JP2010060303A - Positioning apparatus - Google Patents

Positioning apparatus Download PDF

Info

Publication number
JP2010060303A
JP2010060303A JP2008223280A JP2008223280A JP2010060303A JP 2010060303 A JP2010060303 A JP 2010060303A JP 2008223280 A JP2008223280 A JP 2008223280A JP 2008223280 A JP2008223280 A JP 2008223280A JP 2010060303 A JP2010060303 A JP 2010060303A
Authority
JP
Japan
Prior art keywords
radio wave
fdoa
tdoa
wave source
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008223280A
Other languages
Japanese (ja)
Inventor
Nobuhiro Suzuki
信弘 鈴木
Hisakazu Maniwa
久和 真庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008223280A priority Critical patent/JP2010060303A/en
Publication of JP2010060303A publication Critical patent/JP2010060303A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positioning apparatus which can perform high-precision positioning even for a moving radio source. <P>SOLUTION: The positioning apparatus estimates, using TDOA and FDOA between signals from unknown radio sources 1, 2 received by a plurality of receiving stations 5, 6 through two or more satellites 3, 4, the position of the radio sources. A signal/information processor 7 of the positioning apparatus measures the TDOA and FDOA multiple times, solves an equation for the TDOA and FDOA according to the multiple times measurement results of the TDOA and FDOA with the initial position and velocity of the radio sources as unknown variables on the assumption that the radio sources perform uniform linear motion, and calculates the initial position and velocity of the radio sources. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、複数の衛星を経由して受信局で受信される、未知の電波源からの電波間の到来時間差(TDOA:Time Difference of Arrival)と到来周波数差(FDOA:Frequency Difference of Arrival)を用いて電波源の位置を推定する測位装置、特に移動する電波源に対しても高精度の測位を可能にする装置に関する。   In the present invention, a time difference of arrival (TDOA) and a frequency difference of arrival (FDOA) are received by a receiving station via a plurality of satellites. More particularly, the present invention relates to a positioning device that estimates the position of a radio wave source, and more particularly to a device that enables highly accurate positioning even for a moving radio wave source.

従来、衛星を用いて地上の電波源の位置を測位する装置として、例えば下記特許文献1に記載されたような装置があった。この装置は、衛星を用いた電波源測位の高精度化に関するものであるが、測位原理そのものは、図6に示すように、測位対象である地上電波源51からの信号を、送信アンテナの主ローブからの信号を受信する衛星52と、送信アンテナのサイドローブからの信号を受信する衛星53を通して地上受信局54と55で受信し、信号処理装置56内でこれらの信号間の到来時間差(TDOA:Time Difference of Arrival)と到来周波数差(FDOA:Frequency Difference of Arrival)を求め、地表における等TDOA曲線57と等FDOA曲線58の交点から電波源51の位置を特定するというものである。   2. Description of the Related Art Conventionally, there has been an apparatus as described in Patent Document 1 below as an apparatus for measuring the position of a ground radio wave source using a satellite. This device relates to high accuracy of radio wave source positioning using a satellite. However, as shown in FIG. 6, the positioning principle itself uses a signal from a terrestrial radio wave source 51, which is a positioning object, as a main component of a transmitting antenna. The signals are received by the ground receiving stations 54 and 55 through the satellite 52 that receives the signal from the lobe and the satellite 53 that receives the signal from the side lobe of the transmitting antenna, and the arrival time difference (TDOA) between these signals is received in the signal processor 56. The time difference of arrival (FDOA) and the frequency difference of arrival (FDOA) are obtained, and the position of the radio wave source 51 is specified from the intersection of the equal TDOA curve 57 and the equal FDOA curve 58 on the ground surface.

TDOAは、2機の衛星52,53を介する経路差によるものであるから、目標(地上)電波源51と2機の衛星52,53と受信局54、55の位置関係により決まる。また、FDOAは、目標電波源51が静止しているものとすれば、衛星52,53の運動のドップラーシフトのみによるものであるから、目標電波源と2機の衛星52,53と受信局54,55の位置関係と、2機の衛星52,53の運動方向と速度に依存する。従って、2機の衛星52,53の位置と速度の三次元要素が既知であるとして、目標電波源51の位置を特定することができる。   Since TDOA is due to a path difference through the two satellites 52 and 53, it is determined by the positional relationship between the target (ground) radio wave source 51, the two satellites 52 and 53, and the receiving stations 54 and 55. Further, since the FDOA is based only on the Doppler shift of the movement of the satellites 52 and 53 if the target radio source 51 is stationary, the target radio source, the two satellites 52 and 53, and the receiving station 54 are used. , 55 and the direction and speed of movement of the two satellites 52, 53. Therefore, the position of the target radio wave source 51 can be specified on the assumption that the three-dimensional elements of the position and velocity of the two satellites 52 and 53 are known.

特許第3556952号公報Japanese Patent No. 3556952

従来の測位方式は、目標電波源が静止していることを前提としてFDOAを計測するため、電波源が船舶に設置されている場合などで未知の速度で移動する場合には、FDOAに地上局の移動によるドップラーシフトが加わり、これが誤差要因となって測位精度が大幅に劣化してしまうという問題があった。   The conventional positioning method measures FDOA on the assumption that the target radio wave source is stationary. Therefore, when the radio wave source is installed on a ship or the like and moves at an unknown speed, the FDOA has a ground station. There is a problem that Doppler shift due to the movement of the position is added, and this causes an error and the positioning accuracy is greatly deteriorated.

この発明は、このような問題を解決するためになされたものであり、移動する電波源に対しても高精度の測位を可能にする測位装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a positioning device that enables highly accurate positioning even for a moving radio wave source.

この発明は、2機以上の衛星を経由して複数の受信局で受信される未知の電波源からの信号間のTDOAとFDOAを用いて前記電波源の位置を推定する測位装置であって、測位装置の信号・情報処理装置が、TDOAとFDOAを複数回計測するとともに、電波源が等速直線運動するものと仮定し、電波源の初期位置と速度を未知変数とする、前記TDOAとFDOAに関する方程式を前記TDOAとFDOAの複数回の計測結果に従って解き、前記電波源の初期位置と速度を算出することを特徴とする測位装置にある。   This invention is a positioning device for estimating the position of the radio wave source using TDOA and FDOA between signals from unknown radio wave sources received by a plurality of receiving stations via two or more satellites, It is assumed that the signal / information processing device of the positioning device measures TDOA and FDOA multiple times, and that the radio wave source moves linearly at a constant speed, and uses the initial position and velocity of the radio wave source as unknown variables. The positioning apparatus is characterized in that the equation relating to TDOA and FDOA is solved in accordance with a plurality of measurement results and the initial position and velocity of the radio wave source are calculated.

この発明では、移動する電波源に対しても高精度の測位を可能にする。   The present invention enables highly accurate positioning even for a moving radio wave source.

実施の形態1.
図1はこの発明の一実施の形態による測位装置の全体構成を示す図である。図1において、1は測位対象である移動電波源、2は一定時間後の前記移動電波源、3は電波源(1,2)からの主電波を中継する第1の衛星、4は電波源からのサイドローブ電波を中継する第2の衛星、5と6はそれぞれ衛星3,4からの電波を受信する地上受信局、7は受信局の信号から電波源位置を計算する信号・情報処理装置である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an overall configuration of a positioning apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a mobile radio wave source to be positioned, 2 is the mobile radio wave source after a certain time, 3 is a first satellite that relays the main radio wave from the radio wave source (1, 2), and 4 is a radio wave source. The second satellites 5 and 6 relay the sidelobe radio waves from the terrestrial receiving station receiving the radio waves from the satellites 3 and 4 respectively, and 7 is a signal / information processing device for calculating the radio wave source position from the signals of the receiving stations It is.

図2は信号・情報処理装置7の内部構成を示す図を示す。11は低雑音増幅手段、12は周波数変換手段、13はA/D変換手段、14はローカル信号発生手段、15はA/D変換のためのクロック・トリガ信号発生手段、16はTDOA/FDOA計算手段、17は記憶手段、18は衛星軌道計算手段、19は測位計算手段である。   FIG. 2 is a diagram showing an internal configuration of the signal / information processing apparatus 7. 11 is a low noise amplifying means, 12 is a frequency converting means, 13 is an A / D converting means, 14 is a local signal generating means, 15 is a clock trigger signal generating means for A / D conversion, and 16 is a TDOA / FDOA calculation. Means 17, storage means 18, satellite orbit calculation means 19, and positioning calculation means 19.

次に動作について説明する。図1に示すように、測位目標である移動電波源(1,2)は、第1の衛星3に向けて電波を送信する。また、この電波は、アンテナ指向特性により意図しない方向(サイドローブ)にも弱い電力で送信され、第2の衛星4によっても受信される。第1の衛星3と第2の衛星4によってそれぞれ受信された信号は、周波数変換されて再送信され、それぞれ地上受信局5と地上受信局6によって受信される。これらの受信信号は信号・情報処理装置7によって処理されて電波源位置の測位結果が出力部に出力または表示部に表示(共に図示省略)される。   Next, the operation will be described. As shown in FIG. 1, the mobile radio wave sources (1, 2) that are positioning targets transmit radio waves toward the first satellite 3. Further, this radio wave is transmitted with weak power in an unintended direction (side lobe) due to the antenna directivity, and is also received by the second satellite 4. The signals respectively received by the first satellite 3 and the second satellite 4 are frequency-converted and retransmitted, and are received by the ground receiving station 5 and the ground receiving station 6, respectively. These received signals are processed by the signal / information processing device 7, and the positioning result of the radio wave source position is output to the output unit or displayed on the display unit (both not shown).

次に信号・情報処理装置7の内部処理について説明する。通信衛星等の衛星3と4から得られる受信信号は、それぞれ別々の低雑音増幅手段11により増幅され、別々の周波数変換手段12によりIF信号(中間周波:Intermediate Frequency)かベースバンド信号に変換された後、別々のA/D変換手段13によりディジタル信号に変換される。   Next, internal processing of the signal / information processing apparatus 7 will be described. Received signals obtained from satellites 3 and 4 such as communication satellites are amplified by separate low noise amplifying means 11 and converted into IF signals (intermediate frequency) or baseband signals by separate frequency converting means 12. After that, it is converted into a digital signal by separate A / D conversion means 13.

これらの周波数変換手段12に供給されるローカル信号と、A/D変換手段13に供給されるクロック信号やトリガ信号は、共通のローカル信号発生手段14や共通のクロック・トリガ信号発生手段15によって供給する。但し、2機の地上受信局5と6が離れている場合には、原子時計やGPS標準信号発生器などを用いた同期手段や、ディジタル処理によるものを含む補正手段を用いて、個別にローカル信号やクロック・トリガ信号が供給されてもよい。   The local signal supplied to the frequency converter 12 and the clock signal and trigger signal supplied to the A / D converter 13 are supplied by the common local signal generator 14 and the common clock / trigger signal generator 15. To do. However, when the two terrestrial receiving stations 5 and 6 are separated from each other, the local means can be individually used by using a synchronization means using an atomic clock or a GPS standard signal generator, or a correction means including those by digital processing. A signal or a clock trigger signal may be supplied.

ディジタル信号に変換された2機の衛星3,5からの受信信号は、TDOA/FDOA計算手段16に入力され、両信号間のTDOA(到来時間差)とFDOA(到来周波数差)が計算される。受信信号の取得とTDOA、FDOAの計算は一定時間毎、または不定期的に複数回行い、観測ごとのTDOAとFDOAを記憶手段17に格納する。   The received signals from the two satellites 3 and 5 converted into digital signals are input to the TDOA / FDOA calculating means 16 and TDOA (arrival time difference) and FDOA (arrival frequency difference) between the two signals are calculated. Acquisition of the received signal and calculation of TDOA and FDOA are performed at regular time intervals or irregularly multiple times, and the TDOA and FDOA for each observation are stored in the storage means 17.

TDOAとFDOAの計算は、例えば次に示す相関演算を用いて行うことができる。   The calculation of TDOA and FDOA can be performed using, for example, the following correlation calculation.

Figure 2010060303
Figure 2010060303

上記式(1)において、S(t)は第1の衛星3からの受信信号であり、S(t)は第2の衛星4からの受信信号である。τとfを変えながら上記式(1)を計算し、上記式(1)の絶対値が最も大きくなるτとfが求めるべきTDOAとFDOAである。 In the above equation (1), S 1 (t) is a received signal from the first satellite 3, and S 2 (t) is a received signal from the second satellite 4. The above equation (1) is calculated while changing τ and f, and τ and f at which the absolute value of the equation (1) becomes the maximum are TDOA and FDOA to be obtained.

一方、衛星軌道計算手段18は、TDOAとFDOA受信信号データ取得時における2機の衛星3,4の位置と速度を計算する。これは、衛星事業者等から得た衛星の軌道情報から計算することができる。衛星の軌道情報は図2のAに示すように衛星軌道計算手段18に直接入力されるようにしてもよく、また予め所定のメモリ(図示省略)に格納しておいてもよい。また、上述の特許文献1に示されている方法を用いることもできる。   On the other hand, the satellite orbit calculation means 18 calculates the positions and velocities of the two satellites 3 and 4 when TDOA and FDOA received signal data are acquired. This can be calculated from the orbit information of the satellite obtained from a satellite operator or the like. The satellite orbit information may be directly input to the satellite orbit calculation means 18 as shown in FIG. 2A, or may be stored in a predetermined memory (not shown) in advance. Moreover, the method shown by the above-mentioned patent document 1 can also be used.

測位計算手段19は、衛星軌道計算手段18から得た2機の衛星3,4の位置と速度の情報と、記憶手段17に格納されている複数回計測したTDOAとFDOAを用いて、目標電波源(1,2)の位置と速度を計算する。   The positioning calculation means 19 uses the information on the positions and velocities of the two satellites 3 and 4 obtained from the satellite orbit calculation means 18 and the TDOA and FDOA measured a plurality of times stored in the storage means 17. Calculate the position and velocity of the source (1,2).

位置と速度の計算は、複数回のTDOAとFDOAを計測している間は電波源(1,2)が等速直線運動をしているものと仮定し、最初のTDOAとFDOAを計測した時点の初期位置と速度を未知変数として、次の連立方程式を解く。   The calculation of position and velocity is based on the assumption that the radio wave source (1,2) is moving in a uniform linear motion while measuring TDOA and FDOA multiple times, and the first TDOA and FDOA are measured. The following simultaneous equations are solved using the initial position and velocity of as unknown variables.

Figure 2010060303
Figure 2010060303

上記連立方程式(2)において、「・」はベクトルの内積を表し、二重の| |はベクトルの長さ、すなわち二乗のノルムを表す。また、各変数の意味は以下のとおりである。
τ(k):k回目の計測時の観測TDOA
(k):k回目の計測時の観測FDOA
τD(k):k回目の計測時のダウンリンクTDOA
D(k):k回目の計測時のダウンリンクFDOA
(→)P(k):k回目の計測時の目標電波源の位置ベクトル
(→)v:目標電波源の速度ベクトル(kによらず不変)
(→)PS1(k):k回目の計測時の第1の衛星の位置ベクトル
(→)vS1(k):k回目の計測時の第1の衛星の速度ベクトル
(→)PS2(k):k回目の計測時の第2の衛星の位置ベクトル
(→)vS2(k):k回目の計測時の第2の衛星の速度ベクトル
c:光速
λ:アップリンク時の波長
K:総計測回数
In the above simultaneous equation (2), “·” represents an inner product of vectors, and double || represents a vector length, that is, a norm of a square. The meaning of each variable is as follows.
τ (k) : Observation TDOA at the k-th measurement
f (k) : Observation FDOA at the time of the k-th measurement
τ D (k) : Downlink TDOA at the k-th measurement
f D (k) : Downlink FDOA at the time of the k-th measurement
(→) P (k) : Position vector of the target radio wave source at the time of the k-th measurement
(→) v: Velocity vector of the target radio source (invariant regardless of k)
(→) P S1 (k) : position vector of the k-th measurement at the time of the first satellite
(→) v S1 (k) : velocity vector of the first satellite at the k-th measurement
(→) P S2 (k) : Position vector of the second satellite at the time of the k-th measurement
(→) v S2 (k) : velocity vector of the second satellite at the time of the k-th measurement c: speed of light λ: wavelength at the time of uplink K: total number of measurements

上記の変数のうち、観測TDOAと観測FDOAはTDOA/FDOA計算手段16から得るため既知変数である。
また、ダウンリンクTDOAとダウンリンクFDOAは、衛星軌道計算手段18から得る衛星3,4の位置、速度と、既知である地上受信局5,6の位置から計算する。従ってこれも既知変数である。なお、地上受信局5,6の位置は測位計算手段19に予め設定されているか、又はメモリ(図示省略)に格納させておくか、又は例えば図2にBで示すように外部から入力する。
また、目標電波源の位置ベクトルは、2回目以降の計測時は次式で計算できる。
Among the above variables, the observed TDOA and the observed FDOA are known variables because they are obtained from the TDOA / FDOA calculation means 16.
The downlink TDOA and downlink FDOA are calculated from the positions and velocities of the satellites 3 and 4 obtained from the satellite orbit calculation means 18 and the positions of the known ground receiving stations 5 and 6. Therefore, this is also a known variable. The positions of the ground receiving stations 5 and 6 are preset in the positioning calculation means 19, stored in a memory (not shown), or input from the outside as shown by B in FIG.
Further, the position vector of the target radio wave source can be calculated by the following equation at the second and subsequent measurements.

Figure 2010060303
Figure 2010060303

上記式(3)において、t(k)はk回目の計測時の時刻である。
上記式(3)を連立方程式(2)に代入すれば、目標電波源(1,2)の位置ベクトルは初回計測時のP(1)のみを未知変数とすることができる。しかも、移動電波源(1,2)として船舶や車輌を仮定する場合、電波源(1,2)は地表(地球表面)に存在するから、高さ方向(Z方向)を0(座標原点は地上にあるとする)とすることができ、水平面内の成分であるx(1)とy(1)のみが未知変数となる。
In the above equation (3), t (k) is the time at the k-th measurement.
By substituting the above equation (3) into the simultaneous equation (2), the position vector of the target radio wave source (1, 2) can have only P (1) at the first measurement as an unknown variable. Moreover, when a ship or vehicle is assumed as the mobile radio wave source (1, 2), the radio wave source (1, 2) exists on the ground surface (earth surface), so the height direction (Z direction) is 0 (the coordinate origin is Only x (1) and y (1), which are components in the horizontal plane, are unknown variables.

また、目標電波源(1,2)の速度ベクトルは、等速直線運動を仮定しているため、計測回によらず一定値であり、しかも移動電波源(1,2)として船舶や車輌を仮定するならば高さ方向(Z方向)は0なので、水平面内の成分であるVxとVyのみが未知変数となる。   In addition, since the velocity vector of the target radio wave source (1, 2) is assumed to be a uniform linear motion, it is a constant value regardless of the number of measurements, and ships and vehicles are used as the mobile radio wave source (1, 2). Assuming that the height direction (Z direction) is zero, only the components Vx and Vy in the horizontal plane are unknown variables.

衛星3,4の位置と速度は衛星軌道計算手段18から得るため既知であり、計測時刻や光速、アップリンク時の波長も既知である。従って、未知変数は目標電波源の初回計測時の位置ベクトルの水平成分[x(1),y(1)]と、速度ベクトルの水平成分[Vx,Vy]の4個となる。   The positions and velocities of the satellites 3 and 4 are known because they are obtained from the satellite orbit calculation means 18, and the measurement time, the speed of light, and the wavelength at the time of uplink are also known. Therefore, there are four unknown variables: the horizontal component [x (1), y (1)] of the position vector at the time of the initial measurement of the target radio wave source and the horizontal component [Vx, Vy] of the velocity vector.

一方、上記連立方程式(2)の数は、2回計測すれば4個の式からなる連立方程式となるので、未知変数の数との関係から方程式が解けるようになり、目標電波源の初回計測時の位置ベクトルと速度ベクトルを求めることができる。また、3回以上計測した場合、未知変数の数より多数の方程式が得られるので、最小二乗原理を用いて、より正確に目標電波源の位置ベクトルと速度ベクトルを求めることができる。   On the other hand, if the number of simultaneous equations (2) is measured twice, it becomes a simultaneous equation consisting of four equations, so the equations can be solved from the relationship with the number of unknown variables, and the initial measurement of the target radio source The time position vector and velocity vector can be obtained. Further, when the measurement is performed three times or more, a larger number of equations can be obtained than the number of unknown variables. Therefore, the position vector and velocity vector of the target radio wave source can be obtained more accurately using the least square principle.

以上のように、この実施の形態は、電波源が等速直線運動すると仮定するとともに、複数回計測したTDOAとFDOAを用いて測位計算するため、電波源が移動する場合においても電波源の位置と速度を推定することができるという従来方式には無い最大の特長がある。   As described above, this embodiment assumes that the radio wave source moves linearly at a constant speed, and performs positioning calculation using TDOA and FDOA measured multiple times. Therefore, even when the radio wave source moves, the position of the radio wave source is determined. There is a maximum feature that the conventional method can estimate the speed.

また、TDOAとFDOAを複数回計測するだけなので、衛星受信設備等は従来と同等でよく、信号・情報処理装置のみの変更で可能という特長もある。特に、測位計算をソフトウェアで実現している場合にはソフトウェアの変更のみで実現できる。   In addition, since TDOA and FDOA are only measured a plurality of times, the satellite receiving equipment and the like may be the same as the conventional one, and there is a feature that it is possible to change only the signal / information processing apparatus. In particular, when the positioning calculation is realized by software, it can be realized only by changing the software.

実施の形態2.
以上の実施の形態1では、移動電波源が等速直線運動しているものと仮定して電波源の位置と速度を推定するものであるが、この実施の形態は、移動電波源が、地球の表面に沿った等速直線運動、すなわち地球を中心とする円運動をしているものと仮定するものである。
Embodiment 2. FIG.
In the first embodiment described above, the position and velocity of the radio wave source are estimated on the assumption that the mobile radio wave source is moving at a constant linear velocity. In this embodiment, the mobile radio wave source is It is assumed that a constant-velocity linear motion along the surface of the earth, that is, a circular motion centered on the earth.

複数回計測したTDOAとFDOAに関する上記連立方程式(2)を精度よく解くためには、なるべく各方程式が独立している方がよい。衛星が静止衛星の場合、衛星の位置と速度が24時間周期で変化するため、独立した方程式を得るためには数時間以上にわたってTDOAとFDOAの計測を繰り返す必要がある。この間に船舶(電波源)は数十km以上進むため、地表の球面性を無視できなくなることがある。そこでこの実施の形態では、移動電波源が地球の表面に沿った等速直線運動するものと仮定する。   In order to solve the simultaneous equations (2) relating to TDOA and FDOA measured a plurality of times with high accuracy, it is preferable that each equation is as independent as possible. When the satellite is a geostationary satellite, the position and velocity of the satellite change in a cycle of 24 hours. Therefore, in order to obtain an independent equation, it is necessary to repeatedly measure TDOA and FDOA over several hours. During this time, since the ship (radio wave source) travels several tens of kilometers or more, the spherical nature of the ground surface may not be negligible. Therefore, in this embodiment, it is assumed that the moving radio wave source moves at a constant linear velocity along the surface of the earth.

実施の形態1とこの実施の形態2の違いは、測位計算法のみである。従って、測位装置の構成は実施の形態1のものと基本的に同じであり、測位計算法のみについて説明する。   The difference between the first embodiment and the second embodiment is only the positioning calculation method. Therefore, the configuration of the positioning device is basically the same as that of the first embodiment, and only the positioning calculation method will be described.

以下、この実施の形態の動作について説明する。測位計算において、この実施の形態では、移動電波源(1,2)が地球を中心とする円運動を仮定するものである。この場合、測位計算に用いる座標系は地球中心の固定座標系を用いるのが都合よい。この座標系における地表(地球表面)に沿って等速運動する電波源(1,2)の速度ベクトルV(k)は、次式に示すように、位置ベクトルP(k)と速度ベクトルV(k)に垂直な角速度ベクトルωを用いて表すことができる。   The operation of this embodiment will be described below. In the positioning calculation, in this embodiment, the moving radio wave source (1, 2) assumes a circular motion around the earth. In this case, it is convenient to use a fixed coordinate system centered on the earth as the coordinate system used for positioning calculation. The velocity vector V (k) of the radio wave source (1, 2) moving at a constant speed along the ground surface (earth surface) in this coordinate system is represented by the position vector P (k) and the velocity vector V ( It can be expressed using an angular velocity vector ω perpendicular to k).

Figure 2010060303
Figure 2010060303

但し、上式において「×」はベクトルの外積を表す。   In the above equation, “x” represents the outer product of vectors.

図3に電波源の位置ベクトルと速度ベクトル、および角速度ベクトルの関係を示す。図3において、21は地球中心、22は角速度ベクトル、23はk回目の計測時の電波源の位置ベクトル、24はk回目の計測時の電波源の速度ベクトルである。   FIG. 3 shows the relationship between the position vector of the radio wave source, the velocity vector, and the angular velocity vector. In FIG. 3, 21 is the center of the earth, 22 is an angular velocity vector, 23 is a position vector of the radio wave source at the k-th measurement, and 24 is a velocity vector of the radio wave source at the k-th measurement.

電波源が地表上を等速直線運動する場合、角速度ベクトル22は、kによらず一定となる。従って各要素は次のようにkによらない値で次式のように表されるものとする。   When the radio wave source moves at a constant linear velocity on the ground surface, the angular velocity vector 22 is constant regardless of k. Therefore, each element is expressed by the following equation with a value not depending on k as follows.

Figure 2010060303
Figure 2010060303

また、次に示すように、2回目以降の計測時の電波源の位置ベクトルP(k)(k=2,3,・・・,K)は、初回の計測時の位置ベクトルP(1)と角速度ベクトルωを用いて次式のように表すことができる。   In addition, as shown below, the position vector P (k) (k = 2, 3,..., K) of the radio wave source at the second and subsequent measurements is the position vector P (1) at the first measurement. And the angular velocity vector ω can be expressed as follows:

Figure 2010060303
Figure 2010060303

一方、測位計算に必要な条件は次式となる。   On the other hand, the conditions necessary for positioning calculation are as follows.

Figure 2010060303
Figure 2010060303

但し、上記連立方程式(7)においてRは地球の平均半径である。   In the above simultaneous equations (7), R is the average radius of the earth.

上記連立方程式(7)の3番目の式は、電波源が地表上にあることを保証するための式である。また、4番目の式は、角速度ベクトルが電波源の位置ベクトルと垂直であることを保証するための式である。   The third equation of the simultaneous equation (7) is an equation for ensuring that the radio wave source is on the ground surface. The fourth equation is an equation for ensuring that the angular velocity vector is perpendicular to the position vector of the radio wave source.

電波源の位置ベクトルP(k)に上記式(6)、速度ベクトルV(k)に上記式(4)と式(6)を代入することによって、連立方程式(7)は、初回の計測時の位置ベクトルP(1)と角速度ベクトルωを用いて表すことができる。   By substituting the above equation (6) into the position vector P (k) of the radio wave source and the above equations (4) and (6) into the velocity vector V (k), the simultaneous equation (7) Can be expressed using the position vector P (1) and the angular velocity vector ω.

従って、未知変数は電波源の初回計測時の位置ベクトルP(1)=[x(1),y(2),z(3)]と、kによらず一定である角速度ベクトルω=[u,v,w]の計6個となる。   Therefore, the unknown variables are the position vector P (1) = [x (1), y (2), z (3)] at the first measurement of the radio wave source, and the angular velocity vector ω = [u that is constant regardless of k. , V, w], a total of six.

一方、連立方程式(7)の方程式の数は、総計測回数をKとして2K+2個となる。従って、2回計測すれば6個の式からなる連立方程式となるので、未知変数の数との関係から方程式が解けるようになり、目標電波源の初回計測時の位置ベクトルと速度ベクトルを求めることができる。また、3回以上計測した場合、未知変数の数より多数の方程式が得られるので、最小二乗原理を用いて、より正確に目標電波源の位置ベクトルと速度ベクトルを求めることができる。   On the other hand, the number of simultaneous equations (7) is 2K + 2 with K being the total number of measurements. Therefore, if two measurements are made, it becomes a simultaneous equation consisting of six equations, so the equation can be solved from the relationship with the number of unknown variables, and the position vector and velocity vector at the time of the first measurement of the target radio wave source can be obtained. Can do. Further, when the measurement is performed three times or more, a larger number of equations can be obtained than the number of unknown variables. Therefore, the position vector and velocity vector of the target radio wave source can be obtained more accurately using the least square principle.

この実施の形態は、電波源が地表に沿って等速運動すると仮定するとともに、複数回計測したTDOAとFDOAを用いて測位計算するため、電波源が移動する場合においても電波源の位置と速度を推定することができるという特長がある。また、電波源が地表に沿って等速運動すると仮定するため、単なる等速直線運動と仮定する場合に比べ、計測時間が長時間になり電波源が大幅に移動する場合にも適用できるという利点がある。   In this embodiment, it is assumed that the radio wave source moves at a constant speed along the ground surface, and positioning calculation is performed using the TDOA and FDOA measured multiple times. Therefore, even when the radio wave source moves, the position and speed of the radio wave source There is a feature that can be estimated. In addition, since it is assumed that the radio wave source moves at a constant speed along the surface of the earth, it can be applied to a case where the radio wave source moves significantly due to a long measurement time compared to a case where the radio wave source is assumed to be a simple constant linear motion. There is.

なお、この実施の形態では地球を球体であるとして測位計算を行ったが、楕円体として計算することもできる。その場合、より精密に電波源位置と速度を求めることができるという利点がある。   In this embodiment, the positioning calculation is performed on the assumption that the earth is a sphere, but it can also be calculated as an ellipsoid. In this case, there is an advantage that the radio wave source position and speed can be obtained more precisely.

実施の形態3.
以上の実施の形態1では、2機の衛星を用いて移動電波源の位置と速度を推定するものであるが、この実施の形態は、3機以上の衛星を用い、計測毎にTDOAとFDOAを計算する衛星の組み合わせを変えるというものである。
Embodiment 3 FIG.
In the first embodiment described above, the position and velocity of the mobile radio wave source are estimated using two satellites. In this embodiment, three or more satellites are used, and TDOA and FDOA are used for each measurement. It is to change the combination of satellites that calculate

図4はこの実施の形態による測位装置の全体構成を示す図である。図4において、31は測位対象である移動電波源、32は一定時間後の前記移動電波源、33は電波源からの主電波を中継する第1の衛星、34は電波源からのサイドローブ電波を中継する第2の衛星、35は電波源からのサイドローブ電波を中継する第3の衛星、36は第1の衛星33からの電波を受信する地上受信局、37は第2の衛星34と第3の衛星35からの電波を計測ごとに切り替えて受信する地上受信局、38は受信局の信号から電波源位置を計算する信号・情報処理装置である。なお、信号・情報処理装置38の構成は基本的には図2に示したものと同様である。   FIG. 4 is a diagram showing the overall configuration of the positioning apparatus according to this embodiment. In FIG. 4, 31 is a mobile radio wave source to be positioned, 32 is the mobile radio wave source after a certain time, 33 is a first satellite that relays the main radio wave from the radio wave source, and 34 is a sidelobe radio wave from the radio wave source. , A third satellite that relays sidelobe radio waves from a radio wave source, 36 a ground receiving station that receives radio waves from the first satellite 33, and 37 a second satellite 34. A terrestrial receiving station 38 that receives radio waves from the third satellite 35 by switching for each measurement, and 38 is a signal / information processing device that calculates a radio wave source position from the signal of the receiving station. The configuration of the signal / information processing device 38 is basically the same as that shown in FIG.

次に動作について説明する。複数回計測したTDOAとFDOAに関する連立方程式(2)または(7)を精度よく解くためには、各方程式がなるべく独立している方がよい。しかし、衛星が静止衛星の場合、衛星の位置と速度が24時間周期で変化するため、独立した方程式を得るためにはTDOAとFDOAの計測間隔は数時間程度にする必要がある。数時間にわたり計測する間に、目標電波源(31,32)である船舶等が加減速を行ったり、方向の転換をしたりすると、実施の形態1で仮定した等速直線運動や、実施の形態2で仮定した地表に沿った等速運動とみなせなくなるという問題がある。   Next, the operation will be described. In order to solve the simultaneous equations (2) or (7) relating to TDOA and FDOA measured a plurality of times with high accuracy, it is better that each equation is as independent as possible. However, when the satellite is a geostationary satellite, the position and velocity of the satellite change in a cycle of 24 hours, so that the measurement interval between TDOA and FDOA needs to be several hours in order to obtain an independent equation. If the ship or the like, which is the target radio wave source (31, 32), accelerates or decelerates or changes direction during the measurement over several hours, the constant velocity linear motion assumed in the first embodiment, There is a problem that it cannot be regarded as a uniform motion along the ground surface assumed in the second mode.

そこでこの実施の形態は、計測毎に、地上受信局(例えば37)のアンテナの向きを変えるなどして、サイドローブ電波を受信する衛星を別の衛星に切り替える。すなわち衛星34,35の間で切り替える。例えば図4に示すように、ある回の計測には第1の衛星33と第2の衛星34との組み合わせでTDOAとFDOAを計測し、次の計測には第1の衛星33と第3の衛星35との組み合わせでTDOAとFDOAを計測する。   Therefore, in this embodiment, for each measurement, the satellite that receives the sidelobe radio waves is switched to another satellite by changing the direction of the antenna of the ground receiving station (for example, 37). That is, switching between the satellites 34 and 35 is performed. For example, as shown in FIG. 4, TDOA and FDOA are measured by a combination of the first satellite 33 and the second satellite 34 for a certain measurement, and the first satellite 33 and the third satellite are used for the next measurement. TDOA and FDOA are measured in combination with the satellite 35.

測位計算は、実施の形態1の式(2)や実施の形態2の式(7)において、TDOAとFDOAの計測に用いた当該衛星の位置と速度を代入するだけで、実施の形態1や実施の形態2と同様に行うことができる。   The positioning calculation is performed only by substituting the position and velocity of the satellite used for the TDOA and FDOA measurement in the formula (2) of the first embodiment and the formula (7) of the second embodiment. This can be performed in the same manner as in Embodiment Mode 2.

このように衛星を切り替えることによって衛星の位置と速度が変わるため、受信局のアンテナの向きを変える程度の短時間の間隔でTDOAとFDOAの計測を行っても独立性の高い方程式が得られる。そのため、短時間のうちに計測を行うことができ、電波源を搭載した船舶等が加減速や方向の転換を行い、等速直線運動とみなせる時間が短い場合にも電波源の位置と速度を推定しやすくなるという利点がある。   Since the position and speed of the satellite change by switching the satellites in this way, a highly independent equation can be obtained even if TDOA and FDOA are measured at short intervals that change the direction of the antenna of the receiving station. Therefore, measurement can be performed in a short time, and the position and speed of the radio wave source can be adjusted even if the ship equipped with the radio wave source is accelerating / decelerating and changing direction and the time that can be regarded as constant-velocity linear motion is short. There is an advantage that it is easy to estimate.

また、この実施の形態では地上受信局は2機だけを用いて衛星を切り替えたが、3機の受信局を用いることができる場合、2組のTDOAとFDOAを同時に計測してもよい。その場合、1回の計測で目標電波源の位置と速度を推定できるという利点がある。また、図2の低雑音増幅手段11、周波数変換手段12、A/D変換手段13はそれぞれ例えば、地上受信局数分設けられる。   In this embodiment, the terrestrial receiving station uses only two terrestrial receivers to switch satellites. However, if three terrestrial receiving stations can be used, two sets of TDOA and FDOA may be measured simultaneously. In that case, there is an advantage that the position and speed of the target radio wave source can be estimated by one measurement. Further, for example, the low noise amplifying means 11, the frequency converting means 12, and the A / D converting means 13 of FIG.

実施の形態4.
実施の形態1、2では、1回の測位計算に用いる複数回のTDOAとFDOAの計測中に目標電波源が等速直線運動していることを仮定しているため、目標電波源が加減速を行ったり、方向を転換したりすると測位精度が劣化する可能性がある。この実施の形態は、それに対処する方策である。
Embodiment 4 FIG.
In Embodiments 1 and 2, since it is assumed that the target radio wave source is moving at a constant linear velocity during a plurality of TDOA and FDOA measurements used for one positioning calculation, the target radio wave source is accelerated / decelerated. If you perform or change direction, the positioning accuracy may deteriorate. This embodiment is a measure for dealing with it.

図5はこの実施の形態の概要を説明するための図である。41は目標電波源の移動軌跡、42は(m−4)回目(mは目標電波源が移動方向を変える瞬間のTDOA/FDOA計測回)のTDOA/FDOA計測時における目標電波源の位置、43は(m−3)回目のTDOA/FDOA計測時における目標電波源の位置、44は(m−2)回目のTDOA/FDOA計測時における目標電波源の位置、45は(m−1)回目のTDOA/FDOA計測時における目標電波源の位置、46はm回目のTDOA/FDOA計測時における目標電波源の位置、47は(m−4)、(m−3)、(m−2)回目に計測のTDOAとFDOAのセットを用いて計算した測位結果、48は(m−3)、(m−2)、(m−1)回目に計測のTDOAとFDOAのセットを用いて計算した測位結果、49は(m−2)、(m−1)、m回目に計測のTDOAとFDOAのセットを用いて計算した測位結果、50は48の測位結果と49の測位結果の差である。   FIG. 5 is a diagram for explaining the outline of this embodiment. Reference numeral 41 denotes the movement path of the target radio wave source, 42 denotes the position of the target radio wave source at the time of TDOA / FDOA measurement in the (m−4) th (m is the TDOA / FDOA measurement times at the moment when the target radio wave source changes the moving direction), 43 Is the position of the target radio wave source at the (m-3) th TDOA / FDOA measurement, 44 is the position of the target radio wave source at the (m-2) th TDOA / FDOA measurement, and 45 is the (m-1) th time. The position of the target radio wave source at the time of TDOA / FDOA measurement, 46 is the position of the target radio wave source at the time of the TDOA / FDOA measurement of the mth time, 47 is the (m-4), (m-3), (m-2) th time. Positioning results calculated using a set of TDOA and FDOA for measurement, 48 are positioning results calculated using a set of TDOA and FDOA for measurement (m-3), (m-2), and (m-1) times , 49 are (m-2), (m-1), and T of measurement at the mth time. Positioning calculated using a set of OA and FDOA results, 50 is the difference of the positioning result of the 48 positioning results and 49.

次に動作について説明する。この実施の形態では、実施の形態1や実施の形態2に示した測位計算を、TDOAとFDOAの計測結果を重複させながら時系列的に行う。例えば図4に示すように、測位計算を、(m−4)と(m−3)と(m−2)回目に計測のTDOAとFDOAを用いて行った後に、次回の計算は(m−3)と(m−2)と(m−1)回目に計測のTDOAとFDOA用いて行う。   Next, the operation will be described. In this embodiment, the positioning calculation shown in Embodiment 1 and Embodiment 2 is performed in time series while overlapping the measurement results of TDOA and FDOA. For example, as shown in FIG. 4, after the positioning calculation is performed using the measured TDOA and FDOA at the (m−4), (m−3), and (m−2) times, the next calculation is (m− 3), (m-2), and (m-1) The measurement is performed using TDOA and FDOA.

重複するTDOAとFDOAのセットを用いて測位計算した結果同士は、目標電波源が等速直線運動していれば、図5の47と48のように測位計算結果が一致する。   If the target radio wave source is moving at a constant linear velocity, the positioning calculation results coincide as shown by 47 and 48 in FIG. 5 between the results of positioning calculation using overlapping sets of TDOA and FDOA.

一方、測位計算したTDOAとFDOAのセットの中に、目標電波源が移動方向を変更したり、加減速した瞬間が含まれると、図5の49の測位計算結果のように、それまで等速直線運動していた場合の測位計算結果48と一致しない。   On the other hand, if the set of TDOA and FDOA for which positioning has been calculated includes the moment when the target radio wave source has changed its direction of movement or acceleration / deceleration, it will be constant velocity as shown in the positioning calculation result of 49 in FIG. It does not coincide with the positioning calculation result 48 in the case of linear motion.

このように、重複するTDOAとFDOAのセットを用いて計算した測位結果を比較し、ある一定以上の差がある場合にはその間に目標電波源が移動方向を変更したり加減速した可能性があると判断し、正しくないと思われる測位結果を棄却する。   In this way, the positioning results calculated using overlapping sets of TDOA and FDOA are compared. If there is a certain difference or more, there is a possibility that the target radio wave source has changed the direction of movement or accelerated / decelerated during that time. Judge that there is, and reject the positioning result that seems to be incorrect.

このようにこの実施の形態によると、目標電波源の移動が等速直線運動から外れた瞬間を検出できるため、目標電波源の移動が等速直線運動から外れる瞬間があっても、等速直線運動部分のみを選択して正しい測位結果を出力できるという利点がある。   Thus, according to this embodiment, since the moment when the movement of the target radio wave source deviates from the constant velocity linear motion can be detected, even if there is a moment when the movement of the target radio wave source deviates from the constant velocity linear motion, the constant velocity linear There is an advantage that only a moving part can be selected and a correct positioning result can be output.

なお、上記説明では測位装置について説明してきたが、この発明は、これらの測位装置で行われる測位方法も含み得ることは云うまでもない。   Although the positioning device has been described in the above description, it is needless to say that the present invention may include a positioning method performed by these positioning devices.

この発明の一実施の形態による測位装置の全体構成を示す図である。It is a figure which shows the whole structure of the positioning apparatus by one Embodiment of this invention. 図1の信号・情報処理装置の内部構成を示す図である。It is a figure which shows the internal structure of the signal and information processing apparatus of FIG. この発明の実施の形態2に係わる電波源の位置ベクトル、速度ベクトル、角速度ベクトルの関係を示す図である。It is a figure which shows the relationship between the position vector of the radio wave source concerning Embodiment 2 of this invention, a velocity vector, and an angular velocity vector. この発明の実施の形態3による測位装置の全体構成を示す図である。It is a figure which shows the whole structure of the positioning apparatus by Embodiment 3 of this invention. この発明の実施の形態4による測位装置の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the positioning apparatus by Embodiment 4 of this invention. 従来のこの種の測位方法を説明するための図である。It is a figure for demonstrating this kind of conventional positioning method.

符号の説明Explanation of symbols

1,2,31,32 移動電波源、3,4,33,34,35 衛星、5,6,36,37 地上受信局、7,38 信号・情報処理装置、11 低雑音増幅手段、12 周波数変換手段、13 A/D変換手段、14 ローカル信号発生手段、15 クロック・トリガ信号発生手段、16 TDOA/FDOA計算手段、17 記憶手段、18 衛星軌道計算手段、19 測位計算手段、22 角速度ベクトル、23 電波源の位置ベクトル、24 電波源の速度ベクトル。   1, 2, 31, 32 Mobile radio wave source, 3, 4, 33, 34, 35 Satellite, 5, 6, 36, 37 Ground receiving station, 7, 38 Signal / information processing device, 11 Low noise amplification means, 12 Frequency Conversion means, 13 A / D conversion means, 14 local signal generation means, 15 clock trigger signal generation means, 16 TDOA / FDOA calculation means, 17 storage means, 18 satellite orbit calculation means, 19 positioning calculation means, 22 angular velocity vector, 23 Radio wave source position vector, 24 radio wave source velocity vector.

Claims (4)

2機以上の衛星を経由して複数の受信局で受信される未知の電波源からの信号間のTDOAとFDOAを用いて前記電波源の位置を推定する測位装置であって、
測位装置の信号・情報処理装置が、
TDOAとFDOAを複数回計測するとともに、電波源が等速直線運動するものと仮定し、電波源の初期位置と速度を未知変数とする、前記TDOAとFDOAに関する方程式を前記TDOAとFDOAの複数回の計測結果に従って解き、前記電波源の初期位置と速度を算出することを特徴とする測位装置。
A positioning device that estimates the position of the radio wave source using TDOA and FDOA between signals from unknown radio wave sources received by a plurality of receiving stations via two or more satellites,
Positioning device signal / information processing device
TDOA and FDOA are measured a plurality of times, and it is assumed that the radio wave source moves linearly at a constant speed. The initial position and velocity of the radio wave source are unknown variables. A positioning device which solves according to the measurement result and calculates the initial position and velocity of the radio wave source.
2機以上の衛星を経由して複数の受信局で受信される未知の電波源からの信号間のTDOAとFDOAを用いて前記電波源の位置を推定する測位装置であって、
測位装置の信号・情報処理装置が、
TDOAとFDOAを複数回計測するとともに、電波源が地球の表面に沿って等速運動するものと仮定し、電波源の初期位置と速度、または初期位置と地球を中心とする角速度を未知変数とする、前記TDOAとFDOAに関する方程式を前記TDOAとFDOAの複数回の計測結果に従って解き、前記電波源の初期位置と速度を算出することを特徴とする測位装置。
A positioning device that estimates the position of the radio wave source using TDOA and FDOA between signals from unknown radio wave sources received by a plurality of receiving stations via two or more satellites,
Positioning device signal / information processing device
Assuming that TDOA and FDOA are measured multiple times, and that the radio source is moving at a constant speed along the surface of the earth, the initial position and velocity of the radio source, or the initial position and angular velocity around the earth are defined as unknown variables. A positioning apparatus characterized by solving an equation relating to TDOA and FDOA according to a plurality of measurement results of TDOA and FDOA, and calculating an initial position and velocity of the radio wave source.
TDOAとFDOAを複数回計測する際に、計測毎に異なる組み合わせの衛星からの信号を使用し、TDOAとFDOAに関する方程式の独立性を高め、電波源の位置と速度を算出することを特徴とする請求項1又は2に記載の測位装置。   When measuring TDOA and FDOA multiple times, use signals from different combinations of satellites for each measurement, increase the independence of equations related to TDOA and FDOA, and calculate the position and velocity of the radio wave source The positioning device according to claim 1 or 2. 複数回計測のTDOAとFDOAの組み合わせを、一部重複させた異なる組み合わせで測位計算を行い、その測位計算結果を比較して測位計算結果の妥当性を判断することを特徴とする請求項1又は2に記載の測位装置。   The combination of TDOA and FDOA measured several times is used to perform positioning calculation with different combinations partially overlapped, and the validity of the positioning calculation result is judged by comparing the positioning calculation results. 2. The positioning device according to 2.
JP2008223280A 2008-09-01 2008-09-01 Positioning apparatus Pending JP2010060303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223280A JP2010060303A (en) 2008-09-01 2008-09-01 Positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223280A JP2010060303A (en) 2008-09-01 2008-09-01 Positioning apparatus

Publications (1)

Publication Number Publication Date
JP2010060303A true JP2010060303A (en) 2010-03-18

Family

ID=42187274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223280A Pending JP2010060303A (en) 2008-09-01 2008-09-01 Positioning apparatus

Country Status (1)

Country Link
JP (1) JP2010060303A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915928A (en) * 2010-07-14 2010-12-15 中国电子科技集团公司第十研究所 Method and device for double-star time difference/frequency difference combined positioning
JP2012252005A (en) * 2011-06-01 2012-12-20 Thales System for geographical position measurement of radio signal transmitter positioned on surface and relevant distributed interference method
JP2013029419A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Positioning device
KR20160027698A (en) * 2014-09-02 2016-03-10 국방과학연구소 2-STEP FDOA/FDOA estimation Method and Apparatus
JP2016036160A (en) * 2010-07-01 2016-03-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Determination of positions of wireless transceivers to be added to wireless communication network
WO2017109951A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Speed estimation device
KR101831198B1 (en) * 2016-04-14 2018-02-22 국방과학연구소 Reduced complexity TWO-STEP TDOA/FDOA estimation method for communication signals
WO2019167268A1 (en) * 2018-03-02 2019-09-06 三菱電機株式会社 Target monitoring device and target monitoring system
JP2020041952A (en) * 2018-09-12 2020-03-19 三菱電機株式会社 Positioning device, positioning method, and program
RU2802369C1 (en) * 2022-03-04 2023-08-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный ордена Жукова университет радиоэлектроники" Министерства обороны Российской Федерации (ФГКВОУВО "ВУРЭ" МО РФ) Method for location of radio emission sources based on cassini ovals

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465473A (en) * 1987-09-04 1989-03-10 Nec Corp Satellite communication and position measurement system for moving body
JP2000512380A (en) * 1995-09-20 2000-09-19 イギリス国 Localization of unknown signal source
JP2003507747A (en) * 1999-08-19 2003-02-25 キネテイツク・リミテツド Method and apparatus for locating the source of an unknown signal
JP2004519945A (en) * 2001-03-27 2004-07-02 キネテイツク・リミテツド Method and apparatus for determining the source of an unknown signal
JP2006201084A (en) * 2005-01-21 2006-08-03 Mitsubishi Electric Corp Device for tracking targets
JP2007256004A (en) * 2006-03-22 2007-10-04 Kagoshima Univ Orbit determination device, orbit determination method, and computer program
WO2007113475A1 (en) * 2006-03-31 2007-10-11 Qinetiq Limited Satellite ephemeris error
JP2008064566A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Orbit estimation method and device therefor
JP2009198435A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Positioning device and positioning method for unknown transmission station

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465473A (en) * 1987-09-04 1989-03-10 Nec Corp Satellite communication and position measurement system for moving body
JP2000512380A (en) * 1995-09-20 2000-09-19 イギリス国 Localization of unknown signal source
JP2003507747A (en) * 1999-08-19 2003-02-25 キネテイツク・リミテツド Method and apparatus for locating the source of an unknown signal
JP2004519945A (en) * 2001-03-27 2004-07-02 キネテイツク・リミテツド Method and apparatus for determining the source of an unknown signal
JP2006201084A (en) * 2005-01-21 2006-08-03 Mitsubishi Electric Corp Device for tracking targets
JP2007256004A (en) * 2006-03-22 2007-10-04 Kagoshima Univ Orbit determination device, orbit determination method, and computer program
WO2007113475A1 (en) * 2006-03-31 2007-10-11 Qinetiq Limited Satellite ephemeris error
JP2008064566A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Orbit estimation method and device therefor
JP2009198435A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Positioning device and positioning method for unknown transmission station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011036896; Tim Pattison, et al.: '"Sensitivity Analysis of Dual-Satellite Geolocation"' IEEE Transactions on Aerospace anD Electronic Systems Vol.36,No.1, 200001, p.56-71 *
JPN6011036901; D. P. Haworth, et al.: '"Interference Localization For EUTELSAT Satellites-The First European Transmitter Location System"' International Journal of Satellite Communications Vol.15,No.4, 1997, p.155-183 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036160A (en) * 2010-07-01 2016-03-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Determination of positions of wireless transceivers to be added to wireless communication network
CN101915928A (en) * 2010-07-14 2010-12-15 中国电子科技集团公司第十研究所 Method and device for double-star time difference/frequency difference combined positioning
JP2012252005A (en) * 2011-06-01 2012-12-20 Thales System for geographical position measurement of radio signal transmitter positioned on surface and relevant distributed interference method
JP2013029419A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Positioning device
KR20160027698A (en) * 2014-09-02 2016-03-10 국방과학연구소 2-STEP FDOA/FDOA estimation Method and Apparatus
KR101644560B1 (en) 2014-09-02 2016-08-01 국방과학연구소 2-STEP FDOA/FDOA estimation Method and Apparatus
WO2017109951A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Speed estimation device
KR101831198B1 (en) * 2016-04-14 2018-02-22 국방과학연구소 Reduced complexity TWO-STEP TDOA/FDOA estimation method for communication signals
WO2019167268A1 (en) * 2018-03-02 2019-09-06 三菱電機株式会社 Target monitoring device and target monitoring system
JP6625295B1 (en) * 2018-03-02 2019-12-25 三菱電機株式会社 Target monitoring device and target monitoring system
JP2020041952A (en) * 2018-09-12 2020-03-19 三菱電機株式会社 Positioning device, positioning method, and program
RU2802369C1 (en) * 2022-03-04 2023-08-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный ордена Жукова университет радиоэлектроники" Министерства обороны Российской Федерации (ФГКВОУВО "ВУРЭ" МО РФ) Method for location of radio emission sources based on cassini ovals

Similar Documents

Publication Publication Date Title
JP2010060303A (en) Positioning apparatus
US10652695B2 (en) Determining the geographic location of a portable electronic device
JP4592506B2 (en) Uplink interference source locating apparatus and method
JP4807376B2 (en) Inter-mobile interference positioning apparatus and method
JP4853490B2 (en) Inter-mobile interference positioning system, apparatus and method
EP2572545B1 (en) Determining the geographic locaton of a portable electronic device
EP1901088A1 (en) Integrated mobile-terminal navigation
JP5183246B2 (en) Unknown transmitting station positioning device and positioning method
JP2015155897A (en) Radio frequency method and system for determining, by pair of spacecrafts, relative angular position between plurality of remote spacecrafts
RU2708883C1 (en) Method of determining orbit parameters of an artificial earth satellite using receiving-transmitting supporting reference stations
KR20170127199A (en) System and method to calculate relative position between vehicles
JP2007192575A (en) Target positioning apparatus
US20120026034A1 (en) Position calculation method and apparatus with gps
JP4019149B2 (en) Radio wave arrival direction identification system
US7515104B2 (en) Structured array geolocation
JPWO2006046298A1 (en) Relative positioning method and relative positioning system using satellite
RU2683584C1 (en) Method for remote monitoring of positioning of the vehicles
JP2009270928A (en) Positioning system for moving object
JP2007192573A (en) Target positioning apparatus
US20120026033A1 (en) Position calculation method and apparatus with gps
JP2009250865A (en) Positioning system and positioning method
Cheung et al. Differencing Methods for 3D Positioning of Spacecraft
JP5326982B2 (en) Position measuring method and position measuring apparatus
EP3680686B1 (en) Radar device and transponder response delay acquiring method
JPH0836042A (en) Gps receiver and speed deciding means using the gps receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Effective date: 20120725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120