WO2017109951A1 - Speed estimation device - Google Patents

Speed estimation device Download PDF

Info

Publication number
WO2017109951A1
WO2017109951A1 PCT/JP2015/086280 JP2015086280W WO2017109951A1 WO 2017109951 A1 WO2017109951 A1 WO 2017109951A1 JP 2015086280 W JP2015086280 W JP 2015086280W WO 2017109951 A1 WO2017109951 A1 WO 2017109951A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
doppler
unit
signal
speed
Prior art date
Application number
PCT/JP2015/086280
Other languages
French (fr)
Japanese (ja)
Inventor
網嶋 武
信弘 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/086280 priority Critical patent/WO2017109951A1/en
Priority to JP2016532015A priority patent/JP6009131B1/en
Publication of WO2017109951A1 publication Critical patent/WO2017109951A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/10Systems for determining distance or velocity not using reflection or reradiation using radio waves using Doppler effect

Definitions

  • the present invention relates to a speed estimation device for estimating the speed of a moving object.
  • the conventional configuration requires two or more observations, and in this case, a means for determining whether each observation value is from the same moving body is required.
  • a means for determining whether each observation value is from the same moving body is required.
  • the above determination for an unknown moving body is very difficult. If this determination is wrong, observation values from different moving bodies are processed as those of the same moving body, and an incorrect position and speed are estimated.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a speed estimation device capable of accurately estimating the speed of a moving object by one observation.
  • the speed estimation device is provided for every two geostationary satellites whose positions and velocities are known, and a signal transmitted from a mobile body whose transmission frequency and position are known via the corresponding geostationary satellite, and transmission
  • a receiving antenna that receives a signal transmitted from a stationary reference station having a known frequency and position, and a frequency of a signal from a mobile unit that is provided for each receiving antenna and is received by the corresponding receiving antenna, and from the reference station
  • a frequency measurement unit that measures the frequency of the signal and a Doppler that is provided for each frequency measurement unit and calculates the Doppler frequency in the uplink from the moving object to the corresponding geostationary satellite from the frequency measured by the corresponding frequency measurement unit
  • a frequency calculator and a speed calculator that calculates the speed of the moving object from the Doppler frequencies calculated by the two Doppler frequency calculators A.
  • FIG. 1 is a diagram showing a hardware configuration example of a speed estimation device 1 according to Embodiment 1 of the present invention.
  • the speed estimation apparatus 1 includes receiving antennas 11a and 11b, bandpass filters 12a and 12b, a local oscillator 13, down converters 14a and 14b, A / D converters 15a and 15b, a speed calculation processor 16, and a display.
  • a device 17 and a memory 18 are provided.
  • the receiving antenna 11a receives a signal transmitted from the moving body 3 and a signal transmitted from the reference station (reference station) 4 via a geostationary satellite (hereinafter referred to as satellite) 2a.
  • the satellite 2a has a known three-dimensional position vector (hereinafter referred to as a position) and a three-dimensional velocity vector (hereinafter referred to as a speed).
  • the mobile body 3 has a known transmission frequency and a three-dimensional position vector (hereinafter referred to as a position).
  • the reference station 4 has a known transmission frequency and a three-dimensional position vector (hereinafter referred to as a position), and is stationary. In the first embodiment, it is assumed that the transmission frequency of the moving body 3 and the transmission frequency of the reference station 4 are approximate.
  • the three-dimensional position vector (hereinafter referred to as position) of the receiving antenna 11a is also known. These pieces of information are stored in the memory 18, for example.
  • the signal received by the receiving antenna 11a is sent to the band pass filter
  • the receiving antenna 11b receives a signal transmitted from the mobile unit 3 and a signal transmitted from the reference station 4 via a geostationary satellite (hereinafter referred to as satellite) 2b.
  • the satellite 2b has a known three-dimensional position vector (hereinafter referred to as position) and a three-dimensional velocity vector (hereinafter referred to as speed).
  • position a three-dimensional position vector
  • speed a three-dimensional velocity vector
  • position The three-dimensional position vector (hereinafter referred to as position) of the receiving antenna 11b is also known. These pieces of information are stored in the memory 18, for example.
  • the signal received by the receiving antenna 11b is sent to the band pass filter 12b.
  • the band-pass filter 12a performs a filtering process on the signal received by the receiving antenna 11a, thereby allowing a signal existing in a desired frequency channel to pass therethrough and removing others.
  • the signal that has passed through the bandpass filter 12a is sent to the down converter 14a.
  • the band-pass filter 12b performs a filtering process on the signal received by the receiving antenna 11b, thereby allowing a signal existing in a desired frequency channel to pass therethrough and removing others.
  • the signal that has passed through the bandpass filter 12b is sent to the down converter 14b.
  • the local oscillator 13 generates a frequency signal.
  • the frequency signal generated by the local oscillator 13 is sent to the down converter 14a and the down converter 14b.
  • the down converter 14a uses the frequency signal generated by the local oscillator 13 to convert the frequency of the signal that has passed through the bandpass filter 12a to a low level.
  • the signal whose frequency is converted by the down converter 14a is sent to the A / D converter 15a.
  • the down converter 14b converts the frequency of the signal that has passed through the bandpass filter 12b to a low level using the frequency signal generated by the local oscillator 13.
  • the signal whose frequency is converted by the down converter 14b is sent to the A / D converter 15b.
  • the A / D converter 15a converts a signal (analog signal) whose frequency has been converted by the down converter 14a into a digital signal.
  • the signal converted into a digital signal by the A / D converter 15 a is sent to the speed calculation processor 16.
  • the A / D converter 15b converts the signal (analog signal) whose frequency has been converted by the down converter 14b into a digital signal.
  • the signal converted into a digital signal by the A / D converter 15b is sent to the speed calculation processor 16.
  • the band-pass filters 12a and 12b, the local oscillator 13, the down converters 14a and 14b, and the A / D converters 15a and 15b constitute a reception device 19 that performs reception processing on the signals received by the reception antennas 11a and 11b.
  • the internal configuration of the receiving device 19 may be changed as appropriate as long as the subsequent speed calculation processor 16 receives and processes the signal of the moving body 3 into a signal that can be calculated.
  • the speed calculation processor 16 calculates the speed of the moving body 3 using the signal converted into a digital signal by the A / D converter 15a and the signal converted into a digital signal by the A / D converter 15b.
  • the speed calculation processor 16 implements the above functions by executing a program stored in the memory 18.
  • the speed calculation processor 16 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Information (speed information) indicating the speed of the moving body 3 calculated by the speed calculation processor 16 is sent to the display unit 17.
  • the display 17 displays information from the speed calculation processor 16. In the first embodiment, information indicating the speed of the moving object 3 calculated by the speed calculation processor 16 is displayed.
  • the indicator 17 is not an essential component for the speed estimation device 1, and a separate indicator connected to the outside of the speed estimation device 1 may be used.
  • the memory 18 stores a program for realizing the function of the speed calculation processor 16.
  • Examples of the memory 18 include a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • the speed calculation processor 16 includes frequency measurement units 161 a and 161 b, Doppler frequency calculation units 162 a and 162 b, and a speed calculation unit 163.
  • the frequency measuring unit 161a measures the frequency of the signal received by the receiving antenna 11a using the signal converted into a digital signal by the A / D converter 15a. At this time, the frequency measurement unit 161a measures the frequency by, for example, Fourier transforming a signal from the A / D converter 15a. Information indicating the frequency measured by the frequency measuring unit 161a is sent to the Doppler frequency calculating unit 162a.
  • the frequency measuring unit 161b measures the frequency of the signal received by the receiving antenna 11b using the signal converted into a digital signal by the A / D converter 15b. At this time, the frequency measuring unit 161b measures the frequency by, for example, Fourier transforming a signal from the A / D converter 15b. Information indicating the frequency measured by the frequency measuring unit 161b is sent to the Doppler frequency calculating unit 162b.
  • the Doppler frequency calculation unit 162a calculates the Doppler frequency in the uplink from the moving body 3 to the satellite 2a from the frequency measured by the frequency measurement unit 161a.
  • the reference station 4 measured by the frequency measurement unit 161a from the frequency of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161a.
  • the Doppler frequency is calculated by subtracting the frequency of the signal corresponding to the signal transmitted from.
  • Information indicating the Doppler frequency calculated by the Doppler frequency calculation unit 162 a is sent to the speed calculation unit 163.
  • the Doppler frequency calculation unit 162b calculates the Doppler frequency in the uplink from the moving body 3 to the satellite 2b from the frequency measured by the frequency measurement unit 161b. At this time, in the Doppler frequency calculation unit 162b in the first embodiment, the reference station 4 measured by the frequency measurement unit 161b from the frequency of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161b. The Doppler frequency is calculated by subtracting the frequency of the signal corresponding to the signal transmitted from. Information indicating the Doppler frequency calculated by the Doppler frequency calculation unit 162 b is sent to the speed calculation unit 163.
  • the speed calculator 163 calculates the speed of the moving body 3 from the Doppler frequency calculated by the Doppler frequency calculator 162a and the Doppler frequency calculated by the Doppler frequency calculator 162b. Information indicating the speed of the moving object 3 calculated by the speed calculator 163 is sent to the display unit 17.
  • the receiving antenna 11a receives a signal transmitted from the mobile body 3 and a signal transmitted from the reference station 4 via the satellite 2a.
  • the receiving antenna 11b receives the signal transmitted from the mobile body 3 and the signal transmitted from the reference station 4 via the satellite 2b (step ST31).
  • the moving body 3 include a radio wave source that transmits (uplinks) illegal radio waves such as interference waves to the satellites 2a and 2b.
  • the reception device 19 performs reception processing on the signals received by the reception antennas 11a and 11b (step ST32). That is, the signal received by the receiving antenna 11a is filtered by the band pass filter 12a, converted to a low frequency by the down converter 14a, and converted to a digital signal by the A / D converter 15a. Similarly, the signal received by the receiving antenna 11b is filtered by the band pass filter 12b, converted to a low frequency by the down converter 14b, and converted to a digital signal by the A / D converter 15b.
  • the moving body 3 is moving on the ground surface.
  • the signals transmitted from the moving body 3 are received by the two satellites 2a and 2b and are downlinked to the two reception antennas 11a and 11b of the speed estimation device 1.
  • the orbit information indicating the position p 1 and the velocity v 1 of the satellite 2a and the orbit information indicating the position p 2 and the velocity v 2 of the satellite 2b are known from the operating companies of the satellites 2a and 2b and the like.
  • the transmission frequency f t and the position p t of the movable body 3 is also known.
  • the position p t of the movable body 3 for example, to acquire the position of the radio source suspected of sending illegal radio wave by monitoring the satellite images from other satellites, surveillance to the periphery of the radio wave source It can be obtained by running a special aircraft or car and acquiring its position. Further, the position p b1 of the receiving antenna 11a and the position p b2 of the receiving antenna 11b are also known.
  • the frequency f t of the signal transmitted from the mobile 3 is subject to various influences before sent to the receiving antenna 11a via the satellite 2a.
  • the Doppler frequency f up1 in the uplink from a mobile 3 to the satellite 2a the frequency shift f s1 in the transponder of the satellite 2a, Doppler frequency f of the downlink from the satellite 2a to the receiving antenna 11a dn1 Etc. Therefore, the frequency f b1 of the signal received by the receiving antenna 11a is a frequency different from the transmission frequency f t of the movable body 3.
  • the frequency f t of the signal transmitted from the mobile 3 is subject to various influences before sent to the receiving antenna 11b via satellite 2b. Specifically, the Doppler frequency f up2 in the uplink from the mobile unit 3 to the satellite 2b, the frequency shift f s2 in the transponder of the satellite 2b, and the Doppler frequency f dn2 in the downlink from the satellite 2b to the receiving antenna 11b. Etc. Therefore, the frequency f b2 of the signals received by the receiving antenna 11b is a frequency different from the transmission frequency f t of the movable body 3.
  • the signals transmitted from the reference station 4 are also received by the two satellites 2a and 2b and downlinked to the two receiving antennas 11a and 11b of the speed estimation device 1.
  • the reference station 4 the transmission frequency f r and the position p r are known and stationary.
  • the transmission frequency f r of the reference station 4 approximates the transmission frequency f t of the mobile unit 3 (f r ⁇ f t ).
  • the frequency f r of the signal transmitted from the reference station 4 receives various influences before sent to the receiving antenna 11a via the satellite 2a.
  • the Doppler frequency f rup1 in the uplink from the reference station 4 to the satellite 2a the frequency shift f s1 in the transponder of the satellite 2a, and the Doppler frequency f rdn1 in the downlink from the satellite 2a to the receiving antenna 11a ( ⁇ f dn1 ) and the like. Therefore, the frequency f rb1 of received by the receiving antenna 11a signal is a frequency different from the transmission frequency f r of the reference station 4.
  • the frequency f r of the signal transmitted from the reference station 4 receives various influences before sent to the receiving antenna 11b via satellite 2b.
  • the signals received by the receiving antennas 11 a and 11 b and subjected to the receiving process by the receiving device 19 are sent to the speed calculation processor 16.
  • the frequency measurement unit 161a of the speed calculation processor 16 measures the frequencies f b1 and f rb1 of the signal received by the reception antenna 11a using the signal converted into the digital signal by the A / D converter 15a.
  • the frequency measurement unit 161b of the speed calculation processor 16 measures the frequencies f b2 and f rb2 of the signal received by the reception antenna 11b using the signal converted into a digital signal by the A / D converter 15b ( Step ST33).
  • the frequency measurement unit 161a measures the frequencies f b1 and f rb1 by, for example, Fourier transforming the signal from the A / D converter 15a.
  • the frequency measurement unit 161b measures the frequencies f b2 and f rb2 by, for example, Fourier transforming a signal from the A / D converter 15b.
  • the Doppler frequency calculation unit 162a calculates the Doppler frequency f up1 in the uplink from the moving body 3 to the satellite 2a from the frequencies f b1 and f rb1 measured by the frequency measurement unit 161a.
  • the Doppler frequency calculating unit 162b calculates the frequency f b2, f rb2 measured by the frequency measurement unit 161b, the Doppler frequency f up2 in the uplink from a mobile 3 to the satellite 2b (step ST34).
  • the reference measured by the frequency measurement unit 161a from the frequency f b1 of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161a.
  • the Doppler frequency f up1 is calculated by subtracting the frequency f rb1 of the signal corresponding to the signal transmitted from the station 4.
  • the Doppler frequency f up2 is calculated by subtracting the frequency f rb2 of the signal corresponding to the signal transmitted from the station 4.
  • the frequency shifts f s1 and f s2 are generally unknown because they are not disclosed to the outside, and are difficult to measure and estimate. Therefore, the frequency shifts f s1 and f s2 are canceled using the reference station 4.
  • the use of the reference station 4 not only has the above effect but also cancels the influence of the error when the orbit information of the satellites 2a and 2b includes an error.
  • the Doppler frequency calculation units 162a and 162b will be described.
  • the frequencies f b1 and f rb1 of the signal received by the receiving antenna 11a can be expressed by the following equations (1) and (2).
  • the frequencies f b2 and f rb2 of the signal received by the receiving antenna 11b can be expressed by the following equations (3) and (4).
  • the Doppler frequency f rup1 in the uplink from the reference station 4 to the satellite 2a can be calculated from the orbit information of the satellite 2a as shown in the following equation (5).
  • ⁇ r is the wavelength of the signal from the reference station 4 during uplink.
  • the Doppler frequency f rup2 in the uplink from the reference station 4 to the satellite 2b can be calculated from the orbit information of the satellite 2b as shown in the following equation (6).
  • the downlink terms f s1 and f dn1 of the equation (1) and the downlink terms f s1 and f rdn1 of the equation (2) are substantially the same value. Also in the first embodiment, the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is almost the same value. Therefore, when the equation (2) is subtracted from the equation (1), the Doppler frequency f up1 in the uplink from the mobile unit 3 to the satellite 2a is expressed by the following equation (7).
  • downlink term f s2, f rdn2 of formula (3) downlink term f s2, f dn2 the formula (4) is substantially the same value.
  • the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is almost the same value. Therefore, when the equation (4) is subtracted from the equation (3), the Doppler frequency f up2 in the uplink from the mobile unit 3 to the satellite 2b is expressed by the following equation (8).
  • the Doppler frequency f up1 in the uplink from the mobile unit 3 to the satellite 2a can be calculated from the orbit information of the satellite 2a as shown in the following equation (9).
  • ⁇ t is the wavelength of an uplink signal from the mobile unit 3
  • v t is an unknown three-dimensional velocity vector (hereinafter referred to as speed) of the mobile unit 3.
  • the Doppler frequency f up2 in the uplink from the mobile unit 3 to the satellite 2b can be calculated from the orbit information of the satellite 2b as shown in the following equation (10).
  • the unknown variable is only the speed v t of the moving body 3.
  • the speed of the moving body 3 is a three-dimensional speed vector, the number of equations is two, while there are three unknown variables, and cannot be solved.
  • the speed v t of the moving body 3 is reduced to two dimensions so that there are two unknown variables. Specifically, as shown in FIG. 6, it is assumed that the moving body 3 moves on the ground surface at a two-dimensional velocity v t, surf shown in the following equation (13).
  • a known position on the ground surface of the moving body 3 is expressed in latitude and longitude as in the following formula (14).
  • R E is the earth radius
  • lonE t is longitude (east longitude)
  • latN t is latitude (north latitude).
  • the velocity v t of the moving body 3 is dropped in two dimensions, it is not limited to the ground surface, but may be dropped in an arbitrary two-dimensional plane.
  • information indicating the Doppler frequencies f up1 and f up2 calculated by the Doppler frequency calculation units 162a and 162b is the speed. It is sent to the calculation unit 163.
  • the speed calculation unit 163 calculates the speed v t of the moving body 3 from the Doppler frequencies f up1 and f up2 calculated by the Doppler frequency calculation units 162a and 162b (step ST35). At this time, the speed calculation unit 163 calculates the speed v t of the moving body 3 using a general least square method such as the following equation (19). Note that f up1 and obs are measured values of the Doppler frequency f up1 obtained by Expression (7), and f up1 (v t, surf ) corresponds to the Doppler frequency f up1 shown by Expression (17). .
  • f up2, obs is a measured value of the Doppler frequency f up2 obtained by Expression (8)
  • f up2 (v t, surf ) corresponds to the Doppler frequency f up2 shown by Expression (18).
  • R is a frequency measurement error covariance matrix and is represented by the following equation (20).
  • ⁇ FOA 2 is a frequency measurement error variance value.
  • the frequency measurement error variance value ⁇ FOA 2 represents a measurement error generated when the frequency is measured by the frequency measurement units 161a and 161b as a variance value.
  • the variance is a value indicating how much the distribution of the random variable is scattered from the expected value in the probability theory, that is, an error has occurred. In this case, the expected value is the true value of the frequency.
  • the display unit 17 displays information indicating the speed v t of the moving body 3 calculated by the speed calculation processor 16 (step ST36).
  • FIG. 7 is a diagram showing an example of the equal Doppler frequency f up1 curve and the equal Doppler frequency f up2 curve, and shows the relationship between the Doppler frequencies f up1 and f up2 and the velocity v t .
  • the horizontal axis indicates the east-west direction
  • the vertical axis indicates the north-south direction.
  • the equal Doppler frequency f up1 curve is indicated by a solid line
  • the equal Doppler frequency f up2 curve is indicated by a broken line.
  • the intersection point between the equal Doppler frequency f up1 curve and the equal Doppler frequency f up2 is the velocity v t .
  • the receiving antennas 11a and 11b that receive the signal transmitted from the moving body 3 and the signal transmitted from the reference station 4 via the corresponding satellites 2a and 2b, , Frequency measurement units 161a and 161b that measure the frequencies f b1 , f b2 , f rb1 , and f rb2 of the signals received by the corresponding reception antennas 11a and 11b, and frequencies measured by the corresponding frequency measurement units 161a and 161b.
  • the Doppler frequency calculating unit 162a for calculating the Doppler frequency f up1, f up2 in the uplink to 2b, a 162b, Doppler frequency calculation unit 162a, the Doppler frequency f up1, f up2 calculated by 162b, mobile Since a speed calculation unit 163 that calculates the speed v t, in one observation, it is possible to accurately estimate the velocity v t of the moving body 3.
  • the speed estimation device according to Embodiment 1 is expected to have higher estimation accuracy than the conventional configuration.
  • Embodiment 2 the transmission frequency f t and the transmission frequency f r of the reference station 4 of the movable body 3 has been described on the assumption that approximates always be selected such reference station 4 Not necessarily. That is, it may be difficult to restrict the transmission frequency f r of the reference station 4 to the transmission frequency f t of the mobile unit 3 so that the difference can be ignored.
  • the value itself of the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is both a GHz order in some cases the difference is order of MHz. Therefore, even if the reference station 4 is used, the downlink term cannot be canceled.
  • a method for canceling components that cannot be canceled by the reference station 4 in the above case will be described. In the following description, only the system of the satellite 2a will be described, but the same applies to the system of the satellite 2b.
  • the basic configuration of speed estimation device 1 according to Embodiment 2 is the same as that of speed estimation device 1 according to Embodiment 1 shown in FIG. However, in the Doppler frequency calculation unit 162a in the second embodiment, first, the transmission frequency f t of the mobile unit 3, the transmission frequency f r of the reference station 4, the position p b1 of the receiving antenna 11a, and the position p 1 of the satellite 2a. And the correction value C 1 is calculated from the speed v 1 .
  • the Doppler frequency calculating section 162a from the frequency f b1 of the signal corresponding to the signal transmitted from the mobile 3 measured by the frequency measurement unit 161a, which is transmitted from the reference station 4, which is measured by the frequency measurement unit 161a by subtracting the frequency f rb1 and the correction value C 1 of the signal corresponding to the signal, to calculate the Doppler frequency f up1.
  • the details of the processing by the Doppler frequency calculation unit 162a will be described below.
  • the frequencies f b1 and f rb1 of the signal received by the receiving antenna 11a are expressed by the following equations (21) and (22), as in the first embodiment.
  • equation (23) is obtained by subtracting equation (22) from equation (21).
  • the term (f t ⁇ f r ) has a great influence. That is, since each has a value on the order of GHz, even if each value is slightly different, measurement accuracy is greatly affected.
  • the transmission frequency f t of the mobile 3 the transmission frequency f r of the reference station 4, the reception position p b1 antenna 11a, and, from the position p 1 and velocity v 1 of the satellite 2a, calculates a correction value C 1, is subtracted from the right side of the equation (24). Since the transmission frequencies f t and f r are known, the correction value C 1 can be calculated from the equation (25) if the Doppler frequencies f dn1 and f rdn1 can be calculated.
  • the Doppler frequency f of the downlink from the satellite 2a to the receiving antenna 11a dn1, f RDN1 from orbital information of a satellite 2a can be calculated as (27).
  • ⁇ a1 is the wavelength of the signal corresponding to the signal transmitted from the mobile unit 3 during downlink from the satellite 2a.
  • ⁇ ra1 is a wavelength of a signal corresponding to a signal transmitted from the reference station 4 at the time of downlink from the satellite 2a.
  • Embodiment 3 FIG.
  • the transmission frequency f t and the transmission frequency f r of the reference station 4 of the mobile body 3 as what to do if not approximation, the case of using the scaling.
  • the system of the satellite 2a will be described, but the same applies to the system of the satellite 2b.
  • the basic configuration of speed estimation device 1 according to Embodiment 3 is the same as that of speed estimation device 1 according to Embodiment 1 shown in FIG.
  • the Doppler frequency calculation unit 162a in the third embodiment first, the transmission frequency f t of the mobile 3, the transmission frequency f r of the reference station 4, the position p b1 of the receiving antenna 11 a, and the position p 1 of the satellite 2 a. and from the speed v 1, to calculate a correction value C 2.
  • the Doppler frequency calculation unit 162a sets the frequency f rb1 corresponding to the signal transmitted from the reference station 4 measured by the frequency measurement unit 161a, to the transmission frequency f t of the mobile unit 3 and the transmission frequency f r of the reference station 4.
  • the Doppler frequency calculating section 162a from the frequency f b1 of the signal corresponding to the signal transmitted from the mobile 3 measured by the frequency measurement unit 161a, by subtracting the frequency and the correction value C 2 of the above scaling , Calculate the Doppler frequency f up1 .
  • the details of the processing by the Doppler frequency calculation unit 162a will be described below.
  • the frequencies f b1 and f rb1 of the signal received by the receiving antenna 11a are expressed by the following equations (29) and (30), as in the first embodiment.
  • the effect is large is the transmission frequency f t, f r. That is, the value of the transmission frequency f r of the transmission frequency f t and the reference station 4 of the mobile body 3 due to its order of GHz, each value affects greatly slightly different alone measurement accuracy. Therefore, a difference is obtained by scaling the frequency f rb1 of the signal received by the receiving antenna 11a with respect to the equations (29) and (30) as in the following equation (31).
  • the transmission of the mobile unit 3 is performed in order to cancel the term of f s1 (1 ⁇ (f t / f r )) + (f dn1 ⁇ (f t / f r ) f rdn1 ).
  • a correction value C 2 is calculated from the frequency f t , the transmission frequency f r of the reference station 4, the position p b1 of the receiving antenna 11 a, the position p 1 and the velocity v 1 of the satellite 2 a, and from the right side of the equation (32) Subtract. Since the transmission frequencies f t and f r are known, the correction value C 2 can be calculated from the equation (33) if the Doppler frequencies f dn1 and f rdn1 can be calculated.
  • the Doppler frequency f of the downlink from the satellite 2a to the receiving antenna 11a dn1, f RDN1 from orbital information of a satellite 2a can be calculated as (35).
  • the expression (36) can be approximately expressed as the following expression (37), and the Doppler frequency f up1 can be obtained by calculating the remaining terms in the same manner as in the first embodiment.
  • the Doppler frequency f up2 can be calculated in the same manner as described above.
  • FIG. FIG. 8 is a diagram showing a functional configuration example of the speed calculation processor 16 according to the fourth embodiment of the present invention.
  • the speed calculation processor 16 in the fourth embodiment shown in FIG. 8 is obtained by adding a moving direction estimation unit 164 to the speed calculation processor 16 in the first embodiment shown in FIG.
  • Other configurations are the same, and only the different parts are described with the same reference numerals.
  • the moving direction estimation unit 164 estimates the moving direction of the moving body 3 from the Doppler frequency ratio curve calculated by the Doppler frequency calculation units 162a and 162b. At this time, the moving direction estimation unit 164 solves the moving direction ambiguity generated in the ratio curve from the sign of the Doppler frequency.
  • Information (movement direction information) indicating the movement direction of the moving body 3 estimated by the movement direction estimation unit 164 is sent to the display unit 17. In addition to the function in the first embodiment, the display 17 also displays information indicating the moving direction of the moving body 3 estimated by the moving direction estimating unit 164.
  • the geometric curve (f up1 / f up2 ) has a direction that diverges to ⁇ ⁇ due to zero division , but other moving directions can be estimated.
  • the value of the equiratio curve (f up1 / f up2 ) changes abruptly from ⁇ ⁇ to 0, so that the isocurve is dense as shown in FIG.
  • an ambiguity in the moving direction occurs. For example, in FIG. 9, 1.05 is seen in the northeast direction and the southwest direction, but there is a situation where it is unknown which is correct. However, it is possible to solve from the signs of the Doppler frequencies f up1 and f up2 . For example, in FIG.
  • the movement direction estimation unit 164 holds, as a movement direction database, the value of the ratio curve for each direction based on, for example, the equiratio curve (f up1 / f up2 ) as shown in FIG.
  • the moving direction estimation unit 164 first calculates the ratio curve (f up1 / f up2 ) of the Doppler frequencies f up1 and f up2 calculated by the Doppler frequency calculation units 162a and 162b (step ST111). ).
  • the moving direction estimation unit 164 collates the held moving direction database and selects a moving direction candidate of the moving body 3 (step ST112).
  • a candidate for the moving direction is selected by determining on which line in FIG. 9 the calculated ratio curve (f up1 / f up2 ) is closest.
  • the moving direction estimation unit 164 solves the moving direction of the ambiguity caused by the ratio curve (f up1 / f up2) from the sign of the Doppler frequency f up1, f up2 (step ST113). That is, since there is an ambiguity in the moving direction generated in the ratio curve (f up1 / f up2 ), this ambiguity is solved from the signs of the Doppler frequencies f up1 and f up2 . Thereby, the moving direction of the mobile body 3 can be estimated.
  • the moving direction estimation unit 164 is added to the speed calculation processor 16 in the first embodiment.
  • the present invention is not limited to this, and the moving direction estimation unit 164 may be added to the speed calculation processor 16 in the second and third embodiments.
  • FIG. FIG. 11 is a diagram showing a functional configuration example of the speed calculation processor 16 according to the fifth embodiment of the present invention.
  • the speed calculation processor 16 in the fifth embodiment shown in FIG. 11 is obtained by adding a moving direction estimation unit 165 to the speed calculation processor 16 in the first embodiment shown in FIG.
  • Other configurations are the same, and only the different parts are described with the same reference numerals.
  • the moving direction estimation unit 165 estimates the moving direction of the moving body 3 from the arc tangent function of the ratio curve of the Doppler frequencies calculated by the Doppler frequency calculation units 162a and 162b. At this time, the moving direction estimation unit 165 solves the moving direction ambiguity generated by the arctangent function of the ratio curve from the sign of the Doppler frequency.
  • Information indicating the moving direction of the moving body 3 estimated by the moving direction estimating unit 165 (moving direction information) is sent to the display unit 17. In addition to the function in the first embodiment, the display unit 17 also displays information indicating the moving direction of the moving body 3 estimated by the moving direction estimating unit 165.
  • an arctangent function arctan (f up1 / f up2 ) of the ratio curve (f up1 / f up2 ) is used instead of the ratio curve (f up1 / f up2 ). .
  • the ratio curve (f up1 / f up2 ) becomes ⁇ ⁇ / 2 at a speed at which the ratio curve becomes ⁇ ⁇ , so that reading is easy.
  • the moving direction estimation unit 165 is added to the speed calculation processor 16 in the first embodiment.
  • the present invention is not limited to this, and a moving direction estimation unit 165 may be added to the speed calculation processor 16 in the second and third embodiments.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the speed estimation apparatus can correctly estimate the speed of the moving object in one observation, and is suitable for use in a speed estimation apparatus that estimates the speed of the moving object.
  • 1 speed estimation device 2a, 2b satellite, 3 mobile, 4 reference station, 11a, 11b receiving antenna, 12a, 12b bandpass filter, 13 local oscillator, 14a, 14b down converter, 15a, 15b A / D converter, 16 Speed calculation processor, 17 display, 18 memory, 19 receiving device, 161a, 161b, frequency calculation unit, 162a, 162b, Doppler frequency calculation unit, 163 speed calculation unit, 164, 165 movement direction estimation unit.

Abstract

The present invention is provided with: reception antennas (11a, 11b) that receive, via corresponding satellites (2a, 2b), a signal transmitted from a moving body (3) and a signal transmitted from a reference station (4); frequency measurement units (161a, 161b) that measure the frequency of the signal from the moving body (3) and the frequency of the signal from the reference station (4) received by the corresponding reception antennas (11a, 11b); Doppler frequency calculation units (162a, 162b) that calculate, from the frequencies measured by the corresponding frequency measurement units (161a, 161b), the Doppler frequencies of uplinks from the moving body (3) to the corresponding satellites (2a, 2b); and a speed calculation unit (163) that calculates the speed of the moving body (3) from the Doppler frequencies calculated by the Doppler frequency calculation units (162a, 162b).

Description

速度推定装置Speed estimation device
 この発明は、移動体の速度を推定する速度推定装置に関するものである。 The present invention relates to a speed estimation device for estimating the speed of a moving object.
 従来から、2つの衛星を介して得られる信号間の到来時間差(TDOA:Time Difference Of Arrival)及びドップラ周波数差(FDOA:Frequency Difference Of Arrival)を用いて、移動体(電波源)の位置及び速度を推定する方式が提案されている(例えば特許文献1参照)。この方式では、TDOA及びFDOAを複数回観測し、それらの値から移動体の地表面における位置及び速度を推定する。また、この方式では、移動体は等速直線運動をするという仮定を置いている。 Conventionally, the position and speed of a moving body (radio wave source) using a time difference of arrival (TDOA: Time Difference Of Arrival) and a Doppler frequency difference (FDOA: Frequency Difference Of Arrival) between signals obtained via two satellites. Has been proposed (see, for example, Patent Document 1). In this method, TDOA and FDOA are observed a plurality of times, and the position and speed of the moving object on the ground surface are estimated from these values. In this method, it is assumed that the moving body performs a constant velocity linear motion.
特開2010-60303号公報JP 2010-60303 A
 ここで、従来構成では2回以上の観測が必要であり、この場合、各観測値が同一移動体からのものであるかを判定する手段が必要となる。しかしながら、未知の移動体に対する上記判定は非常に難しいという課題がある。そして、この判定を間違うと、異なる移動体からの観測値を同一の移動体のものとして処理することとなり、誤った位置及び速度を推定してしまうことになる。 Here, the conventional configuration requires two or more observations, and in this case, a means for determining whether each observation value is from the same moving body is required. However, there is a problem that the above determination for an unknown moving body is very difficult. If this determination is wrong, observation values from different moving bodies are processed as those of the same moving body, and an incorrect position and speed are estimated.
 この発明は、上記のような課題を解決するためになされたもので、1回の観測で、移動体の速度を正確に推定することが可能な速度推定装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a speed estimation device capable of accurately estimating the speed of a moving object by one observation.
 この発明に係る速度推定装置は、位置及び速度が既知の2つの静止衛星毎に設けられ、対応する静止衛星を介して、送信周波数及び位置が既知の移動体から送信された信号、及び、送信周波数及び位置が既知の静止した参照局から送信された信号を、受信する受信アンテナと、受信アンテナ毎に設けられ、対応する受信アンテナにより受信された移動体からの信号の周波数及び参照局からの信号の周波数を計測する周波数計測部と、周波数計測部毎に設けられ、対応する周波数計測部により計測された周波数から、移動体から対応する静止衛星へのアップリンクでのドップラ周波数を計算するドップラ周波数計算部と、2つのドップラ周波数計算部により計算されたドップラ周波数から、移動体の速度を計算する速度計算部とを備えたものである。 The speed estimation device according to the present invention is provided for every two geostationary satellites whose positions and velocities are known, and a signal transmitted from a mobile body whose transmission frequency and position are known via the corresponding geostationary satellite, and transmission A receiving antenna that receives a signal transmitted from a stationary reference station having a known frequency and position, and a frequency of a signal from a mobile unit that is provided for each receiving antenna and is received by the corresponding receiving antenna, and from the reference station A frequency measurement unit that measures the frequency of the signal and a Doppler that is provided for each frequency measurement unit and calculates the Doppler frequency in the uplink from the moving object to the corresponding geostationary satellite from the frequency measured by the corresponding frequency measurement unit A frequency calculator and a speed calculator that calculates the speed of the moving object from the Doppler frequencies calculated by the two Doppler frequency calculators A.
 この発明によれば、上記のように構成したので、1回の観測で、移動体の速度を正確に推定することが可能である。 According to this invention, since it is configured as described above, it is possible to accurately estimate the speed of the moving object with one observation.
この発明の実施の形態1に係る速度推定装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the speed estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1における速度計算プロセッサの機能構成例を示す図である。It is a figure which shows the function structural example of the speed calculation processor in Embodiment 1 of this invention. この発明の実施の形態1に係る速度推定装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the speed estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る速度推定装置における、衛星と地球の座標系の定義を示す図である。It is a figure which shows the definition of the coordinate system of a satellite and the earth in the speed estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る速度推定装置における、2つの衛星を介した移動体及びリファレンス局からの信号受信を示す図である。It is a figure which shows the signal reception from the mobile body and reference station via two satellites in the speed estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る速度推定装置における、地表面上での速度平面と方向の定義を示す図である。It is a figure which shows the definition of the speed plane and direction on the ground surface in the speed estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る速度推定装置における、等ドップラ周波数fup1曲線及び等ドップラ周波数fup2曲線を示す図である。In the velocity estimation apparatus according to the first embodiment of the invention, showing a constant Doppler frequency f up1 curve and equal Doppler frequency f up2 curve. この発明の実施の形態4における速度計算プロセッサの機能構成例を示す図である。It is a figure which shows the function structural example of the speed calculation processor in Embodiment 4 of this invention. この発明の実施の形態4に係る速度推定装置における、等ドップラ周波数fup1,fup2の比曲線を示す図である。It is a figure which shows the ratio curve of isodoppler frequency fup1 , fup2 in the speed estimation apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4における移動方向推定部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the moving direction estimation part in Embodiment 4 of this invention. この発明の実施の形態5における速度計算プロセッサの機能構成例を示す図である。It is a figure which shows the function structural example of the speed calculation processor in Embodiment 5 of this invention. この発明の実施の形態5に係る速度推定装置における、等ドップラ周波数fup1,fup2の比曲線の逆正接関数を示す図である。It is a figure which shows the arctangent function of the ratio curve of isodoppler frequency fup1 , fup2 in the speed estimation apparatus which concerns on Embodiment 5 of this invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る速度推定装置1のハードウェア構成例を示す図である。
 速度推定装置1は、図1に示すように、受信アンテナ11a,11b、バンドパスフィルタ12a,12b、局部発振器13、ダウンコンバータ14a,14b、A/Dコンバータ15a,15b、速度計算プロセッサ16、表示器17及びメモリ18を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a hardware configuration example of a speed estimation device 1 according to Embodiment 1 of the present invention.
As shown in FIG. 1, the speed estimation apparatus 1 includes receiving antennas 11a and 11b, bandpass filters 12a and 12b, a local oscillator 13, down converters 14a and 14b, A / D converters 15a and 15b, a speed calculation processor 16, and a display. A device 17 and a memory 18 are provided.
 受信アンテナ11aは、静止衛星(以下、衛星と称す)2aを介して、移動体3から送信された信号及びリファレンス局(参照局)4から送信された信号を受信するものである。なお、衛星2aは、3次元位置ベクトル(以下、位置と称す)及び3次元速度ベクトル(以下、速度と称す)が既知である。また、移動体3は、送信周波数及び3次元位置ベクトル(以下、位置と称す)が既知である。また、リファレンス局4は、送信周波数及び3次元位置ベクトル(以下、位置と称す)が既知であり、静止している。なお実施の形態1では、移動体3の送信周波数とリファレンス局4の送信周波数は近似しているものとする。また、受信アンテナ11aの3次元位置ベクトル(以下、位置と称す)も既知である。なお、これらの情報は例えばメモリ18に記憶されている。この受信アンテナ11aにより受信された信号は、バンドパスフィルタ12aに送られる。 The receiving antenna 11a receives a signal transmitted from the moving body 3 and a signal transmitted from the reference station (reference station) 4 via a geostationary satellite (hereinafter referred to as satellite) 2a. The satellite 2a has a known three-dimensional position vector (hereinafter referred to as a position) and a three-dimensional velocity vector (hereinafter referred to as a speed). Moreover, the mobile body 3 has a known transmission frequency and a three-dimensional position vector (hereinafter referred to as a position). The reference station 4 has a known transmission frequency and a three-dimensional position vector (hereinafter referred to as a position), and is stationary. In the first embodiment, it is assumed that the transmission frequency of the moving body 3 and the transmission frequency of the reference station 4 are approximate. The three-dimensional position vector (hereinafter referred to as position) of the receiving antenna 11a is also known. These pieces of information are stored in the memory 18, for example. The signal received by the receiving antenna 11a is sent to the band pass filter 12a.
 受信アンテナ11bは、静止衛星(以下、衛星と称す)2bを介して、移動体3から送信された信号及びリファレンス局4から送信された信号を受信するものである。なお、衛星2bは、3次元位置ベクトル(以下、位置と称す)及び3次元速度ベクトル(以下、速度と称す)が既知である。また、受信アンテナ11bの3次元位置ベクトル(以下、位置と称す)も既知である。なお、これらの情報は例えばメモリ18に記憶されている。この受信アンテナ11bにより受信された信号は、バンドパスフィルタ12bに送られる。 The receiving antenna 11b receives a signal transmitted from the mobile unit 3 and a signal transmitted from the reference station 4 via a geostationary satellite (hereinafter referred to as satellite) 2b. The satellite 2b has a known three-dimensional position vector (hereinafter referred to as position) and a three-dimensional velocity vector (hereinafter referred to as speed). The three-dimensional position vector (hereinafter referred to as position) of the receiving antenna 11b is also known. These pieces of information are stored in the memory 18, for example. The signal received by the receiving antenna 11b is sent to the band pass filter 12b.
 バンドパスフィルタ12aは、受信アンテナ11aにより受信された信号に対してフィルタ処理を行うことで、所望の周波数チャンネルに存在する信号を通過させて、他を排除するものである。このバンドパスフィルタ12aを通過した信号は、ダウンコンバータ14aに送られる。
 バンドパスフィルタ12bは、受信アンテナ11bにより受信された信号に対してフィルタ処理を行うことで、所望の周波数チャンネルに存在する信号を通過させて、他を排除するものである。このバンドパスフィルタ12bを通過した信号は、ダウンコンバータ14bに送られる。
The band-pass filter 12a performs a filtering process on the signal received by the receiving antenna 11a, thereby allowing a signal existing in a desired frequency channel to pass therethrough and removing others. The signal that has passed through the bandpass filter 12a is sent to the down converter 14a.
The band-pass filter 12b performs a filtering process on the signal received by the receiving antenna 11b, thereby allowing a signal existing in a desired frequency channel to pass therethrough and removing others. The signal that has passed through the bandpass filter 12b is sent to the down converter 14b.
 局部発振器13は、周波数信号を発生するものである。この局部発振器13により発生された周波数信号はダウンコンバータ14a及びダウンコンバータ14bに送られる。
 ダウンコンバータ14aは、局部発振器13により発生された周波数信号を用いて、バンドパスフィルタ12aを通過した信号の周波数を低く変換するものである。このダウンコンバータ14aにより周波数が変換された信号は、A/Dコンバータ15aに送られる。
 ダウンコンバータ14bは、局部発振器13により発生された周波数信号を用いて、バンドパスフィルタ12bを通過した信号の周波数を低く変換するものである。このダウンコンバータ14bにより周波数が変換された信号は、A/Dコンバータ15bに送られる。
The local oscillator 13 generates a frequency signal. The frequency signal generated by the local oscillator 13 is sent to the down converter 14a and the down converter 14b.
The down converter 14a uses the frequency signal generated by the local oscillator 13 to convert the frequency of the signal that has passed through the bandpass filter 12a to a low level. The signal whose frequency is converted by the down converter 14a is sent to the A / D converter 15a.
The down converter 14b converts the frequency of the signal that has passed through the bandpass filter 12b to a low level using the frequency signal generated by the local oscillator 13. The signal whose frequency is converted by the down converter 14b is sent to the A / D converter 15b.
 A/Dコンバータ15aは、ダウンコンバータ14aにより周波数が変換された信号(アナログ信号)をデジタル信号に変換するものである。このA/Dコンバータ15aによりデジタル信号に変換された信号は、速度計算プロセッサ16に送られる。
 A/Dコンバータ15bは、ダウンコンバータ14bにより周波数が変換された信号(アナログ信号)をデジタル信号に変換するものである。このA/Dコンバータ15bによりデジタル信号に変換された信号は、速度計算プロセッサ16に送られる。
The A / D converter 15a converts a signal (analog signal) whose frequency has been converted by the down converter 14a into a digital signal. The signal converted into a digital signal by the A / D converter 15 a is sent to the speed calculation processor 16.
The A / D converter 15b converts the signal (analog signal) whose frequency has been converted by the down converter 14b into a digital signal. The signal converted into a digital signal by the A / D converter 15b is sent to the speed calculation processor 16.
 なお、バンドパスフィルタ12a,12b、局部発振器13、ダウンコンバータ14a,14b及びA/Dコンバータ15a,15bは、受信アンテナ11a,11bにより受信された信号に対して受信処理を行う受信装置19を構成する。なお、受信装置19の内部構成は、後段の速度計算プロセッサ16で移動体3の速度を計算可能な信号に受信処理するものであればよく、適宜変更可能である。 The band- pass filters 12a and 12b, the local oscillator 13, the down converters 14a and 14b, and the A / D converters 15a and 15b constitute a reception device 19 that performs reception processing on the signals received by the reception antennas 11a and 11b. To do. Note that the internal configuration of the receiving device 19 may be changed as appropriate as long as the subsequent speed calculation processor 16 receives and processes the signal of the moving body 3 into a signal that can be calculated.
 速度計算プロセッサ16は、A/Dコンバータ15aによりデジタル信号に変換された信号及びA/Dコンバータ15bによりデジタル信号に変換された信号を用いて、移動体3の速度を計算するものである。なお、速度計算プロセッサ16は、メモリ18に記憶されたプログラムを実行することで、上記機能を実現する。この速度計算プロセッサ16は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。この速度計算プロセッサ16により計算された移動体3の速度を示す情報(速度情報)は、表示器17に送られる。 The speed calculation processor 16 calculates the speed of the moving body 3 using the signal converted into a digital signal by the A / D converter 15a and the signal converted into a digital signal by the A / D converter 15b. The speed calculation processor 16 implements the above functions by executing a program stored in the memory 18. The speed calculation processor 16 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Information (speed information) indicating the speed of the moving body 3 calculated by the speed calculation processor 16 is sent to the display unit 17.
 表示器17は、速度計算プロセッサ16からの情報を表示するものである。実施の形態1では、速度計算プロセッサ16により計算された移動体3の速度を示す情報を表示する。なお、表示器17は速度推定装置1に必須の構成ではなく、速度推定装置1の外部に接続された別体の表示器を用いてもよい。 The display 17 displays information from the speed calculation processor 16. In the first embodiment, information indicating the speed of the moving object 3 calculated by the speed calculation processor 16 is displayed. The indicator 17 is not an essential component for the speed estimation device 1, and a separate indicator connected to the outside of the speed estimation device 1 may be used.
 メモリ18は、速度計算プロセッサ16の機能を実現するためのプログラムを格納するものである。このメモリ18としては、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。 The memory 18 stores a program for realizing the function of the speed calculation processor 16. Examples of the memory 18 include a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
 次に、速度計算プロセッサ16の詳細について、図2を参照しながら説明する。
 速度計算プロセッサ16は、図2に示すように、周波数計測部161a,161b、ドップラ周波数計算部162a,162b及び速度計算部163を備えている。
Next, details of the speed calculation processor 16 will be described with reference to FIG.
As shown in FIG. 2, the speed calculation processor 16 includes frequency measurement units 161 a and 161 b, Doppler frequency calculation units 162 a and 162 b, and a speed calculation unit 163.
 周波数計測部161aは、A/Dコンバータ15aによりデジタル信号に変換された信号を用いて、受信アンテナ11aにより受信された信号の周波数を計測するものである。この際、周波数計測部161aは、例えばA/Dコンバータ15aからの信号をフーリエ変換することで、上記周波数を計測する。この周波数計測部161aにより計測された周波数を示す情報は、ドップラ周波数計算部162aに送られる。 The frequency measuring unit 161a measures the frequency of the signal received by the receiving antenna 11a using the signal converted into a digital signal by the A / D converter 15a. At this time, the frequency measurement unit 161a measures the frequency by, for example, Fourier transforming a signal from the A / D converter 15a. Information indicating the frequency measured by the frequency measuring unit 161a is sent to the Doppler frequency calculating unit 162a.
 周波数計測部161bは、A/Dコンバータ15bによりデジタル信号に変換された信号を用いて、受信アンテナ11bにより受信された信号の周波数を計測するものである。この際、周波数計測部161bは、例えばA/Dコンバータ15bからの信号をフーリエ変換することで、上記周波数を計測する。この周波数計測部161bにより計測された周波数を示す情報は、ドップラ周波数計算部162bに送られる。 The frequency measuring unit 161b measures the frequency of the signal received by the receiving antenna 11b using the signal converted into a digital signal by the A / D converter 15b. At this time, the frequency measuring unit 161b measures the frequency by, for example, Fourier transforming a signal from the A / D converter 15b. Information indicating the frequency measured by the frequency measuring unit 161b is sent to the Doppler frequency calculating unit 162b.
 ドップラ周波数計算部162aは、周波数計測部161aにより計測された周波数から、移動体3から衛星2aへのアップリンクでのドップラ周波数を計算するものである。この際、実施の形態1におけるドップラ周波数計算部162aでは、周波数計測部161aにより計測された移動体3から送信された信号に対応する信号の周波数から、周波数計測部161aにより計測されたリファレンス局4から送信された信号に対応する信号の周波数を減算することで、上記ドップラ周波数を計算する。このドップラ周波数計算部162aにより計算されたドップラ周波数を示す情報は、速度計算部163に送られる。 The Doppler frequency calculation unit 162a calculates the Doppler frequency in the uplink from the moving body 3 to the satellite 2a from the frequency measured by the frequency measurement unit 161a. At this time, in the Doppler frequency calculation unit 162a in the first embodiment, the reference station 4 measured by the frequency measurement unit 161a from the frequency of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161a. The Doppler frequency is calculated by subtracting the frequency of the signal corresponding to the signal transmitted from. Information indicating the Doppler frequency calculated by the Doppler frequency calculation unit 162 a is sent to the speed calculation unit 163.
 ドップラ周波数計算部162bは、周波数計測部161bにより計測された周波数から、移動体3から衛星2bへのアップリンクでのドップラ周波数を計算するものである。この際、実施の形態1におけるドップラ周波数計算部162bでは、周波数計測部161bにより計測された移動体3から送信された信号に対応する信号の周波数から、周波数計測部161bにより計測されたリファレンス局4から送信された信号に対応する信号の周波数を減算することで、上記ドップラ周波数を計算する。このドップラ周波数計算部162bにより計算されたドップラ周波数を示す情報は、速度計算部163に送られる。 The Doppler frequency calculation unit 162b calculates the Doppler frequency in the uplink from the moving body 3 to the satellite 2b from the frequency measured by the frequency measurement unit 161b. At this time, in the Doppler frequency calculation unit 162b in the first embodiment, the reference station 4 measured by the frequency measurement unit 161b from the frequency of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161b. The Doppler frequency is calculated by subtracting the frequency of the signal corresponding to the signal transmitted from. Information indicating the Doppler frequency calculated by the Doppler frequency calculation unit 162 b is sent to the speed calculation unit 163.
 速度計算部163は、ドップラ周波数計算部162aにより計算されたドップラ周波数及びドップラ周波数計算部162bにより計算されたドップラ周波数から、移動体3の速度を計算するものである。この速度計算部163により計算された移動体3の速度を示す情報は、表示器17に送られる。 The speed calculator 163 calculates the speed of the moving body 3 from the Doppler frequency calculated by the Doppler frequency calculator 162a and the Doppler frequency calculated by the Doppler frequency calculator 162b. Information indicating the speed of the moving object 3 calculated by the speed calculator 163 is sent to the display unit 17.
 次に、上記のように構成された速度推定装置1の動作例について、図3~8を参照しながら説明する。
 速度推定装置1の動作例では、図3に示すように、まず、受信アンテナ11aは、衛星2aを介して、移動体3から送信された信号及びリファレンス局4から送信された信号を受信する。同様に、受信アンテナ11bは、衛星2bを介して、移動体3から送信された信号及びリファレンス局4から送信された信号を受信する(ステップST31)。なお、移動体3としては、例えば、衛星2a,2bに干渉波等の不法電波を送信(アップリンク)してくる電波源が挙げられる。
Next, an operation example of the speed estimation device 1 configured as described above will be described with reference to FIGS.
In the operation example of the speed estimation device 1, as shown in FIG. 3, first, the receiving antenna 11a receives a signal transmitted from the mobile body 3 and a signal transmitted from the reference station 4 via the satellite 2a. Similarly, the receiving antenna 11b receives the signal transmitted from the mobile body 3 and the signal transmitted from the reference station 4 via the satellite 2b (step ST31). Examples of the moving body 3 include a radio wave source that transmits (uplinks) illegal radio waves such as interference waves to the satellites 2a and 2b.
 次いで、受信装置19は、受信アンテナ11a,11bにより受信された信号に対して受信処理を行う(ステップST32)。すなわち、受信アンテナ11aにより受信された信号に対して、バンドパスフィルタ12aでフィルタ処理を行い、ダウンコンバータ14aで低周波数に変換し、A/Dコンバータ15aでデジタル信号に変換する。同様に、受信アンテナ11bにより受信された信号に対して、バンドパスフィルタ12bでフィルタ処理を行い、ダウンコンバータ14bで低周波数に変換し、A/Dコンバータ15bでデジタル信号に変換する。 Next, the reception device 19 performs reception processing on the signals received by the reception antennas 11a and 11b (step ST32). That is, the signal received by the receiving antenna 11a is filtered by the band pass filter 12a, converted to a low frequency by the down converter 14a, and converted to a digital signal by the A / D converter 15a. Similarly, the signal received by the receiving antenna 11b is filtered by the band pass filter 12b, converted to a low frequency by the down converter 14b, and converted to a digital signal by the A / D converter 15b.
 ここで、図4,5に示すように、移動体3は地表面を移動している。そして、実施の形態1では、移動体3から送信された信号を、2つの衛星2a,2bで受信し、速度推定装置1の2つの受信アンテナ11a,11bにダウンリンクする。
 なお、衛星2aの位置p及び速度vを示す軌道情報及び衛星2bの位置p及び速度vを示す軌道情報は、衛星2a,2bの運営会社等から入手できるため既知である。また、移動体3の送信周波数f及び位置pも既知である。なお、移動体3の位置pは、例えば、他の衛星からの衛星画像をモニタして不法電波を送信していると疑われる電波源の位置を取得したり、その電波源の周辺まで監視用の航空機や車等を走らせてその位置を取得したりすることで得られる。また、受信アンテナ11aの位置pb1及び受信アンテナ11bの位置pb2も既知である。
Here, as shown in FIGS. 4 and 5, the moving body 3 is moving on the ground surface. In the first embodiment, the signals transmitted from the moving body 3 are received by the two satellites 2a and 2b and are downlinked to the two reception antennas 11a and 11b of the speed estimation device 1.
Note that the orbit information indicating the position p 1 and the velocity v 1 of the satellite 2a and the orbit information indicating the position p 2 and the velocity v 2 of the satellite 2b are known from the operating companies of the satellites 2a and 2b and the like. Furthermore, the transmission frequency f t and the position p t of the movable body 3 is also known. The position p t of the movable body 3, for example, to acquire the position of the radio source suspected of sending illegal radio wave by monitoring the satellite images from other satellites, surveillance to the periphery of the radio wave source It can be obtained by running a special aircraft or car and acquiring its position. Further, the position p b1 of the receiving antenna 11a and the position p b2 of the receiving antenna 11b are also known.
 そして、移動体3から送信された信号の周波数fは、衛星2aを介して受信アンテナ11aに送られるまでに様々な影響を受ける。具体的には、移動体3から衛星2aへのアップリンクでのドップラ周波数fup1、衛星2aのトランスポンダ内での周波数シフトfs1、衛星2aから受信アンテナ11aへのダウンリンクでのドップラ周波数fdn1等の影響を受ける。そのため、受信アンテナ11aにより受信された信号の周波数fb1は、移動体3の送信周波数fとは異なる周波数となる。 Then, the frequency f t of the signal transmitted from the mobile 3 is subject to various influences before sent to the receiving antenna 11a via the satellite 2a. Specifically, the Doppler frequency f up1 in the uplink from a mobile 3 to the satellite 2a, the frequency shift f s1 in the transponder of the satellite 2a, Doppler frequency f of the downlink from the satellite 2a to the receiving antenna 11a dn1 Etc. Therefore, the frequency f b1 of the signal received by the receiving antenna 11a is a frequency different from the transmission frequency f t of the movable body 3.
 同様に、移動体3から送信された信号の周波数fは、衛星2bを介して受信アンテナ11bに送られるまでに様々な影響を受ける。具体的には、移動体3から衛星2bへのアップリンクでのドップラ周波数fup2、衛星2bのトランスポンダ内での周波数シフトfs2、衛星2bから受信アンテナ11bへのダウンリンクでのドップラ周波数fdn2等の影響を受ける。そのため、受信アンテナ11bにより受信された信号の周波数fb2は、移動体3の送信周波数fとは異なる周波数となる。 Similarly, the frequency f t of the signal transmitted from the mobile 3 is subject to various influences before sent to the receiving antenna 11b via satellite 2b. Specifically, the Doppler frequency f up2 in the uplink from the mobile unit 3 to the satellite 2b, the frequency shift f s2 in the transponder of the satellite 2b, and the Doppler frequency f dn2 in the downlink from the satellite 2b to the receiving antenna 11b. Etc. Therefore, the frequency f b2 of the signals received by the receiving antenna 11b is a frequency different from the transmission frequency f t of the movable body 3.
 また実施の形態1では、図5に示すように、リファレンス局4から送信された信号も2つの衛星2a,2bで受信し、速度推定装置1の2つの受信アンテナ11a,11bにダウンリンクしている。
 なお、リファレンス局4は、送信周波数f及び位置pが既知であり、静止している。また実施の形態1では、リファレンス局4の送信周波数fは、移動体3の送信周波数fに近似しているものとする(f≒f)。
Further, in the first embodiment, as shown in FIG. 5, the signals transmitted from the reference station 4 are also received by the two satellites 2a and 2b and downlinked to the two receiving antennas 11a and 11b of the speed estimation device 1. Yes.
Incidentally, the reference station 4, the transmission frequency f r and the position p r are known and stationary. In the first embodiment, it is assumed that the transmission frequency f r of the reference station 4 approximates the transmission frequency f t of the mobile unit 3 (f r ≈f t ).
 そして、リファレンス局4から送信された信号の周波数fは、衛星2aを介して受信アンテナ11aに送られるまでに様々な影響を受ける。具体的には、リファレンス局4から衛星2aへのアップリンクでのドップラ周波数frup1、衛星2aのトランスポンダ内での周波数シフトfs1、衛星2aから受信アンテナ11aへのダウンリンクでのドップラ周波数frdn1(≒fdn1)等の影響を受ける。そのため、受信アンテナ11aにより受信された信号の周波数frb1は、リファレンス局4の送信周波数fとは異なる周波数となる。 Then, the frequency f r of the signal transmitted from the reference station 4 receives various influences before sent to the receiving antenna 11a via the satellite 2a. Specifically, the Doppler frequency f rup1 in the uplink from the reference station 4 to the satellite 2a, the frequency shift f s1 in the transponder of the satellite 2a, and the Doppler frequency f rdn1 in the downlink from the satellite 2a to the receiving antenna 11a ( ≈f dn1 ) and the like. Therefore, the frequency f rb1 of received by the receiving antenna 11a signal is a frequency different from the transmission frequency f r of the reference station 4.
 同様に、リファレンス局4から送信された信号の周波数fは、衛星2bを介して受信アンテナ11bに送られるまでに様々な影響を受ける。具体的には、リファレンス局4から衛星2bへのアップリンクでのドップラ周波数frup2、衛星2bのトランスポンダ内での周波数シフトfs2、衛星2bから受信アンテナ11bへのダウンリンクでのドップラ周波数frdn2(≒fdn2)等の影響を受ける。そのため、受信アンテナ11bにより受信された信号の周波数frb2は、リファレンス局4の送信周波数fとは異なる周波数となる。 Similarly, the frequency f r of the signal transmitted from the reference station 4 receives various influences before sent to the receiving antenna 11b via satellite 2b. Specifically, the Doppler frequency f rup2 in the uplink from the reference station 4 to the satellite 2b, the frequency shift f s2 in the transponder of the satellite 2b, and the Doppler frequency f rdn2 in the downlink from the satellite 2b to the receiving antenna 11b ( ≈f dn2 ) etc. Therefore, the frequency f rb2 of received by the receiving antenna 11b signal is a frequency different from the transmission frequency f r of the reference station 4.
 このようにして、受信アンテナ11a,11bにより受信されて受信装置19により受信処理が行われた信号は、速度計算プロセッサ16に送られる。 Thus, the signals received by the receiving antennas 11 a and 11 b and subjected to the receiving process by the receiving device 19 are sent to the speed calculation processor 16.
 次いで、速度計算プロセッサ16の周波数計測部161aは、A/Dコンバータ15aによりデジタル信号に変換された信号を用いて、受信アンテナ11aにより受信された信号の周波数fb1,frb1を計測する。同様に、速度計算プロセッサ16の周波数計測部161bは、A/Dコンバータ15bによりデジタル信号に変換された信号を用いて、受信アンテナ11bにより受信された信号の周波数fb2,frb2を計測する(ステップST33)。この際、周波数計測部161aは、例えばA/Dコンバータ15aからの信号をフーリエ変換することで、上記周波数fb1,frb1を計測する。同様に、周波数計測部161bは、例えばA/Dコンバータ15bからの信号をフーリエ変換することで、上記周波数fb2,frb2を計測する。 Next, the frequency measurement unit 161a of the speed calculation processor 16 measures the frequencies f b1 and f rb1 of the signal received by the reception antenna 11a using the signal converted into the digital signal by the A / D converter 15a. Similarly, the frequency measurement unit 161b of the speed calculation processor 16 measures the frequencies f b2 and f rb2 of the signal received by the reception antenna 11b using the signal converted into a digital signal by the A / D converter 15b ( Step ST33). At this time, the frequency measurement unit 161a measures the frequencies f b1 and f rb1 by, for example, Fourier transforming the signal from the A / D converter 15a. Similarly, the frequency measurement unit 161b measures the frequencies f b2 and f rb2 by, for example, Fourier transforming a signal from the A / D converter 15b.
 次いで、ドップラ周波数計算部162aは、周波数計測部161aにより計測された周波数fb1,frb1から、移動体3から衛星2aへのアップリンクでのドップラ周波数fup1を計算する。同様に、ドップラ周波数計算部162bは、周波数計測部161bにより計測された周波数fb2,frb2から、移動体3から衛星2bへのアップリンクでのドップラ周波数fup2を計算する(ステップST34)。この際、実施の形態1におけるドップラ周波数計算部162aでは、周波数計測部161aにより計測された移動体3から送信された信号に対応する信号の周波数fb1から、周波数計測部161aにより計測されたリファレンス局4から送信された信号に対応する信号の周波数frb1を減算することで、上記ドップラ周波数fup1を計算する。同様に、実施の形態1におけるドップラ周波数計算部162bでは、周波数計測部161bにより計測された移動体3から送信された信号に対応する信号の周波数fb2から、周波数計測部161bにより計測されたリファレンス局4から送信された信号に対応する信号の周波数frb2を減算することで、上記ドップラ周波数fup2を計算する。 Next, the Doppler frequency calculation unit 162a calculates the Doppler frequency f up1 in the uplink from the moving body 3 to the satellite 2a from the frequencies f b1 and f rb1 measured by the frequency measurement unit 161a. Similarly, the Doppler frequency calculating unit 162b calculates the frequency f b2, f rb2 measured by the frequency measurement unit 161b, the Doppler frequency f up2 in the uplink from a mobile 3 to the satellite 2b (step ST34). At this time, in the Doppler frequency calculation unit 162a in the first embodiment, the reference measured by the frequency measurement unit 161a from the frequency f b1 of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161a. The Doppler frequency f up1 is calculated by subtracting the frequency f rb1 of the signal corresponding to the signal transmitted from the station 4. Similarly, in the Doppler frequency calculation unit 162b in the first embodiment, the reference measured by the frequency measurement unit 161b from the frequency f b2 of the signal corresponding to the signal transmitted from the moving body 3 measured by the frequency measurement unit 161b. The Doppler frequency f up2 is calculated by subtracting the frequency f rb2 of the signal corresponding to the signal transmitted from the station 4.
 上述したように、受信アンテナ11a,11bにより受信された信号の周波数fb1,fb2は、周波数シフトfs1,fs2及びドップラ周波数fup1,fup2,fdn1,fdn2等の様々な影響を受けている。これらのうち周波数シフトfs1,fs2は一般的に外部に情報開示されていないため未知であり、計測及び推定を行うことは困難である。そこで、リファレンス局4を用いて、この周波数シフトfs1,fs2をキャンセルする。その結果、受信アンテナ11a,11bにより受信された信号の周波数fb1,fb2,frb1,frb2から、最終的に、アップリンク時のドップラに起因する周波数fup1,fup2だけを抽出することができる。 As described above, the receiving antenna 11a, the frequency f b1 of the signal received by 11b, f b2, the frequency shift f s1, f s2 and Doppler frequency f up1, f up2, f dn1 , various effects such as f dn2 Is receiving. Of these, the frequency shifts f s1 and f s2 are generally unknown because they are not disclosed to the outside, and are difficult to measure and estimate. Therefore, the frequency shifts f s1 and f s2 are canceled using the reference station 4. As a result, the extracted receiving antenna 11a, the frequency f b1, f b2, f rb1 , f rb2 of the signals received by 11b, finally, only the frequency f up1, f up2 due to Doppler during uplink be able to.
 また、リファレンス局4の利用は、上記の効果だけではなく、衛星2a,2bの軌道情報に誤差が含まれている場合に、その誤差の影響をキャンセルする働きもある。
 以下、ドップラ周波数計算部162a,162bによる処理の詳細について説明する。
The use of the reference station 4 not only has the above effect but also cancels the influence of the error when the orbit information of the satellites 2a and 2b includes an error.
Hereinafter, details of the processing by the Doppler frequency calculation units 162a and 162b will be described.
 まず、受信アンテナ11aにより受信された信号の周波数fb1,frb1は、次式(1),(2)で表すことができる。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
First, the frequencies f b1 and f rb1 of the signal received by the receiving antenna 11a can be expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 同様に、受信アンテナ11bにより受信された信号の周波数fb2,frb2は、次式(3),(4)で表すことができる。
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
Similarly, the frequencies f b2 and f rb2 of the signal received by the receiving antenna 11b can be expressed by the following equations (3) and (4).
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 また、リファレンス局4から衛星2aへのアップリンクでのドップラ周波数frup1は、衛星2aの軌道情報等から、次式(5)の通り計算できる。
Figure JPOXMLDOC01-appb-I000005
 ここで、λはリファレンス局4からのアップリンク時の信号の波長である。
Further, the Doppler frequency f rup1 in the uplink from the reference station 4 to the satellite 2a can be calculated from the orbit information of the satellite 2a as shown in the following equation (5).
Figure JPOXMLDOC01-appb-I000005
Here, λ r is the wavelength of the signal from the reference station 4 during uplink.
 同様に、リファレンス局4から衛星2bへのアップリンクでのドップラ周波数frup2は、衛星2bの軌道情報等から、次式(6)の通り計算できる。
Figure JPOXMLDOC01-appb-I000006
Similarly, the Doppler frequency f rup2 in the uplink from the reference station 4 to the satellite 2b can be calculated from the orbit information of the satellite 2b as shown in the following equation (6).
Figure JPOXMLDOC01-appb-I000006
 ここで、式(1)のダウンリンク項fs1,fdn1と式(2)のダウンリンク項fs1,frdn1はほぼ同じ値である。また実施の形態1では、移動体3の送信周波数fとリファレンス局4の送信周波数fもほぼ同じ値である。よって、式(1)から式(2)を減算すると、移動体3から衛星2aへのアップリンクでのドップラ周波数fup1は次式(7)となる。
Figure JPOXMLDOC01-appb-I000007
 よって、周波数計測部161aにより計測された周波数fb1,frb1と、式(5)より計算したドップラ周波数frup1とを、式(7)に代入することで、ドップラ周波数fup1の計測値を得ることができる。
Here, the downlink terms f s1 and f dn1 of the equation (1) and the downlink terms f s1 and f rdn1 of the equation (2) are substantially the same value. Also in the first embodiment, the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is almost the same value. Therefore, when the equation (2) is subtracted from the equation (1), the Doppler frequency f up1 in the uplink from the mobile unit 3 to the satellite 2a is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-I000007
Therefore, the frequency f b1, f rb1 measured by the frequency measurement unit 161a, and a Doppler frequency f RUP1 calculated from Equation (5), by substituting the equation (7), a measurement of the Doppler frequency f up1 Obtainable.
 同様に、式(3)のダウンリンク項fs2,fdn2と式(4)のダウンリンク項fs2,frdn2はほぼ同じ値である。また実施の形態1では、移動体3の送信周波数fとリファレンス局4の送信周波数fもほぼ同じ値である。よって、式(3)から式(4)を減算すると、移動体3から衛星2bへのアップリンクでのドップラ周波数fup2は次式(8)となる。
Figure JPOXMLDOC01-appb-I000008
 よって、周波数計測部161aにより計測された周波数fb2,frb2と、式(6)より計算したドップラ周波数frup2とを、式(8)に代入することで、ドップラ周波数fup2の計測値を得ることができる。
Similarly, downlink term f s2, f rdn2 of formula (3) downlink term f s2, f dn2 the formula (4) is substantially the same value. Also in the first embodiment, the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is almost the same value. Therefore, when the equation (4) is subtracted from the equation (3), the Doppler frequency f up2 in the uplink from the mobile unit 3 to the satellite 2b is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-I000008
Therefore, the frequency f b2, f rb2 measured by the frequency measurement unit 161a, and a Doppler frequency f RUP2 calculated from equation (6), by substituting the equation (8), a measurement of the Doppler frequency f up2 Obtainable.
 一方、移動体3から衛星2aへのアップリンクでのドップラ周波数fup1は、衛星2aの軌道情報等から、次式(9)の通り計算できる。
Figure JPOXMLDOC01-appb-I000009
 ここで、λは移動体3からのアップリンク時の信号の波長であり、vは移動体3の未知の3次元速度ベクトル(以下、速度と称す)である。
On the other hand, the Doppler frequency f up1 in the uplink from the mobile unit 3 to the satellite 2a can be calculated from the orbit information of the satellite 2a as shown in the following equation (9).
Figure JPOXMLDOC01-appb-I000009
Here, λ t is the wavelength of an uplink signal from the mobile unit 3, and v t is an unknown three-dimensional velocity vector (hereinafter referred to as speed) of the mobile unit 3.
 同様に、移動体3から衛星2bへのアップリンクでのドップラ周波数fup2は、衛星2bの軌道情報等から、次式(10)の通り計算できる。
Figure JPOXMLDOC01-appb-I000010
Similarly, the Doppler frequency f up2 in the uplink from the mobile unit 3 to the satellite 2b can be calculated from the orbit information of the satellite 2b as shown in the following equation (10).
Figure JPOXMLDOC01-appb-I000010
 ここで、衛星2aの位置p及び速度v、衛星2bの位置p及び速度v、移動体3の位置pは、既知である。そこで、式(9)から衛星2aの速度vに係る項を減算したものをドップラ周波数fup1と新たに定義し、同様に、式(10)から衛星2bの速度vに係る項を減算したものをドップラ周波数fup2と新たに定義する。これにより、式(9),(10)を簡略化することができ、次式(11),(12)のような連立方程式を得ることができる。
Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012
Here, the position p 1 and velocity v 1 of the satellite 2a, the position p 2 and velocity v 2 of the satellite 2b, and the position p t of the moving body 3 are known. Therefore, a material obtained by subtracting a term of the equation (9) to the speed v 1 of the satellite 2a newly defined as the Doppler frequency f up1, similarly, subtracting the term of the velocity v 2 of the satellite 2b from equation (10) This is newly defined as the Doppler frequency f up2 . Thereby, Formula (9) and (10) can be simplified and simultaneous equations like following Formula (11) and (12) can be obtained.
Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012
 この式(11),(12)において、未知変数は移動体3の速度vのみである。しかしながら、移動体3の速度は3次元速度ベクトルであるから、このままでは、方程式の数が2つであるのに対して、未知変数が3つであるため、解くことができない。 In the equations (11) and (12), the unknown variable is only the speed v t of the moving body 3. However, since the speed of the moving body 3 is a three-dimensional speed vector, the number of equations is two, while there are three unknown variables, and cannot be solved.
 そこで、移動体3の速度vを未知変数が2つとなるように2次元に落とし込む。具体的には、図6に示すように、移動体3は地表面を次式(13)に示す2次元速度vt,surfで移動するものとする。
Figure JPOXMLDOC01-appb-I000013
Therefore, the speed v t of the moving body 3 is reduced to two dimensions so that there are two unknown variables. Specifically, as shown in FIG. 6, it is assumed that the moving body 3 moves on the ground surface at a two-dimensional velocity v t, surf shown in the following equation (13).
Figure JPOXMLDOC01-appb-I000013
 この際、移動体3の地表面上の既知の位置を緯度経度で次式(14)のように表記する。
Figure JPOXMLDOC01-appb-I000014
 ここでRは地球半径、lonEは経度(東経)、latNは緯度(北緯)である。
At this time, a known position on the ground surface of the moving body 3 is expressed in latitude and longitude as in the following formula (14).
Figure JPOXMLDOC01-appb-I000014
Here, R E is the earth radius, lonE t is longitude (east longitude), and latN t is latitude (north latitude).
 この場合、移動体3の速度vと、移動体3の位置pを原点とした平面座標系における2次元速度vt,surfとの変換式は、次式(15)となる。
Figure JPOXMLDOC01-appb-I000015
 なお、Dは次式(16)で表される。
Figure JPOXMLDOC01-appb-I000016
In this case, the velocity v t of the moving body 3, two-dimensional velocity v t in the plane coordinate system with the origin position p t of the movable body 3, conversion formula and surf is represented by the following formula (15).
Figure JPOXMLDOC01-appb-I000015
D is represented by the following formula (16).
Figure JPOXMLDOC01-appb-I000016
 よって、式(15)を式(11),(12)に代入すると、次式(17),(18)のように未知変数の数は2つとなる。
Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018
Therefore, when Expression (15) is substituted into Expressions (11) and (12), the number of unknown variables becomes two as in Expressions (17) and (18) below.
Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018
 なお、移動体3の速度vを2次元に落とし込むに際には、地表面に限らずとも、任意の2次元平面に落とし込めばよい。
 このようにして、ドップラ周波数計算部162a,162bにより計算されたドップラ周波数fup1,fup2を示す情報(式(7),(8),(17),(18)を示す情報)は、速度計算部163に送られる。
Note that when the velocity v t of the moving body 3 is dropped in two dimensions, it is not limited to the ground surface, but may be dropped in an arbitrary two-dimensional plane.
In this manner, information indicating the Doppler frequencies f up1 and f up2 calculated by the Doppler frequency calculation units 162a and 162b (information indicating the equations (7), (8), (17), and (18)) is the speed. It is sent to the calculation unit 163.
 次いで、速度計算部163は、ドップラ周波数計算部162a,162bにより計算されたドップラ周波数fup1,fup2から、移動体3の速度vを計算する(ステップST35)。この際、速度計算部163は、次式(19)のような一般的な最小二乗法等を用いて、移動体3の速度vを計算する。
Figure JPOXMLDOC01-appb-I000019
 なお、fup1,obsは式(7)により得られたドップラ周波数fup1の計測値であり、fup1(vt,surf)は式(17)で示されているドップラ周波数fup1に対応する。同様に、fup2,obsは式(8)により得られたドップラ周波数fup2の計測値であり、fup2(vt,surf)は式(18)で示されているドップラ周波数fup2に対応する。また、Rは周波数計測誤差共分散行列であり、次式(20)で表される。
Figure JPOXMLDOC01-appb-I000020
 ここで、σFOA は周波数計測誤差分散値である。周波数計測誤差分散値σFOA とは、周波数計測部161a,161bで周波数を計測した際に生じる計測誤差を分散値で表記したものである。分散とは、確率論において、確率変数の分布が期待値からどれだけ散らばっているか、すなわち誤差が生じているかを示す値である。この場合、期待値とは周波数の真値である。
Next, the speed calculation unit 163 calculates the speed v t of the moving body 3 from the Doppler frequencies f up1 and f up2 calculated by the Doppler frequency calculation units 162a and 162b (step ST35). At this time, the speed calculation unit 163 calculates the speed v t of the moving body 3 using a general least square method such as the following equation (19).
Figure JPOXMLDOC01-appb-I000019
Note that f up1 and obs are measured values of the Doppler frequency f up1 obtained by Expression (7), and f up1 (v t, surf ) corresponds to the Doppler frequency f up1 shown by Expression (17). . Similarly, f up2, obs is a measured value of the Doppler frequency f up2 obtained by Expression (8), and f up2 (v t, surf ) corresponds to the Doppler frequency f up2 shown by Expression (18). To do. R is a frequency measurement error covariance matrix and is represented by the following equation (20).
Figure JPOXMLDOC01-appb-I000020
Here, σ FOA 2 is a frequency measurement error variance value. The frequency measurement error variance value σFOA 2 represents a measurement error generated when the frequency is measured by the frequency measurement units 161a and 161b as a variance value. The variance is a value indicating how much the distribution of the random variable is scattered from the expected value in the probability theory, that is, an error has occurred. In this case, the expected value is the true value of the frequency.
 なお、上記のドップラ周波数fup1,fup2から移動体3の速度vを計算する際の最適化問題の解法については、最小二乗法以外にも種々の方法が知られているため、その詳細な説明は省略する。
 また、式(17),(18)は線形連立方程式であるので、明示的に解を導出することも可能である。これについても、詳細な説明は省略する。
It should be noted that various methods other than the least square method are known for solving the optimization problem when calculating the velocity v t of the moving body 3 from the Doppler frequencies f up1 and f up2. The detailed explanation is omitted.
In addition, since equations (17) and (18) are linear simultaneous equations, it is possible to explicitly derive a solution. Also for this, detailed description is omitted.
 次いで、表示器17は、速度計算プロセッサ16により計算された移動体3の速度vを示す情報を表示する(ステップST36)。 Next, the display unit 17 displays information indicating the speed v t of the moving body 3 calculated by the speed calculation processor 16 (step ST36).
 なお図7は、等ドップラ周波数fup1曲線及び等ドップラ周波数fup2曲線の一例を示す図であり、ドップラ周波数fup1,fup2と速度vとの関係を示している。この図7において、横軸は東西方向を示し、縦軸は南北方向を示している。また、等ドップラ周波数fup1曲線は実線で示し、等ドップラ周波数fup2曲線は破線で示している。そして、この図7において、等ドップラ周波数fup1曲線と等ドップラ周波数fup2との交点が速度vとなる。 FIG. 7 is a diagram showing an example of the equal Doppler frequency f up1 curve and the equal Doppler frequency f up2 curve, and shows the relationship between the Doppler frequencies f up1 and f up2 and the velocity v t . In FIG. 7, the horizontal axis indicates the east-west direction, and the vertical axis indicates the north-south direction. Further, the equal Doppler frequency f up1 curve is indicated by a solid line, and the equal Doppler frequency f up2 curve is indicated by a broken line. In FIG. 7, the intersection point between the equal Doppler frequency f up1 curve and the equal Doppler frequency f up2 is the velocity v t .
 以上のように、この実施の形態1によれば、対応する衛星2a,2bを介して、移動体3から送信された信号及びリファレンス局4から送信された信号を受信する受信アンテナ11a,11bと、対応する受信アンテナ11a,11bにより受信された信号の周波数fb1,fb2,frb1,frb2を計測する周波数計測部161a,161bと、対応する周波数計測部161a,161bにより計測された周波数fb1,fb2,frb1,frb2から、移動体3から対応する衛星2a,2bへのアップリンクでのドップラ周波数fup1,fup2を計算するドップラ周波数計算部162a,162bと、ドップラ周波数計算部162a,162bにより計算されたドップラ周波数fup1,fup2から、移動体3の速度vを計算する速度計算部163とを備えたので、1回の観測で、移動体3の速度vを正確に推定することが可能である。すなわち、従来構成のような2回以上の観測は不要であり、各観測値が同一の移動体3からのものであるかという難しい判定は不要となり、誤判定を回避することができる。また、1回の観測であるため、従来のように移動体3の運動に仮定を置く必要がなく、移動体3の速度vを正確に推定することができる。 As described above, according to the first embodiment, the receiving antennas 11a and 11b that receive the signal transmitted from the moving body 3 and the signal transmitted from the reference station 4 via the corresponding satellites 2a and 2b, , Frequency measurement units 161a and 161b that measure the frequencies f b1 , f b2 , f rb1 , and f rb2 of the signals received by the corresponding reception antennas 11a and 11b, and frequencies measured by the corresponding frequency measurement units 161a and 161b. from f b1, f b2, f rb1 , f rb2, satellite 2a corresponding from the mobile 3, the Doppler frequency calculating unit 162a for calculating the Doppler frequency f up1, f up2 in the uplink to 2b, a 162b, Doppler frequency calculation unit 162a, the Doppler frequency f up1, f up2 calculated by 162b, mobile Since a speed calculation unit 163 that calculates the speed v t, in one observation, it is possible to accurately estimate the velocity v t of the moving body 3. That is, two or more observations as in the conventional configuration are not required, and a difficult determination as to whether each observation value is from the same moving body 3 is not necessary, and an erroneous determination can be avoided. Further, since the observation is performed once, it is not necessary to make assumptions about the movement of the moving body 3 as in the conventional case, and the speed v t of the moving body 3 can be accurately estimated.
 また、従来構成では移動体3の位置が未知であり推定する必要があるのに対し、実施の形態1に係る速度推定装置では移動体3の位置が既知であり、推定する変数の数が減る。その結果、実施の形態1に係る速度推定装置は、従来構成に対して推定精度が高くなることが期待される。 In the conventional configuration, the position of the moving body 3 is unknown and needs to be estimated, whereas in the speed estimation apparatus according to the first embodiment, the position of the moving body 3 is known and the number of variables to be estimated is reduced. . As a result, the speed estimation device according to Embodiment 1 is expected to have higher estimation accuracy than the conventional configuration.
実施の形態2.
 実施の形態1では、移動体3の送信周波数fとリファレンス局4の送信周波数fが近似している場合を想定して説明を行ったが、常時、そのようなリファレンス局4を選択できるとは限らない。すなわち、移動体3の送信周波数fに対してリファレンス局4の送信周波数fをその差が無視できる程度に近づけることが、機器の制約上困難な場合がある。この場合、移動体3の送信周波数fとリファレンス局4の送信周波数fの値自体は両者ともGHzオーダーであるが、その差がMHzオーダーとなる場合がある。そのため、リファレンス局4を用いてもダウンリンク項をキャンセルしきれない。そこで、実施の形態2では、上記のような場合に、リファレンス局4でキャンセルしきれない成分をキャンセルする方式について説明する。なお以下では、衛星2aの系統のみを用いて説明を行うが、衛星2bの系統についても同様である。
Embodiment 2. FIG.
In the first embodiment, the transmission frequency f t and the transmission frequency f r of the reference station 4 of the movable body 3 has been described on the assumption that approximates always be selected such reference station 4 Not necessarily. That is, it may be difficult to restrict the transmission frequency f r of the reference station 4 to the transmission frequency f t of the mobile unit 3 so that the difference can be ignored. In this case, the value itself of the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is both a GHz order in some cases the difference is order of MHz. Therefore, even if the reference station 4 is used, the downlink term cannot be canceled. In the second embodiment, a method for canceling components that cannot be canceled by the reference station 4 in the above case will be described. In the following description, only the system of the satellite 2a will be described, but the same applies to the system of the satellite 2b.
 なお、実施の形態2に係る速度推定装置1の基本的な構成は、図1に示す実施の形態1に係る速度推定装置1の構成と同一である。
 但し、実施の形態2におけるドップラ周波数計算部162aでは、まず、移動体3の送信周波数f、リファレンス局4の送信周波数f、受信アンテナ11aの位置pb1、及び、衛星2aの位置p及び速度vから、補正値Cを算出する。そして、ドップラ周波数計算部162aは、周波数計測部161aにより計測された移動体3から送信された信号に対応する信号の周波数fb1から、周波数計測部161aにより計測されたリファレンス局4から送信された信号に対応する信号の周波数frb1及び上記補正値Cを減算することで、ドップラ周波数fup1を計算する。以下、ドップラ周波数計算部162aによる処理の詳細について説明する。
The basic configuration of speed estimation device 1 according to Embodiment 2 is the same as that of speed estimation device 1 according to Embodiment 1 shown in FIG.
However, in the Doppler frequency calculation unit 162a in the second embodiment, first, the transmission frequency f t of the mobile unit 3, the transmission frequency f r of the reference station 4, the position p b1 of the receiving antenna 11a, and the position p 1 of the satellite 2a. And the correction value C 1 is calculated from the speed v 1 . The Doppler frequency calculating section 162a, from the frequency f b1 of the signal corresponding to the signal transmitted from the mobile 3 measured by the frequency measurement unit 161a, which is transmitted from the reference station 4, which is measured by the frequency measurement unit 161a by subtracting the frequency f rb1 and the correction value C 1 of the signal corresponding to the signal, to calculate the Doppler frequency f up1. The details of the processing by the Doppler frequency calculation unit 162a will be described below.
 受信アンテナ11aにより受信された信号の周波数fb1,frb1は、実施の形態1の場合と同様に、次式(21),(22)で表される。
Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022
The frequencies f b1 and f rb1 of the signal received by the receiving antenna 11a are expressed by the following equations (21) and (22), as in the first embodiment.
Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022
 この場合、実施の形態1と同様に、式(21)から式(22)を減算すると次式(23)のようになる。
Figure JPOXMLDOC01-appb-I000023
In this case, as in the first embodiment, the following equation (23) is obtained by subtracting equation (22) from equation (21).
Figure JPOXMLDOC01-appb-I000023
 この式(23)を整理すると、次式(24)のようになる。
Figure JPOXMLDOC01-appb-I000024
When this equation (23) is arranged, the following equation (24) is obtained.
Figure JPOXMLDOC01-appb-I000024
 ここで、f≠fであり、fdn1≠frdn1でもあるため、式(24)の右辺に次式(25)の項が残る。
Figure JPOXMLDOC01-appb-I000025
Here, since f t ≠ f r and f dn1 ≠ f rdn1 , the term of the following expression (25) remains on the right side of the expression (24).
Figure JPOXMLDOC01-appb-I000025
 これらの中で、影響が大きいのは(f-f)の項である。すなわち、それぞれがGHzオーダーの値をもっているため、それぞれの値が少し違うだけでも計測精度に大きく影響する。
 そして、実施の形態2では、上記(f-f)+(fdn1-frdn1)の項を打ち消すために、移動体3の送信周波数f、リファレンス局4の送信周波数f、受信アンテナ11aの位置pb1、及び、衛星2aの位置p及び速度vから、補正値Cを計算し、式(24)の右辺から減算する。
 なお、送信周波数f,fは既知のため、ドップラ周波数fdn1,frdn1が計算できれば式(25)より補正値Cを計算することができる。
Among these, the term (f t −f r ) has a great influence. That is, since each has a value on the order of GHz, even if each value is slightly different, measurement accuracy is greatly affected.
In the second embodiment, in order to cancel the term (f t −f r ) + (f dn1 −f rdn1 ), the transmission frequency f t of the mobile 3, the transmission frequency f r of the reference station 4, the reception position p b1 antenna 11a, and, from the position p 1 and velocity v 1 of the satellite 2a, calculates a correction value C 1, is subtracted from the right side of the equation (24).
Since the transmission frequencies f t and f r are known, the correction value C 1 can be calculated from the equation (25) if the Doppler frequencies f dn1 and f rdn1 can be calculated.
 ここで、衛星2aから受信アンテナ11aへのダウンリンクでのドップラ周波数fdn1,frdn1は、衛星2aの軌道情報等から、次式(26),(27)の通り計算できる。
Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027
 ここで、λa1は衛星2aからのダウンリンク時の移動体3から送信された信号に対応する信号の波長である。また、λra1は衛星2aからのダウンリンク時のリファレンス局4から送信された信号に対応する信号の波長である。
Here, the Doppler frequency f of the downlink from the satellite 2a to the receiving antenna 11a dn1, f RDN1 from orbital information of a satellite 2a, the following equation (26), can be calculated as (27).
Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027
Here, λ a1 is the wavelength of the signal corresponding to the signal transmitted from the mobile unit 3 during downlink from the satellite 2a. Further, λ ra1 is a wavelength of a signal corresponding to a signal transmitted from the reference station 4 at the time of downlink from the satellite 2a.
 よって、式(24)の右辺から式(25)で求められる補正値Cを減算することで、次式(28)のように(f-f)+(fdn1-frdn1)の項をキャンセルすることができ、残りの項は実施の形態1と同様に計算することで、ドップラ周波数fup1を得ることができる。
Figure JPOXMLDOC01-appb-I000028
 なお、ドップラ周波数fup2についても上記と同様に計算することができる。
Therefore, by subtracting the correction value C 1 obtained by the equation (25) from the right side of the equation (24), (f t −f r ) + (f dn1 −f rdn1 ) as in the following equation (28): The terms can be canceled, and the remaining terms can be calculated in the same manner as in Embodiment 1 to obtain the Doppler frequency f up1 .
Figure JPOXMLDOC01-appb-I000028
The Doppler frequency f up2 can be calculated in the same manner as described above.
実施の形態3.
 実施の形態3では、移動体3の送信周波数fとリファレンス局4の送信周波数fが近似ではない場合の対処法として、スケーリングを用いる場合について説明する。なお以下では、衛星2aの系統のみを用いて説明を行うが、衛星2bの系統についても同様である。
Embodiment 3 FIG.
In the third embodiment, the transmission frequency f t and the transmission frequency f r of the reference station 4 of the mobile body 3 as what to do if not approximation, the case of using the scaling. In the following description, only the system of the satellite 2a will be described, but the same applies to the system of the satellite 2b.
 なお、実施の形態3に係る速度推定装置1の基本的な構成は、図1に示す実施の形態1に係る速度推定装置1の構成と同一である。
 但し、実施の形態3におけるドップラ周波数計算部162aでは、まず、移動体3の送信周波数f、リファレンス局4の送信周波数f、受信アンテナ11aの位置pb1、及び、衛星2aの位置p及び速度vから、補正値Cを算出する。また、ドップラ周波数計算部162aは、周波数計測部161aにより計測されたリファレンス局4から送信された信号に対応する周波数frb1を、移動体3の送信周波数f及びリファレンス局4の送信周波数fを用いてスケーリングする。そして、ドップラ周波数計算部162aは、周波数計測部161aにより計測された移動体3から送信された信号に対応する信号の周波数fb1から、上記スケーリングした周波数及び上記補正値Cを減算することで、ドップラ周波数fup1を計算する。以下、ドップラ周波数計算部162aによる処理の詳細について説明する。
The basic configuration of speed estimation device 1 according to Embodiment 3 is the same as that of speed estimation device 1 according to Embodiment 1 shown in FIG.
However, in the Doppler frequency calculation unit 162a in the third embodiment, first, the transmission frequency f t of the mobile 3, the transmission frequency f r of the reference station 4, the position p b1 of the receiving antenna 11 a, and the position p 1 of the satellite 2 a. and from the speed v 1, to calculate a correction value C 2. In addition, the Doppler frequency calculation unit 162a sets the frequency f rb1 corresponding to the signal transmitted from the reference station 4 measured by the frequency measurement unit 161a, to the transmission frequency f t of the mobile unit 3 and the transmission frequency f r of the reference station 4. Scale with. The Doppler frequency calculating section 162a, from the frequency f b1 of the signal corresponding to the signal transmitted from the mobile 3 measured by the frequency measurement unit 161a, by subtracting the frequency and the correction value C 2 of the above scaling , Calculate the Doppler frequency f up1 . The details of the processing by the Doppler frequency calculation unit 162a will be described below.
 受信アンテナ11aにより受信された信号の周波数fb1,frb1は、実施の形態1の場合と同様に、次式(29),(30)で表される。
Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030
The frequencies f b1 and f rb1 of the signal received by the receiving antenna 11a are expressed by the following equations (29) and (30), as in the first embodiment.
Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030
 この場合にも、実施の形態2と同様に、影響が大きいのは送信周波数f,fである。すなわち、移動体3の送信周波数fとリファレンス局4の送信周波数fの値はGHzのオーダーをもつため、それぞれの値が少し違うだけでも計測精度に大きく影響する。よって、式(29),(30)に対して、受信アンテナ11aにより受信される信号の周波数frb1を次式(31)のようにスケーリングして差をとる。
Figure JPOXMLDOC01-appb-I000031
In this case, as in the second embodiment, the effect is large is the transmission frequency f t, f r. That is, the value of the transmission frequency f r of the transmission frequency f t and the reference station 4 of the mobile body 3 due to its order of GHz, each value affects greatly slightly different alone measurement accuracy. Therefore, a difference is obtained by scaling the frequency f rb1 of the signal received by the receiving antenna 11a with respect to the equations (29) and (30) as in the following equation (31).
Figure JPOXMLDOC01-appb-I000031
 この式(31)を整理すると次式(32)のようになる。
Figure JPOXMLDOC01-appb-I000032
When this equation (31) is arranged, the following equation (32) is obtained.
Figure JPOXMLDOC01-appb-I000032
 ここで、f≠fであり、fdn1≠frdn1でもあるため、式(32)の右辺に次式(33)の項が残る。
Figure JPOXMLDOC01-appb-I000033
Here, since f t ≠ f r and f dn1 ≠ f rdn1 , the term of the following expression (33) remains on the right side of the expression (32).
Figure JPOXMLDOC01-appb-I000033
 そして、実施の形態3では、上記のfs1(1-(f/f))+(fdn1-(f/f)frdn1)の項を打ち消すために、移動体3の送信周波数f、リファレンス局4の送信周波数f、受信アンテナ11aの位置pb1、及び、衛星2aの位置p及び速度vから、補正値Cを計算し、式(32)の右辺から減算する。
 なお、送信周波数f,fは既知のため、ドップラ周波数fdn1,frdn1が計算できれば式(33)より補正値Cを計算することができる。
In the third embodiment, the transmission of the mobile unit 3 is performed in order to cancel the term of f s1 (1− (f t / f r )) + (f dn1 − (f t / f r ) f rdn1 ). A correction value C 2 is calculated from the frequency f t , the transmission frequency f r of the reference station 4, the position p b1 of the receiving antenna 11 a, the position p 1 and the velocity v 1 of the satellite 2 a, and from the right side of the equation (32) Subtract.
Since the transmission frequencies f t and f r are known, the correction value C 2 can be calculated from the equation (33) if the Doppler frequencies f dn1 and f rdn1 can be calculated.
 ここで、衛星2aから受信アンテナ11aへのダウンリンクでのドップラ周波数fdn1,frdn1は、衛星2aの軌道情報等から、次式(34),(35)の通り計算できる。
Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035
Here, the Doppler frequency f of the downlink from the satellite 2a to the receiving antenna 11a dn1, f RDN1 from orbital information of a satellite 2a, the following equation (34), can be calculated as (35).
Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035
 よって、式(32)の右辺から式(33)で求められる補正値Cを減算することで、次式(36)のようにfs1(1-(f/f))+(fdn1-(f/f)frdn1)の項をキャンセルすることができる。
Figure JPOXMLDOC01-appb-I000036
Therefore, by subtracting the correction value C 2 obtained by the equation (33) from the right side of the equation (32), as shown in the following equation (36), f s1 (1− (f t / f r )) + (f dn1 - term it is possible to cancel the (f t / f r) f rdn1).
Figure JPOXMLDOC01-appb-I000036
 ここで、移動体3の送信周波数fとリファレンス局4の送信周波数fの値がMHzのオーダーで異なっていても、値自体は両者ともGHzオーダーであるため、(f/f)はほぼ1に近い。そのため、式(36)は近似的に次式(37)のように表すことができ、残りの項は実施の形態1と同様に計算することで、ドップラ周波数fup1を得ることができる。
Figure JPOXMLDOC01-appb-I000037
 なお、ドップラ周波数fup2についても上記と同様に計算することができる。
Here, since even if the value of the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3 is different in MHz of the order, the value itself is the GHz order both, (f t / f r) Is close to 1. Therefore, the expression (36) can be approximately expressed as the following expression (37), and the Doppler frequency f up1 can be obtained by calculating the remaining terms in the same manner as in the first embodiment.
Figure JPOXMLDOC01-appb-I000037
The Doppler frequency f up2 can be calculated in the same manner as described above.
 なお、上述したように、移動体3の送信周波数fとリファレンス局4の送信周波数fの値の差がMHzのオーダーであっても、値自体は両者ともGHzオーダーの比較的近い値どうしであるため、(f/f)はほぼ1に近い。それに対し、周波数シフトfs1はMHzオーダーであり、補正値Cの値は非常に小さい。このため、計測誤差の範囲とみなし、補正値Cを減算しない選択肢もある。 As described above, even in the order difference of MHz value of the transmission frequency f r of the transmission frequency f t and the reference station 4 of the movable body 3, relatively close between values of GHz order both values itself Therefore, (f t / f r ) is close to 1. In contrast, the frequency shift f s1 is order of MHz, the value of the correction value C 2 is very small. Therefore, it is assumed that the range of measurement error, there is the option of not subtracting the correction value C 2.
実施の形態4.
 図8はこの発明の実施の形態4における速度計算プロセッサ16の機能構成例を示す図である。図8に示す実施の形態4における速度計算プロセッサ16は、図2に示す実施の形態1における速度計算プロセッサ16に移動方向推定部164を追加したものである。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
Embodiment 4 FIG.
FIG. 8 is a diagram showing a functional configuration example of the speed calculation processor 16 according to the fourth embodiment of the present invention. The speed calculation processor 16 in the fourth embodiment shown in FIG. 8 is obtained by adding a moving direction estimation unit 164 to the speed calculation processor 16 in the first embodiment shown in FIG. Other configurations are the same, and only the different parts are described with the same reference numerals.
 移動方向推定部164は、ドップラ周波数計算部162a,162bにより計算されたドップラ周波数の比曲線から、移動体3の移動方向を推定するものである。この際、移動方向推定部164は、比曲線で生じる移動方向のアンビギュイティを上記ドップラ周波数の符号から解く。この移動方向推定部164により推定された移動体3の移動方向を示す情報(移動方向情報)は、表示器17に送られる。
 また、表示器17は、実施の形態1における機能に加え、移動方向推定部164により推定された移動体3の移動方向を示す情報も表示する。
The moving direction estimation unit 164 estimates the moving direction of the moving body 3 from the Doppler frequency ratio curve calculated by the Doppler frequency calculation units 162a and 162b. At this time, the moving direction estimation unit 164 solves the moving direction ambiguity generated in the ratio curve from the sign of the Doppler frequency. Information (movement direction information) indicating the movement direction of the moving body 3 estimated by the movement direction estimation unit 164 is sent to the display unit 17.
In addition to the function in the first embodiment, the display 17 also displays information indicating the moving direction of the moving body 3 estimated by the moving direction estimating unit 164.
 図7に示した等ドップラ周波数fup1曲線と等ドップラ周波数fup2曲線との比を取ると、図9に示すような等比曲線(fup1/fup2)が得られる。この図9を見ると、等比曲線(fup1/fup2)は、原点を中心として放射状に等曲線が得られていることが分かる。そして、この比の値を計算することで、移動体3の速度vの大きさはわからないものの、移動方向は推定できる。 When the ratio of the equal Doppler frequency f up1 curve and the equal Doppler frequency f up2 curve shown in FIG. 7 is taken, an equivalent ratio curve (f up1 / f up2 ) as shown in FIG. 9 is obtained. From FIG. 9, it can be seen that the iso- ratio curve (f up1 / f up2 ) is obtained radially from the origin. And by calculating the value of this ratio, the moving direction can be estimated, although the magnitude of the velocity v t of the moving body 3 is not known.
 なお、等比曲線(fup1/fup2)は、零割により±∞に発散する方向があるが、その他の移動方向は推定できる。また、この速度付近では、等比曲線(fup1/fup2)の値が±∞から0へ、急激に変化するため、図9のように等曲線が密になっている。また、この等比曲線(fup1/fup2)では、移動方向のアンビギュイティが生じる。例えば図9において、1.05は北東方向と南西方向に見られるが、どちらが正しいかは不明であるような状況が生じる。しかしながら、ドップラ周波数fup1,fup2の符号から解くことが可能である。例えば図9において、1.05は北東方向と南西方向に見られるが、ドップラ周波数fup1とドップラ周波数fup2の両符号が正であれば北東、負であれば南西が正しい移動方向となる。
 なお、移動方向推定部164では、例えば、図9に示すような等比曲線(fup1/fup2)に基づく各方向に対する比曲線の値を、移動方向データベースとして保持している。
Note that the geometric curve (f up1 / f up2 ) has a direction that diverges to ± ∞ due to zero division , but other moving directions can be estimated. In the vicinity of this speed, the value of the equiratio curve (f up1 / f up2 ) changes abruptly from ± ∞ to 0, so that the isocurve is dense as shown in FIG. Further, in this geometric curve (f up1 / f up2 ), an ambiguity in the moving direction occurs. For example, in FIG. 9, 1.05 is seen in the northeast direction and the southwest direction, but there is a situation where it is unknown which is correct. However, it is possible to solve from the signs of the Doppler frequencies f up1 and f up2 . For example, in FIG. 9, 1.05 is seen in the northeast and southwest directions. If both signs of the Doppler frequency f up1 and the Doppler frequency f up2 are positive, the northeast is correct, and if the signs are negative, the southwest is the correct moving direction.
Note that the movement direction estimation unit 164 holds, as a movement direction database, the value of the ratio curve for each direction based on, for example, the equiratio curve (f up1 / f up2 ) as shown in FIG.
 次に、移動方向推定部164による動作例について、図10を参照しながら説明する。
 移動方向推定部164では、図10に示すように、まず、ドップラ周波数計算部162a,162bにより計算されたドップラ周波数fup1,fup2の比曲線(fup1/fup2)を計算する(ステップST111)。
Next, an operation example by the movement direction estimation unit 164 will be described with reference to FIG.
As shown in FIG. 10, the moving direction estimation unit 164 first calculates the ratio curve (f up1 / f up2 ) of the Doppler frequencies f up1 and f up2 calculated by the Doppler frequency calculation units 162a and 162b (step ST111). ).
 次いで、移動方向推定部164は、保持している移動方向データベースを照合して、移動体3の移動方向の候補を選択する(ステップST112)。すなわち、計算した比曲線(fup1/fup2)が、図9のどの線上の値と最も近いかを求めることで、移動方向の候補を選択する。 Next, the moving direction estimation unit 164 collates the held moving direction database and selects a moving direction candidate of the moving body 3 (step ST112). In other words, a candidate for the moving direction is selected by determining on which line in FIG. 9 the calculated ratio curve (f up1 / f up2 ) is closest.
 次いで、移動方向推定部164は、比曲線(fup1/fup2)で生じる移動方向のアンビギュイティをドップラ周波数fup1,fup2の符号から解く(ステップST113)。すなわち、比曲線(fup1/fup2)で生じる移動方向にはアンビギュイティが存在するため、ドップラ周波数fup1,fup2の符号から、このアンビギュイティを解く。これにより、移動体3の移動方向を推定することができる。 Then, the moving direction estimation unit 164 solves the moving direction of the ambiguity caused by the ratio curve (f up1 / f up2) from the sign of the Doppler frequency f up1, f up2 (step ST113). That is, since there is an ambiguity in the moving direction generated in the ratio curve (f up1 / f up2 ), this ambiguity is solved from the signs of the Doppler frequencies f up1 and f up2 . Thereby, the moving direction of the mobile body 3 can be estimated.
 なお上記では、実施の形態1における速度計算プロセッサ16に移動方向推定部164を追加した場合を示した。しかしながら、これに限るものではなく、実施の形態2,3における速度計算プロセッサ16に移動方向推定部164を追加してもよい。 In the above description, the case where the moving direction estimation unit 164 is added to the speed calculation processor 16 in the first embodiment has been described. However, the present invention is not limited to this, and the moving direction estimation unit 164 may be added to the speed calculation processor 16 in the second and third embodiments.
実施の形態5.
 図11はこの発明の実施の形態5における速度計算プロセッサ16の機能構成例を示す図である。図11に示す実施の形態5における速度計算プロセッサ16は、図2に示す実施の形態1における速度計算プロセッサ16に移動方向推定部165を追加したものである。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
Embodiment 5 FIG.
FIG. 11 is a diagram showing a functional configuration example of the speed calculation processor 16 according to the fifth embodiment of the present invention. The speed calculation processor 16 in the fifth embodiment shown in FIG. 11 is obtained by adding a moving direction estimation unit 165 to the speed calculation processor 16 in the first embodiment shown in FIG. Other configurations are the same, and only the different parts are described with the same reference numerals.
 移動方向推定部165は、ドップラ周波数計算部162a,162bにより計算されたドップラ周波数の比曲線の逆正接関数から、移動体3の移動方向を推定するものである。この際、移動方向推定部165は、比曲線の逆正接関数で生じる移動方向のアンビギュイティを上記ドップラ周波数の符号から解く。この移動方向推定部165により推定された移動体3の移動方向を示す情報(移動方向情報)は、表示器17に送られる。
 また、表示器17は、実施の形態1における機能に加え、移動方向推定部165により推定された移動体3の移動方向を示す情報も表示する。
The moving direction estimation unit 165 estimates the moving direction of the moving body 3 from the arc tangent function of the ratio curve of the Doppler frequencies calculated by the Doppler frequency calculation units 162a and 162b. At this time, the moving direction estimation unit 165 solves the moving direction ambiguity generated by the arctangent function of the ratio curve from the sign of the Doppler frequency. Information indicating the moving direction of the moving body 3 estimated by the moving direction estimating unit 165 (moving direction information) is sent to the display unit 17.
In addition to the function in the first embodiment, the display unit 17 also displays information indicating the moving direction of the moving body 3 estimated by the moving direction estimating unit 165.
 実施の形態5では、実施の形態4に類似し、比曲線(fup1/fup2)の代わりに、比曲線(fup1/fup2)の逆正接関数arctan(fup1/fup2)を用いる。このように逆正接関数を取ることで、比曲線(fup1/fup2)が±∞となる速度で、±π/2となるため、読み取りが容易になる。ただし、比曲線(fup1/fup2)が±∞となる速度と0となる速度が近いため、この場合、逆正接関数arctan(fup1/fup2)は±π/2から0へ、値が急激に切り替わる。よって、図12においても、その速度付近では等曲線が密になっている。
 なお、移動方向推定部165の動作は、実施の形態4の移動方向推定部164と同様であるため、その説明を省略する。
In the fifth embodiment, similar to the fourth embodiment, an arctangent function arctan (f up1 / f up2 ) of the ratio curve (f up1 / f up2 ) is used instead of the ratio curve (f up1 / f up2 ). . By taking the arc tangent function in this way, the ratio curve (f up1 / f up2 ) becomes ± π / 2 at a speed at which the ratio curve becomes ± ∞, so that reading is easy. However, since the speed at which the ratio curve (f up1 / f up2 ) becomes ± ∞ and the speed at which it becomes 0 are close, in this case, the arctangent function arctan (f up1 / f up2 ) is changed from ± π / 2 to 0, Switches suddenly. Therefore, also in FIG. 12, the isocurve is dense near the speed.
In addition, since the operation | movement of the movement direction estimation part 165 is the same as that of the movement direction estimation part 164 of Embodiment 4, the description is abbreviate | omitted.
 なお上記では、実施の形態1における速度計算プロセッサ16に移動方向推定部165を追加した場合を示した。しかしながら、これに限るものではなく、実施の形態2,3における速度計算プロセッサ16に移動方向推定部165を追加してもよい。 In the above, the case where the moving direction estimation unit 165 is added to the speed calculation processor 16 in the first embodiment has been described. However, the present invention is not limited to this, and a moving direction estimation unit 165 may be added to the speed calculation processor 16 in the second and third embodiments.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 この発明に係る速度推定装置は、1回の観測で、移動体の速度の推定を正しく行うことができ、移動体の速度を推定する速度推定装置等に用いるのに適している。 The speed estimation apparatus according to the present invention can correctly estimate the speed of the moving object in one observation, and is suitable for use in a speed estimation apparatus that estimates the speed of the moving object.
 1 速度推定装置、2a,2b 衛星、3 移動体、4 リファレンス局、11a,11b 受信アンテナ、12a,12b バンドパスフィルタ、13 局部発振器、14a,14b ダウンコンバータ、15a,15b A/Dコンバータ、16 速度計算プロセッサ、17 表示器、18 メモリ、19 受信装置、161a,161b、 周波数計算部、162a,162b、 ドップラ周波数計算部、163 速度計算部、164,165 移動方向推定部。 1 speed estimation device, 2a, 2b satellite, 3 mobile, 4 reference station, 11a, 11b receiving antenna, 12a, 12b bandpass filter, 13 local oscillator, 14a, 14b down converter, 15a, 15b A / D converter, 16 Speed calculation processor, 17 display, 18 memory, 19 receiving device, 161a, 161b, frequency calculation unit, 162a, 162b, Doppler frequency calculation unit, 163 speed calculation unit, 164, 165 movement direction estimation unit.

Claims (8)

  1.  位置及び速度が既知の2つの静止衛星毎に設けられ、対応する前記静止衛星を介して、送信周波数及び位置が既知の移動体から送信された信号、及び、送信周波数及び位置が既知の静止した参照局から送信された信号を、受信する受信アンテナと、
     前記受信アンテナ毎に設けられ、対応する前記受信アンテナにより受信された前記移動体からの信号の周波数及び前記参照局からの信号の周波数を計測する周波数計測部と、
     前記周波数計測部毎に設けられ、対応する前記周波数計測部により計測された周波数から、前記移動体から対応する前記静止衛星へのアップリンクでのドップラ周波数を計算するドップラ周波数計算部と、
     2つの前記ドップラ周波数計算部により計算されたドップラ周波数から、前記移動体の速度を計算する速度計算部と
     を備えた速度推定装置。
    Provided for every two geostationary satellites whose positions and velocities are known, via the corresponding geostationary satellites, signals transmitted from mobiles whose transmission frequency and position are known, and stationary that the transmission frequency and position are known A receiving antenna for receiving a signal transmitted from a reference station;
    A frequency measurement unit that is provided for each reception antenna and measures the frequency of the signal from the moving body and the frequency of the signal from the reference station received by the corresponding reception antenna;
    A Doppler frequency calculation unit that is provided for each frequency measurement unit and calculates a Doppler frequency in the uplink from the mobile body to the corresponding geostationary satellite from the frequency measured by the corresponding frequency measurement unit;
    A speed estimation device comprising: a speed calculation unit that calculates the speed of the moving object from the Doppler frequencies calculated by the two Doppler frequency calculation units.
  2.  前記ドップラ周波数計算部は、前記周波数計測部により計測された前記移動体から送信された信号に対応する信号の周波数から、当該周波数計測部により計測された前記参照局から送信された信号に対応する信号の周波数を減算することで、前記ドップラ周波数を計算する
     ことを特徴とする請求項1記載の速度推定装置。
    The Doppler frequency calculation unit corresponds to the signal transmitted from the reference station measured by the frequency measurement unit, from the frequency of the signal corresponding to the signal transmitted from the moving body measured by the frequency measurement unit. The speed estimation apparatus according to claim 1, wherein the Doppler frequency is calculated by subtracting the frequency of the signal.
  3.  前記ドップラ周波数計算部は、前記移動体の送信周波数、前記参照局の送信周波数、対応する前記受信アンテナの位置、及び、対応する前記静止衛星の位置及び速度から補正値を算出し、前記周波数計測部により計測された前記移動体から送信された信号に対応する信号の周波数から、当該周波数計測部により計測された前記参照局から送信された信号に対応する信号の周波数及び前記補正値を減算することで、前記ドップラ周波数を計算する
     ことを特徴とする請求項1記載の速度推定装置。
    The Doppler frequency calculation unit calculates a correction value from the transmission frequency of the mobile object, the transmission frequency of the reference station, the position of the corresponding receiving antenna, and the position and velocity of the corresponding geostationary satellite, and the frequency measurement The frequency of the signal corresponding to the signal transmitted from the reference station measured by the frequency measuring unit and the correction value are subtracted from the frequency of the signal corresponding to the signal transmitted from the moving body measured by the unit. The speed estimation device according to claim 1, wherein the Doppler frequency is calculated.
  4.  前記ドップラ周波数計算部は、前記移動体の送信周波数、前記参照局の送信周波数、対応する前記受信アンテナの位置、及び、対応する前記静止衛星の位置及び速度から補正値を算出し、前記周波数計測部により計測された前記参照局から送信された信号に対応する信号の周波数を前記移動体の送信周波数及び前記参照局の送信周波数を用いてスケーリングし、前記周波数計測部により計測された前記移動体から送信された信号に対応する信号の周波数から、前記スケーリングした周波数及び前記補正値を減算することで、前記ドップラ周波数を計算する
     ことを特徴とする請求項1記載の速度推定装置。
    The Doppler frequency calculation unit calculates a correction value from the transmission frequency of the mobile object, the transmission frequency of the reference station, the position of the corresponding receiving antenna, and the position and velocity of the corresponding geostationary satellite, and the frequency measurement The mobile unit measured by the frequency measurement unit by scaling the frequency of the signal corresponding to the signal transmitted from the reference station measured by the unit using the transmission frequency of the mobile unit and the transmission frequency of the reference station The velocity estimation apparatus according to claim 1, wherein the Doppler frequency is calculated by subtracting the scaled frequency and the correction value from a frequency of a signal corresponding to a signal transmitted from.
  5.  2つの前記ドップラ周波数計算部により計算されたドップラ周波数の比曲線から、前記移動体の移動方向を推定する移動方向推定部を備えた
     ことを特徴とする請求項1記載の速度推定装置。
    The speed estimation device according to claim 1, further comprising a movement direction estimation unit that estimates a movement direction of the moving body from a ratio curve of Doppler frequencies calculated by the two Doppler frequency calculation units.
  6.  前記移動方向推定部は、前記比曲線で生じる移動方向のアンビギュイティを、2つの前記ドップラ周波数計算部により計算されたドップラ周波数の符号から解く
     ことを特徴とする請求項5記載の速度推定装置。
    The speed estimation device according to claim 5, wherein the moving direction estimation unit solves the ambiguity of the moving direction generated in the ratio curve from the sign of the Doppler frequency calculated by the two Doppler frequency calculation units. .
  7.  2つの前記ドップラ周波数計算部により計算されたドップラ周波数の比曲線の逆正接関数から、移動方向を推定する移動方向推定部を備えた
     ことを特徴とする請求項1記載の速度推定装置。
    The speed estimation apparatus according to claim 1, further comprising a movement direction estimation unit that estimates a movement direction from an arctangent function of a ratio curve of Doppler frequencies calculated by the two Doppler frequency calculation units.
  8.  前記移動方向推定部は、前記比曲線の逆正接関数で生じる移動方向のアンビギュイティを、2つの前記ドップラ周波数計算部により計算されたドップラ周波数の符号から解く
     ことを特徴とする請求項7記載の速度推定装置。
    The said moving direction estimation part solves the ambiguity of the moving direction which arises with the arctangent function of the said ratio curve from the code | symbol of the Doppler frequency calculated by two said Doppler frequency calculation parts. Speed estimation device.
PCT/JP2015/086280 2015-12-25 2015-12-25 Speed estimation device WO2017109951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/086280 WO2017109951A1 (en) 2015-12-25 2015-12-25 Speed estimation device
JP2016532015A JP6009131B1 (en) 2015-12-25 2015-12-25 Speed estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086280 WO2017109951A1 (en) 2015-12-25 2015-12-25 Speed estimation device

Publications (1)

Publication Number Publication Date
WO2017109951A1 true WO2017109951A1 (en) 2017-06-29

Family

ID=57140178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086280 WO2017109951A1 (en) 2015-12-25 2015-12-25 Speed estimation device

Country Status (2)

Country Link
JP (1) JP6009131B1 (en)
WO (1) WO2017109951A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465473A (en) * 1987-09-04 1989-03-10 Nec Corp Satellite communication and position measurement system for moving body
JP2000512380A (en) * 1995-09-20 2000-09-19 イギリス国 Localization of unknown signal source
JP2003507747A (en) * 1999-08-19 2003-02-25 キネテイツク・リミテツド Method and apparatus for locating the source of an unknown signal
JP2004519945A (en) * 2001-03-27 2004-07-02 キネテイツク・リミテツド Method and apparatus for determining the source of an unknown signal
JP2006349470A (en) * 2005-06-15 2006-12-28 Toshiba Corp Device and method for specifying position of uplink interference source
JP2008064566A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Orbit estimation method and device therefor
JP2008298605A (en) * 2007-05-31 2008-12-11 Mitsubishi Electric Corp Apparatus and method for estimating track
JP2009198435A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Positioning device and positioning method for unknown transmission station
JP2009531693A (en) * 2006-03-31 2009-09-03 キネテイツク・リミテツド Satellite ephemeris error
US20090224957A1 (en) * 2007-09-27 2009-09-10 Chung Hyo K Methods and systems for detection and location of multiple emitters
JP2010060303A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Positioning apparatus
JP2010256022A (en) * 2009-04-21 2010-11-11 Mitsubishi Electric Corp Positioning device
JP2010540922A (en) * 2007-09-27 2010-12-24 キネティック リミテッド Interference intensity measuring instrument
CN102331581A (en) * 2011-05-27 2012-01-25 哈尔滨工业大学 Rapid positioning method of binary TDOA/FDOA satellite-to-earth integration positioning system
CN102478652A (en) * 2010-11-30 2012-05-30 中国航空无线电电子研究所 Doppler frequency difference direction-finding method based on mobile platform
JP2013029419A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Positioning device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465473A (en) * 1987-09-04 1989-03-10 Nec Corp Satellite communication and position measurement system for moving body
JP2000512380A (en) * 1995-09-20 2000-09-19 イギリス国 Localization of unknown signal source
JP2003507747A (en) * 1999-08-19 2003-02-25 キネテイツク・リミテツド Method and apparatus for locating the source of an unknown signal
JP2004519945A (en) * 2001-03-27 2004-07-02 キネテイツク・リミテツド Method and apparatus for determining the source of an unknown signal
JP2006349470A (en) * 2005-06-15 2006-12-28 Toshiba Corp Device and method for specifying position of uplink interference source
JP2009531693A (en) * 2006-03-31 2009-09-03 キネテイツク・リミテツド Satellite ephemeris error
JP2008064566A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Orbit estimation method and device therefor
JP2008298605A (en) * 2007-05-31 2008-12-11 Mitsubishi Electric Corp Apparatus and method for estimating track
US20090224957A1 (en) * 2007-09-27 2009-09-10 Chung Hyo K Methods and systems for detection and location of multiple emitters
JP2010540922A (en) * 2007-09-27 2010-12-24 キネティック リミテッド Interference intensity measuring instrument
JP2009198435A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Positioning device and positioning method for unknown transmission station
JP2010060303A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Positioning apparatus
JP2010256022A (en) * 2009-04-21 2010-11-11 Mitsubishi Electric Corp Positioning device
CN102478652A (en) * 2010-11-30 2012-05-30 中国航空无线电电子研究所 Doppler frequency difference direction-finding method based on mobile platform
CN102331581A (en) * 2011-05-27 2012-01-25 哈尔滨工业大学 Rapid positioning method of binary TDOA/FDOA satellite-to-earth integration positioning system
JP2013029419A (en) * 2011-07-28 2013-02-07 Mitsubishi Electric Corp Positioning device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. P. HAWORTH ET AL.: "Interference Localization For EUTELSAT Satellites-The First European Transmitter Location System", INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS, vol. 15, no. 4, 1997, pages 155 - 183, XP055395828 *
TIM PATTISON ET AL.: "Sensitivity Analysis of Dual-Satellite Geolocation", IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 36, no. 1, January 2000 (2000-01-01), pages 56 - 71, XP008122708 *

Also Published As

Publication number Publication date
JPWO2017109951A1 (en) 2017-12-21
JP6009131B1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
Son et al. Novel multichain-based Loran positioning algorithm for resilient navigation
EP2689268B1 (en) Method, apparatus and system for determining a position of an object having a global navigation satellite system receiver by processing undifferenced data like carrier phase measurements and external products like ionosphere data
EP2486420B1 (en) Improvements in or relating to radio positioning
US10739471B2 (en) GNSS receiver with a capability to resolve ambiguities using an uncombined formulation
EP3803461B1 (en) Anti-spoofing system for gnss receivers
US10948588B2 (en) Synthetic-aperture radar device
US8094064B2 (en) Ground-based system and method to monitor for excessive delay gradients
Hobiger et al. GLONASS-R: GNSS reflectometry with a frequency division multiple access-based satellite navigation system
KR101851853B1 (en) System and method to calculate relative position between vehicles
JP2019045499A (en) Positioning device, positioning method, positioning program, positioning program storage media, application device, and positioning system
JP2010256301A (en) Multipath determination device and program
JP4498399B2 (en) Positioning system and positioning method
US20120026034A1 (en) Position calculation method and apparatus with gps
JP6009131B1 (en) Speed estimation device
JP4215264B2 (en) Position and orientation estimation device
JP2012137448A (en) Apparatus for evaluating ionosphere delay and navigation apparatus
US20150192678A1 (en) Satellite positioning method, satellite positioning apparatus, and computer-readable medium
Łabowski et al. Inertial navigation system for radar terrain imaging
JP2019168257A (en) Moving body information estimation device and program
CN105319566A (en) Cooperative positioning method and apparatus
JP6261831B1 (en) Positioning device and positioning method
JP2007127579A (en) Relative-positioning system for carrier phase
JP3178938U (en) Satellite positioning device
RU2731784C2 (en) Method and system for satellite signal processing
JP2009145283A (en) Positioning device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016532015

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911388

Country of ref document: EP

Kind code of ref document: A1