JP2009122045A - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
JP2009122045A
JP2009122045A JP2007298270A JP2007298270A JP2009122045A JP 2009122045 A JP2009122045 A JP 2009122045A JP 2007298270 A JP2007298270 A JP 2007298270A JP 2007298270 A JP2007298270 A JP 2007298270A JP 2009122045 A JP2009122045 A JP 2009122045A
Authority
JP
Japan
Prior art keywords
sensors
target
difference
calculating
clock error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007298270A
Other languages
Japanese (ja)
Inventor
Kunihiro Ishikawa
訓弘 石川
Atsushi Okamura
敦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007298270A priority Critical patent/JP2009122045A/en
Publication of JP2009122045A publication Critical patent/JP2009122045A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positioning device capable of correcting clock errors among sensors by a specific operation in its device, without having to use a broadcasting station for the correction of clock errors. <P>SOLUTION: This positioning device includes a difference calculating means for calculating the arrival time difference and the Doppler frequency difference between received waves of sensors in accordance with the arrival times of electric waves, a sound wave or a light wave that is radiated or reflected by a target and is received by the plurality of sensors by two or more number of times. The positioning device, further, includes a positioning means that calculates the position and the speed of the target and a clock error between the sensors by simultaneously solving an equation for calculating the position of the target which is based on the calculated arrival time difference and applied with the correction of the clock error between the sensors and an equation for calculating the position and the speed of the target, based on the calculated Doppler frequency difference. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、目標から放射もしくは反射された電波を受信して目標の位置と速度を算出する測位装置に関するものである。   The present invention relates to a positioning device that receives a radio wave radiated or reflected from a target and calculates the position and speed of the target.

測位装置では、目標から放射もしくは反射された電波を複数のセンサで受信し、受信した電波の到来時間差などに基づいて目標の位置を算出しているが、その場合、目標からの電波を各センサで正確なタイミングで受信する必要がある。そのためには、各センサは高精度な時刻同期が確立されている必要があり、センサ間をケーブルで結び、同一のクロックで互いのセンサの同期を取って動作させている。しかし、複数のセンサ同士が極めて近接設置される場合には配線基板などを用いて一体的に接続できるが、センサ同士が離れた位置に設置されている場合には、センサ間を個々のケーブルで接続しなければならず、そのための多数のケーブルの準備や接続作業が要求され、コストの面で不利である。また、センサ自体が移動するような場合には、センサ同士をケーブルで結ぶことは構造上に困難である。この問題を解決する方法として、各センサで時計誤差を含んだ状態で電波の到来時間を観測し、その後の処理で時計誤差を補正する方法がある(例えば特許文献1)。この方法は、既知の位置に送信局を置き、その送信局からの電波を各センサで受信し、その電波の到来時間差を求めることで、センサ間の時計誤差を算出するものである。目標の位置を算出する場合には、目標からの電波の到来時間差を、先に求めた時計誤差で補正して、補正値を基に目標の位置を算出する。   In the positioning device, radio waves radiated or reflected from the target are received by multiple sensors and the position of the target is calculated based on the arrival time difference of the received radio waves. It is necessary to receive at the correct timing. For this purpose, it is necessary for each sensor to establish highly accurate time synchronization. The sensors are connected by a cable, and the sensors are operated in synchronization with each other with the same clock. However, when multiple sensors are installed in close proximity, they can be connected together using a wiring board, etc., but when the sensors are installed at positions separated from each other, individual cables can be connected between the sensors. It is necessary to prepare a large number of cables for the connection and connection work, which is disadvantageous in terms of cost. In addition, when the sensors themselves move, it is difficult to connect the sensors with cables. As a method of solving this problem, there is a method of observing the arrival time of radio waves with each sensor including a clock error and correcting the clock error in the subsequent processing (for example, Patent Document 1). In this method, a transmitting station is placed at a known position, radio waves from the transmitting station are received by each sensor, and a difference in arrival times of the radio waves is obtained to calculate a clock error between the sensors. When calculating the target position, the arrival time difference of the radio wave from the target is corrected with the previously determined clock error, and the target position is calculated based on the correction value.

特開2001−272448公報JP 2001-272448 A

以上のように従来の測位装置では、目標からの電波の到来時間差を、予め求めた時計誤差を用いて補正して、補正値を基に目標の位置を算出するようにしているが、センサ間の時計誤差を得るために送信局を別途設ける必要がり、その分装置が大掛かりとなるという問題があった。   As described above, in the conventional positioning device, the arrival time difference of the radio wave from the target is corrected using the clock error obtained in advance, and the target position is calculated based on the correction value. In order to obtain this clock error, it is necessary to provide a separate transmission station, and there is a problem that the apparatus becomes large correspondingly.

この発明は、上記問題点を解決するためになされたもので、時計誤差の補正用の送信局を用いず自機内の独自の処理によりセンサ間の時計誤差の補正を可能にする測位装置を得ることを目的とする。   The present invention has been made to solve the above problems, and obtains a positioning device that can correct a clock error between sensors by a unique process in the own device without using a transmitting station for correcting a clock error. For the purpose.

この発明に係る測位装置は、複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、上記算出された到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式(例えば後述の(3)式)と、上記算出されたドップラ周波数差に基づいた目標の位置と速度を算出する方程式(例えば後述の(4)式)を連立させて目標の位置と速度およびセンサ間の時計誤差を算出する測位手段を備えたものである。   The positioning device according to the present invention is based on the arrival time and Doppler frequency of a received wave between sensors based on the arrival time and Doppler frequency of radio waves, sound waves or light waves radiated or reflected by a target a plurality of times. Difference calculating means for calculating a difference, an equation (for example, Equation (3) described later) for calculating a target position based on the calculated arrival time difference and correcting for a clock error between sensors, and the above calculation Provided with positioning means for calculating a target position and speed and a clock error between the sensors by simultaneous equations (for example, equation (4) described later) for calculating the target position and speed based on the Doppler frequency difference. It is.

この発明によれば、各センサ間で時計誤差を含んだ状態で電波の到来時間を観測し、その後の自機内の測位処理により独自で時計誤差を補正するようにしているので、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無い。また、時計誤差を補正するために送信局を別途設置する必要がない。   According to this invention, the arrival time of the radio wave is observed in a state including the clock error between the sensors, and the clock error is corrected independently by the positioning process in the own aircraft thereafter. It is not necessary to consider the cable connection for synchronizing the sensors corresponding to the movement of the sensors themselves. Further, it is not necessary to install a transmitting station separately to correct the clock error.

実施の形態1.
図1はこの発明の実施の形態1による測位装置の機能構成を示すブロック図である。
図において、複数のセンサ11 〜1N は、目標から放射された、もしくは目標で反射した電波をそれぞれ複数回受信し、受信波の到来時間とドップラ周波数を観測するする手段である。ここで、Nはセンサの総数とする。差分算出部2は、各センサで複数回受信した電波の到来時間差とドップラ周波数差を算出する手段である。測位部3は、各センサ間の電波の到来時間差とドップラ周波数差を基づいて、センサ間の時計誤差を補正して電波を受信した各時刻における目標の位置と速度を算出する手段である。そのため、測位部3は一括測位部31を備え、時計誤差を補正して目標の位置を算出する方程式と、ドップラ効果を利用して目標の位置と速度を算出する方程式を電波の受信時刻毎に作成し、これらを連立させることで、センサ間の時計誤差と電波を受信した各時刻における目標の位置と速度を算出する手段である。
Embodiment 1 FIG.
1 is a block diagram showing a functional configuration of a positioning apparatus according to Embodiment 1 of the present invention.
In the figure, a plurality of sensors 1 1 to 1 N are means for receiving a radio wave radiated from a target or reflected by the target a plurality of times and observing the arrival time and Doppler frequency of the received wave. Here, N is the total number of sensors. The difference calculation unit 2 is a means for calculating the arrival time difference and the Doppler frequency difference of radio waves received multiple times by each sensor. The positioning unit 3 is a means for correcting the clock error between the sensors based on the arrival time difference and the Doppler frequency difference between the sensors, and calculating the target position and velocity at each time when the waves are received. Therefore, the positioning unit 3 includes a collective positioning unit 31, and calculates an equation for calculating the target position by correcting the clock error and an equation for calculating the target position and velocity using the Doppler effect for each radio wave reception time. It is a means for calculating the position and speed of the target at each time when the clock error between the sensors and the radio wave are received by creating and synthesizing them.

次にこの発明の原理について説明する。
以下では、目標数が1の場合を例にとり説明する。センサ11 〜1N で、目標から放射された、もしくは目標で反射された電波を受信すると、各センサは電波を受信した到来時間とドップラ周波数を観測する。この方法について、センサ1n (1≦n≦N)を例に説明する。
センサ1n では、まず受信信号を低い周波数にダウンコンバートし、A/D変換器でデジタル信号に変換する。以下では、目標からの電波の信号波形が既知であるとして説明を続ける。なお以下では、その既知の信号波形を基準信号と呼び、基準信号はセンサで受信した信号と同一の周波数に変換されているものとする。
Next, the principle of the present invention will be described.
Hereinafter, a case where the target number is 1 will be described as an example. In the sensor 1 1 to 1 N, emitted from the target, or when receiving the radio wave reflected by a target, the sensor observes the arrival time and the Doppler frequency received radio waves. This method will be described using the sensor 1 n (1 ≦ n ≦ N) as an example.
In the sensor 1 n , first, the received signal is down-converted to a low frequency and converted into a digital signal by an A / D converter. In the following, the description will be continued assuming that the signal waveform of the radio wave from the target is known. Hereinafter, the known signal waveform is referred to as a reference signal, and the reference signal is converted to the same frequency as the signal received by the sensor.

到来時間とドップラ周波数の測定方法としては、いくつかの方法が考えられるが、ここでは、Seymour Stein,“Algorithms for Ambiguity Function Processing,”IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-29, NO.3, JUNE 1981(参考文献1とする)に記載された方法などにより、センサ1n で受信した信号の到来時間がτn で、ドップラ周波数がfn であったとする。
なお以下では、複数の時刻で観測した到来時間を扱う。そのため、目標からの電波を観測した時刻(観測時刻)をtk (1≦k≦K、kは自然数で観測した順番を表し、Kは観測の総数を表す)とすると、観測時刻tk においてセンサ1n で観測した到来時間をτn (k)、ドップラ周波数をfn (k)と表す。
There are several methods for measuring arrival time and Doppler frequency, but here, Seymour Stein, “Algorithms for Ambiguity Function Processing,” IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-29 , NO.3, JUNE 1981 (referred to as Reference Document 1) and the like, it is assumed that the arrival time of the signal received by the sensor 1 n is τ n and the Doppler frequency is f n .
In the following, the arrival times observed at multiple times are handled. Therefore, when the time (observation time) at which the radio waves from the target are observed is t k (1 ≦ k ≦ K, k represents the order of observation as a natural number, and K represents the total number of observations), the observation time t k The arrival time observed by the sensor 1 n is represented by τ n (k) , and the Doppler frequency is represented by f n (k) .

各センサでは、上記の様にして複数の異なった観測時刻tk で電波の到来時間τn (k)を観測し、差分算出部2に伝送する。差分算出部2では、センサ11 〜1N から出力された到来時間とドップラ周波数のそれぞれの差分を算出する。いま、観測時刻tk において、センサ1n で受信した電波の到来時間がτn (k)で、センサ1m (1≦m≦N、n≠m)で受信した電波の到来時間がτm (k)であるとする。この場合、差分算出部2では、(1)式により観測時刻tk における電波の到来時間差Δτn,m (k)を算出する。
Δτn,m (k)=τn (k)−τm (k) (1)
Each sensor observes the arrival time τ n (k) of the radio wave at a plurality of different observation times t k as described above and transmits it to the difference calculation unit 2. The difference calculating unit 2 calculates the respective differences between the arrival time and the Doppler frequency is outputted from the sensor 1 1 to 1 N. Now, at the observation time t k , the arrival time of the radio wave received by the sensor 1 n is τ n (k) , and the arrival time of the radio wave received by the sensor 1 m (1 ≦ m ≦ N, n ≠ m) is τ m. Assume that (k) . In this case, the difference calculation unit 2 calculates the arrival time difference Δτ n, m (k) of the radio wave at the observation time t k according to the equation (1).
Δτ n, m (k) = τ n (k) −τ m (k) (1)

また、観測時刻tk において、センサ1n で受信した電波のドップラ周波数がfn (k)で、センサ1m で受信した電波のドップラ周波数がfm (k)であるとする。この場合、差分算出部2では、(2)式により観測時刻tk における電波のドップラ数波数差Δfn,m (k)を算出する。
Δfn,m (k)=fn (k)−fm (k) (2)
Further, in the measurement time t k, the Doppler frequency of the radio wave received by the sensor 1 n is at f n (k), the Doppler frequency of the radio wave received by the sensor 1 m is assumed to be f m (k). In this case, the difference calculation unit 2 calculates the Doppler number wave number difference Δf n, m (k) of the radio wave at the observation time t k according to the equation (2).
Δf n, m (k) = f n (k) −f m (k) (2)

上記は目標からの電波が既知の場合について説明したが、未知の場合についても到来時間を求めることが可能である。具体的には、センサ1m で受信したデジタル信号を基準号してセンサ1n に伝送し、センサ1n で受信したデジタル信号と比較すれば、到来時間差Δτn,m (k)とドップラ周波数差Δfn,m (k)を推定することができる。
これまでの説明では、参考文献1に記載の方法を用いて到来時間差とドップラ周波数差を求める方法について説明したが、これに限らず、他の方式により到来時間差とドップラ数波数差を求めてもよい。
In the above description, the radio wave from the target is known. However, the arrival time can be obtained even when the radio wave is unknown. Specifically, the digital signal received by the sensor 1 m is transmitted as a reference to the sensor 1 n and compared with the digital signal received by the sensor 1 n , the arrival time difference Δτ n, m (k) and the Doppler frequency The difference Δf n, m (k) can be estimated.
In the description so far, the method of obtaining the arrival time difference and the Doppler frequency difference using the method described in Reference 1 has been described. However, the present invention is not limited to this, and the arrival time difference and the Doppler number wave number difference may be obtained by other methods. Good.

測位部3は一括測位部31を備え、差分算出部2から出力された電波の到来時間差Δτn,m (k)と、ドップラ周波数差Δfn,m (k)を基に、複数の方程式を生成し、それらを解くことで目標位置と速度を算出する。具体的処理方法を以下に説明する。
センサ1n とセンサ1m の観測時刻tk における電波の到来時間差Δτn,m (k)には、時計誤差が含まれる。この時計誤差をεn,m (未知数)とすれば、(Δτn,m (k)−εn,m )は時計誤差を含まない到来時間差となる。このため(Δτn,m (k)−εn,m )に電波の速度cを乗じた距離は、「センサ1n から目標までの距離」と「センサ1m から目標までの距離」の差に等しくなる。ゆえに、(3)式が成立する。

Figure 2009122045
ここで、pt (k)は観測時刻tk における目標の位置(未知のベクトル)、pn (k)は観測時刻tk におけるセンサ1n の位置(既知のベクトル)、pm (k)は観測時刻tk におけるセンサ1m の位置(既知のベクトル)とする。また‖*‖は、ベクトル*の長さを表すものとする。 The positioning unit 3 includes a batch positioning unit 31, and a plurality of equations are calculated based on the arrival time difference Δτ n, m (k) of the radio wave output from the difference calculation unit 2 and the Doppler frequency difference Δf n, m (k). The target position and speed are calculated by generating and solving them. A specific processing method will be described below.
The time difference Δτ n, m (k) of radio waves at the observation time t k of the sensor 1 n and the sensor 1 m includes a clock error. If this clock error is ε n, m (unknown number), (Δτ n, m (k) −ε n, m ) is an arrival time difference that does not include a clock error. For this reason, the distance obtained by multiplying (Δτ n, m (k) −ε n, m ) by the radio wave velocity c is the difference between “distance from sensor 1 n to target” and “distance from sensor 1 m to target”. Is equal to Therefore, equation (3) is established.
Figure 2009122045
Here, p t (k) is the position of the target at the measurement time t k (unknown vector), p n (k) is the position of the sensor 1 n at the observation time t k (known vector), p m (k) Is the position (known vector) of the sensor 1 m at the observation time t k . Also, ‖ * ‖ represents the length of the vector *.

また、観測時刻tk におけるセンサ1n とセンサ1m の電波のドップラ周波数差がΔfn,m (k)の場合には、ドップラ効果により(4)式が成り立つ。

Figure 2009122045
ここで、f0 は目標で放射または反射した電波の周波数(基本的に既知の値であるが、未知の場合はフーリエ変換などで推定しても良い。)、vt (k)は観測時刻tk における目標の速度(未知のベクトル)、vn (k)は観測時刻tk におけるセンサ1n の速度(既知のベクトル)、vm (k)は観測時刻tk におけるセンサ1m の速度(既知のベクトル)とする。 Further, when the Doppler frequency difference between the radio waves of the sensor 1 n and the sensor 1 m at the observation time t k is Δf n, m (k) , Equation (4) is established by the Doppler effect.
Figure 2009122045
Here, f 0 is the frequency of the radio wave radiated or reflected at the target (which is basically a known value, but may be estimated by Fourier transform or the like if unknown), and v t (k) is the observation time. rate of t target speed in k (unknown vector), v n (k) is the velocity (known vector) of the sensor 1 n at the observation time t k, v m (k) is the sensor 1 at the measurement time t k m (Known vector).

観測時刻tk における(3)式の方程式はセンサ数マイナス1成立し、(4)式の方程式もセンサ数マイナス1成立する。ゆえに、方程式の本数は2(N−1)個成立する。また、目標からの電波を受信した回数がK回(観測時刻はtk(1≦k≦K))であり、各観測時刻tk で(3)式、(4)式のような方程式は2(N−1)個成り立つため、合計で方程式は2(N−1)×K個成り立つ。 The equation (3) at the observation time t k holds for the number of sensors minus 1, and the equation for the equation (4) also holds for the number of sensors minus 1. Therefore, the number of equations is 2 (N-1). In addition, the number of times radio waves are received from the target is K times (observation time is t k (1 ≦ k ≦ K)), and equations such as equations (3) and (4) at each observation time t k are Since 2 (N−1) are satisfied, 2 (N−1) × K equations are satisfied in total.

一方、(3)式、(4)式における未知数は、目標の位置に関するp(k) と速度に関するv(k) 、さらに時計誤差に関するεn,m がある。このうち目標の位置と速度の未知数は、観測時刻tk 毎に異なるので、目標位置と速度を3次元で算出する場合には、6×K個となる。一方、センサ間の時計誤差は急激に変動しないと考えられるため、電波の観測時間(tK −t1 )の間に時計誤差が変動しない(変動してもその影響が無視できる場合を含む)とすると、εn,m は観測時刻tk によらず一定になり、(N−1)個になる。ゆえに2(N−1)×K個の方程式に含まれる未知数の総数は、((N−1)+6K)個となる。したがって、(5)式の条件を満たす場合、未知数の個数と方程式の本数が等しくなり、未知数を決定することができる。ただし、到来時間差やドップラ周波数差には観測誤差が含まれる場合があるため、(3)式と(4)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を求めるようにして未知数を算出する。また、未知数の個数以上に方程式の本数が有る場合にも、最小二乗解を解くようにして、未知数を算出する。
2(N−1)×K=(N−1)+6K (5)
一括測位部31では、以上のようにして未知数(目標位置と速度、および時計誤差)を算出する。
On the other hand, unknowns in the equations (3) and (4) include p (k) relating to the target position, v (k) relating to the speed, and ε n, m relating to the clock error. Of these, the unknowns of the target position and speed are different for each observation time t k , so when calculating the target position and speed in three dimensions, the number is 6 × K. On the other hand, since the clock error between sensors is considered not to fluctuate rapidly, the clock error does not fluctuate during the radio wave observation time (t K -t 1 ) (including the case where the influence can be ignored even if fluctuated). Then, ε n, m is constant regardless of the observation time t k and becomes (N−1). Therefore, the total number of unknowns included in 2 (N−1) × K equations is ((N−1) + 6K). Therefore, when the condition of equation (5) is satisfied, the number of unknowns is equal to the number of equations, and the unknowns can be determined. However, since an observation error may be included in the arrival time difference or the Doppler frequency difference, the equations (3) and (4) do not always intersect at one point. In this case, the unknown is calculated so as to obtain a least squares solution. Also, when there are more equations than the number of unknowns, the unknowns are calculated by solving the least squares solution.
2 (N−1) × K = (N−1) + 6K (5)
The collective positioning unit 31 calculates unknowns (target position and speed, and clock error) as described above.

なお、測位部3は、一括測位部31の代わりに別の一括測位部32を備えてもよい。この一括測位部32では、(3)式と(4)式に加えて、(6)式を連立させて目標の位置と速度、さらにセンサ間の時計誤差を推定する。
t (k)+vt (k)・Δt(k) =pt (k+1) (6)
Δt(k) =t(k+1) −tk (7)
この場合、未知数の個数は変わらないが、方程式の本数が3(K−1)本増えるため、一括測位部31よりも更に観測回数が少ない条件で、未知数を推定することが可能になる。なお、到来時間差やドップラ周波数差には観測誤差が含まれる場合があるため、(3)、(4)、(6)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を解くようにして未知数を推定する。また、未知数の個数以上に方程式の本数が有る場合も、最小二乗解を解くようにして、未知数を算出する。
一括測位部32では、以上のようにして未知数(目標位置と速度、および時計誤差)を算出する。
Note that the positioning unit 3 may include another batch positioning unit 32 instead of the batch positioning unit 31. In the collective positioning unit 32, in addition to the equations (3) and (4), the equation (6) is used simultaneously to estimate the target position and speed, and the clock error between sensors.
p t (k) + v t (k) · Δt (k) = pt (k + 1) (6)
Δt (k) = t (k + 1) −t k (7)
In this case, the number of unknowns does not change, but the number of equations increases by 3 (K−1), so that it is possible to estimate the unknowns under the condition that the number of observations is smaller than that of the collective positioning unit 31. Note that since the arrival time difference and the Doppler frequency difference may include an observation error, the equations (3), (4), and (6) do not always intersect at one point. In this case, the unknown is estimated by solving the least squares solution. Also, when there are more equations than the number of unknowns, the unknowns are calculated by solving the least squares solution.
The collective positioning unit 32 calculates unknowns (target position and speed, and clock error) as described above.

以上のように、この実施の形態1によれば、差分算出部2により算出した各センサ間の電波の到来時間差とドップラ周波数差に基づいて、センサ間の時計誤差と電波を受信した各時刻における目標位置と速度を算出する測位部3を備えている。特に測位部3では、一括測位部31において、到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式と、ドップラ効果を利用した目標の位置と速度を算出する方程式を電波の受信時刻毎に作成し、これらを連立させることでセンサ間の時計誤差、電波を受信した各時刻における目標の位置と速度を算出するようにしている。また、一括測位部32を適用した場合には、一括測位部31で用いた2種類の方程式に加え、目標の位置と速度の関係を用いた方程式も連立させることで、時計誤差と電波を受信した各時刻における目標の位置と速度を算出するようにしている。したがって、測位装置内でセンサ間の時計誤差の補正を可能にする。そのため、センサ間の同期をとる必要がなく、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無い。また、時計誤差を補正するための送信局を別途設置する必要もない。   As described above, according to the first embodiment, the clock error between the sensors and the time at which the radio waves are received based on the arrival time difference and the Doppler frequency difference between the sensors calculated by the difference calculation unit 2. A positioning unit 3 for calculating the target position and speed is provided. In particular, in the positioning unit 3, the collective positioning unit 31 calculates the target position based on the arrival time difference and the correction of the clock error between the sensors, and the target position and speed using the Doppler effect. The equation is created for each reception time of radio waves, and these are combined to calculate the clock error between sensors and the target position and speed at each time when the radio waves are received. In addition, when the batch positioning unit 32 is applied, in addition to the two types of equations used in the batch positioning unit 31, an equation using the relationship between the target position and speed is also received, thereby receiving clock errors and radio waves. The target position and speed at each time are calculated. Therefore, it is possible to correct a clock error between sensors in the positioning device. Therefore, there is no need to synchronize the sensors, and there is no need to consider the cable connection for synchronizing the sensors in accordance with the arrangement of the sensors and the movement of the sensors themselves. In addition, it is not necessary to separately install a transmitting station for correcting the clock error.

実施の形態2.
上記実施の形態1では、センサ1n の受信信号を低い周波数にダウンコンバートする際のローカル発信器の周波数が全て等しいこと(異なってもその影響を無視できる場合を含む)を仮定していた。ところが、ローカル発信器の発振周波数もセンサ毎に少ないながらも相違が存在するケースも考えられる。この実施の形態2では、上記のような各センサのローカル発信器の周波数ズレを補正する方式について説明する。
図2は、この発明の実施の形態2による測位装置の機能構成を示すブロック図である。図において、センサ11 〜1N 、および差分算出部2は、実施の形態1の図1の場合と同じである。
測位部3は、一括測位部33を備えている。この一括測位部33は、時計誤差を補正して目標の位置を算出する方程式と、ドップラ効果を利用して目標の位置と速度を算出する方程式で、特にローカル発信器の周波数ズレを補正した方程式を電波の受信時刻毎に作成し、これらを連立させることで、センサ間の時計誤差ローカル発信器の周波数ズレ、さらに電波を受信した各時刻における目標の位置と速度を算出する手段である。
Embodiment 2. FIG.
In the first embodiment, it is assumed that the frequencies of the local oscillators when downconverting the received signal of the sensor 1 n to a low frequency are all equal (including the case where the influence can be ignored even if different). However, there may be a case where there is a difference even though the oscillation frequency of the local oscillator is small for each sensor. In the second embodiment, a method for correcting the frequency deviation of the local transmitter of each sensor as described above will be described.
FIG. 2 is a block diagram showing a functional configuration of a positioning apparatus according to Embodiment 2 of the present invention. In the figure, the sensors 1 1 to 1 N and the difference calculation unit 2 are the same as those in FIG. 1 of the first embodiment.
The positioning unit 3 includes a collective positioning unit 33. The collective positioning unit 33 is an equation that corrects a clock error and calculates a target position, and an equation that calculates a target position and velocity using the Doppler effect, and particularly an equation that corrects a frequency deviation of a local transmitter. Is generated at each reception time of radio waves, and these are combined to calculate the frequency deviation of the clock error local transmitter between the sensors and the target position and velocity at each time when the radio waves are received.

いま、センサ1n とセンサ1m のローカル発信器の発振周波数のずれ(未知数)をξn,m とする。この場合、(Δfn,m (k)−ξn,m )がローカル発信器の発振周波数のズレを取り除いたドップラ周波数差となる。その結果ドップラ効果により(8)式が成り立つ。(ハードウエアの構成によっては、ξn,m の整数倍が周波数ズレなる場合もあるが、ここでは1倍の場合について説明する。)

Figure 2009122045
Now, let ξ n, m be the deviation (unknown number) of the oscillation frequencies of the local oscillators of sensor 1 n and sensor 1 m . In this case, (Δf n, m (k) −ξ n, m ) is the Doppler frequency difference obtained by removing the deviation of the oscillation frequency of the local oscillator. As a result, Equation (8) is established by the Doppler effect. (Depending on the hardware configuration , an integer multiple of ξ n, m may be shifted in frequency, but here, the case of 1 × will be described.)
Figure 2009122045

そこで、(3)式と(8)式を連立させれば、ローカル発信器の周波数ズレを補正して未知数を算出することができる。(3)式と(8)式における未知数は、目標の位置に関するpt (k)と速度に関するvt (k)が合計で6K個、時計誤差に関するεn,m が(N−1)個、ローカル発信器の周波数ずれに関するξn,m が(N−1)個となる。このため、(9)式を満たせば、未知数の個数と方程式の本数が等しくなり、未知数を算出することができる。
2(N−1)×K=2(N−1)+6K (9)
ただし、到来時間差やドップラ周波数差には観測誤差が含まれる場合があるため、(3)式と(8)式の方程式が一点で交わるとは限らない。この場合、最小二乗解を求めるようにして未知数を算出する。また、未知数の個数以上に方程式の本数が有る場合にも、最小二乗解を解くようにして未知数を算出する。
一括測位部33では、以上のようにして未知数(目標位置と速度、および時計誤差とローカル発信器の周波数ズレ)を算出する。
Thus, if Equations (3) and (8) are combined, the frequency deviation of the local transmitter can be corrected and the unknown can be calculated. The unknowns in equations (3) and (8) are 6K in total for p t (k) relating to the target position and v t (k) relating to the speed, and (N−1) ε n, m relating to the clock error. Ξ n, m concerning the frequency deviation of the local oscillator is (N−1). For this reason, if Expression (9) is satisfied, the number of unknowns and the number of equations become equal, and the unknowns can be calculated.
2 (N−1) × K = 2 (N−1) + 6K (9)
However, since the arrival time difference and the Doppler frequency difference may include an observation error, the equations (3) and (8) do not always intersect at one point. In this case, the unknown is calculated so as to obtain a least squares solution. Also, when there are more equations than the number of unknowns, the unknowns are calculated by solving the least squares solution.
The collective positioning unit 33 calculates the unknowns (target position and speed, clock error, and frequency deviation of the local transmitter) as described above.

なお、測位部3は、一括測位部33の代わりに別の一括測位部34を備えてもよい。一括測位部34は、(3)式と(6)式と(8)式を連立させて未知数を算出する。(8)式が加わることで、一括測位部33よりも方程式の本数が3(K−1)本増えることから、より少ない観測回数で未知数を推定することが可能となる。
一括測位部34では、以上のようにして未知数(目標位置と速度、および時計誤差とローカル発信器の周波数ズレ)を算出する。
Note that the positioning unit 3 may include another batch positioning unit 34 instead of the batch positioning unit 33. The collective positioning unit 34 calculates the unknown by combining (3), (6), and (8). By adding the equation (8), the number of equations is increased by 3 (K−1) from the batch positioning unit 33, so that the unknown can be estimated with a smaller number of observations.
The collective positioning unit 34 calculates the unknowns (target position and speed, clock error, and frequency deviation of the local transmitter) as described above.

以上のように、この実施の形態2によれば、差分算出部2により算出した各センサ間の電波の到来時間差とドップラ周波数差に基づいて、センサ間の時計誤差とローカル発信器の周波数ズレ、電波を受信した各時刻における目標の位置と速度を算出する測位部3を備えており、特に測位部3では、一括測位部33において、センサ間の時計誤差を補正して目標の位置を算出する方程式と、ドップラ効果を利用し、かつローカル発信器の周波数ズレの補正を加えた目標の位置と速度を算出する方程式を電波の受信時刻毎に作成し、これらを連立させることで、センサ間の時計誤差ローカル発信器の周波数ズレ、さらに電波を受信した各時刻における目標の位置と速度を算出するようにしている。また、一括測位部34を適用した場合には、一括測位部33で用いた2種類の方程式に加え、位置と速度の関係を用いた方程式も連立させることで、時計誤差とローカル発信器の周波数ズレ、更には電波を受信した各時刻における目標の位置と速度を算出するようにしている。したがって、測位装置内でセンサ間の時計誤差の補正を可能にする。そのため、センサ間の同期をとる必要がなく、センサの配置やセンサ自体の移動などに対応してセンサ間の同期をとるためのケーブル接続を考慮する必要が無く、また、時計誤差を補正するための送信局を別途設置する必要もない。また、ローカル発信器の周波数にズレが有っても、それを補正する処理を行うため、その影響を低減することができる。   As described above, according to the second embodiment, based on the arrival time difference and Doppler frequency difference between the sensors calculated by the difference calculation unit 2, the clock error between the sensors and the frequency deviation of the local transmitter, The positioning unit 3 that calculates the target position and speed at each time when the radio wave is received is provided. In particular, in the positioning unit 3, the batch positioning unit 33 corrects the clock error between the sensors and calculates the target position. An equation that calculates the target position and velocity using the Doppler effect and the correction of the frequency offset of the local oscillator is created for each reception time of the radio wave, The frequency deviation of the clock error local oscillator and the target position and speed at each time when the radio wave is received are calculated. Further, when the collective positioning unit 34 is applied, in addition to the two types of equations used in the collective positioning unit 33, an equation using the relationship between the position and the speed is simultaneously provided, so that the clock error and the frequency of the local transmitter are obtained. The position and speed of the target at each time when the radio wave is received are calculated. Therefore, it is possible to correct a clock error between sensors in the positioning device. Therefore, there is no need to synchronize between sensors, there is no need to consider cable connection for synchronizing sensors in accordance with sensor placement, sensor movement, etc., and to correct clock errors There is no need to install a separate transmitter station. Further, even if there is a deviation in the frequency of the local oscillator, the effect is reduced because the process for correcting it is performed.

実施の形態3.
これまで説明した実施の形態1および実施の形態2では、目標から放射、もしくは目標で反射した電波を用いて、目標の位置や速度を算出する方式である。しかし、電波の方向を逆にし、各センサから放射した電波を目標で受信し、受信した電波の到来時間差やドップラ周波数差を利用して、目標の位置を推定するものであってもよい。この場合、例えば各センサの別々の信号で変調された電波を目標で受信すれば、電波の到来時間差とドップラ周波数差を算出することができるので、上記で説明した方式と同様に、目標の位置や速度などを算出することができる。
Embodiment 3 FIG.
In the first and second embodiments described so far, the target position and velocity are calculated using radio waves radiated from the target or reflected by the target. However, the direction of the radio wave may be reversed, the radio wave radiated from each sensor may be received by the target, and the target position may be estimated using the arrival time difference or Doppler frequency difference of the received radio wave. In this case, for example, if a radio wave modulated by a separate signal of each sensor is received by the target, the arrival time difference and the Doppler frequency difference of the radio wave can be calculated. And speed can be calculated.

実施の形態4.
上記各実施の形態では、目標の個数が1の場合について説明してきたが、当然ながら目標が複数個であっても本方式は成立する。
目標を複数とした場合、(3)式、(4)式、(6)式、(8)式を用いて、(3)式と(4)式の組合せ、(3)式と(4)式と(6)式の組合せ、(3)式と(8)式の組合せ、(3)式と(8)式と(6)式の組合せを目標毎にたてる。ただしこの場合、時計誤差やローカル発信器の周波数誤差は目標によらず等しい未知数とする。そして方程式を連立させて解けば、複数の目標について、観測時刻毎の各位置と速度、更には時計誤差とローカル発信器の周波数ズレを算出することができる。
Embodiment 4 FIG.
In each of the above-described embodiments, the case where the number of targets is 1 has been described, but the present system can be realized even when there are a plurality of targets.
When there are a plurality of targets, using the formulas (3), (4), (6), and (8), the combination of the formulas (3) and (4), the formulas (3) and (4) A combination of the expression (6), the expression (3) and the expression (8), and a combination of the expression (3), the expression (8) and the expression (6) are set for each target. In this case, however, the clock error and the frequency error of the local oscillator are set to the same unknown regardless of the target. Then, by solving the equations simultaneously, it is possible to calculate the position and speed at each observation time, as well as the clock error and the frequency deviation of the local oscillator, for a plurality of targets.

以上各実施の形態で示した測位方法は、電波を用いた場合を例にとって説明したが、これに限らず、音波や光波などに用いた場合にも適応することは可能である。また、移動端末の位置を3次元で測位する場合について説明してきたが、2次元の場合でも、高度方向は地上の表面に移動端末が存在するなどの条件を用いて計算すれば可能である。さらにまた、以上述べたこの発明の測位部の機能は、ソフトウェアプログラムに基づいてCPUを動作させることにより実行できるものである。   The positioning methods shown in the above embodiments have been described by taking the case of using radio waves as an example. However, the present invention is not limited to this and can be applied to the case of using sound waves and light waves. Further, the case where the position of the mobile terminal is measured in three dimensions has been described, but even in the case of two dimensions, the altitude direction can be calculated by using conditions such as the presence of the mobile terminal on the surface of the ground. Furthermore, the functions of the positioning unit of the present invention described above can be executed by operating the CPU based on a software program.

この発明の実施の形態1による測位装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the positioning apparatus by Embodiment 1 of this invention. この発明の実施の形態2による測位装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the positioning apparatus by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 〜1N センサ、2 差分算出部、3 測位部、31,32,33,34 一括測位部。 1 1 to 1 N sensor, 2 difference calculation unit, 3 positioning unit, 31, 32, 33, 34 collective positioning unit.

Claims (4)

複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、
前記算出された到来時間差に基づいた、かつセンサ間の時計誤差の補正を加えた目標の位置を算出する方程式と、前記算出されたドップラ周波数差に基づいた目標の位置と速度を算出する方程式を連立させて目標の位置と速度およびセンサ間の時計誤差を算出する測位手段を備えたことを特徴とする測位装置。
Difference calculating means for calculating the arrival time difference and the Doppler frequency difference of the received wave between the sensors based on the arrival time and the Doppler frequency of the radio wave, sound wave or light wave radiated or reflected by the target a plurality of times, respectively. ,
An equation for calculating a target position based on the calculated difference in arrival time and correcting a clock error between sensors, and an equation for calculating a target position and velocity based on the calculated Doppler frequency difference. A positioning device comprising positioning means for simultaneously calculating a target position and speed and a clock error between sensors.
測位手段は、さらに目標の位置と速度の関係の方程式を加えて連立させて目標の位置と速度、およびセンサ間の時計誤差を算出することを特徴とする請求項1記載の測位装置。   2. The positioning device according to claim 1, wherein the positioning means further adds an equation of a relationship between the target position and speed and calculates the target position and speed, and a clock error between the sensors. 複数のセンサで複数回受信した、目標が放射または反射した電波、音波または光波の到来時間とドップラ周波数に基づいて、それぞれセンサ間の受信波の到来時間差とドップラ周波数差を算出する差分算出手段と、
前記算出された到来時間差に基づいた、かつ時計誤差の補正を加えた目標の位置を算出する方程式と、前記算出されたドップラ周波数差に基づいた、かつセンサ間のローカル発信器の周波数ズレの補正を加えた目標の位置と速度を算出する方程式を連立させて目標の位置と速度、およびセンサ間の時計誤差とローカル発信器の周波数ズレを算出する測位手段を備えたことを特徴とする請求項1記載の測位装置。
A difference calculating means for calculating the arrival time difference and the Doppler frequency difference of the received wave between the sensors based on the arrival time and the Doppler frequency of the radio wave, sound wave or light wave radiated or reflected by the target a plurality of times, respectively. ,
An equation for calculating a target position based on the calculated time difference of arrival and correction of clock error, and correction of frequency deviation of a local oscillator between sensors based on the calculated Doppler frequency difference A positioning means for calculating a target position and speed, a clock error between sensors, and a frequency deviation of the local transmitter by combining equations for calculating the target position and speed with the added value. The positioning device according to 1.
測位手段は、さらに目標の位置と速度の関係の方程式を加えて連立させて目標の位置と速度、およびセンサ間の時計誤差とローカル発信器の周波数ズレを算出することを特徴とする請求項3記載の測位装置。   4. The positioning means further calculates the position and speed of the target, the clock error between the sensors, and the frequency deviation of the local oscillator by adding an equation of the relationship between the position and speed of the target and providing simultaneous equations. The described positioning device.
JP2007298270A 2007-11-16 2007-11-16 Positioning device Pending JP2009122045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298270A JP2009122045A (en) 2007-11-16 2007-11-16 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298270A JP2009122045A (en) 2007-11-16 2007-11-16 Positioning device

Publications (1)

Publication Number Publication Date
JP2009122045A true JP2009122045A (en) 2009-06-04

Family

ID=40814349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298270A Pending JP2009122045A (en) 2007-11-16 2007-11-16 Positioning device

Country Status (1)

Country Link
JP (1) JP2009122045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250865A (en) * 2008-04-09 2009-10-29 Mitsubishi Electric Corp Positioning system and positioning method
CN107015201A (en) * 2017-06-09 2017-08-04 国家深海基地管理中心 A kind of ultra short baseline locating system is emergent to clock method and system
CN111505584A (en) * 2020-05-25 2020-08-07 中国科学技术大学 Audio signal arrival time correction method based on relative speed and Doppler effect
CN112444800A (en) * 2020-10-19 2021-03-05 中科传启(苏州)科技有限公司 Correction method of ultrasonic distance measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267732A (en) * 2001-03-12 2002-09-18 Mitsubishi Electric Corp Method and device for locating passive position
JP2006349515A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp System and method for measuring displacement
JP2007248217A (en) * 2006-02-16 2007-09-27 Mitsubishi Electric Corp Positioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267732A (en) * 2001-03-12 2002-09-18 Mitsubishi Electric Corp Method and device for locating passive position
JP2006349515A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp System and method for measuring displacement
JP2007248217A (en) * 2006-02-16 2007-09-27 Mitsubishi Electric Corp Positioning apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250865A (en) * 2008-04-09 2009-10-29 Mitsubishi Electric Corp Positioning system and positioning method
CN107015201A (en) * 2017-06-09 2017-08-04 国家深海基地管理中心 A kind of ultra short baseline locating system is emergent to clock method and system
CN111505584A (en) * 2020-05-25 2020-08-07 中国科学技术大学 Audio signal arrival time correction method based on relative speed and Doppler effect
CN111505584B (en) * 2020-05-25 2022-07-15 中国科学技术大学 Audio signal arrival time correction method based on relative speed and Doppler effect
CN112444800A (en) * 2020-10-19 2021-03-05 中科传启(苏州)科技有限公司 Correction method of ultrasonic distance measuring device

Similar Documents

Publication Publication Date Title
CN108603928B (en) Method and system for reducing interference caused by phase noise in radar systems
US20170322294A1 (en) System and method for enhanced point-to-point direction finding
EP2525238B1 (en) Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
JP2006349515A (en) System and method for measuring displacement
JP5599371B2 (en) Positioning device
JP6324327B2 (en) Passive radar equipment
JP4645489B2 (en) Positioning device
JP4901833B2 (en) Radar equipment
JP2007192575A (en) Target positioning apparatus
JP2009122045A (en) Positioning device
WO2019241309A1 (en) Partially coordinated radar system
JP2019023577A (en) System and method for moving target detection
EP2913690B1 (en) Positioning system and method
JP2006201084A (en) Device for tracking targets
JP2007192573A (en) Target positioning apparatus
JP2006329829A (en) Radar device
JP2011185661A (en) Radar system and sensor interface system
JP6403704B2 (en) Positioning device
JP5278083B2 (en) Target orientation calculation device
JP2015212655A (en) Radar system
KR100643939B1 (en) Radar and distance measuring method thereof
JP2009002943A (en) Distance measuring system and method
JP2011085391A (en) Method and device for measuring position
JP6461041B2 (en) Synchronization signal generation system, phase difference calculation device, and synchronization signal generation device
JP6111975B2 (en) Dual frequency CW radar equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100909

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Effective date: 20120215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02