JP2007051016A - Porous composite ceramic using incineration residue powder of waste dry cell and method of manufacturing the same - Google Patents

Porous composite ceramic using incineration residue powder of waste dry cell and method of manufacturing the same Download PDF

Info

Publication number
JP2007051016A
JP2007051016A JP2005235960A JP2005235960A JP2007051016A JP 2007051016 A JP2007051016 A JP 2007051016A JP 2005235960 A JP2005235960 A JP 2005235960A JP 2005235960 A JP2005235960 A JP 2005235960A JP 2007051016 A JP2007051016 A JP 2007051016A
Authority
JP
Japan
Prior art keywords
pore
residue powder
porous composite
water
waste dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235960A
Other languages
Japanese (ja)
Other versions
JP4197329B2 (en
Inventor
Takafumi Nomura
隆文 野村
Toshiyuki Akazawa
敏之 赤澤
Hiroyuki Mitsuhashi
浩行 三津橋
Yuuma Sasaki
雄真 佐々木
Kenji Yoshida
憲司 吉田
Katsuo Nakamura
勝男 中村
Toru Takahashi
徹 高橋
Kazuhiro Sawayama
一博 澤山
Takashi Itabashi
孝至 板橋
Kiyoshi Ichijo
潔 一條
Tatsuaki Honma
龍昭 本間
Hiroshi Miura
博 三浦
Masami Kishi
政美 岸
Eishin Ito
英信 伊藤
Junichi Takahashi
順一 高橋
Kazumi Nebuka
一三 根深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAI BANE KK
NOMURA KOSAN CO Ltd
NOMURA KOSAN KK
Hokkaido University NUC
Hokkaido Prefecture
Kitami Institute of Technology NUC
Original Assignee
HOKKAI BANE KK
NOMURA KOSAN CO Ltd
NOMURA KOSAN KK
Hokkaido University NUC
Hokkaido Prefecture
Kitami Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAI BANE KK, NOMURA KOSAN CO Ltd, NOMURA KOSAN KK, Hokkaido University NUC, Hokkaido Prefecture, Kitami Institute of Technology NUC filed Critical HOKKAI BANE KK
Priority to JP2005235960A priority Critical patent/JP4197329B2/en
Publication of JP2007051016A publication Critical patent/JP2007051016A/en
Application granted granted Critical
Publication of JP4197329B2 publication Critical patent/JP4197329B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively manufacture a large quantity of a high quality porous composite ceramic using the incineration residue powder of waste dry cell as a raw material through steps of preparation/kneading/forming/drying/firing with a common extruder without using a clay outer frame or an expensive pressure molding apparatus. <P>SOLUTION: The manufacturing method is carried out by applying a 2 step preparation and forming method using the incineration residue powder of waste dry cell or the like as the raw material. That is, as a preparation 1st step, water and a forming assistant are added to the incineration residue powder of the waste dry cell, uniformly kneaded and aged and as a preparation 2nd step, a pore forming agent, a sintering assistant and water are added and kneaded thereto and finally, the mixture is formed, dried and fired. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、廃乾電池焙焼残渣粉末(廃乾電池を分解・解体し、焙焼・解砕・磁選した亜鉛滓を再焙焼することにより得た粉末)を原料とした多孔性複合セラミックス及びその製造方法に関する。   The present invention relates to porous composite ceramics made from waste dry cell roasting residue powder (powder obtained by decomposing / disassembling waste dry cell and re-roasting roasted, crushed and magnetically selected zinc soot) and its It relates to a manufacturing method.

本出願人らは、特許文献1(特開2004−292205号公報)に開示されているように、廃乾電池焙焼残渣粉末を原料とした排ガス捕集用セラミックスとその製造方法に関する発明を既に提案している。   As disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2004-292205), the present applicants have already proposed an invention relating to a ceramic for collecting exhaust gas using a waste battery roasting residue powder as a raw material and a method for producing the same. is doing.

この方法は、廃乾電池焙焼残渣粉末、造孔剤及び結合剤を混練して粘土の外枠に加圧充填後、成形・乾燥し、充填物と外枠を同時に焼結してその内部に廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスを形成するものである。この方法の利点は、廃乾電池焙焼残渣粉末はマンガンと亜鉛の複合酸化物からなる非可塑性・難焼結性粉体であり、それ自体で一定の形状を保持することは極めて困難であるため、焼結過程では、粘土の外枠と廃乾電池焙焼残渣粉末を同時に焼結させることにより、特殊な金型を用いず、廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスの成形が可能となることであった。しかしながら、反面、次のような問題点が存在した。   In this method, waste dry cell roasting residue powder, pore-forming agent and binder are kneaded and pressurized and filled into the outer frame of the clay, then molded and dried, and the filler and outer frame are sintered simultaneously to form the inside. A porous composite ceramic using a waste battery roasting residue powder is formed. The advantage of this method is that the waste dry battery roasting residue powder is a non-plastic and hardly sinterable powder composed of a complex oxide of manganese and zinc, and it is extremely difficult to maintain a certain shape by itself. In the sintering process, it is possible to form porous composite ceramics using waste battery roasting residue powder without using special molds by simultaneously sintering clay outer frame and waste battery roasting residue powder It was to become. However, the following problems existed.

(1)原料粉末の廃乾電池焙焼残渣粉末と共に焼結する外枠が必要である。
(2)外枠とこれに充填される原料粉末の焼成収縮率を合わせなければならず、外枠となる粘土の調合や水分等を正確に調整しなければならない。
(3)粘土の外枠に原料粉末を充填するための充填・加圧装置が必要であり、所望の気孔率・細孔径を得るためには微妙な圧力調整が不可欠である。
(4)外枠の準備・脱着・原料充填・加圧・焼成・焼結体の取り出しという複雑な多段階工程を経るため、セラミックス製品の量産化が困難である。
特開2004−292205号公報
(1) An outer frame that is sintered together with the waste dry battery roasting residue powder of raw material powder is required.
(2) The firing shrinkage rate of the outer frame and the raw material powder filled in the outer frame must be matched, and the formulation and moisture content of the outer frame must be adjusted accurately.
(3) A filling / pressurizing device is required to fill the outer frame of the clay with the raw material powder, and fine pressure adjustment is indispensable to obtain the desired porosity and pore diameter.
(4) Mass production of ceramic products is difficult because of the complicated multi-step process of outer frame preparation, desorption, raw material filling, pressurization, firing, and removal of the sintered body.
JP 2004-292205 A

本発明者らは、成形が難しいという廃乾電池焙焼残渣粉末の性質に鑑み、その成形について種々の方法・試験を試みた。原料と結合剤(成形助剤の一種)等を予め全て同時に調合する一般的な湿式押出成形法では、廃乾電池焙焼残渣粉末、造孔剤及び結合剤や調合組成比をどのように変えても、成形・乾燥時から焼結終了までの間に、亀裂が生ずる等の問題を回避することができなかった。   In view of the property of waste battery roasting residue powder that is difficult to form, the present inventors tried various methods and tests for the forming. In a general wet extrusion method in which all raw materials and binder (a kind of molding aid) are prepared at the same time in advance, how to change the waste dry cell roasting residue powder, pore former, binder and compounding composition ratio However, it was not possible to avoid problems such as cracking during molding and drying until the end of sintering.

本発明者らは、試行錯誤の結果、原料の調合過程を2段階に分けることで、上述のような種々の問題を解決できる本発明を見出した。   As a result of trial and error, the present inventors have found the present invention that can solve various problems as described above by dividing the raw material preparation process into two stages.

すなわち、本発明では、調合第1段階として、廃乾電池焙焼残渣粉末に成形助剤と水を加えて混練・熟成した後、調合第2段階として、これに造孔剤、焼結助剤及び水を添加・混練して、例えば湿式押出法により成形し、十分に乾燥した後、焼成する。廃乾電池焙焼残渣粉末と造孔剤の調合組成比は、30〜90%対10〜60%とするのが好ましい。   That is, in the present invention, as a first stage of preparation, after adding a molding aid and water to the waste dry battery roasting residue powder and kneading and aging, as a second stage of preparation, a pore-forming agent, a sintering aid and Water is added and kneaded, formed by, for example, a wet extrusion method, sufficiently dried, and then fired. The composition ratio of the waste dry battery roasting residue powder and the pore-forming agent is preferably 30 to 90% and 10 to 60%.

調合第1段階において、廃乾電池焙焼残渣粉末に成形助剤と水の他にさらに畜産系廃棄物の牛骨由来焼成アパタイト(牛骨を粉砕・焼成したリン酸カルシウム:HAp)を添加することにより、廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスの微生物親和性が向上することで、優れた水質浄化特性を示し、水処理用微生物担体への応用が可能である。   In the first stage of preparation, in addition to the molding aid and water, in addition to the molding aid and water, the calf bone-derived calcined apatite (calcium phosphate pulverized and calcined calf bone: HAp) is added to the waste dry battery roasting residue powder. By improving the microbial affinity of the porous composite ceramics using waste dry cell roasting residue powder, it exhibits excellent water purification characteristics and can be applied to a microbial carrier for water treatment.

調合第2段階において、造孔剤として農産物又はその廃棄物、例えば、安価で入手しやすいコ−ンスタ−チや小麦ふすま等を用いた場合には、窯業分野の酸化雰囲気焼成炉内で、これらの造孔剤を完全燃焼することにより、ダイオキシン等の有害物質が環境へ排出されることなく、造孔剤のサイズと形状を保持した細孔構造を有する廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスを設計することができる。   In the second stage of preparation, when agricultural products or wastes thereof, for example, cheap and easily available corn starch or wheat bran are used as pore forming agents, these are used in an oxidizing atmosphere firing furnace in the ceramic industry. By completely burning the pore-forming agent, the porous material using the waste dry battery roasting residue powder having a pore structure that retains the size and shape of the pore-forming agent without discharging harmful substances such as dioxin to the environment Composite ceramics can be designed.

廃乾電池焙焼残渣粉末を用いて、湿式押出成形法により作製された多孔性複合セラミックスは、細孔径1〜500μm、気孔率30〜80vol%を有し、市販の水処理用微生物担体(細孔径:5〜70μm、気孔率:50〜70vol%)や排ガス捕集フィルタ(細孔径:10〜100μm、気孔率:50〜80vol%)等への適用範囲内に含まれる。   Porous composite ceramics produced by a wet extrusion method using waste dry cell roasting residue powder has a pore diameter of 1 to 500 μm and a porosity of 30 to 80 vol%, and is a commercially available water treatment microorganism carrier (pore diameter). : 5-70 μm, porosity: 50-70 vol%) and exhaust gas collection filters (pore diameter: 10-100 μm, porosity: 50-80 vol%) and the like.

本発明では、粘土による外枠を用いずに、しかも加圧装置を用いた加圧成形によらずに一般的な湿式押出成形法にて成形し、十分に乾燥した後、焼成することにより、廃乾電池焙焼残渣粉末を原料とする良質の多孔性複合セラミックスを作製することができる。従来の一般的な押出成形機を用いることができるので、連続成形が可能で、量産化が容易である。   In the present invention, by using a general wet extrusion method without using an outer frame made of clay and without using pressure forming using a pressure device, and after sufficiently drying, by firing, A high-quality porous composite ceramic using a waste battery roasting residue powder as a raw material can be produced. Since a conventional general extrusion molding machine can be used, continuous molding is possible and mass production is easy.

図1に、廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスの製造工程(2段階調合成形法)を示す。調合第1段階では、廃乾電池焙焼残渣粉末1(50〜70%)に、成形助剤2の有機結合剤(1〜2%)と水3を加えて均質に混練する。この混合物4を所定時間熟成した後、調合第2段階として、混合物4に、焼結助剤5(2〜10%)、造孔剤6の農産物あるいは農産系廃棄物(20〜40%)及び水7を加えて混練する。この混練坏土8を押出成形機に投入して所望の形状に成形する。なお、調合第1・2段階の水3と水7の総量は、成形に適した量とする。
また、調合第1段階において廃乾電池焙焼残渣粉末の一部を牛骨由来焼成アパタイトに置換する場合もある。
FIG. 1 shows a manufacturing process (two-stage compounding method) of porous composite ceramics using waste dry battery roasting residue powder. In the first stage of preparation, the organic binder (1-2%) of the molding aid 2 and water 3 are added to the waste dry battery roasting residue powder 1 (50-70%) and kneaded uniformly. After the mixture 4 is aged for a predetermined time, as a second stage of preparation, the mixture 4 is mixed with a sintering aid 5 (2 to 10%), an agricultural product of a pore former 6 or agricultural waste (20 to 40%) and Add water 7 and knead. This kneaded clay 8 is put into an extrusion molding machine and formed into a desired shape. The total amount of water 3 and water 7 in the first and second stages of preparation is an amount suitable for molding.
In some cases, part of the waste dry battery roasting residue powder is replaced with calf bone-derived fired apatite in the first stage of preparation.

以上の方法で製造された成形体9は乾燥後、一例として図2に示す焼成温度曲線に従って焼成する。この焼成工程によって、造孔剤等は炭化物として残留することなく完全に燃焼され、目的とする細孔構造の多孔性複合セラミックス10が得られる。   The molded body 9 manufactured by the above method is dried and then fired according to a firing temperature curve shown in FIG. 2 as an example. By this firing step, the pore-forming agent and the like are completely burned without remaining as carbides, and the porous composite ceramic 10 having the desired pore structure is obtained.

本発明者らは、次の調合・混練・成形・乾燥・焼成工程により多孔性複合セラミックスを作製した。表1に、原料に用いた廃乾電池焙焼残渣粉末(粒度が60mesh以下)の化学組成を示す。   The present inventors produced porous composite ceramics by the following preparation, kneading, molding, drying, and firing processes. Table 1 shows the chemical composition of waste dry battery roasting residue powder (particle size of 60 mesh or less) used as a raw material.

Figure 2007051016
Figure 2007051016

調合第1段階として、廃乾電池焙焼残渣粉末1400g、成形助剤のメチルセルロ−ス(MC)30g及び水250gを均質に混練し、室温で約30分間熟成した。調合第2段階として、調合第1段階で作製した混合物に、焼結助剤の活性炭汚泥200g、造孔剤のコ−ンスタ−チ(CS)400g及び水300gを加えて混練後、押出成形機に投入して成形した。廃乾電池焙焼残渣粉末を用いた成形体の形状は角柱・円柱・円筒状と種々試みた。いずれも乾燥亀裂は見られず、良好な成形体が得られた。   As the first stage of preparation, 1400 g of waste dry battery roasting residue powder, 30 g of methyl cellulose (MC) as a molding aid and 250 g of water were homogeneously kneaded and aged at room temperature for about 30 minutes. As the second stage of blending, 200 g of activated carbon sludge as a sintering aid, 400 g of pore forming agent (CS) and 300 g of water are added to the mixture prepared in the first stage of blending and kneaded, and then an extruder. And then molded. The shape of the compact using waste battery roasting residue powder was tried in various ways: prism, cylinder, cylinder. In any case, no dry crack was observed, and a good molded product was obtained.

同時調合成形法により、上述の調合組成比で廃乾電池焙焼残渣粉末を用いた成形体の作製を行ったが、成形体に乾燥亀裂や破損が観察された。また、調合組成比を変更して種々試みたが、すべての成形体に同様の傾向が見られた。   A molded body using waste dry battery roasting residue powder was prepared by the simultaneous blending molding method with the above-mentioned blended composition ratio, but dry cracks and breakage were observed in the molded body. In addition, various attempts were made by changing the composition ratio, but the same tendency was observed in all the molded bodies.

同時調合成形法で作製したすべての廃乾電池焙焼残渣粉末を用いた成形体に乾燥亀裂や破損が生じた原因は、成形助剤が十分にその機能を発揮していないためである。この要因は、造孔剤の吸水率が大きいため、原料を同時に調合・混練した場合、造孔剤に水分が取られ、成形助剤にその機能を発現するために必要な水分が十分に供給されないためである。
この問題を解決するため、成形助剤と造孔剤に水を加える時期を分け、成形助剤に必要な水分が十分に供給されるようにした。また、成形助剤がその機能を発現するためには、廃乾電池焙焼残渣粉末、成形助剤及び水の混合物が十分になじむための時間が必要であり、この混合物が熟成する時間を設けることとした。
The reason why dry cracks and breakage occurred in molded bodies using all waste dry battery roasting residue powders produced by the simultaneous blending molding method is that the molding aid does not sufficiently exhibit its function. This is due to the large water absorption rate of the pore-forming agent, so that when the raw materials are mixed and kneaded at the same time, moisture is taken into the pore-forming agent and sufficient water is supplied to the molding aid to express its function. Because it is not done.
In order to solve this problem, the time required to add water to the forming aid and the pore-forming agent was divided so that the water necessary for the forming aid was sufficiently supplied. In addition, in order for the molding aid to exhibit its function, it is necessary to have enough time for the mixture of the waste dry battery roasting residue powder, the molding aid and water to be fully blended, and to allow time for this mixture to age. It was.

上述のような理由から、調合第1段階として廃乾電池焙焼残渣粉末、成形助剤及び水を均質に調合・混練し、所定時間熟成した後に、調合第2段階としてこの混合物に造孔剤,焼結助剤及び水を調合・混練する、2段階調合成形法を見出した。   For the reasons described above, the waste dry battery roasting residue powder, the molding aid and water are uniformly mixed and kneaded as the first stage of preparation, and after aging for a predetermined time, the mixture is then made into a pore-forming agent as the second stage of preparation. The present inventors have found a two-stage blending molding method in which a sintering aid and water are blended and kneaded.

表2に、2段階調合成形法による廃乾電池焙焼残渣粉末を用いた成形体の調合組成比を示す。本方法により作製した棒状試料(成形体)は、いずれも乾燥亀裂や割れ等は発生せず良好に乾燥・焼成が行われた。   Table 2 shows the composition ratio of the molded body using the waste dry battery roasting residue powder obtained by the two-stage compounding method. The rod-like samples (molded bodies) produced by this method were dried and fired satisfactorily without any dry cracks or cracks.

Figure 2007051016
Figure 2007051016

なお、表2に示す調合組成比は、以下のような観点から決定した。
主原料の廃乾電池焙焼残渣粉末は廃棄物であり、その有効利用という観点からもその調合組成比をできるだけ大きくすることを目標とし、造孔剤との兼ね合いから調合組成比を決定した。
In addition, the preparation composition ratio shown in Table 2 was determined from the following viewpoints.
The main raw material waste dry cell roasting residue powder is a waste, and the formulation composition ratio was determined from the balance with the pore-forming agent with the goal of making the composition ratio as large as possible from the viewpoint of effective utilization.

牛骨由来焼成アパタイトは、微生物親和性の向上と焼結性の改善に効果があることから、主原料の廃乾電池焙焼残渣粉末の一部を牛骨由来焼成アパタイトに置換して、その効果の程度を把握した。   Since calf bone-derived calcined apatite is effective in improving the affinity for microorganisms and improving sinterability, a part of the waste dry battery roasting residue powder of the main raw material is replaced with calf bone-derived calcined apatite, and its effect I grasped the degree of.

成形性及び焼結性を向上させるために、成形助剤及び焼結助剤を使用し、最適な調合組成比を検討した。なお、成形助剤には2種類の有機結合剤を、焼結助剤には活性炭汚泥を使用した。   In order to improve the moldability and sinterability, a molding aid and a sintering aid were used, and the optimum composition ratio was examined. Two types of organic binders were used as the molding aid, and activated carbon sludge was used as the sintering aid.

造孔剤として小麦ふすまやコ−ンスタ−チを使用したのは、焼成過程において容易に燃焼し、所望の細孔構造が得られることに加えて、安価で大量に入手できること、また、燃焼時に有害なガスの排出がないこと等の特長を有しているためである。
上述のような理由から、造孔剤には小麦ふすまやコ−ンスタ−チを使用し、目的とする細孔構造に応じて、調合組成比及び粒径を検討した。
Wheat bran and corn starch were used as a pore-forming agent because they burned easily during the baking process, and in addition to obtaining the desired pore structure, they were available at low cost and in large quantities. This is because it has features such as no harmful gas emission.
For the reasons described above, wheat bran and corn starch were used as the pore-forming agent, and the composition ratio and particle size were examined according to the intended pore structure.

水の添加量は、調合第1段階においては、廃乾電池焙焼残渣粉末及び成形助剤の量に応じて調合組成比を決定した。また、調合第2段階においては、調合第1段階で作製した混合物、焼結助剤及び造孔剤を混練したものに、押出成形機で成形体が作製できる程度の硬さになるまで加水を行った。   As for the amount of water added, the composition ratio was determined in accordance with the amounts of waste dry battery roasting residue powder and molding aid in the first stage of preparation. In addition, in the second stage of preparation, the mixture prepared in the first stage of mixing, the sintering aid and the pore former are kneaded until they are hard enough to produce a molded body with an extruder. went.

表2に示す調合組成比により作製した試料のうち、排ガス捕集フィルタ又は水処理用微生物担体に適用できる可能性があるものについては、それぞれ形状を板状又は中空体状に試料を作製し、それぞれの用途に対する適合性を検討した。   Among samples prepared according to the composition ratios shown in Table 2, for samples that may be applicable to exhaust gas collection filters or water treatment microorganism carriers, samples are prepared in a plate shape or hollow body shape, respectively. The suitability for each application was examined.

板状及び中空体形状の多孔性複合セラミックスの吸水率、気孔率及びかさ比重を測定した。ただし、焼成温度は約1000〜1200℃とした。
図3(a)、(b)、(c)に、試作した3種類形状の多孔性複合セラミックスの外観と、寸法(単位はmm)をそれぞれ示す。
The water absorption, porosity, and bulk specific gravity of the plate-like and hollow body-shaped porous composite ceramics were measured. However, the firing temperature was about 1000 to 1200 ° C.
FIGS. 3A, 3B, and 3C show the appearance and dimensions (unit: mm) of the three types of porous composite ceramics that were prototyped.

表3に、1200℃で焼成した板状試料の測定結果を示す。排ガス捕集フィルタとして利用する場合、細孔径10〜100μm、気孔率50〜80vol%であり、かつ連続気孔であることが求められる。本条件で作製した試料は、細孔径及び気孔率ともにこれらの条件を満たすことに加え、ガス透過係数も1.1×10−11程度となり、排ガス捕集フィルタとして十分な多孔特性を有していることが確認された。 Table 3 shows the measurement results of the plate-like sample fired at 1200 ° C. When used as an exhaust gas collecting filter, it is required to have a pore diameter of 10 to 100 μm, a porosity of 50 to 80 vol%, and continuous pores. In addition to satisfying these conditions for both the pore diameter and porosity, the sample prepared under these conditions has a gas permeability coefficient of about 1.1 × 10 −11 and has sufficient porous characteristics as an exhaust gas collection filter. It was confirmed that

Figure 2007051016
Figure 2007051016

表4に、1050〜1200℃で焼成した中空体試料の測定結果を示す。水処理用微生物担体として利用する場合、細孔径5〜70μm、気孔率50〜70vol%であることが求められる。本条件で作製した試料はこれらの条件を満たし、水処理用微生物担体として十分な多孔特性を有していることが確認された。   In Table 4, the measurement result of the hollow body sample baked at 1050-1200 degreeC is shown. When used as a microbial carrier for water treatment, it is required to have a pore diameter of 5 to 70 μm and a porosity of 50 to 70 vol%. It was confirmed that the sample prepared under these conditions satisfied these conditions and had sufficient porous characteristics as a microbial carrier for water treatment.

Figure 2007051016
Figure 2007051016

本発明により得られた多孔性複合セラミックスは、水処理材や排ガス捕集材等への応用が期待される。本発明者らは、廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスの水処理材への優位性を調べるため、水質浄化用微生物試験及び水質浄化用硝化活性試験を実施した。   The porous composite ceramics obtained by the present invention are expected to be applied to water treatment materials, exhaust gas collection materials, and the like. In order to investigate the superiority of porous composite ceramics using waste dry battery roasting residue powder to water treatment materials, the present inventors conducted a water purification microbe test and a water purification nitrification activity test.

<試験例1> 水質浄化用微生物活性試験
BOD(Biological Oxgen Demand:生物学的酸素要求量)成分の除去活性に及ぼす本発明による多孔性複合セラミックスの効果を、図4に示す評価装置により検証した。この多孔性複合セラミックスは、造孔剤としてコ−ンスタ−チを20%調合し、押出成形後、1150℃で4時間焼成した、中空円筒状多孔体(外径13mm×内径8mm×高さ15mm)を用いた。
<Test Example 1> Microbial activity test for water purification The effect of the porous composite ceramic according to the present invention on the removal activity of BOD (Biological Oxgen Demand) component was verified by the evaluation apparatus shown in FIG. . This porous composite ceramic is a hollow cylindrical porous body (outer diameter 13 mm × inner diameter 8 mm × height 15 mm) prepared by blending 20% of a cone starch as a pore-forming agent, and extruding and firing at 1150 ° C. for 4 hours. ) Was used.

1回目の試験としてBOD成分含有混合溶液(ペプトン100mg/L、グルコ−ス100mg/L、栄養緩衝剤(リン酸緩衝液、硫酸マグネシウム溶液、塩化カルシウム溶液、塩化鉄(III)溶液))に、微生物製剤(商品名:ハイポルカS)を100mg/L添加し、廃乾電池焙焼残渣粉末を用いた担体系では多孔性複合セラミックス4個を投入した全量160mLを、20℃でスターラ撹拌により3日間培養した。一方、対照用試料である担体なし系ではBOD成分含有混合溶液に微生物製剤のみを添加し、同様にして撹拌培養を行った。   As a first test, mixed solution containing BOD components (peptone 100 mg / L, glucose 100 mg / L, nutrient buffer (phosphate buffer, magnesium sulfate solution, calcium chloride solution, iron (III) chloride solution)) In a carrier system using 100 mg / L of a microbial preparation (trade name: Hypolka S) and a waste dry cell baking residue powder, a total volume of 160 mL containing 4 porous composite ceramics is cultured at 20 ° C. with stirring with a stirrer for 3 days. did. On the other hand, in the system without carrier as a control sample, only the microorganism preparation was added to the BOD component-containing mixed solution, and stirring culture was performed in the same manner.

2回目の微生物活性試験は、廃乾電池焙焼残渣粉末を用いた担体系では1回目の試験後の多孔性複合セラミックスの材料表面を蒸留水で洗浄後、新たなBOD成分含有混合溶液に投入し、20℃でスターラ撹拌下での3日間の酸素消費量を測定した。担体なし系では1回目の試験後の培養液を多孔性複合セラミックス投入容積と等容量添加し、同様に3日間の酸素消費量を測定した。図5に、2回目の反応経過時間と酸素消費量の関係をグラフにして示す。早期に酸素消費量が大きいことはBOD除去活性が高いことを意味している。
なお、3回目以降の試験も、同様にして、前回の試験の多孔性複合セラミックス又は培養液を投入添加して試験を継続した。
In the second microbial activity test, in the carrier system using waste dry cell roasting residue powder, the material surface of the porous composite ceramic after the first test is washed with distilled water and then put into a new mixed solution containing BOD components. The oxygen consumption for 3 days under stirring with a stirrer at 20 ° C. was measured. In the system without carrier, the culture solution after the first test was added in an amount equal to the porous composite ceramics input volume, and the oxygen consumption for 3 days was measured in the same manner. FIG. 5 is a graph showing the relationship between the second elapsed reaction time and the oxygen consumption. A large oxygen consumption at an early stage means high BOD removal activity.
In the third and subsequent tests, the test was continued in the same manner by adding and adding the porous composite ceramics or culture solution of the previous test.

図6に、6回目の反応経過時間と酸素消費量の関係をグラフにして示す。本発明による多孔性複合セラミックスを投入した場合の方が、酸素消費量が大きく、BOD成分の分解が速く進行し、微生物活性が高くなることが確認された。   FIG. 6 is a graph showing the relationship between the elapsed time of the sixth reaction and the oxygen consumption. It was confirmed that when the porous composite ceramic according to the present invention was added, the oxygen consumption was larger, the decomposition of the BOD component proceeded faster, and the microbial activity increased.

<試験例2> 水質浄化用硝化活性試験
アンモニア態窒素の酸化(硝化)活性に及ぼす多孔性複合セラミックスの効果を図7に示すような試験により検証した。多孔性複合セラミックスは、造孔剤としてコ−ンスタ−チを20%調合し、押出成形後、1150℃で4時間焼成した、中空円筒状多孔体(外径13mm×内径8mm×高さ15mm)を用いた。
Test Example 2 Nitrification Activity Test for Water Quality Purification The effect of porous composite ceramics on the oxidation (nitrification) activity of ammonia nitrogen was verified by a test as shown in FIG. Porous composite ceramics is a hollow cylindrical porous body (outer diameter 13 mm × inner diameter 8 mm × height 15 mm) prepared by blending 20% of a cone starch as a pore-forming agent, extruded and fired at 1150 ° C. for 4 hours. Was used.

アンモニア酸化細菌用液体培地に屎尿硝化槽採取液を添加した2Lの実験槽に供試担体系では多孔性複合セラミックスを担体容積比0.08で投入し、室温、曝気下で1ヶ月間培養した。対照用試料として市販担体系ではPVA(ポリビニルアルコール)製スポンジ担体(長さ4mm×幅4mm×高さ4mm、平均気孔径80μm)を供試担体と同表面積で投入し、同様に培養した。
供試担体系と市販担体系の各実験槽において、培養後、人工排水(リン酸二アンモニウム0.96g/L、無機栄養塩液(硫酸マグネシウム溶液、塩化カルシウム溶液、EDTA鉄溶液))を室温、曝気下で、一定水量(1L/d)で通水(NH3−N濃度200mg/L、容積負荷量100mg/L・d)した。
実験槽側部から排出される処理液のアンモニア態、亜硝酸態、及び硝酸態窒素濃度を測定し、次の式で硝化率を算出した。
In the test carrier system, the porous composite ceramics was introduced at a carrier volume ratio of 0.08 in a 2 L experimental tank in which a liquid medium for ammonia-oxidizing bacteria was added to a liquid medium for excrement of urine and cultured for 1 month at room temperature under aeration. . As a control sample, in a commercially available carrier system, a sponge carrier made of PVA (polyvinyl alcohol) (length 4 mm × width 4 mm × height 4 mm, average pore diameter 80 μm) was introduced with the same surface area as the test carrier and cultured in the same manner.
In each experimental tank of the test carrier system and the commercial carrier system, after culturing, artificial drainage (diammonium phosphate 0.96 g / L, inorganic nutrient salt solution (magnesium sulfate solution, calcium chloride solution, EDTA iron solution)) at room temperature Under aeration, water was passed through with a constant amount of water (1 L / d) (NH3-N concentration: 200 mg / L, volumetric load: 100 mg / L · d).
The ammonia, nitrite, and nitrate nitrogen concentrations of the treatment liquid discharged from the experimental tank side were measured, and the nitrification rate was calculated by the following formula.

硝化率={(亜硝酸態窒素濃度)+(硝酸態窒素濃度)}/{(アンモニア態窒素濃度)+(亜硝酸態窒素濃度)+(硝酸態窒素濃度)}   Nitrification rate = {(nitrite nitrogen concentration) + (nitrate nitrogen concentration)} / {(ammonia nitrogen concentration) + (nitrite nitrogen concentration) + (nitrate nitrogen concentration)}

図8に、反応経過時間と硝化率の関係をグラフにして示す。廃乾電池焙焼残渣粉末を用いた担体系で硝化率が市販担体系よりも高く推移し、多孔性複合セラミックスを用いることによりアンモニア態窒素の酸化(硝化)活性が向上することが確認された。   FIG. 8 is a graph showing the relationship between the elapsed reaction time and the nitrification rate. It was confirmed that the nitrification rate of the support system using the waste dry cell roasting residue powder was higher than that of the commercially available support system, and that the oxidation (nitrification) activity of ammonia nitrogen was improved by using porous composite ceramics.

本発明により試作した、廃乾電池焙焼残渣粉末を用いた多孔性複合セラミックスの製造工程図の一例である。It is an example of the manufacturing-process figure of the porous composite ceramics using the waste dry battery roasting residue powder made as an experiment by this invention. 図1に記載の製造工程図のうち、焼成過程における焼成温度の時間的推移の一例を示すグラフである。It is a graph which shows an example of the time transition of the calcination temperature in a baking process among the manufacturing-process diagrams of FIG. (a)、(b)、(c)は、試作した3種類の多孔性複合セラミックスのそれぞれの外観と寸法を示す図である。(A), (b), (c) is a figure which shows each external appearance and dimension of three types of porous composite ceramics made as an experiment. 本発明で得られた多孔性複合セラミックスを用いた水質浄化用微生物活性試験の模式図である。It is a schematic diagram of the microbial activity test for water purification | cleaning using the porous composite ceramics obtained by this invention. 同試験における微生物分解反応2回目の経過時間と酸素消費量の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time of the 2nd time microbial decomposition reaction in the same test, and oxygen consumption. 同試験における微生物分解反応6回目の経過時間と酸素消費量の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time of the 6th microbial decomposition reaction in the same test, and oxygen consumption. 本発明で得られた多孔性複合セラミックスを用いた水質浄化用硝化活性試験の模式図である。It is a schematic diagram of the nitrification activity test for water purification | cleaning using the porous composite ceramics obtained by this invention. 水質浄化用硝化活性試験の経過時間と硝化率の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time of the nitrification activity test for water quality purification, and a nitrification rate.

符号の説明Explanation of symbols

1 廃乾電池焙焼残渣粉末
2 成形助剤
3 水
4 混合物
5 焼結助剤
6 造孔剤
7 水
8 混練坏土
9 成形体
10 多孔性複合セラミックス
DESCRIPTION OF SYMBOLS 1 Waste battery roasting residue powder 2 Molding aid 3 Water 4 Mixture 5 Sintering aid 6 Pore making agent 7 Water 8 Kneading clay 9 Molded body 10 Porous composite ceramics

Claims (10)

廃乾電池焙焼残渣粉末に成形助剤と水を加えて混練・熟成した後、造孔剤、焼結助剤及び水を添加して混練し、成形・乾燥・焼成したことを特徴とする多孔性複合セラミックス。   A porous material characterized in that a molding aid and water are added to a waste dry battery roasting residue powder, kneaded and aged, then added with a pore-forming agent, a sintering aid and water, kneaded, molded, dried and fired. Composite ceramics. 廃乾電池焙焼残渣粉末と造孔剤の調合組成比を30〜90%対10〜60%とすることを特徴とする請求項1に記載の多孔性複合セラミックス。   2. The porous composite ceramics according to claim 1, wherein the composition ratio of the waste dry battery roasting residue powder and the pore former is 30 to 90% to 10 to 60%. 廃乾電池焙焼残渣粉末に成形助剤と水の他にさらに牛骨由来焼成アパタイト(牛骨を粉砕・焼成したリン酸カルシウム:HAp)を加えて混練・熟成した後、造孔剤、焼結助剤及び水を添加して混練し、成形・乾燥・焼成したことを特徴とする多孔性複合セラミックス。   In addition to molding aid and water, calcined apatite derived from beef bone (calcium phosphate obtained by crushing and calcining beef bone: HAp) is added to the waste dry battery roasting residue powder, kneading and aging, followed by pore-forming agent and sintering aid And porous composite ceramics characterized by being added, kneaded, molded, dried and fired. 造孔剤が農産物又はその廃棄物であることを特徴とする請求項1、2又は3に記載の多孔性複合セラミックス。   The porous composite ceramic according to claim 1, 2 or 3, wherein the pore-forming agent is an agricultural product or a waste product thereof. 細孔径が1〜500μm、気孔率が30〜80vol%であることを特徴とする請求項1、2、3又は4に記載の多孔性複合セラミックス。   5. The porous composite ceramic according to claim 1, wherein the pore diameter is 1 to 500 μm and the porosity is 30 to 80 vol%. 廃乾電池焙焼残渣粉末に成形助剤と水を加えて混練・熟成した後、造孔剤、焼結助剤及び水を添加して混練し、成形・乾燥・焼成することを特徴とする多孔性複合セラミックスの製造方法。   A porosity characterized by adding a molding aid and water to a waste battery roasting residue powder, kneading and aging, then adding a pore-forming agent, a sintering aid and water, kneading, molding, drying and firing. For producing conductive composite ceramics. 廃乾電池焙焼残渣粉末と造孔剤の調合組成比を30〜90%対10〜60%とすることを特徴とする請求項6に記載の多孔性複合セラミックスの製造方法。   The method for producing a porous composite ceramic according to claim 6, wherein the composition ratio of the waste dry battery roasting residue powder and the pore-forming agent is 30 to 90% to 10 to 60%. 廃乾電池焙焼残渣粉末に成形助剤と水の他にさらに牛骨由来焼成アパタイト(HAp)を加えて混練・熟成した後、造孔剤、焼結助剤及び水を添加して混練し、成形・乾燥・焼成することを特徴とする多孔性複合セラミックスの製造方法。   In addition to the molding aid and water, the calf bone-derived calcined apatite (HAp) is added to the waste dry battery roasting residue powder, and after kneading and aging, the pore former, the sintering aid and water are added and kneaded. A method for producing a porous composite ceramic, characterized by molding, drying and firing. 造孔剤が農産物又はその廃棄物であることを特徴とする請求項6、7又は8に記載の多孔性複合セラミックスの製造方法。   The method for producing porous composite ceramics according to claim 6, 7 or 8, wherein the pore-forming agent is an agricultural product or a waste product thereof. 造孔剤として、コ−ンスタ−チと小麦ふすまの両方又はいずれか一方を用いることを特徴とする請求項9に記載の多孔性複合セラミックスの製造方法。   10. The method for producing porous composite ceramics according to claim 9, wherein either or both of starch and wheat bran are used as the pore-forming agent.
JP2005235960A 2005-08-16 2005-08-16 Porous composite ceramics using waste dry cell roasting residue powder and manufacturing method thereof Expired - Fee Related JP4197329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235960A JP4197329B2 (en) 2005-08-16 2005-08-16 Porous composite ceramics using waste dry cell roasting residue powder and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235960A JP4197329B2 (en) 2005-08-16 2005-08-16 Porous composite ceramics using waste dry cell roasting residue powder and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007051016A true JP2007051016A (en) 2007-03-01
JP4197329B2 JP4197329B2 (en) 2008-12-17

Family

ID=37915727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235960A Expired - Fee Related JP4197329B2 (en) 2005-08-16 2005-08-16 Porous composite ceramics using waste dry cell roasting residue powder and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4197329B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276812A (en) * 2013-07-03 2015-01-14 济南大学 Sulfate slag based particle electrode and preparation method thereof
CN104478472A (en) * 2014-11-12 2015-04-01 西安科技大学 Method for preparing porous material with solid waste as raw material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327483A (en) * 2002-03-07 2003-11-19 Sekisui Chem Co Ltd Ceramic composition and method of manufacturing ceramic filter
JP2004292205A (en) * 2003-03-26 2004-10-21 Hokkaido Ceramics for catching exhaust gas and its producing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327483A (en) * 2002-03-07 2003-11-19 Sekisui Chem Co Ltd Ceramic composition and method of manufacturing ceramic filter
JP2004292205A (en) * 2003-03-26 2004-10-21 Hokkaido Ceramics for catching exhaust gas and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276812A (en) * 2013-07-03 2015-01-14 济南大学 Sulfate slag based particle electrode and preparation method thereof
CN104478472A (en) * 2014-11-12 2015-04-01 西安科技大学 Method for preparing porous material with solid waste as raw material

Also Published As

Publication number Publication date
JP4197329B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
EP1493724B1 (en) Porous material and method for production thereof
EP1364928B1 (en) Honeycomb structure
CN102746022B (en) Preparation method for Al2O3 ceramic material having controllable bimodal porous structure
CN101407407B (en) Method for baking bricks from mixture of biological dewatered sludge and construction wastes
CN101987294A (en) Method for preparing honeycomb ceramic adsorbent material by utilizing attapulgite clay
CN1980721A (en) Low thermal expansion articles
CN105924222A (en) Attapulgite and biomass compound biological ceramsite and preparation method thereof
US20010036531A1 (en) Silicon nitride porous body and its production process
US4814125A (en) Fixing carrier for activated sludge in sewage or waste water treatment
JP2002535229A5 (en)
CN1332706A (en) High strength/high surface area alumina ceramics
JP4197329B2 (en) Porous composite ceramics using waste dry cell roasting residue powder and manufacturing method thereof
JPH02282442A (en) Aluminide structure
CN100339317C (en) Aerating biological filter pool filler and production thereof
KR101777676B1 (en) Adsorption carrier using coal tar pitch and water glass, and method of manufacturing there of
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JP2017137238A (en) Manufacturing method of porous material
KR100310877B1 (en) Ceramic Carrier and its Manufacturing Method
JPH08141589A (en) Ceramics porous element and treatment of waste water using the same
KR101227802B1 (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
JP2003246687A (en) Method of manufacturing water absorptive ceramics
JP2022056114A (en) Method for producing nickel catalyst
JP2005040767A (en) Water purification material, its production method, its using method, and water purification material mixture
JPH09132450A (en) Ceramic molded body and its production
CN109912295A (en) Silicate-base biofilter material and the preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees