JP2011085391A - Method and device for measuring position - Google Patents

Method and device for measuring position Download PDF

Info

Publication number
JP2011085391A
JP2011085391A JP2009235858A JP2009235858A JP2011085391A JP 2011085391 A JP2011085391 A JP 2011085391A JP 2009235858 A JP2009235858 A JP 2009235858A JP 2009235858 A JP2009235858 A JP 2009235858A JP 2011085391 A JP2011085391 A JP 2011085391A
Authority
JP
Japan
Prior art keywords
frequency difference
information
radio wave
maximum value
moving bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009235858A
Other languages
Japanese (ja)
Other versions
JP5326982B2 (en
Inventor
Yuki Usuda
由紀 薄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009235858A priority Critical patent/JP5326982B2/en
Publication of JP2011085391A publication Critical patent/JP2011085391A/en
Application granted granted Critical
Publication of JP5326982B2 publication Critical patent/JP5326982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the position of a radio wave emission source by a structure without requiring the measurement of arrival time difference or radio wave arrival direction and without increasing the circuit scale and size. <P>SOLUTION: Moving bodies 1a, 1b each include a function of receiving a radio wave and transmitting a reception signal thereof and a function of obtaining and transmitting position information on the current position, and move at the same velocity in the same direction while holding a constant interval therebetween. A base station communication part 2 receives the reception signal and position information transmitted from the moving bodies. A position information processing part 4 calculates position and velocity information of the moving bodies 1a, 1b upon the signal reception from temporal variation of two pieces of position information output from the base station communication part 2. An emission source position calculation part 6 performs the calculation about the central position of the distance between the moving bodies 1a, 1b when the maximum value of the frequency difference is obtained, and estimates the position of the emission source of the same radio wave received by the moving bodies 1a, 1b on the basis of the calculation result. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は位置測定方法及び位置測定装置に係り、特に電波の発射源位置を測定する位置測定方法及び位置測定装置に関する。   The present invention relates to a position measuring method and a position measuring apparatus, and more particularly to a position measuring method and a position measuring apparatus for measuring the position of a radio wave emission source.

電波監視などの目的で、位置が不明な電波の発射源位置を、受信した電波から測定する位置測定装置が用いられる。   For the purpose of radio wave monitoring or the like, a position measuring device that measures the position of a radio wave emission source whose position is unknown from received radio waves is used.

このような位置測定装置として、特許文献1に記載の位置測定装置では、複数の移動体受信部で受信した受信信号間の「周波数差」及び「到達時間差」を同時に測定することにより、発射源位置を求めている。   As such a position measuring device, the position measuring device described in Patent Document 1 simultaneously measures a “frequency difference” and an “arrival time difference” between received signals received by a plurality of mobile receivers, thereby providing a launch source. Seeking the position.

また、特許文献2には、複数の異なる位置で電波の到来方位を測定し、その方位測定結果を示す方位線の交点から発射源位置を測定する位置測定装置が開示されている。   Patent Document 2 discloses a position measuring device that measures the arrival directions of radio waves at a plurality of different positions and measures the emission source position from the intersection of azimuth lines indicating the direction measurement results.

特開2006−349470号公報JP 2006-349470 A 特開2002−267732号公報JP 2002-267732 A

特許文献1記載の位置測定装置では、到達時間差を測定するためには受信信号の帯域幅が必要である。周波数帯域幅f、遅延時間Δtとすると、受信信号の位相変化量Δφは2πfΔtで表される。従って、周波数帯域幅fが小さいとき(狭帯域)と大きいとき(広帯域)とでは、同じ遅延時間Δtに対して位相変化量は広帯域の方が狭帯域に比べて大きくなる。そのため、少しの誤差でも狭帯域の場合は広帯域に比べて影響を大きく受けることとなる。   In the position measuring device described in Patent Document 1, the bandwidth of the received signal is necessary to measure the arrival time difference. Assuming that the frequency bandwidth is f and the delay time is Δt, the phase change amount Δφ of the received signal is represented by 2πfΔt. Therefore, when the frequency bandwidth f is small (narrow band) and large (wide band), the amount of phase change for the same delay time Δt is larger in the wide band than in the narrow band. For this reason, even a small amount of error is greatly affected in a narrow band compared to a wide band.

このため、特許文献1記載の位置測定装置では、受信信号が狭帯域の通信信号等の場合は正確に到達時間差を測定できないため位置測定が正確にできず、特に無変調の搬送波では位置が測定できないという欠点がある。   For this reason, in the position measuring device described in Patent Document 1, if the received signal is a narrow-band communication signal or the like, the arrival time difference cannot be measured accurately, so the position cannot be measured accurately, and the position is measured particularly with an unmodulated carrier wave. There is a disadvantage that it can not.

一方、電波の到来方位の測定結果に基づき位置測定する特許文献2記載の位置測定装置では、電波の到来方位を測定するためには複数のアンテナ及び受信機が必要であり、更に、誤差を小さくするためには多数のアンテナを配置する必要が生じ、回路規模及び寸法が大きくなるという欠点がある。   On the other hand, the position measuring apparatus described in Patent Document 2 that measures the position based on the measurement result of the arrival direction of radio waves requires a plurality of antennas and receivers in order to measure the arrival direction of radio waves, and further reduces errors. In order to achieve this, it is necessary to arrange a large number of antennas, and there is a disadvantage that the circuit scale and dimensions become large.

本発明は以上の点に鑑みなされたもので、到達時間差や電波到来方位の測定を必要とすることなく、しかも回路規模及び寸法を増大させない構成により電波発射源の位置を測定可能な位置測定方法及び位置測定装置を提供することを目的とする。   The present invention has been made in view of the above points, and does not require measurement of the arrival time difference or radio wave arrival direction, and can measure the position of the radio wave emission source with a configuration that does not increase the circuit scale and dimensions. And it aims at providing a position measuring device.

上記の目的を達成するため、本発明の位置測定方法は、一定間隔の距離を保って同じ速度で同一方向へ移動している2台の移動体がそれぞれ電波発射源からの電波を受信して、その受信信号を送信すると共に、自己の現在位置の位置情報をそれぞれ取得してその位置情報を送信する送信ステップと、2台の移動体が送信した受信信号及び位置情報に基づいて、2台の移動体がそれぞれ受信した2つの受信信号の周波数差の最大値を検出すると共に、2つの位置情報の時間変化から信号受信時の2台の移動体の位置及び速度情報を算出する検出及び算出ステップと、周波数差の最大値と位置及び速度情報とに基づいて、電波発射源の位置を演算する演算ステップとを含むことを特徴とする。   In order to achieve the above object, the position measurement method of the present invention is configured such that two mobile bodies moving in the same direction at the same speed at a constant distance receive radio waves from radio wave emission sources. The transmission step of transmitting the received signal, acquiring the position information of the current position of the mobile station and transmitting the position information, and the two units based on the received signal and the position information transmitted by the two mobile units Detection and calculation for detecting the maximum value of the frequency difference between the two received signals received by each mobile body and calculating the position and velocity information of the two mobile bodies at the time of signal reception from the time change of the two positional information And a calculation step for calculating the position of the radio wave emission source based on the maximum value of the frequency difference and the position and velocity information.

また、上記の目的を達成するため、本発明の位置測定装置は、それぞれ電波を受信してその受信信号を送信する機能と、自己の現在位置の位置情報を取得して送信する機能とを備えており、互いに一定間隔の距離を保って同じ速度で同一方向へ移動する第1及び第2の移動体と、第1及び第2の移動体からそれぞれ送信された受信信号及び位置情報とを受信する通信手段と、通信手段からの第1及び第2の移動体が受信した受信信号及び取得した位置情報に基づいて、第1及び第2の移動体がそれぞれ受信した2つの受信信号の周波数差の最大値を検出すると共に、2つの位置情報の時間変化から信号受信時の第1及び第2の移動体の位置及び速度情報を算出する検出及び算出手段と、周波数差の最大値と位置及び速度情報とに基づいて、電波発射源の位置を演算する演算手段とを有することを特徴とする。   In order to achieve the above object, the position measuring apparatus of the present invention has a function of receiving radio waves and transmitting the received signals, and a function of acquiring and transmitting position information of its current position. The first and second moving bodies that move in the same direction at the same speed while maintaining a constant distance from each other, and receive signals and position information transmitted from the first and second moving bodies, respectively. Frequency difference between the two reception signals received by the first and second mobile units based on the communication means and the reception signals received by the first and second mobile units from the communication unit and the acquired position information. Detecting and calculating means for calculating the position and speed information of the first and second moving bodies at the time of signal reception from the time change of the two position information, and the maximum value and position of the frequency difference Based on speed information and It characterized by having a calculating means for calculating the position of the wave source.

本発明によれば、受信信号が狭帯域信号であっても、また無変調の搬送波だけであっても、電波発射源の位置の測定が、簡単な演算により高速にできると共に、回路規模及び寸法を小さく実現できる。   According to the present invention, even if the received signal is a narrowband signal or only an unmodulated carrier wave, the position of the radio wave emission source can be measured at high speed by simple calculation, and the circuit scale and dimensions can be obtained. Can be realized small.

本発明の位置測定装置の一実施形態のブロック図である。It is a block diagram of one embodiment of a position measuring device of the present invention. 本発明の位置測定装置を構成する2台の移動体と電波発射源との関係を示す概略図と、受信周波数差と電波発射源のy軸方向の位置との関係と、受信周波数差とx軸方向の2台の移動体の間の距離の中心位置との関係とを示す図である。Schematic showing the relationship between the two mobile bodies constituting the position measuring device of the present invention and the radio wave emission source, the relationship between the reception frequency difference and the position of the radio wave emission source in the y-axis direction, the reception frequency difference and x It is a figure which shows the relationship between the center position of the distance between the two mobile bodies of an axial direction. 2台の移動体と電波発射源との間の距離と時間との関係の一例を示す図である。It is a figure which shows an example of the relationship between the distance between two mobile bodies, and a radio wave emission source, and time. 2台の移動体と電波発射源との間の距離の時間変化量の一例を示す図である。It is a figure which shows an example of the time variation | change_quantity of the distance between two mobile bodies and a radio wave emission source. 2台の移動体のドップラー周波数の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the Doppler frequency of two moving bodies. 2台の移動体のドップラー周波数差と時間との間の関係の一例を示す図である。It is a figure which shows an example of the relationship between the Doppler frequency difference of two moving bodies, and time. 周波数差の最大値Δfmaxと電波発射源のy軸方向の位置との関係の一例を示す図である。It is a figure which shows an example of the relationship between maximum value (DELTA) fmax of a frequency difference, and the position of the y-axis direction of a radio wave emission source.

次に、本発明の実施形態について図面と共に説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明になる位置測定装置の一実施形態のブロック図を示す。同図に示すように、本実施形態の位置測定装置10は、2台の移動体1a及び1bと、基地局通信部2と、周波数差検出部3と、位置情報処理部4と、最大周波数差検出部5と、発射源位置演算部6とより構成される。   FIG. 1 shows a block diagram of an embodiment of a position measuring apparatus according to the present invention. As shown in the figure, the position measuring apparatus 10 of this embodiment includes two mobile units 1a and 1b, a base station communication unit 2, a frequency difference detection unit 3, a position information processing unit 4, and a maximum frequency. The difference detection unit 5 and the emission source position calculation unit 6 are configured.

2台の移動体1a及び1bは、互いに一定間隔で、同一方向に、同一速度で移動しながら、それぞれ電波を独立して受信すると共に、例えば全地球測位システム(GPS:Global Positioning System)を構成する人工衛星からのGPS信号を受信して自己の現在位置の位置情報を取得する機能を有する。また、2台の移動体1a及び1bは、電波を受信すると、その受信した受信信号を送信する機能と、取得した自己の現在位置の位置情報を送信する機能も有する。   The two mobile units 1a and 1b receive radio waves independently while moving at the same speed in the same direction at regular intervals, and constitute, for example, a global positioning system (GPS) It has a function of receiving GPS signals from artificial satellites to acquire position information of its current position. In addition, when the two mobile units 1a and 1b receive radio waves, the two mobile units 1a and 1b also have a function of transmitting the received reception signal and a function of transmitting the acquired current position information of the current position.

基地局通信部2は、移動体1aから送信された移動体1aの第1の受信信号及び第1の位置情報と、移動体1bから送信された移動体1bの第2の受信信号及び第2の位置情報とを受信して信号処理して出力する。   The base station communication unit 2 includes the first received signal and the first position information of the mobile unit 1a transmitted from the mobile unit 1a, and the second received signal and the second position information of the mobile unit 1b transmitted from the mobile unit 1b. Are received, signal processed, and output.

周波数差検出部3は、基地局通信部2から出力される上記の第1及び第2の受信信号を入力として受け、それらの受信信号間の周波数差を公知の方法で検出して周波数差検出信号を出力する。位置情報処理部4は、基地局通信部2から出力される上記の第1及び第2の位置情報を入力として受け、それらの位置情報の時間変化から信号受信時の移動体1a及び1bの位置及び速度情報を算出する。   The frequency difference detection unit 3 receives the first and second reception signals output from the base station communication unit 2 as inputs, detects the frequency difference between these reception signals by a known method, and detects the frequency difference. Output a signal. The position information processing unit 4 receives the first and second position information output from the base station communication unit 2 as input, and the position of the mobile bodies 1a and 1b at the time of signal reception from the time change of the position information. And speed information is calculated.

最大周波数差検出部5は、周波数差検出部3から出力された周波数差検出信号を入力として受け、その周波数差検出信号が示す周波数差を一定時間間隔で取得し、例えば前回取得した周波数差よりも今回取得した周波数差の方が大きいときには、今回取得した周波数差に更新し、今回取得した周波数差のほうが小さいときには前回取得した周波数差を保持するなどの方法により、周波数差の最大値を検出する。   The maximum frequency difference detection unit 5 receives the frequency difference detection signal output from the frequency difference detection unit 3 as an input, acquires the frequency difference indicated by the frequency difference detection signal at regular time intervals, for example, from the previously acquired frequency difference If the frequency difference acquired this time is larger, it is updated to the frequency difference acquired this time, and if the frequency difference acquired this time is smaller, the maximum frequency difference is detected by a method such as holding the frequency difference acquired last time. To do.

発射源位置演算部6は、最大周波数差検出部5で検出された周波数差の最大値と、位置情報処理部4から出力される位置及び速度情報とに基づいて、上記周波数差の最大値が2台の移動体1a及び1bの間の距離の中心位置がどの位置にあったときに得られたかを算出し、その算出結果により、2台の移動体1a及び1bがそれぞれ受信した同じ電波の発射源の位置を推定(測定)する。これは、上記周波数差が最大となるのは、2台の移動体1a及び1bの間の距離の中心位置と電波発射源とを結ぶ線が、2台の移動体1a及び1bを結ぶ線と垂直に交わるときであることに基づく。   Based on the maximum frequency difference detected by the maximum frequency difference detection unit 5 and the position and speed information output from the position information processing unit 4, the launch source position calculation unit 6 determines the maximum value of the frequency difference. It is calculated at which position the center position of the distance between the two mobile bodies 1a and 1b was obtained, and the calculation result indicates that the same radio waves received by the two mobile bodies 1a and 1b respectively. Estimate (measure) the position of the launch source. This is because the frequency difference is maximized when the line connecting the center position of the distance between the two mobile bodies 1a and 1b and the radio wave emission source is the line connecting the two mobile bodies 1a and 1b. Based on when it crosses vertically.

次に、本実施形態の動作について、図1と図2から図7と共に説明する。   Next, the operation of this embodiment will be described with reference to FIGS. 1 and 2 to 7.

図2(A)は、本発明になる位置測定装置を構成する2台の移動体と電波発射源との関係を示す概略図である。同図中、図1と同一構成部分には同一符号を付してある。図2(A)に示すように、例えば航空機である2台の移動体1a及び1bは、或る高度を保って互いに一定間隔dで、同一方向に、同一速度vで移動しながら、xy座標(X0,Y0)の位置にある電波発射源7からの電波をそれぞれ独立して受信しているものとする。   FIG. 2 (A) is a schematic diagram showing the relationship between the two mobile bodies constituting the position measuring apparatus according to the present invention and the radio wave emission source. In the figure, the same components as those in FIG. As shown in FIG. 2 (A), for example, two moving bodies 1a and 1b, which are aircraft, move in the same direction and at the same speed v at a certain distance d while maintaining a certain altitude. It is assumed that the radio waves from the radio wave emission source 7 at the position (X0, Y0) are received independently.

また、移動体1a及び1bは、それぞれ電波発射源7からの電波の受信信号と、GPSを構成する人工衛星から受信したGPS信号に基づいて得た自己の現在位置の位置情報とをそれぞれ地上にある基地局通信部2(図2には図示せず)へ送信している。   In addition, each of the mobile bodies 1a and 1b receives, on the ground, a reception signal of a radio wave from the radio wave emission source 7 and position information of its current position obtained based on a GPS signal received from an artificial satellite constituting the GPS. It is transmitted to a certain base station communication unit 2 (not shown in FIG. 2).

ここで、図2に示すように、移動体1aと電波発射源7との距離をR1、移動体1bと電波発射源7との距離をR2とすると、距離R1、R2は次式で表される。   Here, as shown in FIG. 2, when the distance between the moving body 1a and the radio wave emission source 7 is R1, and the distance between the mobile body 1b and the radio wave emission source 7 is R2, the distances R1 and R2 are expressed by the following equations. The

Figure 2011085391
図3は、2台の移動体1a及び1bが、同一方向に、一定間隔dで、同じ速度vで高速に移動するときの電波発射源7との距離R1、R2の変化と時間との関係の一例を示す。図3において、実線が時間に対する距離R1の変化を示し、点線が距離R2の変化を示す。
Figure 2011085391
FIG. 3 shows the relationship between changes in distances R1 and R2 with respect to the radio wave emission source 7 and time when the two moving bodies 1a and 1b move at high speed at the same speed v in the same direction at a constant interval d. An example is shown. In FIG. 3, a solid line indicates a change in the distance R1 with respect to time, and a dotted line indicates a change in the distance R2.

また、距離R1、R2の時間変化量は、(1)式及び(2)式を時間微分することにより、次式で得られる。   Moreover, the time variation of the distances R1 and R2 can be obtained by the following equation by differentiating the equations (1) and (2) with respect to time.

Figure 2011085391
図4は、上記の距離R1、R2の時間変化量の一例を示す。図4において、実線がdR1/dtの時間変化量を示し、点線がdR2/dtの時間変化量を示す。
Figure 2011085391
FIG. 4 shows an example of the amount of time change of the distances R1 and R2. In FIG. 4, the solid line indicates the time change amount of dR1 / dt, and the dotted line indicates the time change amount of dR2 / dt.

上記の(3)式、(4)式を、移動体1a、1bが受信した電波の搬送波の波長λで除算したものがドップラー周波数fd1、fd2となり、それらは次式により得られる。   The above equations (3) and (4) divided by the wavelength λ of the carrier wave of the radio waves received by the mobile bodies 1a and 1b are Doppler frequencies fd1 and fd2, which are obtained by the following equations.

Figure 2011085391
図5は、上記のドップラー周波数fd1、fd2と時間との関係の一例を示す。図5において、実線が時間に対するドップラー周波数fd1の変化を示し、点線が時間に対するドップラー周波数fd2の変化を示す。
Figure 2011085391
FIG. 5 shows an example of the relationship between the Doppler frequencies fd1 and fd2 and time. In FIG. 5, the solid line shows the change of the Doppler frequency fd1 with respect to time, and the dotted line shows the change of the Doppler frequency fd2 with respect to time.

よって、2台の移動体1a、1b間のドップラー周波数差Δfは、次の(7)式で得られる。   Therefore, the Doppler frequency difference Δf between the two mobile bodies 1a and 1b is obtained by the following equation (7).

Figure 2011085391
図6は、上記のドップラー周波数差Δfと時間との関係の一例を示す。また、図2(C)は、上記のドップラー周波数差Δfと移動体1a及び1b間の距離の中心位置との間の関係の一例を示す。図2(C)及び図6に示すように、最大の周波数差Δfmaxが得られた時間における2台の移動体1a及び1b間の距離の中心位置が、電波発射源7のX軸方向の位置X0である。
Figure 2011085391
FIG. 6 shows an example of the relationship between the Doppler frequency difference Δf and time. FIG. 2C shows an example of the relationship between the Doppler frequency difference Δf and the center position of the distance between the moving bodies 1a and 1b. As shown in FIG. 2C and FIG. 6, the center position of the distance between the two mobile bodies 1a and 1b at the time when the maximum frequency difference Δfmax is obtained is the position of the radio wave emission source 7 in the X-axis direction. X0.

図1に示した周波数差検出部3が検出する2つの受信信号間の周波数差は、(7)式のΔfを表している。ここで、(7)式中、波長λは受信周波数によって決まり、移動体1a、1b間の間隔dは既知であり、速度v、位置情報vtは、位置情報処理部4からの速度情報及び位置情報から得られるため、電波発射源7の位置座標X0、Y0だけが未知の値である。   The frequency difference between the two received signals detected by the frequency difference detection unit 3 shown in FIG. 1 represents Δf in the equation (7). Here, in the equation (7), the wavelength λ is determined by the reception frequency, the distance d between the moving bodies 1a and 1b is known, the speed v and the position information vt are the speed information and position from the position information processing unit 4. Since it is obtained from the information, only the position coordinates X0 and Y0 of the radio wave emission source 7 are unknown values.

図1の最大周波数差検出部5は、周波数差検出部3で検出した周波数差Δfの最大値Δfmaxを検出する。また、図1の発射源位置演算部6は、位置情報処理部4より、周波数差の最大値Δfmaxが得られた時の移動体1a、1bの位置情報を取得し、それに基づき移動体1a及び1b間の距離の中心位置、すなわち、電波発射源7のX軸方向の位置X0を演算する。   The maximum frequency difference detection unit 5 in FIG. 1 detects the maximum value Δfmax of the frequency difference Δf detected by the frequency difference detection unit 3. 1 obtains position information of the moving bodies 1a and 1b when the maximum frequency difference Δfmax is obtained from the position information processing section 4, and the moving body 1a and The center position of the distance between 1b, that is, the position X0 of the radio wave emission source 7 in the X-axis direction is calculated.

また、(7)式で表される周波数差Δfが最大値Δfmaxとなるのは、(7)式においてX0=vtとなる点である。よって、Δfmaxは、(7)式にX0=vtを代入することにより次式で表される。   Further, the frequency difference Δf represented by the equation (7) becomes the maximum value Δfmax at a point where X0 = vt in the equation (7). Therefore, Δfmax is expressed by the following equation by substituting X0 = vt into equation (7).

Figure 2011085391
よって、電波発射源7のy軸方向の位置Y0は、(8)式をY0について整理することにより次式で算出される。
Figure 2011085391
Therefore, the position Y0 of the radio wave emission source 7 in the y-axis direction is calculated by the following formula by arranging the formula (8) for Y0.

Figure 2011085391
図7は、周波数差の最大値Δfmaxと電波発射源7のy軸方向の位置との関係の一例を示す。また、図2(B)は、上記の周波数差Δfと電波発射源7のy軸方向との関係の一例を示す。電波発射源7のy軸方向の位置に応じて、(9)式に示すように周波数差の最大値Δfmaxは変化し、また、周波数差Δfも図2(B)に示すように変化するが、電波発射源7のy軸方向の位置Y0は、(9)式により決定される。
Figure 2011085391
FIG. 7 shows an example of the relationship between the maximum frequency difference Δfmax and the position of the radio wave emission source 7 in the y-axis direction. FIG. 2B shows an example of the relationship between the frequency difference Δf and the y-axis direction of the radio wave emission source 7. Depending on the position of the radio wave emission source 7 in the y-axis direction, the maximum value Δfmax of the frequency difference changes as shown in the equation (9), and the frequency difference Δf also changes as shown in FIG. The position Y0 of the radio wave emission source 7 in the y-axis direction is determined by equation (9).

このように、本実施形態によれば、同一方向へ、一定間隔(距離)で同じ速度で移動している2台の移動体1a及び1bでそれぞれ受信した2つの受信信号の周波数差の最大値と、移動体1a及び1bの速度及び位置情報とに基づいて、電波発射源7の位置の測定が可能であり、電波発射源の位置の測定には複数の受信信号の「到達時間差」や「電波到来方位」を必要としない。   Thus, according to the present embodiment, the maximum value of the frequency difference between the two received signals respectively received by the two mobile bodies 1a and 1b moving at the same speed in the same direction at a constant interval (distance). And the position of the radio wave emission source 7 can be measured based on the speed and position information of the mobile bodies 1a and 1b. For the measurement of the position of the radio wave emission source, the “arrival time difference” or “ "Radio arrival direction" is not required.

そのため、本実施形態によれば、受信信号が狭帯域信号であっても、また無変調の搬送波だけであっても、電波発射源の位置の測定が可能である。また、本実施形態によれば、多数のアンテナが不要であるので、基地局通信部2から発射源位置演算部6までの回路規模及び寸法を小さく実現できる。また、演算も非常に簡単であり、高速な処理が可能である。   Therefore, according to the present embodiment, the position of the radio wave emission source can be measured even if the received signal is a narrowband signal or only an unmodulated carrier wave. Moreover, according to this embodiment, since many antennas are unnecessary, the circuit scale and dimension from the base station communication part 2 to the emission source position calculating part 6 are realizable. In addition, the calculation is very simple and high-speed processing is possible.

なお、上記の実施形態では、移動体1a及び1bは同一の高度を維持して移動しているが、高度は一定傾斜で変化する場合には、Y方向の時間変化量も考慮しなければならず、同一高度での移動に比べて若干複雑な式になるが、本発明を適用可能である。   In the above embodiment, the moving bodies 1a and 1b move while maintaining the same altitude. However, when the altitude changes at a constant inclination, the time change amount in the Y direction must also be taken into consideration. However, the present invention can be applied to a slightly complicated expression as compared with movement at the same altitude.

また、本発明は上記の実施形態に限定されるものではなく、例えば、本発明で用いる移動体は航空機に限らず、自動車や人工衛星等でもよい。   Further, the present invention is not limited to the above-described embodiment. For example, the moving body used in the present invention is not limited to an aircraft, and may be an automobile, an artificial satellite, or the like.

1a、1b 移動体
2 基地局通信部
3 周波数差検出部
4 位置情報処理部
5 最大周波数差検出部
6 発射源位置演算部
7 電波発射源
10 位置測定装置
DESCRIPTION OF SYMBOLS 1a, 1b Mobile body 2 Base station communication part 3 Frequency difference detection part 4 Position information processing part 5 Maximum frequency difference detection part 6 Emergence source position calculation part 7 Radio wave emission source 10 Position measuring device

Claims (8)

一定間隔の距離を保って同じ速度で同一方向へ移動している2台の移動体がそれぞれ電波発射源からの電波を受信して、その受信信号を送信すると共に、自己の現在位置の位置情報をそれぞれ取得してその位置情報を送信する送信ステップと、
前記2台の移動体が送信した前記受信信号及び前記位置情報に基づいて、前記2台の移動体がそれぞれ受信した2つの前記受信信号の周波数差の最大値を検出すると共に、2つの前記位置情報の時間変化から信号受信時の前記2台の移動体の位置及び速度情報を算出する検出及び算出ステップと、
前記周波数差の最大値と前記位置及び速度情報とに基づいて、前記電波発射源の位置を演算する演算ステップと
を含むことを特徴とする位置測定方法。
Two mobile objects moving in the same direction at the same speed at a constant distance receive radio waves from radio wave emission sources, transmit the received signals, and location information of their current position Each of which is transmitted and the position information is transmitted,
Based on the received signal and the position information transmitted by the two mobile units, the maximum value of the frequency difference between the two received signals respectively received by the two mobile units is detected, and the two positions are detected. A detection and calculation step for calculating position and speed information of the two moving bodies at the time of signal reception from a time change of information;
A position measuring method comprising: calculating a position of the radio wave emission source based on the maximum value of the frequency difference and the position and velocity information.
一定間隔の距離を保って同じ速度で同一方向へ移動している2台の移動体がそれぞれ電波発射源からの電波を受信して、その受信信号を送信すると共に、自己の現在位置の位置情報をそれぞれ取得してその位置情報を送信する送信ステップと、
前記2台の移動体が送信した前記受信信号及び前記位置情報を受信する受信ステップと、
前記受信ステップで受信した前記2台の移動体がそれぞれ送信した2つの前記受信信号の周波数差を検出する周波数差検出ステップと、
前記周波数差検出ステップで検出された周波数差の最大値を検出する最大値検出ステップと、
前記受信ステップで受信した前記2台の移動体がそれぞれ送信した2つの前記位置情報の時間変化から信号受信時の前記2台の移動体の位置及び速度情報を算出する位置及び速度情報算出ステップと、
前記最大値検出ステップで検出した前記周波数差の最大値と、前記位置及び速度情報算出ステップで算出した前記位置及び速度情報とに基づいて、前記電波発射源の位置を演算する演算ステップと
を含むことを特徴とする位置測定方法。
Two mobile objects moving in the same direction at the same speed at a constant distance receive radio waves from radio wave emission sources, transmit the received signals, and location information of their current position Each of which is transmitted and the position information is transmitted,
A reception step of receiving the received signal and the position information transmitted by the two mobile units;
A frequency difference detecting step of detecting a frequency difference between the two received signals transmitted by the two mobile units received in the receiving step;
A maximum value detecting step for detecting a maximum value of the frequency difference detected in the frequency difference detecting step;
A position and velocity information calculating step for calculating position and velocity information of the two moving bodies at the time of signal reception from time changes of the two pieces of position information respectively transmitted by the two moving bodies received in the receiving step; ,
A calculation step of calculating the position of the radio wave emission source based on the maximum value of the frequency difference detected in the maximum value detection step and the position and velocity information calculated in the position and velocity information calculation step. A position measuring method characterized by the above.
前記演算ステップは、
前記位置及び速度情報に基づいて、前記周波数差の最大値が前記2台の移動体の間の距離の中心位置がどの位置にあったときに得られたかにより、前記電波発射源のx軸方向の位置を算出する第1のステップと、
前記第1のステップで得られた前記x軸方向の位置の算出結果を前記周波数差の最大値の数式に代入して得られた数式に基づいて、前記電波発射源のy軸方向の位置を算出する第2のステップと
を含むことを特徴とする請求項1又は2記載の位置測定方法。
The calculation step includes:
Based on the position and velocity information, the maximum value of the frequency difference is obtained when the center position of the distance between the two mobile objects is located at the x-axis direction of the radio wave emission source. A first step of calculating the position of
Based on the mathematical formula obtained by substituting the calculation result of the position in the x-axis direction obtained in the first step into the mathematical formula of the maximum value of the frequency difference, the position of the radio wave emission source in the y-axis direction is determined. The position measuring method according to claim 1, further comprising: a second step of calculating.
前記2台の移動体の間の距離をd、前記速度をv、前記周波数差の最大値が得られたときの前記位置情報をvt、前記受信信号の搬送波の波長をλ、前記周波数差の最大値をΔfmaxとしたとき、
前記第1のステップは、前記位置情報vtを前記電波発射源のx軸方向の位置として算出し、前記第2のステップは、次式
Figure 2011085391
により前記電波発射源のy軸方向の位置を算出することを特徴とする請求項3記載の位置測定方法。
The distance between the two moving bodies is d, the velocity is v, the position information when the maximum value of the frequency difference is obtained is vt, the wavelength of the carrier wave of the received signal is λ, and the frequency difference is When the maximum value is Δfmax,
In the first step, the position information vt is calculated as the position of the radio wave emission source in the x-axis direction.
Figure 2011085391
The position measurement method according to claim 3, wherein the position of the radio wave emission source in the y-axis direction is calculated.
それぞれ電波を受信してその受信信号を送信する機能と、自己の現在位置の位置情報を取得して送信する機能とを備えており、互いに一定間隔の距離を保って同じ速度で同一方向へ移動する第1及び第2の移動体と、
前記第1及び第2の移動体からそれぞれ送信された前記受信信号及び前記位置情報とを受信する通信手段と、
前記通信手段からの前記第1及び第2の移動体が受信した前記受信信号及び取得した前記位置情報に基づいて、前記第1及び第2の移動体がそれぞれ受信した2つの前記受信信号の周波数差の最大値を検出すると共に、2つの前記位置情報の時間変化から信号受信時の前記第1及び第2の移動体の位置及び速度情報を算出する検出及び算出手段と、
前記周波数差の最大値と前記位置及び速度情報とに基づいて、前記電波発射源の位置を演算する演算手段と
を有することを特徴とする位置測定装置。
It has a function to receive each radio wave and transmit the received signal, and a function to acquire and transmit position information of its current position, and move in the same direction at the same speed with a fixed distance from each other First and second moving bodies to perform,
Communication means for receiving the received signal and the position information transmitted from the first and second moving bodies, respectively;
Based on the received signals received by the first and second mobile units from the communication means and the acquired location information, the frequencies of the two received signals received by the first and second mobile units, respectively. Detecting and calculating means for detecting the maximum value of the difference and calculating the position and velocity information of the first and second moving bodies at the time of signal reception from the time change of the two pieces of position information;
A position measuring device comprising: a calculating means for calculating the position of the radio wave emission source based on the maximum value of the frequency difference and the position and velocity information.
それぞれ電波を受信してその受信信号を送信する機能と、自己の現在位置の位置情報を取得して送信する機能とを備えており、互いに一定間隔の距離を保って同じ速度で同一方向へ移動する第1及び第2の移動体と、
前記第1及び第2の移動体からそれぞれ送信された前記受信信号及び前記位置情報とを受信する通信手段と、
前記通信手段により受信された前記第1及び第2の移動体からの2つの前記受信信号の周波数差を検出する周波数差検出手段と、
前記周波数差検出手段で検出された周波数差の最大値を検出する最大周波数差検出手段と、
前記通信手段により受信された前記第1及び第2の移動体からの2つの前記位置情報の時間変化から信号受信時の前記第1及び第2の移動体の位置及び速度情報を算出する位置及び速度情報算出手段と、
前記最大周波数差検出手段で検出した前記周波数差の最大値と、前記位置及び速度情報算出手段で算出した前記位置及び速度情報とに基づいて、前記電波発射源の位置を演算する演算手段と
を有することを特徴とする位置測定装置。
It has a function to receive each radio wave and transmit the received signal, and a function to acquire and transmit position information of its current position, and move in the same direction at the same speed with a fixed distance from each other First and second moving bodies to perform,
Communication means for receiving the received signal and the position information transmitted from the first and second moving bodies, respectively;
A frequency difference detecting means for detecting a frequency difference between the two received signals from the first and second moving bodies received by the communication means;
Maximum frequency difference detecting means for detecting a maximum value of the frequency difference detected by the frequency difference detecting means;
A position for calculating the position and speed information of the first and second moving bodies at the time of signal reception from the time change of the two pieces of position information from the first and second moving bodies received by the communication means; and Speed information calculating means;
A computing means for computing the position of the radio wave emission source based on the maximum value of the frequency difference detected by the maximum frequency difference detecting means and the position and speed information calculated by the position and speed information calculating means; A position measuring device comprising:
前記演算手段は、
前記位置及び速度情報に基づいて、前記周波数差の最大値が前記第1及び第2の移動体の間の距離の中心位置がどの位置にあったときに得られたかにより、前記電波発射源のx軸方向の位置を算出する第1の位置算出手段と、
前記第1の位置算出手段で得られた前記x軸方向の位置の算出結果を前記周波数差の最大値の数式に代入して得られた数式に基づいて、前記電波発射源のy軸方向の位置を算出する第2の位置算出手段と
を有することを特徴とする請求項5又は6記載の位置測定装置。
The computing means is
Based on the position and velocity information, the maximum value of the frequency difference is obtained when the center position of the distance between the first and second moving bodies is obtained. first position calculating means for calculating a position in the x-axis direction;
Based on the mathematical expression obtained by substituting the calculation result of the position in the x-axis direction obtained by the first position calculation means into the mathematical expression of the maximum value of the frequency difference, the y-axis direction of the radio wave emission source The position measuring device according to claim 5, further comprising second position calculating means for calculating a position.
前記第1及び第2の移動体の間の距離をd、前記速度をv、前記周波数差の最大値が得られたときの前記位置情報をvt、前記受信信号の搬送波の波長をλ、前記周波数差の最大値をΔfmaxとしたとき、
前記第1の位置算出手段は、前記位置情報vtを前記電波発射源のx軸方向の位置として算出し、前記第2の位置算出手段は、次式
Figure 2011085391
により前記電波発射源のy軸方向の位置を算出することを特徴とする請求項7記載の位置測定装置。
The distance between the first and second moving bodies is d, the velocity is v, the position information when the maximum value of the frequency difference is obtained is vt, the wavelength of the carrier wave of the received signal is λ, When the maximum value of the frequency difference is Δfmax,
The first position calculation means calculates the position information vt as the position of the radio wave emission source in the x-axis direction, and the second position calculation means has the following formula:
Figure 2011085391
The position measuring device according to claim 7, wherein the position of the radio wave emission source in the y-axis direction is calculated.
JP2009235858A 2009-10-13 2009-10-13 Position measuring method and position measuring apparatus Active JP5326982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235858A JP5326982B2 (en) 2009-10-13 2009-10-13 Position measuring method and position measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235858A JP5326982B2 (en) 2009-10-13 2009-10-13 Position measuring method and position measuring apparatus

Publications (2)

Publication Number Publication Date
JP2011085391A true JP2011085391A (en) 2011-04-28
JP5326982B2 JP5326982B2 (en) 2013-10-30

Family

ID=44078452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235858A Active JP5326982B2 (en) 2009-10-13 2009-10-13 Position measuring method and position measuring apparatus

Country Status (1)

Country Link
JP (1) JP5326982B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153877A (en) * 2010-01-27 2011-08-11 Nec Corp Device and method for measuring position
JP5987187B1 (en) * 2015-10-16 2016-09-07 Rfルーカス株式会社 Storage medium position detection system and program
KR20190078293A (en) * 2017-12-26 2019-07-04 한국항공우주연구원 Realtime GNSS Data Correction System, Method and Computer Readable Recording Mediuim

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350984A (en) * 1969-06-05 1982-09-21 The United States Of America As Represented By The Director Of The National Security Agency Method of position fixing active sources utilizing differential doppler
JPS58162066U (en) * 1982-04-26 1983-10-28 日本電気株式会社 Target movement direction display device
JPH01136081A (en) * 1987-11-21 1989-05-29 Nec Corp Passive sonar
JPH0333672A (en) * 1989-06-30 1991-02-13 Nec Corp Target distance and speed detector
JPH11304898A (en) * 1998-04-21 1999-11-05 Mitsubishi Electric Corp Ranging method and device
JP2000056014A (en) * 1998-08-04 2000-02-25 Meisei Electric Co Ltd Missile measuring/evaluating device
JP2002062346A (en) * 2000-08-21 2002-02-28 Advantest Corp Method and apparatus for monitoring waves
US20090102718A1 (en) * 2006-01-12 2009-04-23 Lars Karlsson Method and Apparatus for Enhancing the Detection of Weak Emitters
JP2010032397A (en) * 2008-07-30 2010-02-12 Nec Corp Position measuring device and position measurement method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350984A (en) * 1969-06-05 1982-09-21 The United States Of America As Represented By The Director Of The National Security Agency Method of position fixing active sources utilizing differential doppler
JPS58162066U (en) * 1982-04-26 1983-10-28 日本電気株式会社 Target movement direction display device
JPH01136081A (en) * 1987-11-21 1989-05-29 Nec Corp Passive sonar
JPH0333672A (en) * 1989-06-30 1991-02-13 Nec Corp Target distance and speed detector
JPH11304898A (en) * 1998-04-21 1999-11-05 Mitsubishi Electric Corp Ranging method and device
JP2000056014A (en) * 1998-08-04 2000-02-25 Meisei Electric Co Ltd Missile measuring/evaluating device
JP2002062346A (en) * 2000-08-21 2002-02-28 Advantest Corp Method and apparatus for monitoring waves
US20090102718A1 (en) * 2006-01-12 2009-04-23 Lars Karlsson Method and Apparatus for Enhancing the Detection of Weak Emitters
JP2010032397A (en) * 2008-07-30 2010-02-12 Nec Corp Position measuring device and position measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153877A (en) * 2010-01-27 2011-08-11 Nec Corp Device and method for measuring position
JP5987187B1 (en) * 2015-10-16 2016-09-07 Rfルーカス株式会社 Storage medium position detection system and program
WO2017064987A1 (en) * 2015-10-16 2017-04-20 Rfルーカス株式会社 Storage medium position detecting system and program
US10295661B2 (en) 2015-10-16 2019-05-21 Rflocus Inc. Storage medium location detection system and program
US11009596B2 (en) 2015-10-16 2021-05-18 Rflocus Inc. Storage medium location detection system and program
KR20190078293A (en) * 2017-12-26 2019-07-04 한국항공우주연구원 Realtime GNSS Data Correction System, Method and Computer Readable Recording Mediuim
KR102112825B1 (en) * 2017-12-26 2020-05-19 한국항공우주연구원 Realtime GNSS Data Correction System, Method and Computer Readable Recording Mediuim

Also Published As

Publication number Publication date
JP5326982B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP4781313B2 (en) Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program
US5936571A (en) Integrated GPS/interference location system
KR100939640B1 (en) Method and system for recognition of location by using sound sources with different frequencies
JP4769596B2 (en) Electronic scanning radar equipment
JP2006349515A (en) System and method for measuring displacement
JP2015148607A (en) Doppler radar test system
JP2006349470A (en) Device and method for specifying position of uplink interference source
JP5599371B2 (en) Positioning device
JP2007101535A (en) Method and system for satellite navigation
JP2010060303A (en) Positioning apparatus
WO2021033379A1 (en) Distance measurement device and distance measurement method
JP5326982B2 (en) Position measuring method and position measuring apparatus
JP2014010110A (en) Angle measurement device and angle measurement method
JP5359094B2 (en) Position measuring apparatus and position measuring method
US20150192678A1 (en) Satellite positioning method, satellite positioning apparatus, and computer-readable medium
JP2007192573A (en) Target positioning apparatus
US20220381926A1 (en) System and method for positioning and navigation of an object
US6967615B1 (en) Phase center measurement of electronic warfare antennas using GPS signals
JP2009250865A (en) Positioning system and positioning method
JP2009122045A (en) Positioning device
RU2580827C1 (en) Method for angular orientation of object
JPH0836042A (en) Gps receiver and speed deciding means using the gps receiver
JP3738521B2 (en) Flying object guidance device
JP2010223870A (en) Target azimuth calculating device
JP2000147099A (en) Instantaneous passive distance measuring unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150