fired product exhibits the adsorptivity. The results in Table 1 indicate that Example 1 by reduction firing has less weight loss due to firing than Comparative Example 1 by oxidation firing, and this result shows that carbon content is not lost much in reduction firing. It suggests. Moreover, the result of Table 2 has shown that the baked material of Example 1 has more carbon content than the baked material of the comparative example 1. FIG. The results in Tables 1 and 2 can be said to support the above-mentioned assumption that “carbon is not lost much in the reduction firing, and the carbon remaining in the fired product increases the adsorptivity”.

[実施例2]
105℃で2時間加熱乾燥した鋳物廃砂100gに骨リン酸カルシウム20gを添加して混合した。成型性を高めるために、この混合物を粉砕処理すると共にこの混合物120gに対し有機バインダーとしてのメチルセルロース3gと水50mlを添加し混練した。この混練物を押出成型器にて、図1(a)に示すような縦50mm×横50mm×高さ50mmの立方状のハニカム体に成形した。このハニカム成形体の各セルは縦2mm×横2mmの正方形断面を有し、該ハニカム成形体には、縦18個×横18個=合計324のセルが配列されている。そして、このハニカム成形体を自然乾燥した後、還元性雰囲気の中で焼成した。
還元焼成に際しては、焼成用の耐熱性容器内でハニカム成形体を活性炭中に埋没させ、この耐熱性容器に蓋をして閉蓋状態とすると共に、これを電気炉に移して800℃で2時間加熱した。実施例1と同様、耐熱性容器内の残存酸素は活性炭に捕捉されると共に熱によって炭化(酸化炭素化)されるため、ハニカム成形体は非酸化雰囲気での焼成(還元焼成)を受けることになる。こうして、ハニカム形状の焼成物を得た。
[Example 2]
20 g of calcium calcium phosphate was added to and mixed with 100 g of casting waste sand dried by heating at 105 ° C. for 2 hours. In order to improve moldability, this mixture was pulverized, and 3 g of methylcellulose as an organic binder and 50 ml of water were added to 120 g of the mixture and kneaded. This kneaded product was formed into a cubic honeycomb body having a length of 50 mm, a width of 50 mm and a height of 50 mm as shown in FIG. Each cell of the honeycomb formed body has a square cross section of 2 mm in length × 2 mm in width, and the honeycomb formed body has 18 cells in the vertical direction × 18 in the horizontal direction = total 324 cells. The honeycomb formed body was naturally dried and then fired in a reducing atmosphere.
At the time of reduction firing, the honeycomb formed body is buried in activated carbon in a heat-resistant container for firing, and the heat-resistant container is covered with a lid, and is moved to an electric furnace at 800 ° C. for 2 hours. Heated for hours. As in Example 1, since the remaining oxygen in the heat-resistant container is captured by activated carbon and carbonized (carbon oxide) by heat, the honeycomb formed body is subjected to firing in a non-oxidizing atmosphere (reduction firing). Become. Thus, a honeycomb-shaped fired product was obtained.

[比較例2]
比較例2は、実施例2における還元焼成を通常の酸化焼成に置換したものに相当する。即ち比較例2では、実施例2と全く同じ手順でハニカム体の成形及び自然乾燥を行った。そして、乾燥後のハニカム成形体を酸化性雰囲気の中で焼成した。
酸化焼成に際しては、実施例2で使用したのと同じ焼成用の耐熱性容器にハニカム成形体を入れ、蓋をせずに開放状態とした。この耐熱性容器を電気炉に移して実施例2と同様に800℃で2時間加熱することで、ハニカム形状の焼成物を得た。
[Comparative Example 2]
Comparative Example 2 corresponds to the reduction firing in Example 2 replaced with ordinary oxidation firing. That is, in Comparative Example 2, the honeycomb body was molded and naturally dried in exactly the same procedure as in Example 2. The dried honeycomb formed body was fired in an oxidizing atmosphere.
At the time of oxidation firing, the honeycomb formed body was put in the same heat-resistant container for firing as used in Example 2 and was opened without a lid. The heat-resistant container was transferred to an electric furnace and heated at 800 ° C. for 2 hours in the same manner as in Example 2 to obtain a honeycomb-shaped fired product.

[接着剤VOC吸着試験]
実施例2および比較例2のハニカム状焼成物について、市販の接着剤からのVOC成分であるメチルエチルケトン(MEK)及びイソプロピルアルコール(IPA)の吸着性能を測定した。具体的には、第1のガス分析用サンプリングバッグ(いわゆるテドラーバッグ)中に空気3リットルと、塩ビパイプ用接着剤(三菱樹脂株式会社商品:ヒシボンド)10gとを入れ、室温で1時間放置してバッグ中にVOC成分を揮発充満させた。次に、しぼんだ状態の第2のサンプリングバッグ(膨張時の最大容積3リットル)にハニカム状焼成物から切り取った断片1gを試料として入れ、続いて前記第1のサンプリングバッグからのガス3リットルを充填し、密封状態で3時間放置した。その後、第2のサンプリングバッグ内の残留ガスをシリンジでサンプリングし、ガスクロマトグラフで各VOC成分の濃度を測定した。なお、ブランク試験として、第2のサンプリングバッグ中に試料を入れることなく、第1のサンプリングバッグからのガス3リットルを充填し、3時間放置した場合についても測定した。そして、ブランク試験での3時間後のVOC濃度と、試料入りバッグでの3時間後のVOC濃度との差に基づいてVOC吸着量(試料1gあたりのVOC吸着mg数)を計算した。接着剤VOC吸着試験における実施例2および比較例2の測定結果を表4に示す。
[Adhesive VOC adsorption test]
With respect to the honeycomb-like fired products of Example 2 and Comparative Example 2, the adsorption performance of methyl ethyl ketone (MEK) and isopropyl alcohol (IPA) which are VOC components from a commercially available adhesive was measured. Specifically, in a first gas analysis sampling bag (so-called Tedlar bag), 3 liters of air and 10 g of an adhesive for PVC pipe (Mitsubishi Resin Co., Ltd. product: Hishibond) are left at room temperature for 1 hour. The VOC component was volatilized and filled in the bag. Next, 1 g of a piece cut from the honeycomb fired product is put as a sample in a second sampling bag (maximum volume of 3 liters when expanded) in a deflated state, and then 3 liters of gas from the first sampling bag is added. Filled and left to seal for 3 hours. Thereafter, the residual gas in the second sampling bag was sampled with a syringe, and the concentration of each VOC component was measured with a gas chromatograph. In addition, as a blank test, it measured even when 3 liters of gas from the 1st sampling bag was filled and it was left for 3 hours, without putting a sample in a 2nd sampling bag. Based on the difference between the VOC concentration after 3 hours in the blank test and the VOC concentration after 3 hours in the sample bag, the VOC adsorption amount (mg VOC adsorption per 1 g sample) was calculated. Table 4 shows the measurement results of Example 2 and Comparative Example 2 in the adhesive VOC adsorption test.

[塗料VOC吸着試験]
実施例2および比較例2のハニカム状焼成物について、市販の塗料からのVOC成分であるキシレン、トルエン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、酢酸ブチル(BuAc)及びイソプロピルアルコール(IPA)の吸着性能を測定した。具体的には、第1のガス分析用サンプリングバッグ(いわゆるテドラーバッグ)中に空気3リットルと、有機溶剤系塗料(商品名:プライコート1300−1)10gとを入れ、室温で1時間放置してバッグ中にVOC成分を揮発充満させた。次に、しぼんだ状態の第2のサンプリングバッグ(膨張時の最大容積3リットル)にハニカム状焼成物から切り取った断片1gを試料として入れ、続いて前記第1のサンプリングバッグからのガス3リットルを充填し、密封状態で3時間放置した。その後、第2のサンプリングバッグ内の残留ガスをシリンジでサンプリングし、ガスクロマトグラフで各VOC成分の濃度を測定した。なお、ブランク試験として、第2のサンプリングバッグ中に試料を入れることなく、第1のサンプリングバッグからのガス3リットルを充填し、3時間放置した場合についても測定した。そして、ブランク試験での3時間後のVOC濃度と、試料入りバッグでの3時間後のVOC濃度との差に基づいてVOC吸着量(試料1gあたりのVOC吸着mg数)を計算した。塗料VOC吸着試験における実施例2および比較例2の測定結果を表5に示す。
[Paint VOC adsorption test]
About the honeycomb-like fired products of Example 2 and Comparative Example 2, xylene, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), butyl acetate (BuAc) and isopropyl alcohol (IPA) which are VOC components from commercially available paints The adsorption performance of was measured. Specifically, 3 liters of air and 10 g of an organic solvent-based paint (trade name: Plycoat 1300-1) are placed in a first gas analysis sampling bag (so-called Tedlar bag) and left at room temperature for 1 hour. The VOC component was volatilized and filled in the bag. Next, 1 g of a piece cut from the honeycomb fired product is put as a sample in a second sampling bag (maximum volume of 3 liters when expanded) in a deflated state, and then 3 liters of gas from the first sampling bag is added. Filled and left to seal for 3 hours. Thereafter, the residual gas in the second sampling bag was sampled with a syringe, and the concentration of each VOC component was measured with a gas chromatograph. In addition, as a blank test, it measured even when 3 liters of gas from the 1st sampling bag was filled and it was left for 3 hours, without putting a sample in a 2nd sampling bag. Based on the difference between the VOC concentration after 3 hours in the blank test and the VOC concentration after 3 hours in the sample bag, the VOC adsorption amount (mg VOC adsorption per 1 g sample) was calculated. Table 5 shows the measurement results of Example 2 and Comparative Example 2 in the paint VOC adsorption test.

Figure 2011092808
Figure 2011092808

Figure 2011092808
Figure 2011092808

[実施例2についての考察]
表4および表5に示すように、通常の酸化焼成で作った比較例2の焼成物に比べ、還元焼成で作った実施例2の焼成物の方が、各種VOCの吸着性能が軒並み高くなっている。この結果は実施例1の結果と符合するものである。なお、塗料VOC吸着試験でのIPAの吸着量については、実施例2と比較例2とで顕著な差が見られない(表5参照)。その原因として、鋳物廃砂に含まれた残留炭素に由来する吸着活性点は、親水性よりも疎水性の方が優位であることが考えられる。つまり、キシレン、トルエン等の疎水性(難水溶性)VOCがある中においてIPAのような親水性(易水溶性)VOCが共存する場合には、疎水性(難水溶性)VOCの吸着が優先される一方で親水性(易水溶性)VOCの吸着が後回しにされ、その結果、親水性(易水溶性)VOCのための吸着活性点が相対的に少なくなるためと推察される。
[Consideration on Example 2]
As shown in Tables 4 and 5, compared with the fired product of Comparative Example 2 made by normal oxidation firing, the fired product of Example 2 made by reduction firing has a higher adsorption performance for various VOCs. ing. This result is consistent with the result of Example 1. In addition, about the adsorption amount of IPA in the paint VOC adsorption test, a remarkable difference is not seen by Example 2 and the comparative example 2 (refer Table 5). As the cause, it is considered that the adsorption active point derived from the residual carbon contained in the casting waste sand is superior in hydrophobicity to hydrophilicity. That is, in the presence of hydrophobic (poorly water-soluble) VOCs such as xylene and toluene, when hydrophilic (easy-water-soluble) VOCs such as IPA coexist, adsorption of hydrophobic (poorly water-soluble) VOCs takes precedence. On the other hand, it is presumed that adsorption of hydrophilic (easy water-soluble) VOC is postponed, and as a result, the number of adsorption active sites for hydrophilic (easy-water-soluble) VOC is relatively reduced.

本発明の吸着材は、気相または液相中の悪臭成分や有害物質を吸着すべく様々な用途に使用可能であるが、とりわけ、生物学的脱臭に用いられる微生物の保持用担体(生物学的脱臭用の脱臭材)として有用である。   The adsorbent of the present invention can be used in various applications to adsorb malodorous components and harmful substances in the gas phase or liquid phase, and in particular, a carrier for holding microorganisms used for biological deodorization (biology). It is useful as a deodorizing material).

Claims (4)

炭素成分を含有する鋳物廃砂に分散媒を混合して原料混合物を調製する混合工程と、
前記原料混合物を成形および乾燥して所望形状の成形体とする成形工程と、
前記成形体を還元雰囲気中で焼成して炭素含有の焼成物を得る焼成工程と
を順に実施することを特徴とする吸着材の製造方法。
A mixing step of preparing a raw material mixture by mixing a dispersion medium with casting waste sand containing a carbon component;
A molding step of molding and drying the raw material mixture to form a molded body having a desired shape;
A method for producing an adsorbent, comprising sequentially performing a firing step of firing the molded body in a reducing atmosphere to obtain a carbon-containing fired product.
炭素成分を含有する鋳物廃砂にリン酸カルシウム化合物および分散媒を混合して原料混合物を調製する混合工程と、
前記原料混合物を成形および乾燥して所望形状の成形体とする成形工程と、
前記成形体を還元雰囲気中で焼成して炭素含有の焼成物を得る焼成工程と
を順に実施することを特徴とする吸着材の製造方法。
A mixing step of preparing a raw material mixture by mixing a calcium phosphate compound and a dispersion medium with waste waste sand containing a carbon component;
A molding step of molding and drying the raw material mixture to form a molded body having a desired shape;
A method for producing an adsorbent, comprising sequentially performing a firing step of firing the molded body in a reducing atmosphere to obtain a carbon-containing fired product.
炭素成分を含有する鋳物廃砂に分散媒を混合して原料混合物を調製し、この原料混合物を成形および乾燥して所望形状の成形体とし、この成形体を還元雰囲気中で焼成することで、炭素含有の焼成物として得られることを特徴とする吸着材。   A raw material mixture is prepared by mixing a dispersion medium with casting waste sand containing a carbon component, and this raw material mixture is molded and dried to form a molded body having a desired shape, and this molded body is fired in a reducing atmosphere. An adsorbent characterized by being obtained as a carbon-containing fired product. 炭素成分を含有する鋳物廃砂にリン酸カルシウム化合物および分散媒を混合して原料混合物を調製し、この原料混合物を成形および乾燥して所望形状の成形体とし、この成形体を還元雰囲気中で焼成することで、炭素含有の焼成物として得られることを特徴とする吸着材。   A calcium phosphate compound and a dispersion medium are mixed with waste sand containing a carbon component to prepare a raw material mixture. The raw material mixture is molded and dried to form a molded body having a desired shape, and the molded body is fired in a reducing atmosphere. Thus, an adsorbent obtained as a carbon-containing fired product.
JP2009246219A 2009-10-27 2009-10-27 Adsorbent and method for manufacturing the same Pending JP2011092808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246219A JP2011092808A (en) 2009-10-27 2009-10-27 Adsorbent and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246219A JP2011092808A (en) 2009-10-27 2009-10-27 Adsorbent and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011092808A true JP2011092808A (en) 2011-05-12

Family

ID=44110341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246219A Pending JP2011092808A (en) 2009-10-27 2009-10-27 Adsorbent and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011092808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVE20130024A1 (en) * 2013-05-08 2014-11-09 Gruppo Zilio S P A PROCEDURE FOR THE PREPARATION OF A HYDROXYPATITIS-BASED FILTERING MATERIAL AND PLANT FOR IMPLEMENTING THE PROCEDURE.-
ITVE20130023A1 (en) * 2013-05-08 2014-11-09 Gruppo Zilio S P A PROCEDURE FOR THE PREPARATION OF A HYDROXYPATITIS-BASED FILTERING MATERIAL AND PLANT FOR IMPLEMENTING THE PROCEDURE.-

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVE20130024A1 (en) * 2013-05-08 2014-11-09 Gruppo Zilio S P A PROCEDURE FOR THE PREPARATION OF A HYDROXYPATITIS-BASED FILTERING MATERIAL AND PLANT FOR IMPLEMENTING THE PROCEDURE.-
ITVE20130023A1 (en) * 2013-05-08 2014-11-09 Gruppo Zilio S P A PROCEDURE FOR THE PREPARATION OF A HYDROXYPATITIS-BASED FILTERING MATERIAL AND PLANT FOR IMPLEMENTING THE PROCEDURE.-
EP2801404A1 (en) * 2013-05-08 2014-11-12 Gruppo Zilio S.P.A. Process for preparing hydroxyapatite-based filtration material, and plant for implementing the process
EP2801405A1 (en) * 2013-05-08 2014-11-12 Gruppo Zilio S.P.A. Process for preparing hydroxyapatite-based filtration material, and plant for implementing the process

Similar Documents

Publication Publication Date Title
US6136749A (en) Mercury removal catalyst and method of making and using same
US8691722B2 (en) Sorbent comprising activated carbon particles, sulfur and metal catalyst
JPH08173800A (en) Adsorption material and manufacture thereof
CN105396551B (en) Rice root prepares iron content charcoal and its application in absorption solidification heavy metal ion
JP2011092808A (en) Adsorbent and method for manufacturing the same
JP3873081B2 (en) Humidity control deodorant and method for producing the same
JP2007261906A (en) Porous granule
JP4119947B2 (en) Ceramic porous body and method for producing the same
KR101621098B1 (en) Biofilter and the method of preparing the same
JP2014136185A (en) Silicon carbide-based base material having gas adsorption and regeneration functions
JP2005058964A (en) Material and product having environment improving function
CN211078709U (en) Composite active carbon filter element
KR101392963B1 (en) Functional earthenware composition and method of manufacturing functional earthenware
CN106582251A (en) Method for preparing flue gas desulfurization and mercury removal agent through raw material of lithium manganese titanate
KR101221658B1 (en) An organic and inorganic adhesion material coated the zeolite after carbonizing waste and manufacturing method the same
JP2002274972A (en) Charcoal-ceramic body and method of producing the same
JP2007051016A (en) Porous composite ceramic using incineration residue powder of waste dry cell and method of manufacturing the same
JP3431416B2 (en) Porous surface amorphous porous ceramics and method for producing the same
JP2011188888A (en) Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material
JPH08155295A (en) Carbon body and preparation thereof
JPH08157277A (en) Porous material and production thereof
JP2021115480A (en) Deodorization material
JP2001181070A (en) Method for producing baked material and the resultant baked material
JPH10194865A (en) Porous fired compact
KR950006630B1 (en) Method of preparing absorbent for exhaust gas purification