JP2000056014A - Missile measuring/evaluating device - Google Patents
Missile measuring/evaluating deviceInfo
- Publication number
- JP2000056014A JP2000056014A JP10220683A JP22068398A JP2000056014A JP 2000056014 A JP2000056014 A JP 2000056014A JP 10220683 A JP10220683 A JP 10220683A JP 22068398 A JP22068398 A JP 22068398A JP 2000056014 A JP2000056014 A JP 2000056014A
- Authority
- JP
- Japan
- Prior art keywords
- flying object
- doppler
- unit
- data
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、電波を使用して
飛翔体の飛翔速度及び飛翔体が該飛翔体を計測する飛行
体に搭載した計測装置に最も接近する時点の飛翔体と計
測装置との距離を計測する飛翔体計測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flying object and a measuring device at the time when the flying object of the flying object is closest to a measuring device mounted on the flying object for measuring the flying object using radio waves. The present invention relates to a flying object measuring device that measures the distance of a flying object.
【0002】[0002]
【従来の技術】従来は飛翔体の飛翔速度や飛翔体と観測
装置との最接近距離を計測する方法として、観測機から
高速度カメラやビデオカメラ等を用いて、標的に向かっ
て飛翔する飛翔体を標的と共に撮影してその映像を解析
する方法、或は標的にパルスレーダ装置を搭載し、該パ
ルスレーダ装置を搭載した標的に向かって飛翔する飛翔
体と標的との距離を計測し該計測した距離の時間経過に
伴う変化から飛翔体の相対飛翔速度や飛翔体と標的との
最接近距離を算出する方法が用いられていた。高速度カ
メラやビデオカメラ等を用いる方法では観測それ自体の
困難さや得られた結果の解析に時間がかかり、またその
精度が得にくい等の問題がある。パルスレーダ装置を用
いる方法では電波の関係からデータの欠落等を生ずる場
合がありその欠落した部分のデータの補正をする方法が
無く、また飛翔体以外からの反射電波はノイズとなる
が、該ノイズの除去が困難である等の問題がある。2. Description of the Related Art Conventionally, as a method of measuring the flight speed of a flying object or the closest approach distance between the flying object and an observation device, a flight flying toward a target using a high-speed camera or a video camera from an observation device. A method of capturing an image of a body together with a target and analyzing the image, or mounting a pulse radar device on the target, measuring the distance between the target and a flying object flying toward the target equipped with the pulse radar device, and performing the measurement. A method of calculating a relative flying speed of a flying object and a closest approach distance between the flying object and a target from a change in the distance over time has been used. A method using a high-speed camera, a video camera, or the like has problems such as difficulty in observation itself, time required to analyze the obtained results, and difficulty in obtaining the accuracy. In the method using a pulse radar device, data may be lost due to radio waves, and there is no method for correcting the data in the missing portion. Also, reflected radio waves from objects other than the flying object become noise. There is a problem that it is difficult to remove.
【0003】[0003]
【発明が解決しようとする課題】上記従来の技術による
と、光学的な方法では天候に影響される等観測の困難さ
があり又画像によるため測定結果の精度を得にくい、ま
たパルスレーダを用いる方法ではデータの欠落や計測に
伴うノイズの混入に対処する事が出来ないと言う問題が
ある。According to the above prior art, the optical method has difficulty in observation, such as being affected by the weather, and is difficult to obtain the accuracy of the measurement result due to the image, and uses a pulse radar. There is a problem that the method cannot cope with missing of data or mixing of noise due to measurement.
【0004】本発明は飛翔体の相対飛翔速度と飛翔体と
標的即ち飛行体に搭載した計測装置との最接近距離を測
定するため、計測されたデータに欠落が生じた場合これ
を補正し、飛翔体が計測可能な距離範囲にある間の連続
したデータを得る事と、計測に際してデータに混入する
ノイズを除去し、精度の高い飛翔体の相対飛翔速度と、
飛翔体と飛行体に搭載した計測装置即ち標的との最接近
距離のデータを得る事を課題とする。The present invention measures the relative flight speed of a flying object and the closest approach distance between the flying object and a target, ie, a measuring device mounted on the flying object, and corrects any missing data in the measured data. Obtaining continuous data while the flying object is within the measurable distance range, removing noise mixed in the data at the time of measurement, and achieving a highly accurate relative flying speed of the flying object,
It is an object to obtain data of a closest approach distance between a flying object and a measurement device mounted on the flying object, that is, a target.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するた
め、請求項1では、飛翔体に向けて電波を発信し、その
反射波による反射信号を受信し、該反射信号からドップ
ラー信号を検出するパルスドップラーレーダと該パルス
ドップラーレーダから出力されるドップラー信号を受け
てこれを空中線に送出するテレメータとからなる飛行体
に搭載した計測装置と、該飛行体に搭載した計測装置の
空中線からのドップラー信号を空中線を介して受信する
受信部と該受信部からのドップラー信号出力をドップラ
ー信号情報として一旦記録するデータ記録部と該データ
記録部に記録されたドップラー信号情報を読み出し、該
読み出したドップラー信号情報を用いて所要のデータ処
理を行い、必要とするデータを得る信号処理部、操作部
及び表示部とからなる地上設備、地上設備の信号処理部
からの出力を受信してこれを出力するデータ出力部とで
構成される飛翔体計測評価装置であって、上記地上設備
の信号処理部、操作部及び表示部を用いて、データ記録
部に記録されたドップラー信号情報を読み出し、該ドッ
プラー信号情報から計測の経過時間に従ってドップラー
周波数を検出し、更に飛翔体が最もドップラーレーダに
接近する最接近距離、飛翔体の相対飛翔速度及び飛翔体
が最接近距離に到達する最接近時刻の3個のパラメータ
からドップラー周波数を得る下記理論式 f=2・Vo[1/{1+(R0 /V0 (T−t))
2 }]1/2 /λ を用い、該3個のパラメータに任意の値を与え上記理論
式から計算によって得たドップラー周波数と、上記ドッ
プラー信号情報から検出したドップラー周波数とを最小
2乗法を用いて残差2乗和が最小になる上記3個のパラ
メータの値を求め、該3個のパラメータの値即ち最接近
距離、飛翔体の相対飛翔速度及び最接近時刻の各値を上
記信号処理部からデータ出力部に出力するようにした飛
翔体計測評価装置を特徴としている。According to a first aspect of the present invention, a radio wave is transmitted to a flying object, a reflected signal of the reflected wave is received, and a Doppler signal is detected from the reflected signal. A measuring device mounted on a flying object including a pulse Doppler radar and a telemeter receiving a Doppler signal output from the pulse Doppler radar and transmitting the signal to an aerial, and a Doppler signal from the aerial of the measuring device mounted on the flying object Receiving section via an antenna, a data recording section for temporarily recording the Doppler signal output from the receiving section as Doppler signal information, and reading out the Doppler signal information recorded in the data recording section, the read Doppler signal information A signal processing unit, an operation unit, and a display unit that perform required data processing using And a data output unit for receiving and outputting an output from a signal processing unit of the ground equipment, and a signal processing unit, an operation unit, and a display unit of the ground equipment. The Doppler signal information recorded in the data recording unit is read using the Doppler signal information, the Doppler frequency is detected from the Doppler signal information according to the elapsed time of the measurement, and the closest distance at which the projectile approaches the Doppler radar, the distance of the projectile The following theoretical formula for obtaining the Doppler frequency from the three parameters of the relative flight speed and the closest approach time at which the flying object reaches the closest approach distance f = 2 · Vo [1 / {1+ (R 0 / V 0 (T−t)) )
2 }] 1/2 / λ, the three parameters are given arbitrary values, and the Doppler frequency obtained by calculation from the theoretical formula and the Doppler frequency detected from the Doppler signal information are obtained by the least squares method. The values of the three parameters that minimize the residual sum of squares are obtained, and the values of the three parameters, that is, the values of the closest approach distance, the relative flying speed of the flying object, and the closest approach time are determined by the signal processing unit. It is characterized by a flying object measurement and evaluation device that outputs the data to a data output unit.
【0006】また請求項2では、請求項1に記載の飛翔
体評価計測装置において、地上設備の信号処理部を用い
て、請求項1に記載の計算によって得た3個のパラメー
タの値即ち最接近距離、飛翔体の相対飛翔速度及び最接
近時刻の各値を、請求項1に記載のドップラー周波数を
求める理論式に与え、更に飛翔体がパルスドップラーレ
ーダから発信される電波により計測される計測可能範囲
を飛翔する計測可能時間の間を適当な間隔で連続した時
刻を時系列的に与え、該時刻に対応するドップラー周波
数を時系列的に計算し、上記計算処理部は該計算によっ
て得た時系列的に連続したドップラー周波数をデータ出
力部に出力するようにした飛翔体計測評価装置であるこ
とを特徴としている。According to a second aspect of the present invention, in the flying object evaluation and measurement apparatus according to the first aspect, the values of the three parameters obtained by the calculation according to the first aspect, that is, the maximum values, are obtained by using the signal processing unit of the ground equipment. The values of the approaching distance, the relative flying speed of the flying object, and the time of closest approach are given to the theoretical expression for calculating the Doppler frequency according to claim 1, and the flying object is measured by radio waves transmitted from a pulse Doppler radar. A time continuous between the measurable times flying in the possible range at an appropriate interval is given in a time series, and a Doppler frequency corresponding to the time is calculated in a time series, and the calculation processing unit obtains the time by the calculation. It is a flying object measurement and evaluation device that outputs a Doppler frequency that is continuous in time series to a data output unit.
【0007】また請求項3では、請求項1又は請求項2
に記載の飛翔体計測評価装置において、計測装置を地上
に設置し、該計測装置のテレメータと地上設備の受信部
の間を有線接続による伝送手段を用いた飛翔体計測評価
装置であることを特徴としている。In claim 3, claim 1 or claim 2
The flying object measurement / evaluation apparatus according to the above, wherein the measurement apparatus is installed on the ground, and is a flying object measurement / evaluation apparatus using a transmission unit via a wired connection between a telemeter of the measurement apparatus and a receiving unit of the ground equipment. And
【0008】[0008]
【発明の実施の形態】図1は本発明の実施の形態を示す
飛翔体計測評価装置のブロック図、図2は本発明の他の
実施の形態を示す飛翔体計測評価装置のブロック図、図
3は飛翔体と飛行体に搭載した計測装置即ち標的の位置
関係を示す図、図4Aは飛翔体計測評価装置の出力の一
部である計測されたドップラー信号情報の波形の経時変
化を示す図、図4Bは図4Aから検出及び計算して得た
ドップラー信号のドップラー周波数の経時変化を示す図
である。FIG. 1 is a block diagram of a flying object measurement and evaluation apparatus showing an embodiment of the present invention, and FIG. 2 is a block diagram of a flying object measurement and evaluation apparatus showing another embodiment of the present invention. 3 is a diagram showing a positional relationship between a flying object and a measuring device mounted on the flying object, that is, a target, and FIG. 4A is a diagram showing a temporal change of a waveform of measured Doppler signal information which is a part of an output of the flying object measurement and evaluation device. FIG. 4B is a diagram showing the change over time of the Doppler frequency of the Doppler signal obtained by detecting and calculating from FIG. 4A.
【0009】図1において、1は飛翔体、2は計測装
置、21はパルスドップラーレーダ、22はテレメー
タ、23はアンテナ、24はパルスドップラーレーダ2
1から発信される電波発信範囲、3は地上設備、31は
アンテナ、32は受信機、33はデータ記録部、34は
信号処理部、35は表示部、36は操作部、4はデータ
出力部である。In FIG. 1, 1 is a flying object, 2 is a measuring device, 21 is a pulse Doppler radar, 22 is a telemeter, 23 is an antenna, and 24 is a pulse Doppler radar 2.
Radio wave transmission range from 1, 3 ground equipment, 31 antenna, 32 receiver, 33 data recording unit, 34 signal processing unit, 35 display unit, 36 operation unit, 4 data output unit It is.
【0010】図2は、図1における計測装置2を地上に
設置した場合で、図1における計測装置2のアンテナ2
3及び地上設備3のアンテナ31に代えて有線伝送手段
5を用いた点が異なり、その他はすべて図1と同様であ
る。FIG. 2 shows a case where the measuring device 2 shown in FIG. 1 is installed on the ground, and the antenna 2 of the measuring device 2 shown in FIG.
3 in that a wired transmission means 5 is used in place of the antenna 31 of the ground equipment 3, and all other points are the same as in FIG.
【0011】図3は、ある計測時刻における飛翔体1と
飛行体に搭載した計測装置2との相対的位置関係を近似
的に示し、Aは飛翔体1の位置、Bは計測装置2の位
置、Cは最接近時刻における飛翔体1の位置即ち最接近
位置、θは飛翔体1の飛翔方向と、飛翔体1と計測装置
2を結ぶ線のなす角を示す。FIG. 3 schematically shows a relative positional relationship between the flying object 1 and the measuring device 2 mounted on the flying object at a certain measurement time, where A is the position of the flying object 1 and B is the position of the measuring device 2. , C indicates the position of the flying object 1 at the closest approach time, that is, the closest approach position, and θ indicates the angle between the flying direction of the flying object 1 and the line connecting the flying object 1 and the measuring device 2.
【0012】図4Aは、地上設備3のデータ記録部33
から読み出したドップラー信号情報を信号処理部34で
処理しデータ出力部4に出力する、計測範囲では等速
度、等方向運動をする一個の飛翔体1について観測され
るドップラー信号の波形のモデルで、横軸は時間を示
し、縦軸は電圧を示し、tsは飛翔体1が計測装置2の
パルスドップラーレーダ21の発信する電波範囲24に
入った瞬間の時刻を示し、teは飛翔体1が電波範囲2
4を出た瞬間の時刻を示し、toは飛翔体1が計測装置
2に最接近した時刻を示す。反射波のドップラー信号の
周波数は、時刻tsでは発信波の周波数より高く、図3
に示す角θの影響で時刻tsから時刻toに向かって次
第に減少し、時刻toで発信波と同一の周波数となり、
以後時刻teに向かって発信波の周波数より更に減少し
て行く。図4Bは図4Aのドップラー信号の波形を地上
設備3の信号処理部34で解析して得られるドップラー
信号のドップラー周波数の経時変化で、横軸は時間を示
し、縦軸はドップラー周波数を示し、時刻ts,te,
toは図4Aと同一の時刻を示し、F(ta),F(t
b),F(tc)はドップラー信号情報を信号処理部3
4で解析して得たドップラー周波数で、ta,tb,t
cはF(ta),F(tb),F(tc)の各値を得た
時刻を示し、曲線(イ)は信号処理部34でドップラー
信号情報を用い計算で得たドップラー周波数の経時変化
を示し、直線(ロ)はドップラー信号情報を信号処理部
34で解析して得た地面又は海面からの反射波のドップ
ラー周波数の経時変化を示す。FIG. 4A shows a data recording unit 33 of the ground equipment 3.
The Doppler signal information read from is processed by the signal processing unit 34 and output to the data output unit 4. In the measurement range, a Doppler signal waveform model that is observed for one flying object 1 that moves at a constant speed and in the same direction, The horizontal axis indicates time, the vertical axis indicates voltage, ts indicates the time instant when the flying object 1 enters the radio wave range 24 transmitted by the pulse Doppler radar 21 of the measuring device 2, and te indicates the time when the flying object 1 Range 2
4 indicates the time at the moment of leaving, and to indicates the time when the flying object 1 comes closest to the measuring device 2. The frequency of the Doppler signal of the reflected wave is higher than the frequency of the transmitted wave at time ts.
Gradually decreases from the time ts toward the time to due to the influence of the angle θ shown in FIG.
Thereafter, the frequency further decreases from the frequency of the transmitted wave toward time te. 4B is a temporal change of the Doppler frequency of the Doppler signal obtained by analyzing the waveform of the Doppler signal of FIG. 4A by the signal processing unit 34 of the ground equipment 3, the horizontal axis indicates time, the vertical axis indicates the Doppler frequency, Times ts, te,
to indicates the same time as in FIG. 4A, and F (ta), F (t
b) and F (tc) represent Doppler signal information in the signal processing unit 3
In the Doppler frequency obtained by the analysis in 4, ta, tb, t
c indicates the time at which each value of F (ta), F (tb), F (tc) was obtained, and curve (a) indicates the change with time of the Doppler frequency obtained by calculation using the Doppler signal information in the signal processing unit 34. And a straight line (b) indicates a temporal change of the Doppler frequency of the reflected wave from the ground or the sea surface obtained by analyzing the Doppler signal information by the signal processing unit 34.
【0013】図1、図3、図4A及び図4Bを用いてそ
の動作を説明する。The operation will be described with reference to FIGS. 1, 3, 4A and 4B.
【0014】図1において、飛翔体1は飛行体に搭載し
た計測装置2に対して非常に高速で計測範囲では等速
度、等方向運動をする飛翔体、例えばロケットの如き飛
翔体で、計測装置2を搭載した飛行体を標的として飛翔
し、該飛翔体が計測装置2のパルスドップラーレーダ2
1から発信されている電波の発信範囲24の範囲を通過
すると上記電波は飛翔体1で反射されて、その反射波は
パルスドップラーレーダ21で受信され、パルスドップ
ラーレーダ21は受信した反射波からドップラー信号を
検出して、該ドップラー信号をテレメータ22へ送出
し、テレメータ22は該ドップラー信号をアンテナ23
を介して発信する。地上設備3の受信部32はアンテナ
31を介して上記ドップラー信号を受信し、これをデー
タ記録部33に送出し、データ記録部33は該ドップラ
ー信号をドップラー信号情報として一旦記録する。上記
計測が終了した後、計測者は操作部36を操作し信号処
理部34からデータ記録部33に記録された上記ドップ
ラー信号情報を読み出し、以下の処理を行う。In FIG. 1, a flying object 1 is a flying object which moves at a very high speed and in a uniform direction in a measuring range with respect to a measuring device 2 mounted on the flying object, for example, a flying object such as a rocket. 2 flying with the flying object equipped with the pulsed Doppler radar 2 of the measuring device 2
When passing through the transmission range 24 of the radio wave transmitted from the radio wave 1, the radio wave is reflected by the flying object 1, and the reflected wave is received by the pulse Doppler radar 21. Signal, and sends the Doppler signal to the telemeter 22, which transmits the Doppler signal to the antenna 23.
Outgoing via The receiving unit 32 of the ground equipment 3 receives the Doppler signal via the antenna 31 and sends it to the data recording unit 33, and the data recording unit 33 temporarily records the Doppler signal as Doppler signal information. After the measurement is completed, the measurer operates the operation unit 36 to read out the Doppler signal information recorded in the data recording unit 33 from the signal processing unit 34, and performs the following processing.
【0015】図4Aに示した図はドップラー信号の経時
変化を示す一般的モデルで、実際に計測によって得られ
るドップラー信号情報は、アンテナの特性、飛行体の翼
等による発信電波パターンの切れ込みに基づく反射波の
欠損、及び地面あるいは海面その他からの反射波による
雑音等の影響を受けて複雑な波形を示し、計測者は上記
読み出したドップラー信号情報を表示部35に表示しそ
の波形の中から雑音の影響を受けていない部分を数点、
例えば3点選び解析によってその点のドップラー周波数
を求める。図4BのF(ta),F(tb),F(t
c)は該操作によって得られたドップラー周波数を示
し、ta,tb,tcはそれぞれ該ドップラー信号の周
波数偏移F(ta)乃至F(tc)を得たそれぞれの時
刻で上記データ記録部から読み出したドップラー信号情
報を表示部35に表示して読み取ることが出来る。FIG. 4A is a general model showing a temporal change of a Doppler signal. Doppler signal information actually obtained by measurement is based on characteristics of an antenna, a cut of a transmitted radio wave pattern due to a wing of a flying object or the like. A complicated waveform is shown under the influence of the reflected wave deficiency and the noise due to the reflected wave from the ground or the sea surface or the like, and the measurer displays the read-out Doppler signal information on the display unit 35 and displays the noise from the waveform. A few points not affected by
For example, the Doppler frequency at that point is determined by selecting and analyzing three points. F (ta), F (tb), F (t
c) indicates the Doppler frequency obtained by the operation, and ta, tb, and tc are read from the data recording unit at the respective times when the frequency shifts F (ta) to F (tc) of the Doppler signal are obtained. The displayed Doppler signal information can be displayed on the display unit 35 and read.
【0016】ドップラー周波数fは次式で示される。The Doppler frequency f is expressed by the following equation.
【0017】 f=2・Vo・COSθ/λ …式(1) 式(1)においてCOSθは図3から次式により得られ
る。 COSθ=[1/{1+(Ro/Rv)2 }]1/2 …式(2) Rv:飛翔体1の計測時刻における、位置Aから飛翔体
1の最接近位置Cまでの距離 Ro:最接近距離即ち計測装置2の位置Bと最接近時刻
における飛翔体1の位置Cの距離 Rm:飛翔体1の計測時刻における位置Aから計測装置
2の位置Bまでの距離 Vo:飛翔体1(A点)と計測装置2(B点)の相対速
度 λ:計測装置2で受信したドップラー信号の波長 θ:飛翔体1(A点)の飛翔方向と、飛翔体1(A点)
と計測装置2(B点)とを結ぶ線とのなす角度 一方、最接近時刻をTとおけば、時刻tにおけるRvは Rv=Vo(T−t) …式(3) となり、式(2)及び式(3)を式(1)に代入して下
記の式(4)が得られる。 f=2・Vo[1/{1+(Ro/Vo(T−t))2 }]1/2 /λ …式(4) 上記式(4)は、飛翔体1と計測装置2との相対速度V
o及び最接近距離Roと受信したドップラー信号の周波
数との関係を示し、Vo,Ro及びTの3個のパラメー
タが未知数である。F = 2 · Vo · COS θ / λ Equation (1) In equation (1), COS θ is obtained from FIG. COS θ = [1 / {1+ (Ro / Rv) 2 }] 1/2 Equation (2) Rv: distance from position A to closest approach position C of flying object 1 at measurement time of flying object 1 Ro: maximum The approach distance, that is, the distance between the position B of the measuring device 2 and the position C of the flying object 1 at the closest approach time Rm: the distance from the position A at the measuring time of the flying object 1 to the position B of the measuring device 2 Vo: The flying object 1 (A ): The wavelength of the Doppler signal received by the measurement device 2 θ: the flight direction of the flying object 1 (point A) and the flying object 1 (point A)
On the other hand, if the closest approach time is T, Rv at time t is Rv = Vo (T−t) Equation (3), and Equation (3) is obtained. ) And Expression (3) are substituted into Expression (1) to obtain the following Expression (4). f = 2 · Vo [1 / {1+ (Ro / Vo (T−t)) 2 }] 1/2 / λ Equation (4) The above equation (4) represents the relative relationship between the flying object 1 and the measuring device 2. Speed V
6 shows the relationship between o and the closest approach distance Ro and the frequency of the received Doppler signal, and three parameters of Vo, Ro, and T are unknown.
【0018】今、式(4)に、操作部35から、時刻t
にta乃至tcと、上記Vo,Ro及びTの3個のパラ
メータに任意の値を信号処理部34に与えて、計算によ
って得たドップラー周波数f(ta)乃至f(tc)と
上記計測によって得たドップラー周波数F(ta)乃至
F(tc)との間で下記に示す残差2乗和(x2 )の式
(5)が最小となるようなVo,Ro及びTの3個のパ
ラメータの組み合わせを求める。Now, from equation (4), the time t
And given arbitrary values to the three parameters of Vo, Ro, and T to the signal processing unit 34, and obtains the Doppler frequencies f (ta) to f (tc) obtained by calculation and the above measurement. Of the three parameters Vo, Ro and T such that the following equation (5) of the residual sum of squares (x 2 ) between the Doppler frequencies F (ta) to F (tc) is minimized. Find a combination.
【0019】[0019]
【数1】 (Equation 1)
【0020】ここにF(ti)はF(ta),F(t
b),F(tc)を示し、f(ti)はf(ta),f
(tb),f(tc)を示す。Here, F (ti) is F (ta), F (t)
b) and F (tc), where f (ti) is f (ta) and f (ta)
(Tb) and f (tc).
【0021】上記式(5)を用い残差2乗和を最小とす
るような3個のパラメータの値の組み合わせを計算によ
って求め、該計算によって得られた3個のパラメータの
値、即ち飛翔体1と計測装置2との相対速度Vo、飛翔
体1と計測装置2との最接近距離Ro及び最接近時刻T
の各値が求める値で、これらの値を信号処理部34から
データ出力部4に出力する。Using the above equation (5), a combination of three parameter values that minimizes the residual sum of squares is obtained by calculation, and the three parameter values obtained by the calculation, ie, the flying object 1 and the measuring device 2, the closest approach distance Ro and the closest approach time T between the flying object 1 and the measuring device 2.
Are values to be obtained, and these values are output from the signal processing unit 34 to the data output unit 4.
【0022】次に、式(4)に上記式(5)を用いた計
算によって得られた残差2乗和を最小とする3個のパラ
メータVo,Ro及びTの値を予め与えておき、次いで
時刻tに時刻tsから任意の間隔Δt毎の時刻t1,t
2,t3,…を時刻teに到るまで順次与えてF(t
s),F(t1),F(t2),…F(te)の値を求
め、得られたF(ts)乃至F(te)の各値を信号処
理部34からデータ出力部4に出力する。出力されたデ
ータF(ts)乃至F(te)の値を順次接続すれば図
4Bで示す曲線(イ)に示す曲線が得られる。なお上記
Δtの値は一定の値あるいは両端で大きい値とし中央に
近づくに従って小さい値とする等任意に定める事が出来
る。Next, the values of three parameters Vo, Ro and T that minimize the residual sum of squares obtained by the calculation using the above equation (5) are given in advance to the equation (4). Next, at time t, times t1, t at an arbitrary interval Δt from time ts
, T3,... Until time te, F (t
s), F (t1), F (t2),... F (te), and outputs the obtained values of F (ts) to F (te) from the signal processing unit 34 to the data output unit 4. I do. If the values of the output data F (ts) to F (te) are sequentially connected, a curve shown by a curve (a) in FIG. 4B can be obtained. The value of Δt can be arbitrarily determined, such as a constant value or a large value at both ends, and a smaller value as approaching the center.
【0023】また、信号処理部34はドップラー信号情
報から得たドップラー周波数と上記計算で得られたF
(ts),F(t1),F(t2)乃至F(te)と比
較し、経時的に変化の無い計測されたドップラー周波数
(図4Bの直線(ロ)に例を示す)はこれを雑音として
除外する。The signal processor 34 calculates the Doppler frequency obtained from the Doppler signal information and the F
Compared with (ts), F (t1), F (t2) to F (te), the measured Doppler frequency that does not change with time (an example is shown in a straight line (b) in FIG. 4B) is noise. Exclude as
【0024】図4A及び図4Bに示す例は飛翔体1が計
測装置2を搭載した航空機の計測範囲を通過する場合を
示しているが、飛翔体1が計測装置2を搭載した飛行体
即ち標的に衝突する場合は図4Bの曲線(イ)は時刻t
oで停止する。また飛翔体1が計測装置2を搭載した飛
行体即ち標的と同一直線上にある場合は、当然飛翔体1
と計測装置2を搭載した飛行体は衝突し、曲線(イ)は
直線となり時刻toの位置で停止する。The example shown in FIGS. 4A and 4B shows a case where the flying object 1 passes through the measurement range of an aircraft equipped with the measuring device 2. 4B, the curve (a) in FIG.
Stop at o. If the flying object 1 is on the same straight line as the flying object on which the measuring device 2 is mounted, that is, the target,
And the flying object on which the measuring device 2 is mounted collides, and the curve (a) becomes a straight line and stops at the position of time to.
【0025】以上の説明は総て計測装置2を飛行体に搭
載した場合であるが、計測装置2を地上に設置して計測
する場合を図2に示し、この場合の動作は計測装置2と
地上設備3の間のドップラー信号の伝送が電波によるか
有線によるかの違いを除いて上記図1の場合の動作と同
様である。また図2において、計測装置2のテレメータ
22及び地上設備3の受信部32は有線伝送手段5の条
件により除くことが可能である。The above description is all about the case where the measuring device 2 is mounted on a flying object. FIG. 2 shows a case where the measuring device 2 is installed on the ground and measurement is performed. The operation is the same as that in the case of FIG. 1 described above, except that the transmission of the Doppler signal between the ground equipment 3 is performed by radio waves or by wire. In FIG. 2, the telemeter 22 of the measuring device 2 and the receiving unit 32 of the ground equipment 3 can be omitted depending on the conditions of the wired transmission unit 5.
【0026】[0026]
【発明の効果】上記反射波によるドップラー信号は、ア
ンテナ特性あるいは計測装置2を飛行体に搭載するため
飛行体の翼等によりパルスドップラーレーダ21の送出
する電波範囲24の一部が欠けることもあり、また雑音
等により明確なデータの得られない場合も有り、従って
上記反射波によるドップラー信号に欠けを生ずる場合が
有る。上記式(4)及び式(5)を用いて上記3個のパ
ラメータ、即ち飛翔体1と計測装置2との相対速度V
o、飛翔体1と計測装置2との最接近距離Ro及び最接
近時刻Tの値を求めるには、上記のように数個のドップ
ラー周波数(上記の例では3個)を計測データから得れ
ば良く、計測データの欠損があってもその間のデータの
補完が可能で、雑音の影響を受けることがなく、正確な
飛翔体の飛翔速度、最接近距離及び最接近時刻等の値を
精度良く得ることが出来る効果がある。As described above, the Doppler signal due to the reflected wave may lack part of the radio wave range 24 transmitted by the pulse Doppler radar 21 due to antenna characteristics or the wings of the flying object because the measuring device 2 is mounted on the flying object. Also, in some cases, clear data cannot be obtained due to noise or the like. Therefore, the Doppler signal due to the reflected wave may be missing. Using the above equations (4) and (5), the above three parameters, that is, the relative velocity V between the flying object 1 and the measuring device 2
o, To obtain the values of the closest approach distance Ro and the closest approach time T between the flying object 1 and the measuring device 2, several Doppler frequencies (three in the above example) can be obtained from the measurement data as described above. Even if there is a loss of measurement data, it is possible to complement the data during that time, and it is not affected by noise, and the values of the flying speed of the flying object, the closest approach distance and the closest approach time can be accurately calculated. There is an effect that can be obtained.
【図1】本発明の実施の形態を示す飛翔体計測評価装置
のブロック図。FIG. 1 is a block diagram of a flying object measurement and evaluation apparatus showing an embodiment of the present invention.
【図2】本発明の他の実施の形態を示す飛翔体計測評価
装置のブロック図。FIG. 2 is a block diagram of a flying object measurement and evaluation apparatus showing another embodiment of the present invention.
【図3】飛翔体と計測装置との位置関係を示す図。FIG. 3 is a diagram showing a positional relationship between a flying object and a measuring device.
【図4】図4Aはドップラー信号の波形、図4Bはドッ
プラー周波数の経時変化を示す図。4A is a diagram illustrating a waveform of a Doppler signal, and FIG. 4B is a diagram illustrating a change over time in a Doppler frequency.
1…飛翔体 2…計測装置 21…パルスドップラーレーダ 22…テレメータ 23…アンテナ 24…電波発信範囲 3…地上設備 31…アンテナ 32…受信部 33…データ記録部 34…信号処理部 35…表示部 36…操作部 4…データ出力部 5…有線伝送手段 DESCRIPTION OF SYMBOLS 1 ... Flying object 2 ... Measuring device 21 ... Pulse Doppler radar 22 ... Telemeter 23 ... Antenna 24 ... Radio wave transmission range 3 ... Ground equipment 31 ... Antenna 32 ... Receiving part 33 ... Data recording part 34 ... Signal processing part 35 ... Display part 36 ... operation unit 4 ... data output unit 5 ... wire transmission means
フロントページの続き (72)発明者 吉川 謙一 茨城県北相馬郡守谷町守谷甲249番地1号 明星電気株式会社守谷工場内 Fターム(参考) 5J070 AA04 AB01 AC02 AC06 AE04 AE06 AF01 AH19 AH25 AJ04 AJ05 AJ06 AJ13 AK28 BA01 BB05 BB06 Continuation of the front page (72) Inventor Kenichi Yoshikawa 249-1, Moriya-ko, Moriya-cho, Kitasoma-gun, Ibaraki F-term in the Moriya Plant of Meisei Electric Co., Ltd. 5J070 AA04 AB01 AC02 AC06 AE04 AE06 AF01 AH19 AH25 AJ04 AJ05 AJ06 AJ13 AK28 BA01 BB05 BB06
Claims (3)
波による反射信号を受信し、該反射信号からドップラー
信号を検出するパルスドップラーレーダと該パルスドッ
プラーレーダから出力されるドップラー信号を受けてこ
れを空中線に送出するテレメータとからなる飛行体に搭
載した計測装置と、該飛行体に搭載した計測装置の空中
線からのドップラー信号を空中線を介して受信する受信
部と該受信部からのドップラー信号出力をドップラー信
号情報として一旦記録するデータ記録部と該データ記録
部に記録されたドップラー信号情報を読み出し、該読み
出したドップラー信号情報を用いて所要のデータ処理を
行い、必要とするデータを得る信号処理部、操作部及び
表示部とからなる地上設備、地上設備の信号処理部から
の出力を受信してこれを出力するデータ出力部とで構成
される飛翔体計測評価装置であって、上記地上設備の信
号処理部、操作部及び表示部を用いて、データ記録部に
記録されたドップラー信号情報を読み出し、該ドップラ
ー信号情報から計測の経過時間に従ってドップラー周波
数を検出し、更に飛翔体が最もドップラーレーダに接近
する最接近距離、飛翔体の相対飛翔速度及び飛翔体が最
接近距離に到達する最接近時刻の3個のパラメータから
ドップラー周波数を得る下記理論式 f=2・Vo[1/{1+(Ro/Vo(T−t))
2 }]1/2 /λ を用い、該3個のパラメータに任意の値を与え上記理論
式から計算によって得たドップラー周波数と、上記ドッ
プラー信号情報から検出したドップラー周波数とを最小
2乗法を用いて残差2乗和が最小になる上記3個のパラ
メータの値を求め、該3個のパラメータの値即ち最接近
距離、飛翔体の相対飛翔速度及び最接近時刻の各値を上
記信号処理部からデータ出力部に出力することを特徴と
する飛翔体計測評価装置。1. A pulse Doppler radar for transmitting a radio wave toward a flying object, receiving a reflected signal of the reflected wave, detecting a Doppler signal from the reflected signal, and receiving a Doppler signal output from the pulse Doppler radar. A measuring device mounted on a flying object comprising a telemeter for transmitting the Doppler signal to the antenna, a receiving unit for receiving a Doppler signal from the antenna of the measuring device mounted on the flying object via the antenna, and a Doppler from the receiving unit. A data recording unit for temporarily recording the signal output as Doppler signal information, reading out the Doppler signal information recorded in the data recording unit, performing necessary data processing using the read out Doppler signal information, and obtaining necessary data Ground equipment consisting of a signal processing unit, operation unit, and display unit, and receiving output from the signal processing unit of the ground equipment And a data output unit that outputs the Doppler signal information recorded in the data recording unit using the signal processing unit, the operation unit, and the display unit of the ground equipment. The Doppler frequency is detected from the Doppler signal information in accordance with the elapsed time of the measurement, and the closest approach distance at which the flying object approaches the Doppler radar, the relative flying speed of the flying object, and the closest approach time at which the flying object reaches the closest approach distance. The following theoretical formula for obtaining the Doppler frequency from the three parameters f = 2 · Vo [1 / {1+ (Ro / Vo (T−t))
2 }] 1/2 / λ, the three parameters are given arbitrary values, and the Doppler frequency obtained by calculation from the theoretical formula and the Doppler frequency detected from the Doppler signal information are obtained by the least squares method. The values of the three parameters that minimize the residual sum of squares are obtained, and the values of the three parameters, that is, the values of the closest approach distance, the relative flying speed of the flying object, and the closest approach time are determined by the signal processing unit. A flying object measurement / evaluation device characterized by outputting to a data output unit from a computer.
おいて、地上設備の信号処理部を用いて、請求項1に記
載の計算によって得た3個のパラメータの値即ち最接近
距離、飛翔体の相対飛翔速度及び最接近時刻の各値を、
請求項1に記載のドップラー周波数を求める理論式に与
え、更に飛翔体がパルスドップラーレーダから発信され
る電波により計測される計測可能範囲を飛翔する計測可
能時間の間を適当な間隔で連続した時刻を時系列的に与
え、該時刻に対応するドップラー周波数を時系列的に計
算し、上記計算処理部は該計算によって得た時系列的に
連続したドップラー周波数をデータ出力部に出力するこ
とを特徴とする飛翔体計測評価装置。2. The flying object evaluation and measurement device according to claim 1, wherein the values of the three parameters obtained by the calculation according to claim 1, that is, the closest approach distance and the flight, using a signal processing unit of the ground equipment. The relative flight speed of the body and each value of the closest approach time are
Given in the theoretical formula for calculating the Doppler frequency according to claim 1, further comprising a time interval in which the flying object flies over a measurable range measured by radio waves transmitted from the pulse Doppler radar at appropriate intervals. Are given in time series, and the Doppler frequency corresponding to the time is calculated in time series, and the calculation processing unit outputs the time-series continuous Doppler frequency obtained by the calculation to the data output unit. Flying object measurement and evaluation device.
測評価装置において、計測装置を地上に設置し、該計測
装置のテレメータと地上設備の受信部の間を有線接続に
よる伝送手段を用いたことを特徴とする飛翔体計測評価
装置。3. The flying object measurement and evaluation device according to claim 1 or 2, wherein the measurement device is installed on the ground, and a transmission unit by a wired connection between a telemeter of the measurement device and a receiving unit of the ground equipment is provided. A flying object measurement and evaluation device characterized by using:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22068398A JP3279985B2 (en) | 1998-08-04 | 1998-08-04 | Flying object measurement and evaluation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22068398A JP3279985B2 (en) | 1998-08-04 | 1998-08-04 | Flying object measurement and evaluation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000056014A true JP2000056014A (en) | 2000-02-25 |
JP3279985B2 JP3279985B2 (en) | 2002-04-30 |
Family
ID=16754847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22068398A Expired - Fee Related JP3279985B2 (en) | 1998-08-04 | 1998-08-04 | Flying object measurement and evaluation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3279985B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085391A (en) * | 2009-10-13 | 2011-04-28 | Nec Corp | Method and device for measuring position |
JP2014081259A (en) * | 2012-10-16 | 2014-05-08 | Panasonic Corp | Radar signal processing device, radar signal processing method, and radar signal processing program |
KR101473760B1 (en) | 2014-07-21 | 2014-12-17 | 엘아이지넥스원 주식회사 | Apparatus for processing radar signal |
KR101473761B1 (en) | 2014-07-21 | 2014-12-17 | 엘아이지넥스원 주식회사 | Method for processing radar signal |
CN113391307A (en) * | 2020-03-12 | 2021-09-14 | 中国人民解放军火箭军研究院系统工程研究所 | Method and device for quickly estimating missile terminal motion parameters in incomplete signals |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012194153A (en) * | 2011-03-18 | 2012-10-11 | Nec Network & Sensor Systems Ltd | Distance calculation device and control method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6269179A (en) * | 1985-09-24 | 1987-03-30 | Mitsubishi Electric Corp | Semi-active radar guidance controlling system |
JPH01119784A (en) * | 1987-11-04 | 1989-05-11 | Mitsubishi Electric Corp | Speed measuring device |
JPH01314984A (en) * | 1988-06-16 | 1989-12-20 | Mitsubishi Electric Corp | Radar |
JPH0593777A (en) * | 1991-09-30 | 1993-04-16 | Nec Corp | Doppler measurement system |
JPH05249216A (en) * | 1992-02-04 | 1993-09-28 | Nec Corp | Data link system |
JPH09281230A (en) * | 1996-04-09 | 1997-10-31 | Mitsubishi Electric Corp | Monitor device |
-
1998
- 1998-08-04 JP JP22068398A patent/JP3279985B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6269179A (en) * | 1985-09-24 | 1987-03-30 | Mitsubishi Electric Corp | Semi-active radar guidance controlling system |
JPH01119784A (en) * | 1987-11-04 | 1989-05-11 | Mitsubishi Electric Corp | Speed measuring device |
JPH01314984A (en) * | 1988-06-16 | 1989-12-20 | Mitsubishi Electric Corp | Radar |
JPH0593777A (en) * | 1991-09-30 | 1993-04-16 | Nec Corp | Doppler measurement system |
JPH05249216A (en) * | 1992-02-04 | 1993-09-28 | Nec Corp | Data link system |
JPH09281230A (en) * | 1996-04-09 | 1997-10-31 | Mitsubishi Electric Corp | Monitor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085391A (en) * | 2009-10-13 | 2011-04-28 | Nec Corp | Method and device for measuring position |
JP2014081259A (en) * | 2012-10-16 | 2014-05-08 | Panasonic Corp | Radar signal processing device, radar signal processing method, and radar signal processing program |
KR101473760B1 (en) | 2014-07-21 | 2014-12-17 | 엘아이지넥스원 주식회사 | Apparatus for processing radar signal |
KR101473761B1 (en) | 2014-07-21 | 2014-12-17 | 엘아이지넥스원 주식회사 | Method for processing radar signal |
CN113391307A (en) * | 2020-03-12 | 2021-09-14 | 中国人民解放军火箭军研究院系统工程研究所 | Method and device for quickly estimating missile terminal motion parameters in incomplete signals |
Also Published As
Publication number | Publication date |
---|---|
JP3279985B2 (en) | 2002-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4896116A (en) | Pulse radar method and apparatus for detecting an object | |
US5117230A (en) | Electronic target radar simulator | |
JPH0420861A (en) | Tilt space antenna method and system for measuring atmospheric-air wind field | |
EP3153884A1 (en) | Detection apparatus, fish finder, and radar | |
EP0763750B1 (en) | Radar system | |
US5164730A (en) | Method and apparatus for determining a cross-range scale factor in inverse synthetic aperture radar systems | |
JP3279985B2 (en) | Flying object measurement and evaluation device | |
JP2681309B2 (en) | System for sensing missiles moving towards a target | |
KR20170024452A (en) | Target detection method and apparatus using radar | |
US5672828A (en) | Strength determination of sheet materials by utrasonic testing | |
JP3279984B2 (en) | Flying object measurement evaluation method | |
EP4194898A1 (en) | Method and system for evaluating point cloud quality of lidar, and apparatus | |
CN112034454A (en) | Bridge self-vibration mode obtaining method based on MIMO radar | |
JPS63308523A (en) | Measuring method of noise generated by airplane | |
US3713144A (en) | Phase signature radar | |
Bredemeyer et al. | Measurements for classification of single wind turbine echoes | |
RU2204844C2 (en) | Device for measuring medium scattering function width | |
JP2003194926A (en) | Equipment and method for processing radar signal | |
RU2191404C2 (en) | Meter measuring width of scattering function of medium | |
RU812027C (en) | Method of remote control measuring of wind velocity projection on predetermined direction | |
JPS6225277A (en) | Distance tracking device | |
EP2019326A2 (en) | Method and device for recording earth atmosphere parameters | |
JPS62170867A (en) | Data analyzing device | |
Richter et al. | High-Resolution Millimeter-Wave Radar for Real-Time Detection and Characterization of High-Speed Objects with Rapid Acceleration Capabilities | |
RU2006200C1 (en) | Method of gaging hydroacoustic measuring equipment when estimating fish resources with the aid of tv apparatuses and device for its realization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |