JP2011089939A - Appearance inspection apparatus and printed solder inspection apparatus - Google Patents

Appearance inspection apparatus and printed solder inspection apparatus Download PDF

Info

Publication number
JP2011089939A
JP2011089939A JP2009244992A JP2009244992A JP2011089939A JP 2011089939 A JP2011089939 A JP 2011089939A JP 2009244992 A JP2009244992 A JP 2009244992A JP 2009244992 A JP2009244992 A JP 2009244992A JP 2011089939 A JP2011089939 A JP 2011089939A
Authority
JP
Japan
Prior art keywords
dimensional
inspection
imaging
inspection apparatus
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009244992A
Other languages
Japanese (ja)
Other versions
JP5621178B2 (en
Inventor
Norio Watabe
典生 渡部
Takeshi Arai
健史 新井
Takahiro Matsukubo
貴裕 松久保
Yoshifumi Akimoto
善史 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Djtech
Djtech Co Ltd
Original Assignee
Djtech
Djtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Djtech, Djtech Co Ltd filed Critical Djtech
Priority to JP2009244992A priority Critical patent/JP5621178B2/en
Priority to PCT/JP2010/068655 priority patent/WO2011049190A1/en
Publication of JP2011089939A publication Critical patent/JP2011089939A/en
Application granted granted Critical
Publication of JP5621178B2 publication Critical patent/JP5621178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an appearance inspection apparatus and a printed solder inspection apparatus for simultaneously capturing a three-dimensional inspection image and a two-dimensional inspection image by imaging and scanning an inspecting object once. <P>SOLUTION: The printed solder inspection apparatus 1 illuminates a substrate 100, picks up its images, and inspects a solder printed on the substrate. A plurality of imaging areas are provided on an imaging element 51. An illumination range for one imaging area and an illumination range for the other imaging area are configured so as not to be interfered with each other. Since a plurality types of the two-dimensional images and the three-dimensional images are collected, two operations conventionally required for a three-dimensional inspection and a two-dimensional inspection is achieved by one operation. An inspection time is drastically reduced. Since two optical systems required for the three-dimensional inspection and the two-dimensional inspection are replaced with one optical system, a cost of the inspection apparatus is reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、検査対象物に対し照明し撮像して該検査対象物の外観を検査する外観検査装置及び基板に対し照明し撮像して該基板に印刷された半田を検査する印刷半田検査装置に関する。   The present invention relates to an appearance inspection apparatus that illuminates and images an inspection object and inspects the appearance of the inspection object, and a printed solder inspection apparatus that illuminates and images a substrate and inspects solder printed on the substrate. .

例えば、特許文献1には、エリアカメラ、リング状多段照明、及び画像処理装置を有した検査装置により、基板に印刷された半田の2次元の検査が可能であることが開示されている。しかし、半田印刷とは、メタルマスクと呼ばれる薄い金属板に設けられた開口部を通して、ペースト状の半田(クリーム半田)を基板のパッド上に転写する工程をいう。よって、基板に印刷されたクリーム半田には、通常100μm〜150μm位の厚みがある。このような厚み方向の転写状況までしっかり把握するためには、当然ながら3次元測定技術が必要である。   For example, Patent Document 1 discloses that a two-dimensional inspection of solder printed on a substrate is possible by an inspection device having an area camera, ring-shaped multistage illumination, and an image processing device. However, solder printing refers to a process of transferring paste-like solder (cream solder) onto a substrate pad through an opening provided in a thin metal plate called a metal mask. Therefore, the cream solder printed on the substrate usually has a thickness of about 100 μm to 150 μm. Of course, a three-dimensional measurement technique is necessary to grasp the transfer situation in the thickness direction.

しかしながら3次元測定は、測定対象の高さを計測する技術であって、その高さを構成する材料の違いを識別するものではなく、よって、クリーム半田がパッド上に薄く広がる「にじみ」と呼ばれる印刷不良の検出が困難であるという限界を抱えている。一方、2次元測定は、照明色と照明の照射方向の最適化により、クリーム半田とパッドあるいは基板面とを輝度の違い、色の違い、表面状態の違いで識別するという手法であり、パッド上に薄く広がったクリーム半田を抽出できるという3次元測定に対する補完性を持っている。   However, the three-dimensional measurement is a technique for measuring the height of the measurement object, and does not identify the difference in the material constituting the height. Therefore, it is called “smudge” in which cream solder spreads thinly on the pad. There is a limit that it is difficult to detect printing defects. On the other hand, two-dimensional measurement is a method of identifying cream solder and pad or substrate surface by brightness difference, color difference, surface condition difference by optimizing the illumination color and illumination direction. It has the complement to 3D measurement that can extract cream solder spread thinly.

特許文献2には、エリアカメラ、リング状多段照明、スリット光照明、及び画像処理装置を有した検査装置により、基板に印刷された半田の2次元あるいは3次元の検査が可能であることが開示されている。また、特許文献3には、スリット光を斜方から照射し、基板の凹凸によって発生するスリット光跡の凹凸情報を真上に設置された撮像装置で撮像することで基板に印刷された半田の3次元の検査が可能であることが開示されている。また、特許文献4には、同一の基板に印刷された半田に対して2次元検査と3次元検査の両方を実施する印刷半田状態検査の実現方法とその有用性について開示されている。   Patent Document 2 discloses that two-dimensional or three-dimensional inspection of solder printed on a substrate is possible by an inspection device having an area camera, ring-shaped multistage illumination, slit light illumination, and an image processing device. Has been. Further, in Patent Document 3, the slit light is irradiated obliquely, and the unevenness information of the slit light trace generated by the unevenness of the substrate is imaged by an imaging device installed directly above, whereby the solder printed on the substrate is detected. It is disclosed that a three-dimensional inspection is possible. Patent Document 4 discloses a method for realizing a printed solder state inspection in which both a two-dimensional inspection and a three-dimensional inspection are performed on solder printed on the same substrate, and its usefulness.

特開2003−224353号公報JP 2003-224353 A 特開2004−317176号公報JP 2004-317176 A 特開2005−207918号公報Japanese Patent Laid-Open No. 2005-207918 特願2007−203707号Japanese Patent Application No. 2007-203707

上述した特許文献2〜4に記載の印刷半田検査装置では、1つの光学系に2次元検査用の多段リング照明と3次元検査用のスリット照明を実装することで、2次元検査と3次元検査の両方が実施可能である。しかしながら、3次元検査がスリット光を照射しながら検査対象を連続スキャンすることで撮像する方式であるのに対し、2次元検査は多段リング照明を照射、静止した状態の検査対象を撮像するという方式であり、その動作が異なることから同時実行は困難であった。そのため、共用光学系構成を採用しても3次元検査と2次元検査は個別に実施せざるを得ず、2次元検査と3次元検査の両方を実施する場合、検査対象である基板を2回検査しなければならないという検査時間面での問題点を抱えていた。   In the printed solder inspection apparatus described in Patent Documents 2 to 4 described above, two-dimensional inspection and three-dimensional inspection are performed by mounting a multi-stage ring illumination for two-dimensional inspection and a slit illumination for three-dimensional inspection on one optical system. Both can be implemented. However, while 3D inspection is a method of imaging by continuously scanning the inspection object while irradiating slit light, 2D inspection is a method of irradiating multi-stage ring illumination and imaging the inspection object in a stationary state Since the operations are different, simultaneous execution is difficult. Therefore, even if a shared optical system configuration is adopted, the 3D inspection and the 2D inspection must be performed separately. When performing both the 2D inspection and the 3D inspection, the substrate to be inspected is performed twice. There was a problem in terms of inspection time that had to be inspected.

すなわち、3次元検査では、スリット光照明を点灯した状態で検査対象を光学系に対して相対的に連続移動させながら撮像していく。その連続動作はある範囲の速度変化は認められるものの、撮像条件からある一定速度以下の定速移動が前提となる。移動中であるがゆえ、検査対象が静止していることが撮像条件になる2次元検査の実行は因難となる。ストロボ照明を使うことで移動中の検査対象の2次元画像を採取することも考えられるが、3次元検査用のスリット光照明に匹敵する照度をもった面照明が必要であり、かつ、ワンショットが数十ラインの撮像である3次元検査に対して撮像素子全面の撮像を行う2次元検査では処理時間が合わないという問題があり、1台の光学系での実現は困難である。   That is, in the three-dimensional inspection, imaging is performed while the inspection target is continuously moved relative to the optical system while the slit light illumination is turned on. The continuous operation is premised on constant speed movement below a certain constant speed from the imaging conditions, although a certain range of speed change is recognized. Since it is moving, it is difficult to perform a two-dimensional inspection in which an imaging condition is that the inspection target is stationary. It may be possible to collect a two-dimensional image of a moving inspection object using strobe lighting, but surface illumination with illuminance comparable to slit light illumination for three-dimensional inspection is required, and one shot However, there is a problem that the processing time does not match in the two-dimensional inspection in which the entire surface of the image sensor is picked up with respect to the three-dimensional inspection in which several tens of lines are picked up, and it is difficult to realize with one optical system.

よって、2次元検査を実行するためには検査対象を静止させる必要がある。上記の3次元検査のための定速移動後、2次元検査実行の位置に到達した時点で定速移動を終了、検査対象を静止させ、そこで3次元検査用のスリット光照明を消灯、代わりにリング型照明を点灯すれば、1台の光学系で3次元検査と2次元検査を実行することが可能となる。しかし以上の動作によれば、3次元検査は本来可能な連続撮像を2次元検査のために途中中断することとなりそのパフォーマンスは著しく低下する。2次元検査の観点でみると、視野間の移動速度が3次元検査の撮像条件からある一定速以下の速度に制限されるため、これもまたパフォーマンスが著しく低下することとなる。   Therefore, in order to execute the two-dimensional inspection, it is necessary to make the inspection object stationary. After moving at a constant speed for the above three-dimensional inspection, when the position for execution of the two-dimensional inspection is reached, the constant speed movement is terminated, the inspection object is stopped, and the slit light illumination for the three-dimensional inspection is turned off, instead. If the ring illumination is turned on, it is possible to perform three-dimensional inspection and two-dimensional inspection with a single optical system. However, according to the above operation, the three-dimensional inspection interrupts the continuous imaging which can be originally performed for the two-dimensional inspection, and the performance is significantly lowered. From the viewpoint of the two-dimensional inspection, since the moving speed between the visual fields is limited to a speed equal to or less than a certain speed due to the imaging condition of the three-dimensional inspection, this also significantly reduces the performance.

本発明は、上記のような課題に鑑みなされたものであり、その目的は、検査対象に対する一回の撮像走査で、3次元検査用の画像と2次元検査用の画像が同時に撮像できる外観検査装置及び印刷半田検査装置を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is an appearance inspection capable of simultaneously capturing an image for a three-dimensional inspection and an image for a two-dimensional inspection by a single imaging scan on the inspection object. An apparatus and a printed solder inspection apparatus are provided.

上記目的達成のため、本発明の外観検査装置では、検査対象物に対し照明し撮像して前記検査対象物の外観を検査する外観検査装置であって、撮像素子上に複数の撮像領域を設けるとともに、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成することにより、複数種類の画像採取を可能としたことを特徴としている。   To achieve the above object, the appearance inspection apparatus according to the present invention is an appearance inspection apparatus that inspects the appearance of the inspection object by illuminating and imaging the inspection object, and provides a plurality of imaging regions on the image sensor. At the same time, it is characterized in that a plurality of types of images can be acquired by configuring so that the illumination ranges for the respective imaging areas do not interfere with the illumination ranges for the other imaging areas.

上記目的達成のため、本発明の印刷半田検査装置では、基板に対し照明し撮像して前記基板に印刷された半田を検査する印刷半田検査装置であって、撮像素子上に複数の撮像領域を設けるとともに、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成することにより、複数種類の画像採取を可能としたことを特徴としている。前記複数種類の画像は、複数種類の2次元画像と3次元画像である。   To achieve the above object, the printed solder inspection apparatus according to the present invention is a printed solder inspection apparatus that inspects the solder printed on the substrate by illuminating and imaging the substrate, and includes a plurality of imaging regions on the image sensor. In addition, it is characterized in that a plurality of types of images can be acquired by configuring so that the illumination range for each imaging region and the illumination range for other imaging regions do not interfere with each other. The plurality of types of images are a plurality of types of two-dimensional images and three-dimensional images.

また、上記目的達成のため、本発明の他の外観検査装置では、検査対象物に対し照明し撮像して前記検査対象物の外観を検査する外観検査装置であって、撮像素子上に複数の撮像領域を設けるとともに、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成し、さらに搭載する照明に少なくとも赤、青、緑を1つずつ含むことにより、複数種類の画像採取とカラー表示を可能としたことを特徴としている。   In order to achieve the above object, another appearance inspection apparatus of the present invention is an appearance inspection apparatus that illuminates and images an inspection object to inspect the appearance of the inspection object. By providing an imaging region, the illumination range for each imaging region is configured not to interfere with the illumination range for other imaging regions, and the mounted illumination includes at least one red, blue, and green It is characterized in that a plurality of types of image collection and color display are made possible.

また、上記目的達成のため、本発明のさらに他の外観検査装置では、検査対象物に対し照明し撮像して前記検査対象物の外観を検査する外観検査装置であって、撮像素子上に複数の撮像領域を設けるとともに、その一つには赤フィルター、別の一つには青フィルター、さらに別の1つには緑フィルターを搭載し、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成することにより、複数種類の画像採取とカラー表示を可能としたことを特徴としている。   In order to achieve the above object, in still another appearance inspection apparatus according to the present invention, an appearance inspection apparatus that inspects the appearance of the inspection object by illuminating and imaging the inspection object, a plurality of inspection apparatuses on the image sensor. Are equipped with a red filter, one with a blue filter, and another with a green filter, and an illumination area for each imaging area and other imaging areas. The present invention is characterized in that a plurality of types of image acquisition and color display are made possible by configuring so as not to interfere with the illumination range.

また、上記目的達成のため、本発明の別の印刷半田検査装置では、スリット光あるいは高速スキャニングのスポット光を基板に照射することで3次元測定を行う印刷半田検査装置であって、前記基板の基板色に対応した複数色の3次元測定用照明光源を搭載することを特徴としている。また、前記照明光源として白色光源を搭載することを特徴としている。   In order to achieve the above object, another printed solder inspection apparatus of the present invention is a printed solder inspection apparatus that performs three-dimensional measurement by irradiating a substrate with slit light or spot light of high-speed scanning. A feature is that a plurality of three-dimensional measurement illumination light sources corresponding to the substrate colors are mounted. Further, a white light source is mounted as the illumination light source.

2次元検査方式として、3次元検査方式と同様、スリット光を照射しながらの連続スキャン方式を採用することができれば、3次元検査のための画像採取と2次元検査のための画像採取を同一処理で実現できる。一般的に検査対象の撮像では、エリアカメラを使い検査対象を静止させた状態で撮像を行う方式と、ラインセンサカメラを使い検査対象を相対的に移動させながら撮像を行う方式の2通りがある。どちらの方式を採用するかは、一般的に検査対象が生産工程の中でどのように取り扱われかにより選択される。   Similar to the 3D inspection method, if the continuous scan method while irradiating slit light can be adopted as the 2D inspection method, the same processing is performed for image acquisition for 3D inspection and image acquisition for 2D inspection. Can be realized. In general, there are two types of imaging of an inspection object: a system that performs imaging while using an area camera while the inspection object is stationary, and a system that performs imaging while relatively moving the inspection object using a line sensor camera. . Which method is adopted is generally selected depending on how the inspection object is handled in the production process.

生産工程の中で検査対象が静止する状態があるのであれば、そのポイントでエリアカメラを使った撮像を採用するのが自然である。検査対象が常に連続移動状態にあり静止する場面がない場合は、ラインセンサカメラを使って連続移動状態の中で撮像する方式を採ることになる。エリアカメラの揚合、撮像範囲面を均一に照明する必要からリング型の照明を使うのが一般的である。対してラインカメラの場合、瞬間の撮像範囲は1ラインのみなので、ライン型(スリット型)の照明を使うのが一般的である。いずれにしても、必要に応じてどちらの撮像方式も採用可能であり、印刷半田検査装置の2次元検査方式においても、現状のエリアカメラ方式からラインセンサ方式に切り替えることは原理的に可能である。   If there is a state in which the inspection object is stationary during the production process, it is natural to adopt imaging using an area camera at that point. When the inspection target is always in a continuously moving state and there is no scene where the inspection object is stationary, a system is used in which imaging is performed in a continuously moving state using a line sensor camera. In general, ring-type illumination is used because it is necessary to illuminate the area camera and to uniformly illuminate the imaging range surface. On the other hand, in the case of a line camera, since the instantaneous imaging range is only one line, it is common to use line type (slit type) illumination. In any case, either imaging method can be adopted as necessary, and in the two-dimensional inspection method of the printed solder inspection apparatus, it is possible in principle to switch from the current area camera method to the line sensor method. .

3次元検査用に使用しているカメラは例えばCMOSであり、このカメラはその撮像素子の任意の部分に限定して撮像でき、CMOSカメラの撮像範囲を限定することで、多数枚のスリット照明の照射画像を高速に取り込むことを可能としている。この撮像範囲の限定を極限まで突き詰めれば、それは1画素の線となりラインセンサカメラと同等となる。従って3次元検査用のCMOSカメラに、3次元検査用の撮像領域はそのままにして、新たに2次元検査用のライン撮像領域を設ければ、検査対象に対する1回の撮像走査で、3次元検査用の画像と2次元検査用の画像が同時に撮像できることになる。これまで、1枚の基板に対して行っていた3次元検査と2次元検査という2回の動作が1回になり、検査に要する時間が著しく短縮されることになる。また、3次元検査用と2次元検査用で2本必要であった光学系が1本で済むこととなりコスト削減にも大きく寄与する。   The camera used for the three-dimensional inspection is, for example, a CMOS. This camera can capture images limited to an arbitrary part of the image sensor. By limiting the imaging range of the CMOS camera, a large number of slit illuminations can be obtained. The irradiation image can be captured at high speed. If the limit of the imaging range is squeezed to the limit, it becomes a line of one pixel and is equivalent to a line sensor camera. Therefore, if a CMOS imaging camera for three-dimensional inspection is provided with a line imaging region for two-dimensional inspection while leaving the imaging region for three-dimensional inspection as it is, three-dimensional inspection is performed with one imaging scan for the inspection object. Thus, the image for the two-dimensional inspection and the image for the two-dimensional inspection can be taken simultaneously. Until now, the two operations of the three-dimensional inspection and the two-dimensional inspection which have been performed on one substrate are performed once, and the time required for the inspection is remarkably shortened. In addition, since only one optical system is required for two-dimensional inspection and two-dimensional inspection, it greatly contributes to cost reduction.

本発明の一実施の形態に係る印刷半田検査装置の全体構成を示す斜視図である。1 is a perspective view showing an overall configuration of a printed solder inspection apparatus according to an embodiment of the present invention. 図1の撮像素子の撮像領域を示す図である。It is a figure which shows the imaging area of the image pick-up element of FIG. 図1の印刷半田検査装置による印刷半田の測定結果を示す図である。It is a figure which shows the measurement result of the printed solder by the printed solder test | inspection apparatus of FIG. 図1の印刷半田検査装置による検査対象基板における3次元用ライン照明光跡を示す図である。It is a figure which shows the three-dimensional line illumination light trace in the board | substrate to be test | inspected by the printed solder test | inspection apparatus of FIG.

本発明の実施形態について、図面を参照して説明する。尚、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Embodiments of the present invention will be described with reference to the drawings. The embodiments described below do not limit the invention according to the claims, and all the combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. Absent.

図1は、本発明の一実施の形態に係る印刷半田検査装置の全体構成を示す斜視図である。この印刷半田検査装置1は、検査対象基板100に印刷されているクリーム半田(以下、印刷半田という)の2次元測定及び3次元測定を行って該印刷半田を検査する機能を備えている。印刷半田検査装置1は、照明装置2、撮像装置3、制御装置4、テーブル5等を備えている。   FIG. 1 is a perspective view showing the overall configuration of a printed solder inspection apparatus according to an embodiment of the present invention. The printed solder inspection apparatus 1 has a function of performing two-dimensional measurement and three-dimensional measurement of cream solder (hereinafter referred to as “printed solder”) printed on the inspection target substrate 100 to inspect the printed solder. The printed solder inspection apparatus 1 includes an illumination device 2, an imaging device 3, a control device 4, a table 5, and the like.

照明装置2は、2つの3次元用ライン照明投光器10a,10b及び6つの2次元用ライン照明投光器20a,20b,30a,30b,40a,40bを備えている。撮像装置3は、白黒画像を撮像するカメラ50とレンズ60を備えている。カメラ50は、CMOSセンサの撮像素子51を備えている。制御装置4は、画像処理制御部70を備えている。画像処理制御部70は、3次元用ライン照明投光器10a用の3次元撮像領域用画像メモリ71a、3次元用ライン照明投光器10b用の3次元撮像領域用画像メモリ71b、2次元用ライン照明投光器20a,20b用の2次元撮像領域用画像メモリ72、2次元用ライン照明投光器30a,30b用の2次元撮像領域用画像メモリ73、2次元用ライン照明投光器40a,40b用の2次元撮像領域用画像メモリ74を備えている。テーブル5は、X軸テーブル80、X軸用モータ81、Y軸テーブル82、Y軸用モータ83を備えている。   The illumination device 2 includes two three-dimensional line illumination projectors 10a and 10b and six two-dimensional line illumination projectors 20a, 20b, 30a, 30b, 40a, and 40b. The imaging device 3 includes a camera 50 and a lens 60 that capture black and white images. The camera 50 includes an image sensor 51 of a CMOS sensor. The control device 4 includes an image processing control unit 70. The image processing control unit 70 includes a three-dimensional imaging area image memory 71a for the three-dimensional line illumination projector 10a, a three-dimensional imaging area image memory 71b for the three-dimensional line illumination projector 10b, and a two-dimensional line illumination projector 20a. , 20b two-dimensional imaging region image memory 72, two-dimensional line illumination projectors 30a, 30b two-dimensional imaging region image memory 73, two-dimensional line illumination projectors 40a, 40b two-dimensional imaging region images. A memory 74 is provided. The table 5 includes an X-axis table 80, an X-axis motor 81, a Y-axis table 82, and a Y-axis motor 83.

2次元用ライン照明投光器20a,20bは、カメラ50とレンズ60により構成される光学系を挟むような形で配置され、2次元用ライン照明投光器20aの2次元用ライン照明光21aと2次元用ライン照明投光器20bの2次元用ライン照明光21bが、それぞれ上方向から斜め下方向に投光することで、基板100上に2次元用ライン照明光跡21が生じる。2次元用ライン照明投光器30a,30b及び2次元用ライン照明投光器40a,40bも同様に配置され投光することで、基板100上に2次元用ライン照明光跡31,41が生じる。   The two-dimensional line illumination projectors 20a and 20b are arranged so as to sandwich an optical system constituted by the camera 50 and the lens 60, and the two-dimensional line illumination light projector 21a and the two-dimensional line illumination light 21a of the two-dimensional line illumination projector 20a. The two-dimensional line illumination light 21b of the line illumination projector 20b is projected obliquely downward from the upper direction, whereby the two-dimensional line illumination light trace 21 is generated on the substrate 100. The two-dimensional line illumination light projectors 30 a and 30 b and the two-dimensional line illumination light projectors 40 a and 40 b are arranged and projected in the same manner, so that the two-dimensional line illumination light traces 31 and 41 are generated on the substrate 100.

以上の2次元用ライン照明光跡21,31,41のライン幅(線幅)は、検査対象基板100が多少上下しても撮像したい線上を照明し続けることができるよう比較的大きなライン幅を持つ必要がある。検査対象基板100の許容上下幅によるが、具体的には1〜2mm程度のライン幅となるよう設定する。また、2次元用ライン照明投光器20a,20bには赤色系の光源を採用し、2次元用ライン照明投光器30a,30bには緑色系の光源を採用し、2次元用ライン照明投光器40a,40bには青色系の光源を採用する。   The line widths (line widths) of the above-described two-dimensional line illumination light traces 21, 31, 41 are relatively large so that the line to be imaged can be continuously illuminated even if the inspection target substrate 100 is slightly moved up and down. It is necessary to have. Although it depends on the allowable vertical width of the inspection target substrate 100, specifically, the line width is set to about 1 to 2 mm. Also, a red light source is used for the two-dimensional line illumination projectors 20a and 20b, a green light source is used for the two-dimensional line illumination projectors 30a and 30b, and the two-dimensional line illumination projectors 40a and 40b are used. Adopts blue light source.

3次元用ライン照明投光器10a,10bは、カメラ50とレンズ60により構成される光学系を挟むような形で配置され、それぞれが上方向から斜め下方向に投光することで、3次元用ライン照明光11a,11bが発生し、検査対象基板100上に3次元用ライン照明光跡12a,12bが生じる。   The three-dimensional line illumination projectors 10a and 10b are arranged in such a manner as to sandwich an optical system composed of the camera 50 and the lens 60, and each project light from an upper direction to a diagonally downward direction, thereby causing a three-dimensional line. Illumination lights 11 a and 11 b are generated, and three-dimensional line illumination light traces 12 a and 12 b are generated on the inspection target substrate 100.

以上の3次元用ライン照明光跡12a,12bのライン幅(線幅)は、検査対象基板100の表面に形成された高さ100μm程度の印刷半田(図示せず)をμmオーダで測定する関係から、基板表面の凹凸によって生じる3次元用ライン照明光跡12a,12bの直線の変形度合いが測定しやすいよう比較的細いライン幅である0.1mm程度に設定される。また、3次元用ライン照明投光器10a,10bには、検査対象基板100の色相に応じて赤色系の光源、あるいは青色系・緑色系の光源を採用する。   The line widths (line widths) of the above three-dimensional line illumination light traces 12a and 12b are measured by measuring a printed solder (not shown) having a height of about 100 μm formed on the surface of the inspection target substrate 100 on the order of μm. Accordingly, the straight line deformation degree of the three-dimensional line illumination light traces 12a and 12b generated by the unevenness of the substrate surface is set to a relatively thin line width of about 0.1 mm so that it can be easily measured. The three-dimensional line illumination projectors 10a and 10b employ a red light source or a blue / green light source according to the hue of the inspection target substrate 100.

検査対象基板100上に生じた2次元用ライン照明光跡21,31,41及び3次元用ライン照明光跡12a,12bを、レンズ60を通してカメラ50の撮像素子51上に投影する。撮像素子51は、図2に示すように、撮像領域を任意に設定することができ、2次元用ライン照明光跡21,31,41を撮像するための2次元用撮像領域53,54,55及び3次元用ライン照明光跡12a,12bを撮像するための3次元用撮像領域52a,52bの5つの領域が設定されている。2次元用撮像領域53,54,55は、その撮像幅が1画素であり、ラインセンサカメラと同等と見なすことができる。3次元用撮像領域52a,52bは、その撮像幅が最大測定高さを規定することになるので比較的大きな値が設定され、通常40〜50画素程度ある。   The two-dimensional line illumination light traces 21, 31, 41 and the three-dimensional line illumination light traces 12 a, 12 b generated on the inspection target substrate 100 are projected onto the image sensor 51 of the camera 50 through the lens 60. As shown in FIG. 2, the imaging element 51 can arbitrarily set the imaging area, and the two-dimensional imaging areas 53, 54, 55 for imaging the two-dimensional line illumination light traces 21, 31, 41. In addition, five areas of three-dimensional imaging areas 52a and 52b for imaging the three-dimensional line illumination light traces 12a and 12b are set. The two-dimensional imaging areas 53, 54, and 55 have an imaging width of one pixel and can be regarded as equivalent to a line sensor camera. The three-dimensional imaging regions 52a and 52b have a relatively large value because the imaging width defines the maximum measurement height, and are usually about 40 to 50 pixels.

以上の光学系・照明系構成で、X軸モータ80を一定ピッチ動かしカメラ50で画像を撮像、さらにX軸モータ80を一定ピッチ動かしカメラ50で画像を撮像、という動作を繰り返していく。ここで、一定ピッチには、撮像素子51の1画素に投影される寸法と同じ数値を採用するのが一般的である。以上の動作の間、2次元用撮像領域53からのライン単位の出力を2次元撮像領域用画像メモリ72に蓄積していくことで面画像を得ることができる。同様に、2次元用撮像領域54のライン単位出力から2次元撮像領域用画像メモリ73の面画像が、2次元用撮像領域55のライン単位出力から2次元撮像領域用画像メモリ74の面画像が生成される。合わせて、3次元用撮像領域52aからの短冊形の面画像出力を3次元撮像領域用画像メモリ71aに、3次元用撮像領域52bからの短冊形の面画像出力を3次元撮像領域用画像メモリ71bに蓄積していく。   With the above-described optical system / illumination system configuration, the X axis motor 80 is moved at a constant pitch to capture an image with the camera 50, and the X axis motor 80 is moved at a constant pitch to capture an image with the camera 50. Here, for the fixed pitch, the same numerical value as that projected onto one pixel of the image sensor 51 is generally adopted. During the above operation, a plane image can be obtained by accumulating the line unit output from the two-dimensional imaging region 53 in the two-dimensional imaging region image memory 72. Similarly, the plane image of the two-dimensional imaging area image memory 73 is obtained from the line unit output of the two-dimensional imaging area 54, and the plane image of the two-dimensional imaging area image memory 74 is obtained from the line unit output of the two-dimensional imaging area 55. Generated. In addition, the strip-shaped surface image output from the three-dimensional imaging region 52a is output to the three-dimensional imaging region image memory 71a, and the strip-shaped surface image output from the three-dimensional imaging region 52b is input to the three-dimensional imaging region image memory. It accumulates in 71b.

2次元撮像領域用画像メモリ72の面画像は、比較的高い位置から赤色系の照明で撮像した画像になり、2次元撮像領域用画像メモリ73の面画像は、比較的高い位置から緑色系の照明で撮像した画像になり、2次元撮像領域用画像メモリ74の面画像は、比較的低い位置から青色系の照明で撮像した画像になる。2次元撮像領域用画像メモリ72の面画像は縁色系基板から金あるいは銅パッドを抽出するのに適した画像であり、2次元撮像領域用画像メモリ73の面画像は赤色〜榿色系基板から金あるいは銅パッドを抽出するのに適した画像であり、2次元撮像領域用画像メモリ74の面画像は金あるいは銅パッド上に印刷された印刷半田を抽出するのに適した画像である。これら3枚の面画像から2次元印刷半田検査を実施することができる。   The surface image of the image memory 72 for the two-dimensional imaging region is an image captured with a red illumination from a relatively high position, and the surface image of the image memory 73 for the two-dimensional imaging region 73 is a green image from a relatively high position. The image is captured with illumination, and the plane image of the image memory 74 for the two-dimensional imaging region is an image captured with blue illumination from a relatively low position. The surface image of the image memory 72 for the two-dimensional imaging region is an image suitable for extracting a gold or copper pad from the marginal color system substrate, and the surface image of the image memory 73 for the two-dimensional imaging region is a red to amber system substrate. The surface image of the two-dimensional imaging region image memory 74 is an image suitable for extracting the printed solder printed on the gold or copper pad. A two-dimensional printed solder inspection can be performed from these three surface images.

すなわち、特開2003−224353号公報に記載のように、表面色が赤茶色系の基板に緑色光を照射した場合、緑色光が補色となるとともに印刷半田の粒子によって緑色光が乱反射し、パッド以外の反射光が微量になる。よって、緑色光点灯時の明暗度が高い部分がパッド、明暗度が低い部分がパッド以外の基板表面となり、パッドを認識することができる。一方、印刷半田に青色光を低位置から照射した場合、印刷半田の粒子に乱反射されてその照射光の一部がカメラに入射するのに対し、印刷半田以外の部分は比較的鏡面のため、その照射光のほとんどは入射方向と正反対の方向に反射されカメラに入射しない。よって相対的に印刷半田が高輝度となり印刷半田を認識することができる。   That is, as described in Japanese Patent Application Laid-Open No. 2003-224353, when green light is irradiated onto a substrate whose surface color is reddish brown, the green light becomes a complementary color and the green light is irregularly reflected by the printed solder particles, The amount of reflected light other than is very small. Therefore, the portion having high brightness when green light is lit becomes the pad, and the portion having low brightness becomes the substrate surface other than the pad, so that the pad can be recognized. On the other hand, when the printed solder is irradiated with blue light from a low position, it is irregularly reflected by the particles of the printed solder and a part of the irradiated light is incident on the camera, whereas the parts other than the printed solder are relatively mirror surfaces. Most of the irradiated light is reflected in the direction opposite to the incident direction and does not enter the camera. Accordingly, the printed solder has a relatively high brightness, and the printed solder can be recognized.

また、短冊形面画像が多数集積した3次元撮像領域用画像メモリ71a,71bから、測定対象面の凹凸状態を再現することができ、よって3次元印刷半田検査を実施することができる。   Further, the uneven state of the measurement target surface can be reproduced from the image memories 71a and 71b for the three-dimensional imaging region in which a large number of strip-shaped surface images are accumulated, so that a three-dimensional printed solder inspection can be performed.

すなわち、特開2005−207918号公報に記載のように、印刷半田上の3次元用ライン照明光跡12a,12bと検査対象基板100上の3次元用ライン照明光跡12a,12bは、印刷半田の高さ分だけ位置がずれたように撮像される。3次元用ライン照明光11a,11bの検査対象基板100の上面からの取り付け角度をθとすると、印刷半田のずれ量にtanθを掛けることで印刷半田の高さを測定することができる。さらに、3次元用ライン照明光跡12a,12bの長さ方向に直交する方向も同様に求めることで、印刷半田の体積を測定することができる。   That is, as described in Japanese Patent Laid-Open No. 2005-207918, the three-dimensional line illumination light traces 12a and 12b on the printed solder and the three-dimensional line illumination light traces 12a and 12b on the inspection target substrate 100 are printed solder. The image is taken as if the position is shifted by the height of. When the attachment angle of the three-dimensional line illumination lights 11a and 11b from the upper surface of the inspection target substrate 100 is θ, the height of the printed solder can be measured by multiplying the amount of deviation of the printed solder by tan θ. Further, the volume of the printed solder can be measured by similarly obtaining the direction orthogonal to the length direction of the three-dimensional line illumination light traces 12a and 12b.

以上のように、カメラ50とレンズ60という光学系に2次元検査用と3次元検査用の区別はなく、またX軸モータ80を一定ピッチ動かしカメラ50で画像を撮像、という動作を繰り返す撮像走査を1回実施するだけで2次元画像と3次元画像の採取、及び2次元検査と3次元検査の実施が可能となり、印刷半田検査装置1の構造面および動作面で2次元検査と3次元検査が完全に融合する。   As described above, there is no distinction between the two-dimensional inspection and the three-dimensional inspection in the optical system of the camera 50 and the lens 60, and the imaging scanning that repeats the operation of moving the X-axis motor 80 by a constant pitch and capturing an image with the camera 50. It is possible to collect 2D images and 3D images, and to perform 2D inspections and 3D inspections by performing only once, and to perform 2D inspections and 3D inspections on the structure and operation surfaces of the printed solder inspection apparatus 1. Is completely fused.

このように採取された2次元画像と3次元画像を、従来の慣習に則って個別に表示する必要はない。むしろ、図3に示す印刷半田110の形状を測定するにあたって、2次元検査と呼ばれる技術では底部面積111が測定でき、3次元検査と呼ばれる技術では断面積112、突起面積113、平均高さ114、ピーク高さ115、体積116などその他の項目が測定できると考えるべきである。従って、検査結果の表示においても、図3のごとく、すべての測定結果を含む形で図示すべきであり、これによって検査結果表示面でも2次元検査と3次元検査が完全に融合し、より正確に印刷半田110の測定結果を伝えることができる印刷半田検査装置1となる。   There is no need to individually display the two-dimensional image and the three-dimensional image collected in this manner in accordance with conventional practice. Rather, in measuring the shape of the printed solder 110 shown in FIG. 3, the bottom area 111 can be measured by a technique called two-dimensional inspection, and the cross-sectional area 112, the protrusion area 113, the average height 114, It should be considered that other items such as peak height 115 and volume 116 can be measured. Therefore, in the display of the inspection result, as shown in FIG. 3, it should be illustrated in a form including all the measurement results. As a result, the two-dimensional inspection and the three-dimensional inspection are completely fused and more accurate on the inspection result display surface. Thus, the printed solder inspection apparatus 1 can transmit the measurement result of the printed solder 110.

図示していないが、画像処理制御部70には印刷半田検査装置1の操作に関わる各種情報や、検査結果を表示するための表示装置が設置されており、その表示装置に印刷半田110の形状表示を含めた検査結果を表示する。印刷半田110の形状表示にあたっては、図3のごとくある視点から観察した3次元像として表示するとともに、この視点は任意の位置に設定することを可能とする。この視点を印刷半田110の真上に設定すれば、2次元画像と等価の表示も得ることができる。このように、2次元で測定できる項目と3次元で測定できる項目を一体表示することで、より正確に印刷半田110の形状を表現することができ、さらに、表示の視点を変えることで、測定項目それぞれの結果を観察することも可能となる。よって、同一の検査対象基板100に対して2次元検査と3次元検査の両方を実施する印刷半田110の検査を低コストかつ効率的に実施することができる。   Although not shown, the image processing control unit 70 is provided with a display device for displaying various information related to the operation of the printed solder inspection apparatus 1 and inspection results, and the shape of the printed solder 110 is displayed on the display apparatus. The inspection result including the display is displayed. The shape of the printed solder 110 is displayed as a three-dimensional image observed from a certain viewpoint as shown in FIG. 3, and this viewpoint can be set at an arbitrary position. If this viewpoint is set right above the printed solder 110, a display equivalent to a two-dimensional image can be obtained. In this way, by integrally displaying the items that can be measured in two dimensions and the items that can be measured in three dimensions, the shape of the printed solder 110 can be expressed more accurately, and further, the measurement can be performed by changing the display viewpoint. It is also possible to observe the result of each item. Therefore, the inspection of the printed solder 110 that performs both the two-dimensional inspection and the three-dimensional inspection on the same inspection target substrate 100 can be performed at low cost and efficiently.

ここで、3次元用ライン照明投光器10aと3次元用ライン照明投光器l0bが、カメラ50とレンズ60により構成される光学系を挟むような形で配置され、それぞれが上方向から斜め下方向に投光することで3次元用ライン照明光11aと3次元用ライン照明光11bが発生し、検査対象基板100上に3次元用ライン照明光跡12aと3次元用ライン照明光跡12bが生じる。このように2つの3次元用ライン投光器10a,10bを用意するのは、一方のライン投光器だけでは測定死角が発生するためであり、その測定死角を問題にしないのであれば一方のライン投光器だけでも3次元測定を行うことができる。そこで、以下、3次元用ライン照明光跡12aを使って3次元測定する方法について説明する。   Here, the three-dimensional line illumination projector 10a and the three-dimensional line illumination projector 10b are arranged so as to sandwich the optical system composed of the camera 50 and the lens 60, and each project from the upper side obliquely downward. The three-dimensional line illumination light 11 a and the three-dimensional line illumination light 11 b are generated by the light, and the three-dimensional line illumination light trace 12 a and the three-dimensional line illumination light trace 12 b are generated on the inspection target substrate 100. The reason why the two three-dimensional line projectors 10a and 10b are prepared in this manner is that a measurement blind spot is generated only by one line projector, and if the measurement blind spot is not a problem, only one line projector can be used. Three-dimensional measurement can be performed. Therefore, a method for three-dimensional measurement using the three-dimensional line illumination light trace 12a will be described below.

3次元用ライン照明光跡12aは、検査対象基板100が完全な平面であれば完全な直線になる。しかし、検査対象基板100には印刷半田110が多数存在するので、図4に示すように、3次元用ライン照明光跡12aが印刷半田110上に生じた場合の3次元用ライン照明光跡12a2と、検査対象基板100表面上に生じた場合の3次元用ライン照明光跡12a1とではその発生位置が異なり、3次元用ライン照明光跡12aは直線ではなく凹凸状態となる。図4における3次元用ライン照明光跡12a2と3次元用ライン照明光跡12a1の発生位置の差hが印刷半田110の高さに対応するものであり、差hを測定し適切な幾何学計算を施せば印刷半田110のライン照明光跡における高さが測定できる。   The three-dimensional line illumination light trace 12a is a complete straight line if the inspection target substrate 100 is a complete plane. However, since there are many printed solders 110 on the inspection target substrate 100, the three-dimensional line illumination light traces 12a2 when the three-dimensional line illumination light traces 12a are generated on the printed solder 110 as shown in FIG. The generation position is different from that of the three-dimensional line illumination light trace 12a1 generated on the surface of the inspection target substrate 100, and the three-dimensional line illumination light trace 12a is not a straight line but an uneven state. The difference h between the generation positions of the three-dimensional line illumination light trace 12a2 and the three-dimensional line illumination light trace 12a1 in FIG. 4 corresponds to the height of the printed solder 110, and the difference h is measured to obtain an appropriate geometric calculation. The height of the printed solder 110 in the line illumination light trace can be measured.

このように印刷半田110の高さ測定には、印刷半田110上に生じた3次元用ライン照明光跡12a2だけではなく、検査対象基板100表面上に生じた3次元用ライン照明光跡12a1も検出しなければならない。3次元用ライン照明光跡12a2は印刷半田110上に生じるものである。印刷半田110は比較的反射率が高く、かつ灰色系の物質なので、3次元用ライン照明光跡12a2は、3次元用ライン照明光11aの光源色にさほど影響されることなく明確に生じる。対して3次元用ライン照明光跡12a1は検査対象基板100表面上に生じるものである。検査対象基板100表面は、金・銅パッド、基板レジストに大別することができ、金・銅パッドは印刷半田110で覆い隠されるので、検査対象基板100表面とは事実上レジスト上面となる。その基板レジストは緑色の場合がほとんどであるが、フレキシブル基板などでは橙色の場合もある。   As described above, not only the three-dimensional line illumination light trace 12a2 generated on the print solder 110 but also the three-dimensional line illumination light trace 12a1 generated on the surface of the inspection target substrate 100 are used for measuring the height of the printed solder 110. Must be detected. The three-dimensional line illumination light trace 12 a 2 is generated on the printed solder 110. Since the printed solder 110 has a relatively high reflectance and is a gray material, the three-dimensional line illumination light trace 12a2 is clearly generated without being greatly affected by the light source color of the three-dimensional line illumination light 11a. On the other hand, the three-dimensional line illumination light trace 12a1 is generated on the surface of the inspection target substrate 100. The surface of the substrate to be inspected 100 can be roughly divided into a gold / copper pad and a substrate resist. Since the gold / copper pad is covered with the printed solder 110, the surface of the substrate to be inspected 100 is effectively the upper surface of the resist. In most cases, the substrate resist is green, but in a flexible substrate or the like, it may be orange.

そこで、3次元用ライン照明投光器10aには緑色系の光源を採用し、3次元用ライン照明投光器11bには赤色系の光源を採用する。測定対象と同系色の光源を使うことで、測定対象をより明るく撮像できるので、緑色系の検査対象基板100の場合には緑色系光源の3次元用ライン照明投光器10aによって検査対象基板100面を検出し、橙色系の検査対象基板100の場合には赤色系光源の3次元用ライン照明投光器llbによって検査対象基板100面を検出するよう処理する。これにより確実に検査対象基板100面を検出でき、検査時間の短縮と検査精度の向上に繋げることができる。また、印刷半田110は灰色と色相的にはニュートラルなので、どちらの光源を使ってもその検出で問題が生じることはない。   Therefore, a green light source is adopted for the three-dimensional line illumination projector 10a, and a red light source is adopted for the three-dimensional line illumination projector 11b. By using a light source having the same color as the measurement target, the measurement target can be imaged brighter. Therefore, in the case of the green inspection target substrate 100, the surface of the inspection target substrate 100 is covered by the three-dimensional line illumination projector 10a of the green light source. In the case of an orange-based inspection target substrate 100, processing is performed so that the surface of the inspection target substrate 100 is detected by the three-dimensional line illumination projector llb of a red light source. As a result, the surface of the inspection target substrate 100 can be detected with certainty, and the inspection time can be shortened and the inspection accuracy can be improved. Further, since the printed solder 110 is neutral in terms of gray and hue, there is no problem in detection using either light source.

スリット光を照射する方式の3次元印刷半田検査装置の場合、コスト面で赤色系光源を使うのが一般的であり、その補色となる緑色系基板の基板表面を検出する場合、露光時間を長くしなければならないなどの問題を抱えていたが、本実施形態では緑色系光源を搭載することで解決することができる。   In the case of a three-dimensional printed solder inspection apparatus that irradiates slit light, it is common to use a red light source in terms of cost. When detecting the substrate surface of a green substrate that is a complementary color, the exposure time is increased. However, this embodiment can be solved by mounting a green light source.

また、2次元用ライン照明光21a,21bには赤色系の光源を採用し、2次元用ライン照明光31a,31bには緑色系の光源を採用し、2次元用ライン照明光41a,41bには青色系の光源を採用した場合、照明の照射角度は異なるものの、同一対象に対してRGBそれぞれの要素で画像を採取していることと等価である。従って、真っ白な測定対象を使って、事前にRGB間の強度をキャリブレーションしておき、これら3つの画像を加算することでカラー画像を得ることが可能となる。2次元検査装置にはカラー表示機は少なくないものの、3次元検査装置ではその測定原理上からカラー表示機能を有しているものはごく少数であった。今回の2次元3次元同時撮像技術とRBG合成によるカラー表示技術を併用すれば、3次元測定機能をもつ検査装置でありながらカラー表示が可能となり、ユーザの利便性が大きく向上することとなる。   A red light source is used for the two-dimensional line illumination lights 21a and 21b, a green light source is used for the two-dimensional line illumination lights 31a and 31b, and the two-dimensional line illumination lights 41a and 41b are used. When a blue light source is used, although the illumination angle is different, it is equivalent to collecting images with RGB elements for the same object. Therefore, it is possible to obtain a color image by calibrating the intensity between RGB in advance using a pure white measurement object and adding these three images. Although there are many color display devices in the two-dimensional inspection apparatus, only a few three-dimensional inspection apparatuses have a color display function because of the measurement principle. If the present two-dimensional and three-dimensional simultaneous imaging technology and the color display technology by RBG synthesis are used in combination, color display is possible even though the inspection apparatus has a three-dimensional measurement function, and the convenience for the user is greatly improved.

また、2次元撮像領域53に赤フィルター、2次元撮像領域54に緑フィルター、2次元撮像領域55に青フィルターを設置することで、2次元用ライン照明光21a,21b,31a,31b,41a,41bの全ての照明光源に白色光源を採用してもよい。これにより、照明の照射角度は異なるものの、同一対象に対してRGBそれぞれの要素で画像を採取していることと等価であり、従って、真っ白な測定対象を使って、事前にRGB間の強度をキャリブレーションしておき、これら3つの画像を加算することでカラー画像を得ることが可能となる。   Further, by installing a red filter in the two-dimensional imaging region 53, a green filter in the two-dimensional imaging region 54, and a blue filter in the two-dimensional imaging region 55, the two-dimensional line illumination lights 21a, 21b, 31a, 31b, 41a, You may employ | adopt a white light source for all the illumination light sources of 41b. This is equivalent to taking an image with each element of RGB for the same object, although the illumination angle of illumination is different, and therefore using a pure white measurement object, the intensity between RGB is preliminarily determined. It is possible to obtain a color image by performing calibration and adding these three images.

尚、本実施形態の印刷半田検査装置1では、すべてのライン照明光について点光源のイメージで図示したが、点光源かライン状の光源かは本発面の本質に全く影響を与えない。また、2次元用ライン照明光跡21,31,41、3次元用ライン照明光跡12a,12bは、図1のごとくの配列で図示したが、この配列に限定されるものではなく任意の配置が可能である。また、ライン照明光跡を5本としているが、2次元用ライン照明光跡が1本、3次元用ライン照明光跡が1本あれば、本発明の本質である2次元撮像と3次元撮像を1動作で行うことで実現できるので、それぞれが1本以上あれば、その本数は任意である。また、上記と同様、撮像素子51に設定される撮像領域も5個に限定されるものではない。また、2次元用撮像領域の幅を1画素としたが、これは撮像間の移動ピッチをどのように設定するかとも関係しており、1画素に限定されるものではなく2画素あるいはそれ以上でもよい。   In the printed solder inspection apparatus 1 of the present embodiment, all line illumination light is illustrated as an image of a point light source. However, whether the light source is a point light source or a line light source has no influence on the essence of the light emitting surface. Further, the two-dimensional line illumination light traces 21, 31, 41, and the three-dimensional line illumination light traces 12a and 12b are shown in the arrangement as shown in FIG. 1, but the arrangement is not limited to this arrangement, and any arrangement is possible. Is possible. Further, although there are five line illumination light traces, if there is one two-dimensional line illumination light trace and one three-dimensional line illumination light trace, the two-dimensional imaging and the three-dimensional imaging, which are the essence of the present invention. Can be realized by performing one operation, so that the number of them is arbitrary as long as each of them is one or more. Similarly to the above, the number of imaging areas set in the imaging element 51 is not limited to five. Further, the width of the two-dimensional imaging region is set to one pixel, but this is related to how to set the movement pitch between imagings, and is not limited to one pixel, but two pixels or more. But you can.

1 印刷半田検査装置、2 照明装置、3 撮像装置、4 制御装置、5 テーブル、10a,10b 3次元用ライン照明投光器、20a,20b,30a,30b,40a,40b 2次元用ライン照明投光器、21a,21b,31a,31b,41a,41b 2次元用ライン照明光、21,31,41 2次元用ライン照明光跡、11a,11b 3次元用ライン照明光、12a,12b 3次元用ライン照明光跡、50 カメラ、60 レンズ、70 画像処理制御部、71a,71b 3次元撮像領域用画像メモリ、72,73,74 2次元撮像領域用画像メモリ、80 X軸テーブル、81 X軸用モータ、82 Y軸テーブル、83 Y軸用モータ、100 検査対象基板、110 印刷半田   DESCRIPTION OF SYMBOLS 1 Print solder inspection apparatus, 2 illumination apparatus, 3 imaging apparatus, 4 control apparatus, 5 table, 10a, 10b 3D line illumination projector, 20a, 20b, 30a, 30b, 40a, 40b 2D line illumination projector, 21a 21b, 31a, 31b, 41a, 41b Two-dimensional line illumination light, 21, 31, 41 Two-dimensional line illumination light trace, 11a, 11b Three-dimensional line illumination light, 12a, 12b Three-dimensional line illumination light trace , 50 cameras, 60 lenses, 70 image processing control units, 71a, 71b three-dimensional imaging area image memory, 72, 73, 74 two-dimensional imaging area image memory, 80 X-axis table, 81 X-axis motor, 82 Y Axis table, 83 Y-axis motor, 100 PCB to be inspected, 110 Print solder

Claims (7)

検査対象物に対し照明し撮像して前記検査対象物の外観を検査する外観検査装置であって、
撮像素子上に複数の撮像領域を設けるとともに、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成することにより、複数種類の画像採取を可能としたことを特徴とする外観検査装置。
An appearance inspection apparatus that inspects the appearance of the inspection object by illuminating and imaging the inspection object,
Multiple imaging areas are provided on the imaging device, and multiple types of images can be acquired by configuring each imaging area so that the illumination range for each imaging area does not interfere with the illumination range for other imaging areas. An appearance inspection apparatus characterized by
基板に対し照明し撮像して前記基板に印刷された半田を検査する印刷半田検査装置であって、
撮像素子上に複数の撮像領域を設けるとともに、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成することにより、複数種類の画像採取を可能としたことを特徴とする印刷半田検査装置。
A printed solder inspection apparatus that illuminates and images a substrate and inspects the solder printed on the substrate,
Multiple imaging areas are provided on the image sensor, and multiple types of images can be acquired by configuring each imaging area so that the illumination range for each imaging area does not interfere with the other imaging areas. Printed solder inspection device characterized by
検査対象物に対し照明し撮像して前記検査対象物の外観を検査する外観検査装置であって、
撮像素子上に複数の撮像領域を設けるとともに、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成し、さらに搭載する照明に少なくとも赤、青、緑を1つずつ含むことにより、複数種類の画像採取とカラー表示を可能としたことを特徴とする外観検査装置。
An appearance inspection apparatus that inspects the appearance of the inspection object by illuminating and imaging the inspection object,
A plurality of imaging areas are provided on the imaging device, and the illumination ranges for the respective imaging areas are configured not to interfere with the illumination ranges for the other imaging areas. An appearance inspection apparatus characterized in that a plurality of types of image collection and color display are made possible by including one by one.
検査対象物に対し照明し撮像して前記検査対象物の外観を検査する外観検査装置であって、
撮像素子上に複数の撮像領域を設けるとともに、その1つには赤フィルター、別の1つには青フィルター、さらに別の1つには緑フィルターを搭載し、それぞれの撮像領域用の照明範囲とその他の撮像領域用の照明範囲とが干渉しないように構成することにより、複数種類の画像採取とカラー表示を可能としたことを特徴とする外観検査装置。
An appearance inspection apparatus that inspects the appearance of the inspection object by illuminating and imaging the inspection object,
A plurality of imaging areas are provided on the imaging device, one of which is equipped with a red filter, the other is equipped with a blue filter, and the other is equipped with a green filter. And an illumination range for other imaging areas are configured so as not to interfere with each other, whereby a plurality of types of image collection and color display can be performed.
前記複数種類の画像が、複数種類の2次元画像と3次元画像であることを特徴とする請求項2に記載の印刷半田検査装置。   The printed solder inspection apparatus according to claim 2, wherein the plurality of types of images are a plurality of types of two-dimensional images and three-dimensional images. スリット光あるいは高速スキャニングのスポット光を基板に照射することで3次元測定を行う印刷半田検査装置であって、
前記基板の基板色に対応した複数色の3次元測定用照明光源を搭載することを特徴とする印刷半田検査装置。
A printed solder inspection apparatus that performs three-dimensional measurement by irradiating a substrate with slit light or spot light of high-speed scanning,
A printed solder inspection apparatus comprising a plurality of three-dimensional measurement illumination light sources corresponding to the substrate colors of the substrate.
前記照明光源として白色光源を搭載することを特徴とする請求項6に記載の印刷半田検査装置。   The printed solder inspection apparatus according to claim 6, wherein a white light source is mounted as the illumination light source.
JP2009244992A 2009-10-24 2009-10-24 Appearance inspection device and printed solder inspection device Active JP5621178B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009244992A JP5621178B2 (en) 2009-10-24 2009-10-24 Appearance inspection device and printed solder inspection device
PCT/JP2010/068655 WO2011049190A1 (en) 2009-10-24 2010-10-22 Visual testing device and printed solder testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244992A JP5621178B2 (en) 2009-10-24 2009-10-24 Appearance inspection device and printed solder inspection device

Publications (2)

Publication Number Publication Date
JP2011089939A true JP2011089939A (en) 2011-05-06
JP5621178B2 JP5621178B2 (en) 2014-11-05

Family

ID=44108312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244992A Active JP5621178B2 (en) 2009-10-24 2009-10-24 Appearance inspection device and printed solder inspection device

Country Status (1)

Country Link
JP (1) JP5621178B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242256A (en) * 2012-05-22 2013-12-05 Ricoh Elemex Corp Inspection data acquisition method and visual inspection apparatus
WO2014104375A1 (en) * 2012-12-31 2014-07-03 株式会社Djtech Inspection device
JP2014142339A (en) * 2012-12-31 2014-08-07 Djtech Co Ltd Inspection device
WO2015076513A1 (en) * 2013-11-19 2015-05-28 동우화인켐 주식회사 Apparatus for inspecting transmittance of printed pattern for ir sensor
JP2016011857A (en) * 2014-06-27 2016-01-21 オムロン株式会社 Substrate inspection device and control method thereof
WO2018131101A1 (en) * 2017-01-12 2018-07-19 株式会社 日立ハイテクノロジーズ Charged particle beam device and optical examination device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336058B2 (en) 2019-12-03 2023-08-31 株式会社Nexal Game tools and marketing knowledge teaching methods
KR102504845B1 (en) * 2020-12-17 2023-03-02 인천대학교 산학협력단 Apparatus and method for measuring surface topograph of sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242343A (en) * 1988-08-02 1990-02-13 Nec Corp Device for inspecting through-hole
JP2000337823A (en) * 1999-05-27 2000-12-08 Mitsubishi Heavy Ind Ltd Surface inspection device and surface inspection method
JP2001242091A (en) * 2000-01-07 2001-09-07 Thermo Radiometrie Oy Device and method for inspecting surface
JP2002535606A (en) * 1999-01-18 2002-10-22 マイデータ オートメーション アクチボラグ Method and apparatus for inspecting an object
JP2006515676A (en) * 2003-01-09 2006-06-01 オーボテック リミテッド Method and apparatus for simultaneous inspection of 2-D and surface irregularities
JP2007212431A (en) * 2006-01-11 2007-08-23 Hitachi High-Technologies Corp Optical testing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242343A (en) * 1988-08-02 1990-02-13 Nec Corp Device for inspecting through-hole
JP2002535606A (en) * 1999-01-18 2002-10-22 マイデータ オートメーション アクチボラグ Method and apparatus for inspecting an object
JP2000337823A (en) * 1999-05-27 2000-12-08 Mitsubishi Heavy Ind Ltd Surface inspection device and surface inspection method
JP2001242091A (en) * 2000-01-07 2001-09-07 Thermo Radiometrie Oy Device and method for inspecting surface
JP2006515676A (en) * 2003-01-09 2006-06-01 オーボテック リミテッド Method and apparatus for simultaneous inspection of 2-D and surface irregularities
JP2007212431A (en) * 2006-01-11 2007-08-23 Hitachi High-Technologies Corp Optical testing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242256A (en) * 2012-05-22 2013-12-05 Ricoh Elemex Corp Inspection data acquisition method and visual inspection apparatus
WO2014104375A1 (en) * 2012-12-31 2014-07-03 株式会社Djtech Inspection device
JP2014142339A (en) * 2012-12-31 2014-08-07 Djtech Co Ltd Inspection device
WO2015076513A1 (en) * 2013-11-19 2015-05-28 동우화인켐 주식회사 Apparatus for inspecting transmittance of printed pattern for ir sensor
JP2016011857A (en) * 2014-06-27 2016-01-21 オムロン株式会社 Substrate inspection device and control method thereof
WO2018131101A1 (en) * 2017-01-12 2018-07-19 株式会社 日立ハイテクノロジーズ Charged particle beam device and optical examination device
US10832976B2 (en) 2017-01-12 2020-11-10 Hitachi High-Tech Corporation Charged particle beam device and optical examination device

Also Published As

Publication number Publication date
JP5621178B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5621178B2 (en) Appearance inspection device and printed solder inspection device
JP6425755B2 (en) Foreign substance inspection method of substrate
TWI422800B (en) Board inspection apparatus and method
KR101691242B1 (en) Multi-modal imaging
KR101241175B1 (en) Mounting boards inspection apparatus and method thereof
JP5162702B2 (en) Surface shape measuring device
TWI590725B (en) Detecting device and detecting method of appearance of printed circuit board
JP2010112941A (en) Surface inspection apparatus
JP5124705B1 (en) Solder height detection method and solder height detection device
JP6791631B2 (en) Image generation method and inspection equipment
JP5945386B2 (en) Printed solder inspection equipment
JP5776949B2 (en) Inspection method
JP2009025189A (en) Measuring instrument
JP5890953B2 (en) Inspection device
JP2009036736A (en) Printed soft solder inspection method and device
JP2008216059A (en) Inspection apparatus of printed board
JP5272784B2 (en) Optical inspection method and optical inspection apparatus
JP2009236760A (en) Image detection device and inspection apparatus
KR101684244B1 (en) Board inspection method
JP3597484B2 (en) Solder printing inspection equipment
JP2018040761A (en) Device for inspecting appearance of inspection target object
WO2011049190A1 (en) Visual testing device and printed solder testing device
JP2017009533A (en) Image inspection system
WO2014104375A1 (en) Inspection device
WO2019117802A1 (en) A system for obtaining 3d images of objects and a process thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140906

R150 Certificate of patent or registration of utility model

Ref document number: 5621178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250