JP2011082386A - Solid-state imaging element, method for manufacturing the element, and imaging device using the element - Google Patents

Solid-state imaging element, method for manufacturing the element, and imaging device using the element Download PDF

Info

Publication number
JP2011082386A
JP2011082386A JP2009234357A JP2009234357A JP2011082386A JP 2011082386 A JP2011082386 A JP 2011082386A JP 2009234357 A JP2009234357 A JP 2009234357A JP 2009234357 A JP2009234357 A JP 2009234357A JP 2011082386 A JP2011082386 A JP 2011082386A
Authority
JP
Japan
Prior art keywords
solid
film
imaging device
state imaging
effective pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234357A
Other languages
Japanese (ja)
Other versions
JP5427541B2 (en
Inventor
Masanori Nagase
正規 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009234357A priority Critical patent/JP5427541B2/en
Publication of JP2011082386A publication Critical patent/JP2011082386A/en
Application granted granted Critical
Publication of JP5427541B2 publication Critical patent/JP5427541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a dark current difference between an effective pixel region and an OB part, and to suppress a parasitic MOS effect in the OB part. <P>SOLUTION: The solid-state imaging element includes a plurality of photodiodes (PDs) formed in a front surface part of a semiconductor substrate, an antireflective film 54 covering the front surface part, and a shade film 55 dividing a region of the front surface part formed with the PDs into an effective pixel region of a center part and a circumferential OB part and covering areas other than individual light reception surfaces of the PDs 42a in the effective pixel region. Parts other than the light reception surfaces of the PDs 42a in the effective pixel region out of the antireflective film 54 in the effective pixel region are removed, the antireflective film 54 on regions corresponding to right reception surfaces of the PDs 42b of the OB part are removed, and a first insulating layer (x) formed between the shade film 55 covering the OB part and the regions corresponding to the light reception parts is formed thicker than a second insulating layer (y) excluding the antireflective film 54 between the light reception surfaces of the PDs 42a in the effective pixel region and an opening end of the shade film 55 facing the light reception surfaces. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、暗電流ノイズが低くしかも暗電流ノイズが安定した固体撮像素子、及びその製造方法、並びにこの固体撮像素子を搭載した撮像装置に関する。   The present invention relates to a solid-state imaging device with low dark current noise and stable dark current noise, a method for manufacturing the same, and an imaging apparatus equipped with the solid-state imaging device.

固体撮像素子、例えばCCD型の固体撮像素子は、フォトダイオード(PD:以下、画素ともいう。)と、垂直電荷転送路(VCCD)と、水平電荷転送路(HCCD)と、出力アンプ(FDA:フローティングディフユージョン・アンプ,SFA:ソースフォロア・アンプ)という構成素子からなる。   A solid-state imaging device, for example, a CCD type solid-state imaging device, includes a photodiode (PD: hereinafter also referred to as a pixel), a vertical charge transfer path (VCCD), a horizontal charge transfer path (HCCD), and an output amplifier (FDA: A floating diffusion amplifier (SFA: source follower amplifier) is included.

図15は、このCCD型固体撮像素子の全体の表面模式図であり、VCCD,HCCD,出力アンプについての図示は省略している。この固体撮像素子1は、中央に矩形の有効画素領域2が設けられており、この有効画素領域2に、二次元アレイ状(図示する例では正方格子状)に多数の画素3が配列形成されている。   FIG. 15 is a schematic diagram of the entire surface of the CCD solid-state imaging device, and illustration of the VCCD, HCCD, and output amplifier is omitted. This solid-state imaging device 1 is provided with a rectangular effective pixel area 2 in the center, and a large number of pixels 3 are arranged and formed in the effective pixel area 2 in a two-dimensional array (in the illustrated example, a square lattice). ing.

また、有効画素領域2の周囲にはオプティカルブラック(OB)部4が設けられており、このOB部4にも、有効画素領域2と同様の配列で画素5(図16参照)が配列形成されている。   Further, an optical black (OB) portion 4 is provided around the effective pixel region 2, and pixels 5 (see FIG. 16) are arranged and formed in the OB portion 4 in the same arrangement as the effective pixel region 2. ing.

図16は図15のB―B線断面模式図であり、有効画素領域2とOB部4との境界部分の画素の断面模式図である。有効画素領域2の個々の画素(PD)3が、タングステン膜等の遮光膜6の各開口6a下に形成されているのに対し、OB部4の個々の画素(PD)5は、遮光膜6に覆われた構成となっており、光が当たらない黒レベルの信号を検出する様になっている。   FIG. 16 is a schematic cross-sectional view taken along the line BB in FIG. 15, and is a schematic cross-sectional view of a pixel at a boundary portion between the effective pixel region 2 and the OB portion 4. Each pixel (PD) 3 in the effective pixel region 2 is formed under each opening 6a of the light shielding film 6 such as a tungsten film, whereas each pixel (PD) 5 in the OB portion 4 is formed from the light shielding film. 6 is configured to detect a black level signal that is not exposed to light.

固体撮像素子1では、各画素の受光感度を高感度にするため、遮光膜開口6aと半導体基板7の表面に形成した酸化膜(ゲート絶縁膜)8との間に、反射防止膜9を形成するのが一般的である。遮光膜6の下に形成する反射防止膜9は、減圧CVD法(LP―CVD法)によるシリコン窒化膜(SiN)が一般的に使用される。   In the solid-state imaging device 1, an antireflection film 9 is formed between the light shielding film opening 6 a and the oxide film (gate insulating film) 8 formed on the surface of the semiconductor substrate 7 in order to increase the light receiving sensitivity of each pixel. It is common to do. As the antireflection film 9 formed under the light shielding film 6, a silicon nitride film (SiN) by a low pressure CVD method (LP-CVD method) is generally used.

ところが、LP―CVD法によるシリコン窒化膜で撮像素子のデバイス全面が覆われると、MOS界面で発生する暗電流抑制のための低温熱処理(窒素希釈水素アニール,シンタリング)効果がなくなってしまうことが知られている。そのメカニズムは、MOS界面の未結合手(ダングリングボンド)を終端させる水素がシリコン窒化膜を通過することができないためであると考えられている。   However, if the entire surface of the image sensor device is covered with a silicon nitride film formed by LP-CVD, the effect of low-temperature heat treatment (nitrogen diluted hydrogen annealing, sintering) for suppressing dark current generated at the MOS interface may be lost. Are known. The mechanism is considered to be because hydrogen that terminates dangling bonds at the MOS interface cannot pass through the silicon nitride film.

このため、各画素の一部のシリコン窒化膜を、パターニング・エッチングにより除去することで、水素がMOS界面に到達しうるパスを設ける構造を採用するのが一般的である。そして、その反射防止膜を除去する箇所は、通常、遮光膜開口6aでない箇所としている。図16の例では、垂直転送電極膜(ポリシリコン膜)10の上面部11(ここは絶縁酸化膜)としている。   For this reason, it is common to employ a structure in which a part of each pixel is removed by patterning and etching to provide a path through which hydrogen can reach the MOS interface. And the part which removes the antireflection film is usually a part which is not the light shielding film opening 6a. In the example of FIG. 16, the upper surface portion 11 (here, an insulating oxide film) of the vertical transfer electrode film (polysilicon film) 10 is used.

固体撮像素子1には、光電変換させた信号値を正確に読み取るための黒レベルを検出するOB部4が設けられ、OB部4の画素5と有効画素領域2の画素3との違いは、遮光膜開口6aの有無だけである。CCD型固体撮像素子のフォトダイオード(PD)と垂直電荷転送路(VCCD)の暗電流を比較した場合、埋め込み型PDは、埋め込み型VCCDと比較して非常に暗電流が少ない。このため、OB部4の信号値(暗電流ノイズ)を決めるものは、おおかたVCCDのみと考えてよい。そこで、OB部4の画素5として、フォトダイオードPDを設けない構造をとるものもある。   The solid-state imaging device 1 is provided with an OB unit 4 that detects a black level for accurately reading a photoelectrically converted signal value. The difference between the pixel 5 in the OB unit 4 and the pixel 3 in the effective pixel region 2 is as follows. It is only the presence or absence of the light shielding film opening 6a. When comparing the dark current of the photodiode (PD) and the vertical charge transfer path (VCCD) of the CCD type solid-state imaging device, the embedded PD has much less dark current than the embedded type VCCD. For this reason, what determines the signal value (dark current noise) of the OB unit 4 can be considered to be mostly VCCD. Therefore, some pixels 5 in the OB portion 4 have a structure in which the photodiode PD is not provided.

CCD型固体撮像素子の遮光膜6は、耐熱性が良く、カバレッジが良いタングステン膜(W,W/TiN,W/TiN/Ti等)が使用されることが多い。タングステンWも水素を比較的通し難く、チタン(Ti)は水素を吸着することが知られている。   A tungsten film (W, W / TiN, W / TiN / Ti, etc.) having good heat resistance and good coverage is often used for the light shielding film 6 of the CCD solid-state imaging device. Tungsten W is also relatively difficult to pass hydrogen, and titanium (Ti) is known to adsorb hydrogen.

つまり、OB部の画素5は、遮光膜6で覆われる割合が画素3より大きく、窒化膜被覆割合が画素3と同等となるため、OB部4では、水素がMOS界面に到達しうるパスが狭くなり、MOS界面の未結合手終端が弱くなり、この結果、暗電流が大きくなってしまう。つまり、有効画素領域とOB部とで暗電流に差が生じてしまう場合が生じるという問題がある。   That is, the pixel 5 in the OB portion is covered with the light-shielding film 6 at a higher rate than the pixel 3 and the nitride film coverage is the same as that of the pixel 3. It becomes narrower and the dangling bond termination at the MOS interface becomes weak, resulting in an increase in dark current. That is, there is a problem that a difference may occur in the dark current between the effective pixel region and the OB portion.

この問題は、OB部4の水素を通すパスを広く(多く)確保する構造をとればよいことになる。   This problem can be achieved by adopting a structure that ensures a wide (many) path through which hydrogen passes through the OB portion 4.

具体的には、OB部4のシリコン窒化膜を除去する箇所を、有効画素領域2の画素3よりも大きく(広く)すれば良いことになる。しかし、シリコン窒化膜は、遮光膜6とポリシリコン電極10との間の絶縁耐圧を確保させる効果も担っており、OB部のシリコン窒化膜を大きく除去してしまうと、遮光膜6とポリシリコン電極10間のリークによって、固体撮像素子の製造歩留まりが低下してしまうという別の問題が発生してしまう場合がある。   Specifically, the portion where the silicon nitride film in the OB portion 4 is removed may be made larger (wider) than the pixel 3 in the effective pixel region 2. However, the silicon nitride film also has an effect of ensuring the withstand voltage between the light shielding film 6 and the polysilicon electrode 10, and if the silicon nitride film in the OB portion is largely removed, the light shielding film 6 and the polysilicon are removed. Another problem may occur that the manufacturing yield of the solid-state imaging device is reduced due to leakage between the electrodes 10.

ところで、CCD型固体撮像素子には、スミアという特有のノイズがある。このスミアを低減するには、遮光膜6とシリコン基板7との間の距離(絶縁膜厚)を、できる限り小さくすることが有効である。   By the way, a CCD type solid-state imaging device has a peculiar noise called smear. In order to reduce this smear, it is effective to make the distance (insulating film thickness) between the light shielding film 6 and the silicon substrate 7 as small as possible.

現在の、例えば、だいたい2μm□画素程度のCCD型固体撮像素子では、遮光膜6とシリコン基板7との間の絶縁膜厚は、電気的絶縁膜厚(酸化膜容量換算膜厚)で100nm程度と薄くなっており、画素の微細化に伴い、更に簿くなる傾向にある。CCD型固体撮像素子のゲート絶縁膜厚が50nm程度であるので、ゲート絶縁膜厚と同等か、その数倍程度の薄さとなる。   At present, for example, in a CCD type solid-state imaging device having about 2 μm square pixels, the insulation film thickness between the light shielding film 6 and the silicon substrate 7 is about 100 nm in terms of an electrical insulation film thickness (oxide film capacitance equivalent film thickness). As the pixels become finer, they tend to become even more bookkeeping. Since the gate insulating film thickness of the CCD type solid-state imaging device is about 50 nm, it is equal to the gate insulating film thickness or several times as thin.

遮光膜6の材料であるタングステンは導体である。遮光膜6の電位がフローティング状態になることを避けるため、一般的に、GND電位や、その他のDC電位に固定されるのが普通である。   Tungsten, which is a material of the light shielding film 6, is a conductor. In order to avoid the potential of the light shielding film 6 being in a floating state, it is generally fixed to the GND potential or other DC potential.

このように、遮光膜6とシリコン基板7との間の絶縁膜厚が薄くなり、かつ、遮光膜電位が固定されると、遮光膜6をゲートとした寄生MOS効果が無視できなくなってくる。   As described above, when the insulating film thickness between the light shielding film 6 and the silicon substrate 7 is reduced and the light shielding film potential is fixed, the parasitic MOS effect using the light shielding film 6 as a gate cannot be ignored.

この寄生MOS効果が大きくなる箇所は、寄生ゲート絶縁膜が薄く、寄生ゲートが広く敷かれているOB部4である。特に、水素を通すパスを広くとるという問題を解決するには、OB部4において、画素5の遮光膜開口部に相当する領域のシリコン窒化膜を除去する構造が有効になると考えられるが、その場合、遮光膜6がシリコン窒化膜より下部のゲート酸化膜8に近づくため、この遮光膜6をゲートとした寄生MOS効果がより大きくなってしまう。   The portion where the parasitic MOS effect becomes large is the OB portion 4 where the parasitic gate insulating film is thin and the parasitic gate is widely spread. In particular, in order to solve the problem of widening the path through which hydrogen passes, it is considered that a structure in which the silicon nitride film in the region corresponding to the light shielding film opening of the pixel 5 is removed in the OB portion 4 is effective. In this case, since the light shielding film 6 approaches the gate oxide film 8 below the silicon nitride film, the parasitic MOS effect using the light shielding film 6 as a gate is further increased.

つまり、OB部4の水素経路を拡げて暗電流を低下させる効果よりも、寄生MOS効果の方が大きく効いてしまい、暗電流を増加させてしまう場合があるという新たな問題が生じる。   In other words, the parasitic MOS effect is more effective than the effect of expanding the hydrogen path of the OB unit 4 to reduce the dark current, and a new problem arises that the dark current may be increased.

また、現在の微細化セル、及び、今後の更に微細化されたセルにおいては、上記のようにOB部4の画素5の開口部に相当する領域の絶縁膜薄膜化をしない状態でも、寄生MOS効果が大きく効いて、暗電流を増加させてしまう場合がある。これは、CMOS型固体撮像素子でも同様である。   Further, in the current miniaturized cell and the further miniaturized cell in the future, even if the insulating film is not thinned in the region corresponding to the opening of the pixel 5 of the OB portion 4 as described above, the parasitic MOS In some cases, the effect is significant and dark current is increased. The same applies to the CMOS type solid-state imaging device.

なお、シリコン窒化膜に設ける水素経路用のパスをフォトダイオードの上部以外に設ける公知例として、下記の特許文献1があり、OB部下の反射防止膜を有効画素領域の反射防止膜より狭くする公知例として、下記の特許文献2がある。   In addition, as a publicly known example in which a path for a hydrogen path provided in the silicon nitride film is provided in addition to the upper part of the photodiode, there is the following Patent Document 1, in which the antireflection film under the OB portion is narrower than the antireflection film in the effective pixel region As an example, there is Patent Document 2 below.

特開平10―284709号公報Japanese Patent Laid-Open No. 10-284709 特開2007―35993号公報JP 2007-35993 A

本発明の目的は、OB部の水素経路パスを確保すると同時に、寄生MOS効果を低減し、有効画素領域とOB部の暗電流差が小さくしかも暗電流ノイズが安定している構造を持つ固体撮像素子及びその製造方法並びにこの固体撮像素子を搭載した撮像装置を提供することにある。   An object of the present invention is to provide a solid-state imaging having a structure in which the hydrogen path path in the OB portion is secured, the parasitic MOS effect is reduced, the dark current difference between the effective pixel region and the OB portion is small, and the dark current noise is stable. It is an object to provide an element, a manufacturing method thereof, and an imaging apparatus equipped with the solid-state imaging element.

本発明の固体撮像素子及びその製造方法は、半導体基板の表面部に二次元アレイ状に配列形成された複数のフォトダイオードと、前記表面部を覆う反射防止膜と、前記表面部の前記フォトダイオードが形成された領域を中央部分の有効画素領域と該有効画素領域の周囲のオプティカルブラック部とに分け該有効画素領域の前記フォトダイオードの個々の受光面以外を覆う遮光膜とを備える固体撮像素子及びその製造方法であって、前記有効画素領域の前記反射防止膜のうち該有効画素領域内の前記フォトダイオードの受光面以外の箇所が削除されると共に前記オプティカルブラック部の前記フォトダイオードの受光面に相当する領域上の前記反射防止膜が削除されて形成され、該オプティカルブラック部の前記受光面に相当する領域を覆う前記遮光膜と該受光面に相当する領域との間に形成される第1絶縁層(x)が、前記有効画素領域の前記フォトダイオードの受光面と該受光面に対面する前記遮光膜の開口端部との間の前記反射防止膜を除いた第2絶縁層(y)より厚く形成されることを特徴とする。   The solid-state imaging device and the manufacturing method thereof according to the present invention include a plurality of photodiodes arranged in a two-dimensional array on a surface portion of a semiconductor substrate, an antireflection film covering the surface portion, and the photodiode on the surface portion. A solid-state imaging device comprising: a light shielding film that divides a region in which an effective pixel region is formed into a central effective pixel region and an optical black portion around the effective pixel region and covers the effective pixel region other than the individual light receiving surfaces of the photodiodes And a method of manufacturing the same, wherein a portion other than the light receiving surface of the photodiode in the effective pixel region is deleted from the antireflection film of the effective pixel region, and the light receiving surface of the photodiode in the optical black portion The antireflection film on the region corresponding to is formed by removing the antireflection film before covering the region corresponding to the light receiving surface of the optical black portion. The first insulating layer (x) formed between the light-shielding film and the region corresponding to the light-receiving surface has an opening end of the light-shielding film facing the light-receiving surface of the photodiode in the effective pixel region and the light-receiving surface. It is characterized by being formed thicker than the second insulating layer (y) excluding the antireflection film between the two portions.

また、本発明の撮像装置は、上記記載の固体撮像素子を搭載したことを特徴とする。   In addition, an image pickup apparatus according to the present invention is characterized in that the solid-state image pickup device described above is mounted.

本発明によれば、OB部もシンタリング効果を得ることができると共に寄生MOS効果を削減できるため、OB部の暗電流と有効画素領域の暗電流との差を抑制することができ、また、暗電流ノイズの安定化を図ることが可能となる。このため、この固体撮像素子を搭載した撮像装置では、高品質な被写体画像を撮像することが可能となる。   According to the present invention, since the OB portion can also obtain a sintering effect and the parasitic MOS effect can be reduced, the difference between the dark current in the OB portion and the dark current in the effective pixel region can be suppressed. It is possible to stabilize the dark current noise. For this reason, an imaging device equipped with this solid-state imaging device can capture a high-quality subject image.

本発明の一実施形態に係る撮像装置の機能ブロック構成図である。It is a functional block block diagram of the imaging device which concerns on one Embodiment of this invention. 図1に示すCCD型固体撮像素子の表面模式図である。It is a surface schematic diagram of the CCD type solid-state imaging device shown in FIG. 図2のIII―III線断面模式図である。FIG. 3 is a schematic sectional view taken along line III-III in FIG. 2. 図2に示す実施形態の固体撮像素子製造方法を説明する工程図である。It is process drawing explaining the solid-state image sensor manufacturing method of embodiment shown in FIG. 図4に続く工程図である。FIG. 5 is a process diagram following FIG. 4. 本発明の別実施形態の固体撮像素子の断面模式図である。It is a cross-sectional schematic diagram of the solid-state image sensor of another embodiment of this invention. 図6に示す固体撮像素子の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the solid-state image sensor shown in FIG. 図7に続く工程図である。FIG. 8 is a process diagram following FIG. 7. 本発明の更に別実施形態の固体撮像素子の断面模式図である。It is a cross-sectional schematic diagram of the solid-state image sensor of another embodiment of this invention. 図9に示す固体撮像素子の要部拡大表面模式図である。It is a principal part enlarged surface schematic diagram of the solid-state image sensor shown in FIG. 図9に示す固体撮像素子の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the solid-state image sensor shown in FIG. 本発明の更に別実施形態の固体撮像素子の断面模式図である。It is a cross-sectional schematic diagram of the solid-state image sensor of another embodiment of this invention. 図1に示す固体撮像素子の要部拡大表面模式図である。It is a principal part enlarged surface schematic diagram of the solid-state image sensor shown in FIG. 図12に示す固体撮像素子の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the solid-state image sensor shown in FIG. 従来の固体撮像素子の表面模式図である。It is a surface schematic diagram of the conventional solid-state image sensor. 図15のB―B線断面模式図である。FIG. 16 is a schematic cross-sectional view taken along line BB in FIG. 15.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る撮像装置(この例ではデジタルスチルカメラ)20の機能構成図である。この撮像装置20は、撮像部21と、撮像部21から出力されるアナログの画像データを自動利得調整(AGC)や相関二重サンプリング処理等のアナログ処理するアナログ信号処理部22と、アナログ信号処理部22から出力されるアナログ画像データをデジタル画像データに変換するアナログデジタル変換部(A/D)23と、後述のシステム制御部(CPU)29からの指示によってA/D23,アナログ信号処理部22,撮像部21の駆動制御を行う駆動部(タイミングジェネレータTGを含む)24と、CPU29からの指示によって発光するフラッシュライト25とを備える。   FIG. 1 is a functional configuration diagram of an imaging apparatus (in this example, a digital still camera) 20 according to an embodiment of the present invention. The imaging apparatus 20 includes an imaging unit 21, an analog signal processing unit 22 that performs analog processing such as automatic gain adjustment (AGC) and correlated double sampling processing on analog image data output from the imaging unit 21, and analog signal processing. An analog / digital conversion unit (A / D) 23 that converts analog image data output from the unit 22 into digital image data, and an A / D 23 and an analog signal processing unit 22 in accordance with instructions from a system control unit (CPU) 29 described later. , A drive unit (including a timing generator TG) 24 that controls the drive of the imaging unit 21 and a flashlight 25 that emits light in response to an instruction from the CPU 29.

撮像部21は、被写体からの光を集光する光学レンズ系21aと、該光学レンズ系21aを通った光を絞る絞りやメカニカルシャッタ21bと、光学レンズ系21aによって集光され絞りによって絞られた光を受光し撮像画像データ(アナログ画像データ)を出力するCCD型固体撮像素子35とを備える。   The imaging unit 21 collects light from a subject, a diaphragm for condensing light passing through the optical lens system 21a, a mechanical shutter 21b, and the optical lens system 21a, and is condensed by the diaphragm. A CCD type solid-state imaging device 35 that receives light and outputs captured image data (analog image data).

本実施形態の撮像装置20は更に、A/D23から出力されるデジタル画像データを取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、画像データをJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、カメラ背面等に設けられメニュー画面やスルー画像,撮像画像を表示する液晶表示部28と、撮像装置全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス34とを備え、また、システム制御部29には、ユーザからの指示入力を行う操作部33が接続されている。   The imaging apparatus 20 of the present embodiment further includes a digital signal processing unit 26 that takes in digital image data output from the A / D 23 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like, and image data as JPEG format or the like. A compression / decompression processing unit 27 that compresses or reversely decompresses the image data, a liquid crystal display unit 28 that is provided on the back side of the camera and displays a menu screen, a through image, and a captured image, and an overall control of the entire imaging apparatus. A system control unit (CPU) 29, an internal memory 30 such as a frame memory, and a media interface (I / F) unit 31 that performs interface processing between a recording medium 32 that stores JPEG image data and the like. The system controller 29 includes an operation unit 3 for inputting instructions from the user. There has been connected.

図2は、図1に示すCCD型固体撮像素子35の表面模式図である。半導体基板41の表面部には、二次元アレイ状に、図示する例では正方格子状に、複数の画素(フォトダイオード:PD)42が配列形成されている。   FIG. 2 is a schematic view of the surface of the CCD solid-state imaging device 35 shown in FIG. A plurality of pixels (photodiodes: PD) 42 are arrayed on the surface of the semiconductor substrate 41 in a two-dimensional array form, in the illustrated example, in a square lattice form.

画素列毎に垂直電荷転送路(VCCD)43が形成され、各垂直電荷転送路43の転送方向端部に沿って水平電荷転送路(HCCD)44が形成され、水平電荷転送路44の出力端部にアンプ45が形成される。各画素42と垂直電荷転送路43とは、読出ゲート部43’で接続されている。   A vertical charge transfer path (VCCD) 43 is formed for each pixel column, a horizontal charge transfer path (HCCD) 44 is formed along the transfer direction end of each vertical charge transfer path 43, and an output end of the horizontal charge transfer path 44. An amplifier 45 is formed in the part. Each pixel 42 and the vertical charge transfer path 43 are connected by a read gate portion 43 '.

フォトダイオード42が形成された領域は、有効画素領域47と、この有効画素領域47の四周を囲むように設けられたオプティカルブラック(OB)部48に分けられる。有効画素領域47とOB部48との違いは、OB部48の各画素42は遮光膜によって覆われているのに対し、有効画素領域47の各画素42の受光面上の遮光膜には開口が設けられている点である。以下、有効画素領域47内の画素の符号を「42a」とし、OB部48内の画素の符号を「42b」とする。   The region where the photodiode 42 is formed is divided into an effective pixel region 47 and an optical black (OB) portion 48 provided so as to surround the four circumferences of the effective pixel region 47. The difference between the effective pixel region 47 and the OB portion 48 is that each pixel 42 in the OB portion 48 is covered with a light shielding film, whereas the light shielding film on the light receiving surface of each pixel 42 in the effective pixel region 47 has an opening. Is a point provided. Hereinafter, the code of the pixel in the effective pixel area 47 is “42a”, and the code of the pixel in the OB unit 48 is “42b”.

図3は、図2のIII―III線断面模式図であり、有効画素領域47とOB部48との境界線を跨いだ画素42a,画素42bの断面模式図である。   3 is a schematic cross-sectional view taken along the line III-III of FIG. 2, and is a schematic cross-sectional view of the pixel 42a and the pixel 42b straddling the boundary line between the effective pixel region 47 and the OB portion 48.

n型半導体基板41の表面部にはpウェル層51が形成され、その中に、画素(フォトダイオード)を形成するn領域42a,42bが形成される。また、各画素間にも垂直電荷転送路43を構成するn領域の埋め込みチャネル43aが形成される。   A p-well layer 51 is formed on the surface portion of the n-type semiconductor substrate 41, and n regions 42a and 42b for forming pixels (photodiodes) are formed therein. Also, an n-region buried channel 43a constituting the vertical charge transfer path 43 is formed between the pixels.

半導体基板41の最表面(=pウェル層51の最表面)にはゲート酸化膜52が形成され、このゲート酸化膜52を間に挟んだ埋め込みチャネル43a上に、ポリシリコン膜でなる垂直転送電極膜43bが形成される。垂直電荷転送路43は、埋め込みチャネル43a,ゲート酸化膜52,垂直転送電極膜43b(及び後述の43c)で構成される。   A gate oxide film 52 is formed on the outermost surface of the semiconductor substrate 41 (= the outermost surface of the p well layer 51), and a vertical transfer electrode made of a polysilicon film is formed on the buried channel 43a sandwiching the gate oxide film 52 therebetween. A film 43b is formed. The vertical charge transfer path 43 includes a buried channel 43a, a gate oxide film 52, and a vertical transfer electrode film 43b (and 43c described later).

ゲート酸化膜52及びポリシリコン膜43bの上には反射防止膜としてのシリコン窒化膜54が積層されている。このシリコン窒化膜54は、シンタリング効果を得るために、有効画素領域の画素42aであれば、隣接する垂直電荷転送路43の転送電極膜43b上が削除されて水素通路が形成される。また、OB部の画素42bであれば、フォトダイオード42b上のシリコン窒化膜54が削成されて水素通路が形成される。これにより、有効画素領域とOB部との間のシンタリング効果による暗電流差が抑制される。   A silicon nitride film 54 as an antireflection film is laminated on the gate oxide film 52 and the polysilicon film 43b. In order to obtain a sintering effect, if the silicon nitride film 54 is a pixel 42a in the effective pixel region, the transfer electrode film 43b of the adjacent vertical charge transfer path 43 is deleted to form a hydrogen path. In the case of the pixel 42b in the OB portion, the silicon nitride film 54 on the photodiode 42b is cut to form a hydrogen passage. Thereby, the dark current difference due to the sintering effect between the effective pixel region and the OB portion is suppressed.

このシリコン窒化膜54の上に、層間絶縁膜53及びタングステンWによる遮光膜55が積層され、有効画素領域の画素42aであれば、その上に遮光膜開口55aが設けられる。OB部の画素42bであれば、遮光膜開口は設けられず、受光面は遮光膜55bの部分によって覆われた状態となる。   On the silicon nitride film 54, an interlayer insulating film 53 and a light shielding film 55 made of tungsten W are stacked. If the pixel 42a is in the effective pixel region, a light shielding film opening 55a is provided thereon. In the case of the pixel 42b in the OB portion, the light shielding film opening is not provided, and the light receiving surface is covered with the light shielding film 55b.

本実施形態の固体撮像素子35では、この画素42bの受光面を覆う遮光膜55bの部分の下部に設ける絶縁層56の厚さxを、ゲート酸化膜52と層間絶縁膜53の合計の厚さyより厚くする。これにより、寄生MOS効果が低減され、暗電流の増大が抑制される。なお、ここでいう膜厚とは、物理的な膜厚というより、電気的な膜厚(酸化膜容量換算膜厚)を意味し、zをゲート酸化膜52と層間絶縁膜53と窒化膜54の合計の電気的膜厚としたとき、xは少なくともyより厚く、望ましくは、zより厚くするのがよい。   In the solid-state imaging device 35 of the present embodiment, the thickness x of the insulating layer 56 provided below the portion of the light shielding film 55b that covers the light receiving surface of the pixel 42b is the total thickness of the gate oxide film 52 and the interlayer insulating film 53. Thicker than y. Thereby, the parasitic MOS effect is reduced and an increase in dark current is suppressed. Here, the film thickness means an electrical film thickness (oxide film equivalent film thickness) rather than a physical film thickness, and z represents a gate oxide film 52, an interlayer insulating film 53, and a nitride film 54. X is at least thicker than y, preferably thicker than z.

もし、シリコン窒化膜54をエッチングで削除した後に直ぐに遮光膜55を積層すると、遮光膜55bと半導体基板41との間の距離はゲート酸化膜52と層間絶縁膜53の合計の厚さとなって近接することになり、遮光膜55bの寄生ゲートによる寄生MOS効果が大きくなってしまう。しかしながら、本実施形態では、この絶縁層56の厚さを厚く形成しているため、寄生MOS効果を抑制することが可能となる。   If the light shielding film 55 is laminated immediately after the silicon nitride film 54 is removed by etching, the distance between the light shielding film 55b and the semiconductor substrate 41 becomes the total thickness of the gate oxide film 52 and the interlayer insulating film 53 and is close. As a result, the parasitic MOS effect due to the parasitic gate of the light shielding film 55b is increased. However, in this embodiment, since the insulating layer 56 is formed thick, the parasitic MOS effect can be suppressed.

これにより、本実施形態では、有効画素領域とOB部との間の暗電流差が小さくなり、しかも、シンタリング効果を得ることもでき、暗電流ノイズも安定することになる。以下、図3の実施形態の構造を実現する固体撮像素子の製造方法について述べる。   Thereby, in the present embodiment, the dark current difference between the effective pixel region and the OB portion is reduced, the sintering effect can be obtained, and the dark current noise is also stabilized. Hereinafter, a method for manufacturing a solid-state imaging device that realizes the structure of the embodiment of FIG. 3 will be described.

図4,図5は、図3の実施形態の構造を有する固体撮像素子の製造工程図である。工程(a)で、ゲート酸化膜52,垂直転送電極43b,層間絶縁膜58を形成した後、例えば、LP―CVD法により、シリコン窒化膜(SiN)54を30nm堆積する。   4 and 5 are manufacturing process diagrams of the solid-state imaging device having the structure of the embodiment of FIG. In step (a), after forming the gate oxide film 52, the vertical transfer electrode 43b, and the interlayer insulating film 58, a silicon nitride film (SiN) 54 is deposited by 30 nm by, for example, LP-CVD.

次の工程(b)では、フォトマスクを用いてレジスト59のパターニングを行い、シンタリング効果のためにOB部のシリコン窒化膜54を除去する箇所(図3の画素42bの上方位置)からレジストを除く。   In the next step (b), the resist 59 is patterned using a photomask, and the resist is removed from the portion where the silicon nitride film 54 in the OB portion is removed for the sintering effect (above the pixel 42b in FIG. 3). except.

そして、工程(c)で、例えば、ケミカルドライエッチング(CDE)法にて、画素42b上方位置のシリコン窒化膜54をエッチング除去して孔54aを形成し、更に残ったレジストも除去する。   In step (c), for example, the silicon nitride film 54 located above the pixel 42b is etched away by chemical dry etching (CDE) to form a hole 54a, and the remaining resist is also removed.

次の工程(d)では、例えば、LP―CVD法により、SiO60を100nm堆積する。そして、次の図5の工程(e)で、フォトマスクを用いてレジスト61のパターニングを行い、シリコン窒化膜54の孔54aの上方位置に、レジスト61を堆積する。   In the next step (d), for example, SiO 60 is deposited to a thickness of 100 nm by the LP-CVD method. Then, in the next step (e) of FIG. 5, the resist 61 is patterned using a photomask, and the resist 61 is deposited above the hole 54 a of the silicon nitride film 54.

次の工程(f)で、例えば、反応性イオンエッチング(RIE)法により、SiO60をエッチング除去すると、レジスト61下すなわち孔54aの上方位置のSiO60が残る。   In the next step (f), when the SiO 60 is removed by reactive ion etching (RIE), for example, the SiO 60 below the resist 61, that is, above the hole 54a remains.

次の工程(g)では、フォトマスクを用いてレジスト62のパターニングを行い、シンタリング効果のために有効画素領域のシリコン窒化膜54を除去する箇所(垂直転送電極43bの上方位置)からレジストを除く。   In the next step (g), the resist 62 is patterned using a photomask, and the resist is removed from a location (above the vertical transfer electrode 43b) where the silicon nitride film 54 in the effective pixel region is removed for the sintering effect. except.

そして、次の工程(h)で、CDE法によりシリコン窒化膜54をエッチング除去して孔54bを形成し、残留したレジストも除去し、最後の工程(i)で、遮光膜55を形成する。例えば、LP―CVD法によりSiO63を50nm堆積し、物理的気相成長法(PVD)によりタングステン膜を200nm堆積し、フォトマスクを用いてレジストパターニングを行い、更に、例えばRIE法で、開口部55aのタングステン膜を除去し、残留レジストを除去すればよい。これにより、孔54b箇所の酸化膜厚がゲート酸化膜52と層間絶縁膜53との合計の膜厚より厚くなる。   Then, in the next step (h), the silicon nitride film 54 is removed by etching by the CDE method to form the hole 54b, the remaining resist is also removed, and in the final step (i), the light shielding film 55 is formed. For example, 50 nm of SiO63 is deposited by LP-CVD, 200 nm of tungsten is deposited by physical vapor deposition (PVD), resist patterning is performed using a photomask, and openings 55a are formed by, for example, RIE. The tungsten film may be removed and the residual resist may be removed. As a result, the oxide film thickness at the hole 54 b becomes thicker than the total film thickness of the gate oxide film 52 and the interlayer insulating film 53.

本実施形態では、反射防止膜として用いるシリコン窒化膜54に2種類の孔54a,54bを形成するが、これらを別の工程で形成している。勿論、一度の工程で孔54a,54bを開けることは可能である。しかし、OB部の構造を変化させることによって、光学特性に影響を大きく与え画素部の形状が変化してしまうと、有効画像領域とOB部との間の暗電流差の原因となるため、本実施形態では別々の工程として、OB部の画素構造が有効画素領域の画素構造から変化しない工程を用いている。   In the present embodiment, two types of holes 54a and 54b are formed in the silicon nitride film 54 used as an antireflection film, but these are formed in separate steps. Of course, it is possible to open the holes 54a and 54b in one step. However, changing the structure of the OB portion greatly affects the optical characteristics and changes the shape of the pixel portion, which causes a dark current difference between the effective image region and the OB portion. In the embodiment, as a separate process, a process in which the pixel structure of the OB portion does not change from the pixel structure of the effective pixel region is used.

図6は、図3に代わる実施形態の断面模式図である。本実施形態では、OB部の画素42b上方位置のシリコン窒化膜54を除去して孔54aを形成した箇所に、酸化膜65を介して別のシリコン窒化膜66を形成し、その上の遮光膜55bと半導体基板41との間の距離を離間して、寄生MOS効果を低減した点が図3の実施形態と異なる。シリコン窒化膜66は水素を通さないが、シリコン窒化膜54との間の酸化膜65が水素通路のパスとなるため、シンタリング効果を得ることができる。   FIG. 6 is a schematic cross-sectional view of an alternative embodiment to FIG. In the present embodiment, another silicon nitride film 66 is formed via an oxide film 65 at a location where the silicon nitride film 54 located above the pixel 42b in the OB portion is removed to form a hole 54a, and a light shielding film thereon. 3 is different from the embodiment of FIG. 3 in that the parasitic MOS effect is reduced by separating the distance between 55b and the semiconductor substrate 41. Although the silicon nitride film 66 does not allow hydrogen to pass therethrough, since the oxide film 65 between the silicon nitride film 54 serves as a path for the hydrogen passage, a sintering effect can be obtained.

図7,図8は、図6の固体撮像素子の製造方法の工程説明図である。図7の工程(a)は、図4の工程(a)と同じである。次の工程(b)では、フォトマスクを用いてレジスト67のパターニングを行い、シリコン窒化膜54に孔54a,54bを開ける箇所を定める。そして、次の工程(c)で、例えばCDE法によりシリコン窒化膜54をエッチング除去し、残留レジストも除去すると、水素パスとなる孔54a,54bが一度に形成される。   7 and 8 are process explanatory diagrams of the manufacturing method of the solid-state imaging device of FIG. Step (a) in FIG. 7 is the same as step (a) in FIG. In the next step (b), patterning of the resist 67 is performed using a photomask to determine the locations where holes 54a and 54b are to be formed in the silicon nitride film 54. Then, in the next step (c), when the silicon nitride film 54 is removed by etching, for example, by the CDE method, and the residual resist is also removed, holes 54a and 54b serving as hydrogen paths are formed at a time.

次の工程(d)では、例えば、LP―CVD法により、SiO65を50nm堆積し、更に、LP―CVD法によりシリコン窒化膜66を30nm堆積する。   In the next step (d), for example, SiO 65 is deposited by 50 nm by LP-CVD, and further, a silicon nitride film 66 is deposited by 30 nm by LP-CVD.

次の図8に示す工程(e)では、フォトマスクを用い、画素42b上方位置すなわち孔54aの上方位置にレジスト68をパターニングして形成し、次の工程(f)では、例えばCDE法により孔54a上方位置のシリコン窒化膜66を残し他の部分のシリコン窒化膜66をエッチング除去し、残留レジストも除去する。   In the next step (e) shown in FIG. 8, a photomask is used to pattern the resist 68 at a position above the pixel 42b, that is, above the hole 54a. In the next step (f), the hole is formed by, for example, the CDE method. The remaining portion of the silicon nitride film 66 is removed by etching while leaving the silicon nitride film 66 above the position 54a, and the remaining resist is also removed.

最後の工程(g)では、図5の工程(i)と同様にして遮光膜55をSiO69の上に形成する。   In the last step (g), the light shielding film 55 is formed on the SiO 69 in the same manner as in the step (i) of FIG.

本実施形態によれば、撮像素子製造途中に形成される表面凹凸部での徽細寸法制御(例えば、図5のレジスタ61の寸法制御)が不要となるため、孔54a,54bを一度に形成することができ、固体撮像素子をより安定して製造することが可能となる。   According to the present embodiment, fine dimension control (for example, dimension control of the register 61 in FIG. 5) at the surface irregularities formed in the middle of manufacturing the imaging device is not required, so the holes 54a and 54b are formed at a time. It is possible to manufacture the solid-state imaging device more stably.

図9は、図3に代わる更に別実施形態の固体撮像素子の断面模式図である。本実施形態の固体撮像素子では、有効画素領域の反射防止膜(シリコン窒化膜)54を残し、OB部のシリコン窒化膜は全て削除してしまう。そして、OB部の画素42bの上方位置におけるポリシリコン膜43b間の空間に、同じくポリシリコン膜43c’を形成し、その上を全て遮光膜55で覆ってしまう。   FIG. 9 is a schematic cross-sectional view of a solid-state imaging device according to another embodiment instead of FIG. In the solid-state imaging device of the present embodiment, the antireflection film (silicon nitride film) 54 in the effective pixel region is left, and all the silicon nitride film in the OB portion is deleted. Then, a polysilicon film 43 c ′ is also formed in the space between the polysilicon films 43 b above the pixels 42 b in the OB portion, and all of the polysilicon film 43 c ′ is covered with the light shielding film 55.

図10は、図9に断面を示す位置の4画素分の上面図である。垂直方向に延びる埋め込みチャネル43a上には、単層膜構造の垂直転送電極43b,43cが交互に敷設されるが、図示する例では、垂直転送電極43bが隣接のフォトダイオード(PD)近傍まで延設されて読出ゲート部43’が形成され、読出電極兼用となっている。   FIG. 10 is a top view of four pixels at the position shown in the cross section in FIG. On the buried channel 43a extending in the vertical direction, vertical transfer electrodes 43b and 43c having a single layer film structure are alternately laid. In the example shown in the drawing, the vertical transfer electrode 43b extends to the vicinity of the adjacent photodiode (PD). Thus, a read gate portion 43 ′ is formed and also serves as a read electrode.

読出電極には高電圧の読出パルスが印加されるため、本実施形態では、他方の垂直転送電極43cから一体に、OB部の画素42bの上方位置を覆うポリシリコン膜43c’を張り出して設け、このポリシリコン膜43c’により、半導体基板41と遮光膜55との間を離間させ、寄生MOS効果の低減を図っている。しかし、ポリシリコン膜43c’を、転送電極膜とは独立した孤立電極膜として、その電位をフローティング電位としてもよい。   Since a high-voltage read pulse is applied to the read electrode, in the present embodiment, a polysilicon film 43c ′ that covers the upper position of the pixel 42b in the OB portion is provided so as to integrally extend from the other vertical transfer electrode 43c. By this polysilicon film 43c ′, the semiconductor substrate 41 and the light shielding film 55 are separated from each other to reduce the parasitic MOS effect. However, the polysilicon film 43c 'may be an isolated electrode film independent of the transfer electrode film, and the potential thereof may be a floating potential.

図11は、図10に示す実施形態の固体撮像素子の製造工程図である。通常のCCD型固体撮像素子の周知の製造方法と同様に、半導体基板内にフォトダイオード(PD)42a,42bやVCCDのn領域43aを形成した後、ゲート絶縁膜52や転送電極膜43b,43c’、転送電極間絶縁膜71を形成し、次の工程(a)で、例えばLP―CVD法によりシリコン窒化膜54を30nm堆積する。   FIG. 11 is a manufacturing process diagram of the solid-state imaging device of the embodiment shown in FIG. Similar to a well-known manufacturing method of a normal CCD type solid-state imaging device, a photodiode (PD) 42a, 42b or a VCCD n region 43a is formed in a semiconductor substrate, and then a gate insulating film 52 or transfer electrode films 43b, 43c. ', A transfer electrode insulating film 71 is formed, and in the next step (a), a silicon nitride film 54 is deposited by 30 nm by, for example, LP-CVD.

次の工程(b)では、フォトマスクを用いてレジスト72をパターニングし、ポリシリコン膜43b,43c’上のシリコン窒化膜54を除去する準備を行う。   In the next step (b), the resist 72 is patterned using a photomask to prepare for removing the silicon nitride film 54 on the polysilicon films 43b and 43c '.

次の工程(c)で、例えばCDE法によりシリコン窒化膜54をエッチング除去して、更に残留レジストを除去する。そして、工程(d)で、LP―CVD法によりSiO73を50nm堆積し、PVD法によりタングステン膜55を200nm堆積し、フォトマスクを用いてレジスト74のパターニングを行い、画素42a上の遮光膜開口を開ける準備を行う。   In the next step (c), the silicon nitride film 54 is removed by etching, for example, by the CDE method, and the residual resist is further removed. Then, in step (d), SiO 73 is deposited to 50 nm by LP-CVD, and tungsten film 55 is deposited to 200 nm by PVD, and resist 74 is patterned using a photomask to form a light shielding film opening on pixel 42a. Prepare to open.

次の工程(e)では、例えばRIE法により遮光膜(タングステン膜)55の画素42a上の部分をエッチング除去し、残留レジストを除去する。   In the next step (e), the portion of the light shielding film (tungsten film) 55 on the pixel 42a is removed by etching, for example, by RIE, and the residual resist is removed.

図12は、図9に代わる実施形態の断面模式図である。図9の実施形態では、OB部の画素42b上を該画素42bと同程度の面積のポリシリコン膜43c’で覆ったが、本実施形態では、図13に示す様に、このポリシリコン膜43c’の中央に矩形の孔43dを設けている点が異なる。   FIG. 12 is a schematic cross-sectional view of an alternative embodiment to FIG. In the embodiment of FIG. 9, the pixel 42b of the OB portion is covered with the polysilicon film 43c ′ having the same area as the pixel 42b. However, in the present embodiment, as shown in FIG. The difference is that a rectangular hole 43d is provided at the center of '.

図14は、図12の固体撮像素子の製造工程図であるが、工程の内容は図11と殆ど同じであり、レジストパターニングのパターンを変えることで実現できる。   FIG. 14 is a manufacturing process diagram of the solid-state imaging device of FIG. 12. The content of the process is almost the same as that of FIG. 11, and can be realized by changing the resist patterning pattern.

半導体基板内にフォトダイオード(PD)42a,42bやVCCDのn領域43aを形成した後、ゲート絶縁膜52や転送電極膜43bや孔43dが開けられた転送電極膜43c’、転送電極間絶縁膜71を形成する。   After forming photodiodes (PD) 42a, 42b and VCCD n-region 43a in the semiconductor substrate, gate electrode 52, transfer electrode film 43b and transfer electrode film 43c 'in which holes 43d are formed, and transfer electrode insulating film 71 is formed.

そして、次の工程(a)で、例えばLP―CVD法によりシリコン窒化膜54を30nm堆積し、次工程(b)で、フォトマスクを用いてレジスト72をパターニングし、ポリシリコン膜43b上のシリコン窒化膜54を除去する準備を行う。   Then, in the next step (a), a silicon nitride film 54 is deposited to a thickness of 30 nm by, for example, LP-CVD. In the next step (b), the resist 72 is patterned using a photomask, and silicon on the polysilicon film 43b is formed. Preparation for removing the nitride film 54 is performed.

次の工程(c)で、例えばCDE法によりシリコン窒化膜54をエッチング除去して、更に残留レジストを除去する。そして、工程(d)で、LP―CVD法によりSiO73を50nm堆積し、PVD法によりタングステン膜55を200nm堆積し、フォトマスクを用いてレジスト74のパターニングを行い、画素42a上の遮光膜開口を開ける準備を行う。   In the next step (c), the silicon nitride film 54 is removed by etching, for example, by the CDE method, and the residual resist is further removed. Then, in step (d), SiO 73 is deposited to 50 nm by LP-CVD, and tungsten film 55 is deposited to 200 nm by PVD, and resist 74 is patterned using a photomask to form a light shielding film opening on pixel 42a. Prepare to open.

次の工程(e)では、例えばRIE法により遮光膜(タングステン膜)55の画素42a上の部分をエッチング除去し、残留レジストを除去する。   In the next step (e), the portion of the light shielding film (tungsten film) 55 on the pixel 42a is removed by etching, for example, by RIE, and the residual resist is removed.

本実施形態では、図9に示す実施形態と比較して、ポリシリコン膜43c’に孔43dが開けられている関係により、この孔43d部分で、遮光膜55と半導体基板41表面との距離が近くなるが、画素42dの面積における平均的な距離としてみれば、十分距離をとることが可能となり、寄生MOS効果を低減することができる。   In the present embodiment, compared to the embodiment shown in FIG. 9, the distance between the light shielding film 55 and the surface of the semiconductor substrate 41 at the hole 43d portion due to the relationship in which the hole 43d is opened in the polysilicon film 43c ′. However, if the average distance in the area of the pixel 42d is considered, a sufficient distance can be obtained and the parasitic MOS effect can be reduced.

孔43d内に残るシリコン窒化膜54はこれは無くても良く、エッチンジ時に除去しても良い。この場合、孔43d内では遮光膜55―半導体基板表面間の距離は更に近くなるが、それでも上記の画素面積当たりの平均的な距離は離れるため、寄生MOS効果は低減される。   The silicon nitride film 54 remaining in the hole 43d may not be present, and may be removed during etching. In this case, the distance between the light shielding film 55 and the surface of the semiconductor substrate is further shortened in the hole 43d, but the average distance per pixel area is still increased, so that the parasitic MOS effect is reduced.

なお、上述した各実施形態は、CCD型固体撮像素子を例に説明したが、本発明はCCD型に限るものではない。CMOS型固体撮像素子でも、画素の微細化に伴って半導体基板表面とその上方の遮光膜(電極配線兼用の場合もある。)との間の距離が短くなっているため、寄生MOS効果による暗電流増加の影響が顕著になってくると考えられる。そこで、シリコン窒化膜除去によるシンタリング効果と、遮光膜の半導体基板表面への接近に基づく寄生MOS効果との兼ね合いを図った本発明は有効となる。   In each of the above-described embodiments, the CCD solid-state imaging device has been described as an example. However, the present invention is not limited to the CCD type. Even in the CMOS type solid-state imaging device, the distance between the surface of the semiconductor substrate and the light shielding film thereabove (sometimes also used as electrode wiring) has become shorter as the pixels become smaller. It is thought that the effect of current increase becomes significant. Therefore, the present invention that achieves a balance between the sintering effect by removing the silicon nitride film and the parasitic MOS effect based on the proximity of the light shielding film to the surface of the semiconductor substrate is effective.

また、OB部にフォトダイオード(n領域)42bを設けた実施形態について説明したが、OB部にフォトダイオード42bを設けない場合にも上述した実施形態をそのまま適用可能である。フォトダイオード42bを設けない場合の方が、フォトダイオード42bを設けた場合に比べて寄生MOSによる影響が大きいと考えられるため、上述した実施形態をOB部にフォトダイオード42bを設けない場合に適用することにより、寄生MOS効果を低減することができる。   Further, although the embodiment in which the photodiode (n region) 42b is provided in the OB portion has been described, the above-described embodiment can be applied as it is even when the photodiode 42b is not provided in the OB portion. The case where the photodiode 42b is not provided is considered to be more affected by the parasitic MOS than the case where the photodiode 42b is provided. Therefore, the embodiment described above is applied to the case where the photodiode 42b is not provided in the OB portion. As a result, the parasitic MOS effect can be reduced.

以上述べた様に、実施形態による固体撮像素子及びその製造方法は、半導体基板の表面部に二次元アレイ状に配列形成された複数のフォトダイオードと、前記表面部を覆う反射防止膜と、前記表面部の前記フォトダイオードが形成された領域を中央部分の有効画素領域と該有効画素領域の周囲のオプティカルブラック部とに分け該有効画素領域の前記フォトダイオードの個々の受光面以外を覆う遮光膜とを備える固体撮像素子において、前記有効画素領域の前記反射防止膜のうち該有効画素領域内の前記フォトダイオードの受光面以外の箇所が削除されると共に前記オプティカルブラック部の前記フォトダイオードの受光面に相当する領域上の前記反射防止膜が削除されて形成され、該オプティカルブラック部の前記受光面に相当する領域を覆う前記遮光膜と該受光面に相当する領域との間に形成される第1絶縁層(x)が、前記有効画素領域の前記フォトダイオードの受光面と該受光面に対面する前記遮光膜の開口端部との間の前記反射防止膜を除いた第2絶縁層(y)より厚く形成されることを特徴とする。   As described above, the solid-state imaging device and the manufacturing method thereof according to the embodiment include a plurality of photodiodes arranged in a two-dimensional array on the surface portion of the semiconductor substrate, the antireflection film covering the surface portion, A light shielding film that divides a region where the photodiode is formed on the surface portion into an effective pixel region at a central portion and an optical black portion around the effective pixel region and covers other than the individual light receiving surfaces of the photodiode in the effective pixel region In the solid-state imaging device, a portion other than the light receiving surface of the photodiode in the effective pixel region is deleted from the antireflection film of the effective pixel region, and the light receiving surface of the photodiode in the optical black portion The antireflection film on the region corresponding to is formed by deleting the region corresponding to the light receiving surface of the optical black portion. A first insulating layer (x) formed between the light-shielding film and a region corresponding to the light-receiving surface of the light-shielding film facing the light-receiving surface of the photodiode and the light-receiving surface in the effective pixel region; It is characterized by being formed thicker than the second insulating layer (y) excluding the antireflection film between the opening ends.

また、実施形態の固体撮像素子及びその製造方法は、前記オプティカルブラック部の前記フォトダイオードを構成するn領域が非形成であることを特徴とする。   Further, the solid-state imaging device and the manufacturing method thereof according to the embodiment are characterized in that the n region constituting the photodiode in the optical black portion is not formed.

また、実施形態の固体撮像素子及びその製造方法は、前記第1絶縁層,前記第2絶縁層の層厚が、酸化膜容量換算の層厚であることを特徴とする。   In the solid-state imaging device and the manufacturing method thereof according to the embodiment, the layer thickness of the first insulating layer and the second insulating layer is a layer thickness in terms of oxide film capacitance.

また、実施形態の固体撮像素子及びその製造方法は、前記第1絶縁層が複数の絶縁層の積層構造でなることを特徴とする。   Further, the solid-state imaging device and the manufacturing method thereof according to the embodiment are characterized in that the first insulating layer has a laminated structure of a plurality of insulating layers.

また、実施形態の固体撮像素子及びその製造方法は、前記第1絶縁層の積層構造のうち中間の層がポリシリコン膜で形成されることを特徴とする。   Further, the solid-state imaging device and the manufacturing method thereof according to the embodiment are characterized in that an intermediate layer of the stacked structure of the first insulating layers is formed of a polysilicon film.

また、実施形態の固体撮像素子及びその製造方法は、前記固体撮像素子がCCD型であり前記ポリシリコン膜が読出電極非兼用の転送電極膜であることを特徴とする。   In addition, the solid-state imaging device and the manufacturing method thereof according to the embodiment are characterized in that the solid-state imaging device is a CCD type and the polysilicon film is a transfer electrode film not serving as a readout electrode.

また、実施形態の固体撮像素子及びその製造方法は、前記ポリシリコン膜がフローティング電極膜であることを特徴とする。   In the solid-state imaging device and the manufacturing method thereof according to the embodiment, the polysilicon film is a floating electrode film.

また、実施形態の固体撮像素子及びその製造方法は、前記第1絶縁層の前記フォトダイオードの受光面面積に対する平均的な厚さが前記第2絶縁層より厚いことを特徴とする。   Further, the solid-state imaging device and the manufacturing method thereof according to the embodiment are characterized in that an average thickness of the first insulating layer with respect to a light receiving surface area of the photodiode is thicker than that of the second insulating layer.

また、実施形態の撮像装置は、上記のいずれかに記載の固体撮像素子を搭載したことを特徴とする。   Further, an imaging apparatus according to the embodiment is characterized by mounting any one of the solid-state imaging elements described above.

上記実施形態によれば、OB部もシンタリング効果を得ることができると共に寄生MOS効果を削減できるため、OB部の暗電流と有効画素領域の暗電流との差を抑制することができ、また、暗電流ノイズの安定化を図ることが可能となる。このため、この固体撮像素子を搭載した撮像装置では、高品質な画質の被写体画像を撮像することが可能となる。   According to the above embodiment, since the OB portion can also obtain a sintering effect and reduce the parasitic MOS effect, the difference between the dark current in the OB portion and the dark current in the effective pixel region can be suppressed. It becomes possible to stabilize the dark current noise. For this reason, an image pickup apparatus equipped with this solid-state image pickup device can pick up a high-quality subject image.

本発明に係る固体撮像素子は、有効画素領域とOB部との暗電流差がなくなり、しかも、寄生MOS効果が低減されて暗電流が小さくなるため、高品質な被写体画像を撮像するデジタルスチルカメラやデジタルビデオカメラ、カメラ付携帯電話機、PDAやノートパソコン等のカメラ付電子装置、内視鏡等の撮像装置一般に適用すると有用である。   The solid-state imaging device according to the present invention eliminates the difference in dark current between the effective pixel region and the OB portion, and further, the parasitic MOS effect is reduced to reduce the dark current. Therefore, the digital still camera that picks up a high-quality subject image It is useful when applied to general imaging devices such as digital cameras, digital video cameras, mobile phones with cameras, electronic devices with cameras such as PDAs and notebook computers, and endoscopes.

35 固体撮像素子
41 半導体基板
42 画素(フォトダイオード:PD)
42a 有効画素領域の画素(フォトダイオード:PD)
42b オプティカルブラック(OB)部の画素(フォトダイオード:PD)
43 垂直電荷転送路(VCCD)
43’ 読出ゲート部
43a 埋め込みチャネル
43b ポリシリコン膜(読出電極兼用の垂直転送電極)
43c ポリシリコン膜(読出電極と異なる垂直転送路電極)
43c’ OB部の画素上方を覆うポリシリコン膜
43d ポリシリコン膜の孔
44 水平電荷転送路(HCCD)
47 有効画素領域
48 OB部
51 半導体基板表面部のpウェル層
52 ゲート絶縁膜
54 シリコン窒化膜(反射防止膜)
55 遮光膜(タングステン膜)
55a 遮光膜開口
56 絶縁層
35 Solid-state image sensor 41 Semiconductor substrate 42 Pixel (photodiode: PD)
42a Effective pixel region pixel (photodiode: PD)
42b Optical Black (OB) Pixel (Photodiode: PD)
43 Vertical Charge Transfer Path (VCCD)
43 'read gate portion 43a buried channel 43b polysilicon film (vertical transfer electrode also serving as read electrode)
43c Polysilicon film (vertical transfer path electrode different from readout electrode)
43c ′ Polysilicon film 43d covering the pixel in the OB portion Hole 44 of the polysilicon film Horizontal charge transfer path (HCCD)
47 Effective pixel region 48 OB portion 51 p well layer 52 on semiconductor substrate surface portion gate insulating film 54 silicon nitride film (antireflection film)
55 Light-shielding film (tungsten film)
55a Light shielding film opening 56 Insulating layer

Claims (17)

半導体基板の表面部に二次元アレイ状に配列形成された複数のフォトダイオードと、前記表面部を覆う反射防止膜と、前記表面部の前記フォトダイオードが形成された領域を中央部分の有効画素領域と該有効画素領域の周囲のオプティカルブラック部とに分け該有効画素領域の前記フォトダイオードの個々の受光面以外を覆う遮光膜とを備える固体撮像素子であって、前記有効画素領域の前記反射防止膜のうち該有効画素領域内の前記フォトダイオードの受光面以外の箇所が削除されると共に前記オプティカルブラック部の前記フォトダイオードの受光面に相当する領域上の前記反射防止膜が削除されて形成され、該オプティカルブラック部の前記受光面に相当する領域を覆う前記遮光膜と該受光面に相当する領域との間に形成される第1絶縁層(x)が、前記有効画素領域の前記フォトダイオードの受光面と該受光面に対面する前記遮光膜の開口端部との間の前記反射防止膜を除いた第2絶縁層(y)より厚く形成される固体撮像素子。   A plurality of photodiodes arrayed in a two-dimensional array on the surface portion of the semiconductor substrate, an antireflection film covering the surface portion, and an area where the photodiodes are formed on the surface portion as an effective pixel region at a central portion And a light-shielding film that covers the effective pixel region and the optical black portion around the effective pixel region, and covers a portion other than each light receiving surface of the photodiode in the effective pixel region, wherein the antireflection of the effective pixel region A portion of the film other than the light receiving surface of the photodiode in the effective pixel region is deleted, and the antireflection film on a region corresponding to the light receiving surface of the photodiode in the optical black portion is deleted. A first edge formed between the light shielding film covering the region corresponding to the light receiving surface of the optical black portion and the region corresponding to the light receiving surface. The layer (x) is a second insulating layer (y) excluding the antireflection film between the light receiving surface of the photodiode in the effective pixel region and the opening end of the light shielding film facing the light receiving surface. A solid-state imaging device formed thick. 請求項1に記載の固体撮像素子であって、前記オプティカルブラック部の前記フォトダイオードを構成するn領域が非形成である固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein an n region constituting the photodiode of the optical black portion is not formed. 請求項1又は請求項2に記載の固体撮像素子であって、前記第1絶縁層,前記第2絶縁層の層厚が、酸化膜容量換算の層厚である固体撮像素子。   3. The solid-state imaging device according to claim 1, wherein the first insulating layer and the second insulating layer have a thickness equivalent to an oxide film capacitance. 4. 請求項1乃至請求項3のいずれかに記載の固体撮像素子であって、前記第1絶縁層が複数の絶縁層の積層構造でなる固体撮像素子。   4. The solid-state imaging device according to claim 1, wherein the first insulating layer has a stacked structure of a plurality of insulating layers. 5. 請求項4に記載の固体撮像素子であって、前記第1絶縁層の積層構造のうち中間の層がポリシリコン膜で形成される固体撮像素子。   5. The solid-state imaging device according to claim 4, wherein an intermediate layer of the laminated structure of the first insulating layers is formed of a polysilicon film. 請求項5に記載の固体撮像素子であって、前記固体撮像素子がCCD型であり前記ポリシリコン膜が読出電極非兼用の転送電極膜である固体撮像素子。   6. The solid-state imaging device according to claim 5, wherein the solid-state imaging device is a CCD type, and the polysilicon film is a transfer electrode film not serving as a readout electrode. 請求項5に記載の固体撮像素子であって、前記ポリシリコン膜がフローティング電極膜である固体撮像素子。   The solid-state imaging device according to claim 5, wherein the polysilicon film is a floating electrode film. 請求項1乃至請求項7のいずれかに記載の固体撮像素子であって、前記第1絶縁層の前記フォトダイオードの受光面面積に対する平均的な厚さが前記第2絶縁層より厚い固体撮像素子。   8. The solid-state imaging device according to claim 1, wherein an average thickness of the first insulating layer with respect to a light receiving surface area of the photodiode is thicker than that of the second insulating layer. . 半導体基板の表面部に二次元アレイ状に配列形成された複数のフォトダイオードと、前記表面部を覆う反射防止膜と、前記表面部の前記フォトダイオードが形成された領域を中央部分の有効画素領域と該有効画素領域の周囲のオプティカルブラック部とに分け該有効画素領域の前記フォトダイオードの個々の受光面以外を覆う遮光膜とを備える固体撮像素子の製造方法であって、前記有効画素領域の前記反射防止膜のうち該有効画素領域内の前記フォトダイオードの受光面以外の箇所が削除されると共に前記オプティカルブラック部の前記フォトダイオードの受光面に相当する領域上の前記反射防止膜が削除されて形成され、該オプティカルブラック部の前記受光面に相当する領域を覆う前記遮光膜と該受光面に相当する領域との間に形成される第1絶縁層(x)が、前記有効画素領域の前記フォトダイオードの受光面と該受光面に対面する前記遮光膜の開口端部との間の前記反射防止膜を除いた第2絶縁層(y)より厚く形成される固体撮像素子の製造方法。   A plurality of photodiodes arrayed in a two-dimensional array on the surface portion of the semiconductor substrate, an antireflection film covering the surface portion, and an area where the photodiodes are formed on the surface portion as an effective pixel region at a central portion And a light-shielding film that covers the effective pixel region and the optical black portion around the effective pixel region, and covers a portion other than each light receiving surface of the photodiode in the effective pixel region. Of the antireflection film, a portion other than the light receiving surface of the photodiode in the effective pixel region is deleted, and the antireflection film on a region corresponding to the light receiving surface of the photodiode in the optical black portion is deleted. Formed between the light-shielding film covering the region corresponding to the light-receiving surface of the optical black portion and the region corresponding to the light-receiving surface. The first insulating layer (x) is a second insulating layer excluding the antireflection film between the light receiving surface of the photodiode in the effective pixel region and the opening end of the light shielding film facing the light receiving surface. (Y) A method of manufacturing a solid-state imaging device formed thicker. 請求項9に記載の固体撮像素子の製造方法であって、前記オプティカルブラック部の前記フォトダイオードを構成するn領域が非形成である固体撮像素子の製造方法。   The method for manufacturing a solid-state imaging device according to claim 9, wherein an n region constituting the photodiode of the optical black portion is not formed. 請求項9又は請求項10に記載の固体撮像素子の製造方法であって、前記第1絶縁層,前記第2絶縁層の層厚が、酸化膜容量換算の層厚である固体撮像素子の製造方法。   11. The method of manufacturing a solid-state imaging device according to claim 9, wherein the first insulating layer and the second insulating layer have a thickness equivalent to an oxide film capacitance. Method. 請求項9乃至請求項11のいずれかに記載の固体撮像素子の製造方法であって、前記第1絶縁層が複数の絶縁層の積層構造でなる固体撮像素子の製造方法。   12. The method for manufacturing a solid-state imaging device according to claim 9, wherein the first insulating layer has a laminated structure of a plurality of insulating layers. 請求項12に記載の固体撮像素子の製造方法であって、前記第1絶縁層の積層構造のうち中間の層がポリシリコン膜で形成される固体撮像素子の製造方法。   13. The method for manufacturing a solid-state imaging device according to claim 12, wherein an intermediate layer of the laminated structure of the first insulating layers is formed of a polysilicon film. 請求項13に記載の固体撮像素子であって、前記固体撮像素子がCCD型であり前記ポリシリコン膜が読出電極非兼用の転送電極膜である固体撮像素子の製造方法。   14. The method of manufacturing a solid-state imaging device according to claim 13, wherein the solid-state imaging device is a CCD type, and the polysilicon film is a transfer electrode film not serving as a readout electrode. 請求項13に記載の固体撮像素子であって、前記ポリシリコン膜がフローティング電極膜である固体撮像素子の製造方法。   14. The method of manufacturing a solid-state imaging device according to claim 13, wherein the polysilicon film is a floating electrode film. 請求項9乃至請求項15のいずれかに記載の固体撮像素子の製造方法であって、前記第1絶縁層の前記フォトダイオードの受光面面積に対する平均的な厚さが前記第2絶縁層より厚い固体撮像素子の製造方法。   16. The method of manufacturing a solid-state imaging device according to claim 9, wherein an average thickness of the first insulating layer with respect to a light receiving surface area of the photodiode is thicker than that of the second insulating layer. Manufacturing method of solid-state image sensor. 請求項1乃至請求項8のいずれかに記載の固体撮像素子を搭載した撮像装置。   An imaging device equipped with the solid-state imaging device according to claim 1.
JP2009234357A 2009-10-08 2009-10-08 Solid-state imaging device, manufacturing method thereof, and imaging apparatus Expired - Fee Related JP5427541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234357A JP5427541B2 (en) 2009-10-08 2009-10-08 Solid-state imaging device, manufacturing method thereof, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234357A JP5427541B2 (en) 2009-10-08 2009-10-08 Solid-state imaging device, manufacturing method thereof, and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2011082386A true JP2011082386A (en) 2011-04-21
JP5427541B2 JP5427541B2 (en) 2014-02-26

Family

ID=44076123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234357A Expired - Fee Related JP5427541B2 (en) 2009-10-08 2009-10-08 Solid-state imaging device, manufacturing method thereof, and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5427541B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156334A (en) * 2011-01-26 2012-08-16 Sony Corp Solid state image pickup device, manufacturing method of the solid state image pickup device, and electronic apparatus
EP2573815A3 (en) * 2011-09-26 2014-03-19 Truesense Imaging, Inc. Dark reference in CCD image sensors
US8847285B2 (en) 2011-09-26 2014-09-30 Semiconductor Components Industries, Llc Depleted charge-multiplying CCD image sensor
US11121160B2 (en) 2018-10-17 2021-09-14 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment comprising a light shielding part in a light receiving region and a light shielding film in a light shielded region
US11244978B2 (en) 2018-10-17 2022-02-08 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment including the same
US11721711B2 (en) 2019-05-27 2023-08-08 Canon Kabushiki Kaisha Photoelectric conversion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145771A (en) * 1985-12-19 1987-06-29 Toshiba Corp Solid-state image pickup device
JPH0590546A (en) * 1991-04-12 1993-04-09 Nec Corp Solid-state image sensing element
JPH1140790A (en) * 1997-07-15 1999-02-12 Sharp Corp Light-receiving element containing split photodiode and circuit
JP2002170825A (en) * 2000-11-30 2002-06-14 Nec Corp Semiconductor device and mis type semiconductor device, and its manufacturing method
JP2005303592A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Solid state imaging device and its signal processing method
JP2007035993A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Mos solid imaging device
JP2008027981A (en) * 2006-07-18 2008-02-07 Sharp Corp Thin film transistor, its manufacturing method, semiconductor device and display unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145771A (en) * 1985-12-19 1987-06-29 Toshiba Corp Solid-state image pickup device
JPH0590546A (en) * 1991-04-12 1993-04-09 Nec Corp Solid-state image sensing element
JPH1140790A (en) * 1997-07-15 1999-02-12 Sharp Corp Light-receiving element containing split photodiode and circuit
JP2002170825A (en) * 2000-11-30 2002-06-14 Nec Corp Semiconductor device and mis type semiconductor device, and its manufacturing method
JP2005303592A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Solid state imaging device and its signal processing method
JP2007035993A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Mos solid imaging device
JP2008027981A (en) * 2006-07-18 2008-02-07 Sharp Corp Thin film transistor, its manufacturing method, semiconductor device and display unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156334A (en) * 2011-01-26 2012-08-16 Sony Corp Solid state image pickup device, manufacturing method of the solid state image pickup device, and electronic apparatus
EP2573815A3 (en) * 2011-09-26 2014-03-19 Truesense Imaging, Inc. Dark reference in CCD image sensors
US8760543B2 (en) 2011-09-26 2014-06-24 Truesense Imaging, Inc. Dark reference in CCD image sensors
US8847285B2 (en) 2011-09-26 2014-09-30 Semiconductor Components Industries, Llc Depleted charge-multiplying CCD image sensor
US9117729B2 (en) 2011-09-26 2015-08-25 Semiconductor Components Industries, Llc Depleted charge-multiplying CCD image sensor
US11121160B2 (en) 2018-10-17 2021-09-14 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment comprising a light shielding part in a light receiving region and a light shielding film in a light shielded region
US11244978B2 (en) 2018-10-17 2022-02-08 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment including the same
US11682686B2 (en) 2018-10-17 2023-06-20 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment including the same
US11721711B2 (en) 2019-05-27 2023-08-08 Canon Kabushiki Kaisha Photoelectric conversion device

Also Published As

Publication number Publication date
JP5427541B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US10944930B2 (en) Solid-state image sensor with high-permittivity material film and a light shielding section, method for producing solid-state image sensor, and electronic apparatus
JP4224036B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
US7564079B2 (en) Solid state imager device with leakage current inhibiting region
JP5132102B2 (en) Photoelectric conversion device and imaging system using photoelectric conversion device
JP5521312B2 (en) SOLID-STATE IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
KR20190086660A (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and imaging device
JP5427541B2 (en) Solid-state imaging device, manufacturing method thereof, and imaging apparatus
JP2010182789A (en) Solid-state imaging element, imaging device, and manufacturing method of solid-state imaging element
US20140151753A1 (en) Solid-state imaging apparatus, manufacturing method thereof, and electronic information device
JP2010199154A (en) Solid-state imaging element
KR102067296B1 (en) Solid-state imaging element and electronic device
JP2008227357A (en) Solid image pickup device and method for manufacturing the same
JP6663887B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP2010073735A (en) Solid-state image pickup device and method of manufacturing the same
JP2018082098A (en) Solid-state imaging device, imaging system, and manufacturing method of solid-state imaging device
JP2010245177A (en) Imaging element, method of manufacturing imaging element, method of driving imaging element, and imaging apparatus
JP2008147409A (en) Solid-state image pickup device, its manufacturing method, and electronic information device
JP5134853B2 (en) Semiconductor device manufacturing method, solid-state imaging device, and electronic information device
JP2006344914A (en) Solid-state imaging apparatus, its manufacturing method, and camera
JP2012212940A (en) Photoelectric conversion device, and imaging system using photoelectric conversion device
JP2010182790A (en) Solid-state imaging element, imaging apparatus, and manufacturing method of solid-state imaging element
JP2011066685A (en) Solid-state image sensing element, method for driving the same, and image sensing device
JP2011044542A (en) Image capturing apparatus and solid-state image sensor
JP5035452B2 (en) Solid-state imaging device
JP2008205255A (en) Solid-state imaging device and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees