JP2011079261A - Low adhesion material, antifouling material, molding mold, and manufacturing method therefor - Google Patents

Low adhesion material, antifouling material, molding mold, and manufacturing method therefor Download PDF

Info

Publication number
JP2011079261A
JP2011079261A JP2009234794A JP2009234794A JP2011079261A JP 2011079261 A JP2011079261 A JP 2011079261A JP 2009234794 A JP2009234794 A JP 2009234794A JP 2009234794 A JP2009234794 A JP 2009234794A JP 2011079261 A JP2011079261 A JP 2011079261A
Authority
JP
Japan
Prior art keywords
antifouling
low adhesion
cation
mold
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009234794A
Other languages
Japanese (ja)
Other versions
JP5561992B2 (en
Inventor
Kunihiko Fujiwara
邦彦 藤原
Yoshinori Noguchi
欣紀 野口
Kenshiro Shirai
健士郎 白井
Tomoko Kishimoto
智子 岸本
Daisuke Azuma
大助 東
Satoshi Kitaoka
諭 北岡
Naoki Kawashima
直樹 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Towa Corp
Original Assignee
Japan Fine Ceramics Center
Towa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Towa Corp filed Critical Japan Fine Ceramics Center
Priority to JP2009234794A priority Critical patent/JP5561992B2/en
Priority to TW99134375A priority patent/TW201117939A/en
Priority to PCT/JP2010/067742 priority patent/WO2011043461A1/en
Publication of JP2011079261A publication Critical patent/JP2011079261A/en
Application granted granted Critical
Publication of JP5561992B2 publication Critical patent/JP5561992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low adhesion material having low adhesiveness with respect to an object comprising a substance having basicity, thermoplastic resin or water, a molding mold having high mold releasability in the case of using the object, and to provide an antifouling material having antifouling property relating to smudge including the object. <P>SOLUTION: A mold release layer 4 is formed on the surface 8 of a substrate 5 made of ZrO<SB>2</SB>group ceramic in an upper mold 1 as the molding mold used for resin molding. The mold release layer 4 is composed of a low adhesion material having low adhesiveness with respect to the object comprising the substance having basicity, the thermoplastic resin or the substance containing water. In the mold release layer 4, Zr<SP>4+</SP>as a cation of a 4A group element and nitrogen are introduced onto at least the surface of Y<SB>2</SB>O<SB>3</SB>. In at least the surface of the low adhesion material, the amount of the cation of 4A the group element is preferably more than 0 and 20 mol% or less, and the amount of nitrogen is 0.01 to 10 mol%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性を有する低密着性材料、そのような対象物を含む汚れに関する防汚性を有する防汚性材料、成形品を成形する際に使用される成形型、及び、それらの製造方法に関するものである。   The present invention relates to a low adhesion material having low adhesion to an object composed of at least one of a basic substance, a thermosetting resin, or a substance containing moisture, and such an object. The present invention relates to an antifouling material having antifouling properties with respect to contained dirt, a molding die used when molding a molded article, and a method for producing them.

従来から、様々な分野で、有機物、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料に対するニーズが存在している。それらのニーズは、そのような対象物を含む汚れに関する防汚性を有する防汚性材料や、成形品を成形する際に使用される成形型に使用される材料等に関するニーズとして現れている。なお、ここでいう「低密着性」とは、「従来の金型材料である鋼系材料や超硬合金等とエポキシ樹脂に代表される塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物との間の密着性に比較した場合に、低い密着性であること」を意味する。そして、「塩基性」とは、電子対の供与性、すなわち電子対を供与する性質をいい、あるいは、プロトンを授与する性質をいう(例えば、理化学事典 第4版、岩波書店、1987年、p.161)。   Conventionally, in various fields, there is a need for a low adhesion material having low adhesion to an object made of an organic substance, a basic substance, a thermosetting resin, or a substance containing moisture. Those needs have emerged as needs related to antifouling materials having antifouling properties with respect to dirt containing such objects, materials used for molding dies used when molding molded products, and the like. The term “low adhesion” as used herein refers to “basic materials such as steel materials and cemented carbides that are conventional mold materials and epoxy resins, thermosetting resins, or moisture. This means that the adhesiveness is low when compared to the adhesiveness between the target and the target substance made of a substance containing the substance. The term “basic” refers to the property of donating an electron pair, that is, the property of donating an electron pair, or the property of donating a proton (for example, RIKEN Encyclopedia 4th edition, Iwanami Shoten, 1987, p. 161).

さて、上述したニーズに対応して、本出願の出願人は、第1に、次の低密着性材料及び樹脂成形型を提案した。それは、熱硬化性樹脂との間の密着性に関して低い密着性を有する低密着性材料の表面は希土類酸化物によって構成され、その希土類酸化物に各々含まれる金属カチオンの価数とイオン半径とに基づいて算出された値からなるField Strengthが所定の範囲にあるような低密着性材料、及び、上述した低密着性材料によって型面が構成される樹脂成形型である(特許文献1参照)。   In response to the needs described above, the applicant of the present application firstly proposed the following low adhesion material and resin mold. The surface of a low adhesion material having low adhesion with respect to the adhesion between the thermosetting resin is constituted by a rare earth oxide, and the valence and ionic radius of each metal cation contained in the rare earth oxide are determined. This is a low-adhesion material having a field strength having a value calculated based on the predetermined range, and a resin mold in which a mold surface is constituted by the low-adhesion material described above (see Patent Document 1).

第2に、本出願の出願人は、有機物との間の密着性に関して低い密着性を有し、希土類元素を少なくとも含む物質からなる低密着性材料と、型面の少なくとも一部を含む部分が希土類元素を少なくとも含む物質からなる樹脂成形型とを、それぞれ提案した(特許文献2参照)。   Secondly, the applicant of the present application has a low adhesion with respect to the adhesion between organic substances, a low adhesion material made of a substance containing at least a rare earth element, and a portion containing at least a part of the mold surface. A resin mold made of a material containing at least a rare earth element has been proposed (see Patent Document 2).

第3に、本出願の出願人は、次のような低密着性材料及びその製造方法、成形型及びその製造方法、並びに、防汚性材料及びその製造方法について提案した。それは、塩基性を有する物質又は熱硬化性樹脂からなる対象物に対する低い密着性を有する低密着性材料であって、希土類酸化物を少なくとも含む母材と、母材の表面近傍に設けられ窒素を含有する機能層とを備える低密着性材料及びその製造方法である。また、それぞれ同様の母材と機能層とを備える成形型及びその製造方法である。また、それぞれ同様の母材と機能層とを備える防汚性材料及びその製造方法である(特願2008−075781号)。   Thirdly, the applicant of the present application has proposed the following low-adhesion material and its manufacturing method, mold and its manufacturing method, and antifouling material and its manufacturing method. It is a low adhesion material having low adhesion to an object composed of a basic substance or a thermosetting resin, and is provided with a base material containing at least a rare earth oxide, and nitrogen provided near the surface of the base material. It is a low-adhesion material provided with the functional layer to contain, and its manufacturing method. Moreover, it is a shaping | molding die provided with the respectively same base material and a functional layer, and its manufacturing method. Moreover, it is an antifouling material provided with the same base material and a functional layer, respectively, and its manufacturing method (Japanese Patent Application No. 2008-075781).

特許3996138号(第1頁、第2図)Japanese Patent No. 3996138 (first page, Fig. 2) 特開2006−131429号(第2頁、第2図)JP 2006-131429 (2nd page, FIG. 2)

しかしながら、上述した低密着性材料等によれば、塩基性を有する物質又は熱硬化性樹脂からなる対象物に対する密着性が充分に低いとはいえないという課題がある。また、希土類酸化物を少なくとも含む母材と、その母材の表面近傍に設けられ窒素を含有する機能層とを備える低密着性材料によれば、対象物(例えば、樹脂)の種類が異なった場合には低密着性の程度に差があるという課題が判明した。   However, according to the above-described low adhesion material or the like, there is a problem that the adhesion to an object made of a basic substance or a thermosetting resin cannot be said to be sufficiently low. Moreover, according to the low adhesion material provided with a base material containing at least a rare earth oxide and a functional layer containing nitrogen provided in the vicinity of the surface of the base material, the types of objects (for example, resins) are different. In some cases, it was found that there was a difference in the degree of low adhesion.

上述した課題に鑑み、本発明は次のことを目的とする。第1に、塩基性を有する物質、熱硬化性樹脂、又は水分を含む物質のうちの少なくともいずれか1つからなる対象物に対するいっそう低くかつ安定した低密着性を有する低密着性材料を提供することである。第2に、そのような対象物を含む汚れに関するいっそう高くかつ安定した防汚性を有する防汚性材料を提供することである。第3に、そのような対象物のうちの少なくともいずれか1つを使用する場合におけるいっそう高くかつ安定した離型性を有する成形型を提供することである。第4に、上述した低密着性材料、防汚性材料、又は、成形型の製造方法を提供することである。   In view of the problems described above, the present invention has the following objects. 1stly, the low adhesion material which has the lower and stable low adhesiveness with respect to the target object which consists of at least any one of the substance which has basicity, a thermosetting resin, or a water | moisture content is provided. That is. Second, it is to provide an antifouling material having a higher and more stable antifouling property with respect to dirt containing such objects. Third, it is to provide a mold having higher and more stable releasability when using at least one of such objects. 4th is providing the manufacturing method of the low-adhesion material mentioned above, antifouling | stain-proof material, or a shaping | molding die.

上述の課題を解決するために、本発明に係る低密着性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料であって、低密着性材料の少なくとも表面には酸化イットリウムと窒素とが含まれていることを特徴とする。   In order to solve the above-mentioned problems, the low adhesion material according to the present invention is a low adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture. In this case, at least the surface of the low adhesion material contains yttrium oxide and nitrogen.

また、本発明に係る低密着性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料であって、低密着性材料の少なくとも表面には酸化イットリウムと4A族元素のカチオンとが含まれていることを特徴とする。   Further, the low adhesion material according to the present invention is a low adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and has low adhesion. At least the surface of the material is characterized by containing yttrium oxide and a cation of a group 4A element.

また、本発明に係る低密着性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料であって、低密着性材料の少なくとも表面には酸化イットリウムと窒素と4A族元素のカチオンとが含まれていることを特徴とする。   Further, the low adhesion material according to the present invention is a low adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and has low adhesion. At least the surface of the material is characterized by containing yttrium oxide, nitrogen, and a cation of a group 4A element.

また、本発明に係る低密着性材料は、上述の低密着性材料において、低密着性材料の少なくとも表面に含まれる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする。   In the low adhesion material according to the present invention, in the above low adhesion material, the amount of nitrogen contained in at least the surface of the low adhesion material is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atoms. It is characterized by.

また、本発明に係る低密着性材料は、上述の低密着性材料において、低密着性材料の少なくとも表面に含まれる4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする。   Further, the low adhesion material according to the present invention is the above low adhesion material, wherein the amount of the cation of the group 4A element contained at least on the surface of the low adhesion material is more than 0 mol% and not more than 20 mol%. Features.

また、本発明に係る低密着性材料は、上述の低密着性材料において、4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする。 The low adhesion material according to the present invention is characterized in that, in the above low adhesion material, the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .

また、本発明に係る低密着性材料は、上述の低密着性材料において、低密着性材料は母材を有し、母材は酸化ジルコニウムを主たる成分として含むとともに、酸化イットリウムと窒素とは、酸化イットリウムと4A族元素のカチオンとは、又は、酸化イットリウムと窒素と4A族元素のカチオンとは、母材の表面上に設けられた層状の部分に含まれていることを特徴とする。   Further, the low adhesion material according to the present invention is the above-mentioned low adhesion material, the low adhesion material has a base material, the base material contains zirconium oxide as a main component, and yttrium oxide and nitrogen are: The yttrium oxide and the cation of the group 4A element, or the yttrium oxide, nitrogen, and the cation of the group 4A element are included in a layered portion provided on the surface of the base material.

また、本発明に係る防汚性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物を含む汚れに関する防汚性を有する防汚性材料であって、防汚性材料の少なくとも表面には酸化イットリウムと窒素とが含まれていることを特徴とする。   In addition, the antifouling material according to the present invention is an antifouling material having antifouling properties related to dirt including an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, It is characterized in that at least the surface of the antifouling material contains yttrium oxide and nitrogen.

また、本発明に係る防汚性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物を含む汚れに関する防汚性を有する防汚性材料であって、防汚性材料の少なくとも表面には酸化イットリウムと4A族元素のカチオンとが含まれていることを特徴とする。   In addition, the antifouling material according to the present invention is an antifouling material having antifouling properties related to dirt including an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, It is characterized in that at least the surface of the antifouling material contains yttrium oxide and a cation of a group 4A element.

また、本発明に係る防汚性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物を含む汚れに関する防汚性を有する防汚性材料であって、防汚性材料の少なくとも表面には酸化イットリウムと窒素と4A族元素のカチオンとが含まれていることを特徴とする。   In addition, the antifouling material according to the present invention is an antifouling material having antifouling properties related to dirt including an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, At least the surface of the antifouling material contains yttrium oxide, nitrogen, and a cation of a group 4A element.

また、本発明に係る防汚性材料は、上述の防汚性材料において、防汚性材料の少なくとも表面に含まれる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする。   The antifouling material according to the present invention is the above antifouling material, wherein the amount of nitrogen contained in at least the surface of the antifouling material is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atoms. It is characterized by.

また、本発明に係る防汚性材料は、上述の防汚性材料において、防汚性材料の少なくとも表面に含まれる4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする。   Further, the antifouling material according to the present invention is the above antifouling material, wherein the amount of the cation of the group 4A element contained in at least the surface of the antifouling material is more than 0 mol% and not more than 20 mol%. Features.

また、本発明に係る防汚性材料は、上述の防汚性材料において、4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする。 The antifouling material according to the present invention is characterized in that, in the above antifouling material, the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .

また、本発明に係る防汚性材料は、上述の防汚性材料において、防汚性材料は母材を有し、母材は酸化ジルコニウムを主たる成分として含むとともに、酸化イットリウムと窒素とは、酸化イットリウムと4A族元素のカチオンとは、又は、酸化イットリウムと窒素と4A族元素のカチオンとは、母材の表面上に設けられた層状の部分に含まれていることを特徴とする。   Further, the antifouling material according to the present invention is the above-mentioned antifouling material, the antifouling material has a base material, the base material contains zirconium oxide as a main component, and yttrium oxide and nitrogen are: The yttrium oxide and the cation of the group 4A element, or the yttrium oxide, nitrogen, and the cation of the group 4A element are included in a layered portion provided on the surface of the base material.

また、本発明に係る成形型は、成形品を成形する際に使用される成形型であって、成形型の少なくとも表面には酸化イットリウムと窒素とが含まれていることを特徴とする。   The molding die according to the present invention is a molding die used when molding a molded product, and is characterized in that at least the surface of the molding die contains yttrium oxide and nitrogen.

また、本発明に係る成形型は、成形品を成形する際に使用される成形型であって、成形型の少なくとも表面には酸化イットリウムと4A族元素のカチオンとが含まれていることを特徴とする。   The molding die according to the present invention is a molding die used when molding a molded product, wherein at least the surface of the molding die contains yttrium oxide and a cation of a group 4A element. And

また、本発明に係る成形型は、成形品を成形する際に使用される成形型であって、成形型の少なくとも表面には酸化イットリウムと窒素と4A族元素のカチオンとが含まれていることを特徴とする。   In addition, the mold according to the present invention is a mold used when molding a molded product, and at least the surface of the mold includes yttrium oxide, nitrogen, and a cation of a 4A group element. It is characterized by.

また、本発明に係る成形型は、上述の成形型において、成形型の少なくとも表面に含まれる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする。   Further, the mold according to the present invention is characterized in that, in the above-mentioned mold, the amount of nitrogen contained in at least the surface of the mold is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atoms.

また、本発明に係る成形型は、上述の成形型において、成形型の少なくとも表面に含まれる4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする。   The mold according to the present invention is characterized in that, in the mold described above, the amount of a cation of the group 4A element contained in at least the surface of the mold exceeds 0 mol% and is 20 mol% or less.

また、本発明に係る成形型は、上述の成形型において、4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする。 Further, the mold according to the present invention is characterized in that, in the above-mentioned mold, the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .

また、本発明に係る成形型は、上述の成形型において、成形型は母材を有し、母材は酸化ジルコニウムを主たる成分として含むとともに、酸化イットリウムと窒素とは、酸化イットリウムと4A族元素のカチオンとは、又は、酸化イットリウムと窒素と4A族元素のカチオンとは、母材の表面上に設けられた層状の部分に含まれていることを特徴とする。   Further, the molding die according to the present invention is the above-described molding die, wherein the molding die has a base material, and the base material contains zirconium oxide as a main component, and yttrium oxide and nitrogen are yttrium oxide and a group 4A element. The cation of yttrium oxide, nitrogen, and the cation of the group 4A element are contained in a layered portion provided on the surface of the base material.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、そのような対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法であって、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法であって、酸化イットリウムと4A族元素とを含む第1の原材料を準備する工程と、第1の原材料を使用して、低密着性材料、防汚性材料、又は、成形型のいずれかの少なくとも表面が酸化イットリウムと4A族元素のカチオンとを含んでいる状態にする工程とを備えることを特徴とする。   Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object A method for producing an antifouling material having a property or a method for producing a mold used for molding a molded product is a method for producing a low-adhesion material having low adhesion to such an object. A method for producing an antifouling material having an antifouling property related to dirt containing a product, or a method for producing a mold used for molding a molded article, wherein a basic substance, a thermosetting resin, Alternatively, a method for producing a low-adhesion material having low adhesion to an object composed of a substance containing moisture, a method for producing an antifouling material having antifouling properties relating to dirt containing the object, or a molded product is formed. Method of forming mold used in the process A step of preparing a first raw material containing yttrium oxide and a group 4A element, and using the first raw material, at least one of a low adhesion material, an antifouling material, and a mold And a step of bringing the surface into a state containing yttrium oxide and a cation of a group 4A element.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、上述の製造方法において、酸化ジルコニウムを主たる成分として含む母材を準備する工程を備えるとともに、低密着性材料、防汚性材料、又は、成形型のいずれかの少なくとも表面が酸化イットリウムと4A族元素のカチオンとを含んでいる状態にする工程では、母材の表面上に設けられた層状の部分が酸化イットリウムと4A族元素のカチオンとを含んでいる状態にすることを特徴とする。   Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object The method for producing an antifouling material having a property or the method for producing a molding die used for molding a molded product includes the step of preparing a base material containing zirconium oxide as a main component in the above-described production method. And at least a surface of any one of the low adhesion material, the antifouling material, or the molding die containing yttrium oxide and a cation of a group 4A element, provided on the surface of the base material. The layered portion is made to contain yttrium oxide and a cation of a group 4A element.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、上述の製造方法において、低密着性材料、防汚性材料、若しくは、成形型のいずれかの少なくとも表面に窒素を更に含ませる工程を備えることを特徴とする。   Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object The method for producing an antifouling material having a property or the method for producing a molding die used for molding a molded article is a low adhesion material, an antifouling material, or a molding die in the above production method. A step of further including nitrogen on at least the surface of any of the above.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、上述の製造方法において、低密着性材料、防汚性材料、又は、成形型のいずれかの少なくとも表面に含ませる4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする。   Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object The method for producing an antifouling material having a property or the method for producing a molding die used for molding a molded article is the low adhesion material, the antifouling material, or the molding die in the above production method. The amount of the cation of the group 4A element contained in at least the surface of any of the above is more than 0 mol% and not more than 20 mol%.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、上述の製造方法において、4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする。 Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object The method for producing the antifouling material having the property or the method for producing the mold used for molding the molded article is the above-described production method, wherein the cation of the group 4A element is Zr 4+ or Hf 4+ It is characterized by being at least one.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、そのような対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法であって、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法であって、酸化イットリウムを主たる成分として含む第2の原材料を準備する工程と、第2の原材料の表面に窒素を含ませる工程を備えることを特徴とする。   Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object A method for producing an antifouling material having a property or a method for producing a mold used for molding a molded product is a method for producing a low-adhesion material having low adhesion to such an object. A method for producing an antifouling material having an antifouling property related to dirt containing a product, or a method for producing a mold used for molding a molded article, wherein a basic substance, a thermosetting resin, Alternatively, a method for producing a low-adhesion material having low adhesion to an object composed of a substance containing moisture, a method for producing an antifouling material having antifouling properties relating to dirt containing the object, or a molded product is formed. Method of forming mold used in the process There are, characterized in that it comprises a step of preparing a second feedstock comprising a yttrium oxide as a main component, a process to include nitrogen in the surface of the second raw material.

また、本発明に係る、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法は、上述の製造方法において、低密着性材料、防汚性材料、若しくは、成形型のいずれかの少なくとも表面に、又は、第2の原材料の表面に含ませる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする。   Further, according to the present invention, a method for producing a low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and antifouling related to dirt containing the object The method for producing an antifouling material having a property or the method for producing a molding die used for molding a molded article is a low adhesion material, an antifouling material, or a molding die in the above production method. The amount of nitrogen contained in at least the surface of any of the above or the surface of the second raw material is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atoms.

本発明によれば、酸化イットリウム(以下「Y」という。)の表面に窒素が導入された材料、Yの表面に4A族元素のカチオンが導入された材料、又は、Yの表面に窒素と4A族元素のカチオンとが導入された材料が得られる。これらの材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低い密着性を有する。したがって、これらの材料を、そのような対象物に対する低密着性材料、そのような対象物を含む汚れに関する防汚性材料、又は、そのような対象物を使用する場合における成形型のいずれかとして使用することができる。 According to the present invention, a material in which nitrogen is introduced into the surface of yttrium oxide (hereinafter referred to as “Y 2 O 3 ”), a material in which a cation of a group 4A element is introduced into the surface of Y 2 O 3 , or Y A material in which nitrogen and a cation of a group 4A element are introduced on the surface of 2 O 3 is obtained. These materials have low adhesion to an object made of at least one of a basic substance, a thermosetting resin, and a substance containing moisture. Therefore, these materials can be used as either low adhesion materials for such objects, antifouling materials for soils containing such objects, or molds when using such objects. Can be used.

図1は、Yのバルク材とエポキシ樹脂Xとの間の175℃における接着強さ、及び、Yのバルク材にそれぞれ異なるイオン濃度で窒素イオンが注入された4種類の材料とエポキシ樹脂Xとの間の175℃における接着強さを、窒素イオン濃度を横軸に取ってそれぞれ示す説明図である。FIG. 1 shows four types of adhesion strength at 175 ° C. between the bulk material of Y 2 O 3 and the epoxy resin X, and nitrogen ions implanted at different ion concentrations into the bulk material of Y 2 O 3 . It is explanatory drawing which shows the adhesive strength in 175 degreeC between a material and the epoxy resin X, respectively, taking a nitrogen ion concentration on a horizontal axis. 図2は、3種類の材料と、それぞれの材料とエポキシ樹脂Yとの間の175℃における接着強さとの関係を示す説明図である。FIG. 2 is an explanatory diagram showing the relationship between the three types of materials and the adhesive strength at 175 ° C. between the respective materials and the epoxy resin Y. 図3(1)、(2)は、それぞれ本発明に係る成形型であって、コーティングされた成形型とバルク材からなる成形型との概略を示す部分断面図である。3 (1) and 3 (2) are partial cross-sectional views showing the outline of a coated mold and a mold made of a bulk material, respectively, according to the present invention.

以下、図面を参照しながら、本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

以下、実施例1として、本発明に係る低密着性材料である第1の低密着性材料について図1を参照して説明する。図1は、Yのバルク材とエポキシ樹脂Xとの間の175℃における接着強さ(Adhesion Strength)、及び、Yのバルク材にそれぞれ異なるイオン濃度で窒素イオンが注入された4種類の材料とエポキシ樹脂Xとの間の175℃における接着強さを、窒素イオン濃度を横軸に取ってそれぞれ示す説明図である。ここで、エポキシ樹脂Xは、熱硬化性樹脂であるとともに塩基性を有する物質及び水分を含む物質でもある。 Hereinafter, as Example 1, a first low adhesion material which is a low adhesion material according to the present invention will be described with reference to FIG. FIG. 1 shows adhesion strength at 175 ° C. between the bulk material of Y 2 O 3 and the epoxy resin X, and nitrogen ions are implanted into the bulk material of Y 2 O 3 at different ion concentrations. It is explanatory drawing which shows the adhesive strength in 175 degreeC between 4 types of other materials and the epoxy resin X, respectively, taking a nitrogen ion concentration on a horizontal axis. Here, the epoxy resin X is not only a thermosetting resin but also a basic substance and a substance containing moisture.

図1に示されている材料のうち、Yのバルク材にそれぞれ異なるイオン濃度で窒素イオンが注入された4種類の材料が、第1の低密着性材料に相当する。ここで、「Yのバルク材」という用語は、「Yを主たる成分とする材料」を意味しており、Yに安定化剤等が添加された材料を含んでいる。また、図1の横軸に示された窒素イオン濃度は、SIMS(Secondary Ion−microprobe Mass Spectrometer;二次イオン質量分析計)を使用して計測された値である。また、本出願書類の中で使用される窒素イオン濃度は、atm/cm単位で計測された値を窒素原子換算してmol%単位で示されている。 Among the materials shown in FIG. 1, four types of materials in which nitrogen ions are implanted into Y 2 O 3 bulk materials at different ion concentrations correspond to the first low adhesion material. Here, the term "bulk material Y 2 O 3" is contains means a "Y 2 O 3 material whose main component", Y 2 stabilizers such as O 3 is added material It is out. Further, the nitrogen ion concentration shown on the horizontal axis of FIG. 1 is a value measured using a SIMS (Secondary Ion-microprobe Mass Spectrometer). Further, the nitrogen ion concentration used in the present application document is shown in mol% unit by converting a value measured in atm / cm 3 unit into nitrogen atom.

第1の低密着性材料に含まれる4種類の材料は、Yのバルク材にそれぞれ異なるイオン濃度で窒素イオンが注入されることによって製作されている。ここで、Yのバルク材自体を含む5種類の材料のそれぞれとエポキシ樹脂Xとの間の175℃における接着強さは、次のようになっている。 The four types of materials included in the first low adhesion material are manufactured by implanting nitrogen ions at different ion concentrations into the Y 2 O 3 bulk material. Here, the adhesion strength at 175 ° C. between each of the five types of materials including the Y 2 O 3 bulk material itself and the epoxy resin X is as follows.

まず、図1において白い三角形(△)によって示されているYのバルク材自体については、窒素イオン濃度が1.45×10−2mol%である。また、このYのバルク材とエポキシ樹脂Xとの間の接着強さは、平均値で0.381hPaである。ここで示された窒素イオン濃度は、Yのバルク材自体に含まれている窒素イオンの濃度であると考えられる。 First, the Y 2 O 3 bulk material itself indicated by a white triangle (Δ) in FIG. 1 has a nitrogen ion concentration of 1.45 × 10 −2 mol%. The bond strength between the Y 2 O 3 bulk material and the epoxy resin X is 0.381 hPa on average. The nitrogen ion concentration shown here is considered to be the concentration of nitrogen ions contained in the Y 2 O 3 bulk material itself.

続いて、本発明に係る第1の低密着性材料(4種類)のそれぞれについて、窒素イオン濃度と、各材料とエポキシ樹脂Xとの間の接着強さとの関係を説明する。   Subsequently, for each of the first low adhesion materials (four types) according to the present invention, the relationship between the nitrogen ion concentration and the adhesive strength between each material and the epoxy resin X will be described.

まず、第1の低密着性材料のうち図1においてに黒い円(●)よって示されている材料については、窒素イオン濃度が4.00×10−2mol%である。また、この材料とエポキシ樹脂Xとの間の接着強さは、平均値で0.162hPaである。 First, of the first low adhesion material, the material indicated by the black circle (●) in FIG. 1 has a nitrogen ion concentration of 4.00 × 10 −2 mol%. Moreover, the adhesive strength between this material and the epoxy resin X is 0.162 hPa on average.

次に、第1の低密着性材料のうち図1において白い円(○)によって示されている材料については、窒素イオン濃度が6.54×10−2mol%である。また、この材料とエポキシ樹脂Xとの間の接着強さは、平均値で0.151hPaである。 Next, among the first low adhesion materials, the material indicated by the white circle (◯) in FIG. 1 has a nitrogen ion concentration of 6.54 × 10 −2 mol%. Moreover, the adhesive strength between this material and the epoxy resin X is 0.151 hPa on average.

次に、第1の低密着性材料のうち図1において黒い正方形(■)によって示されている材料については、窒素イオン濃度が3.98×10−1mol%である。また、この材料とエポキシ樹脂Xとの間の接着強さは、平均値で0.146hPaである。 Next, regarding the material indicated by the black square (■) in FIG. 1 among the first low adhesion materials, the nitrogen ion concentration is 3.98 × 10 −1 mol%. Moreover, the adhesive strength between this material and the epoxy resin X is 0.146 hPa on average.

次に、第1の低密着性材料のうち図1において白い正方形(□)によって示されている材料については、窒素イオン濃度が6.50×10−1mol%である。また、この材料とエポキシ樹脂Xとの間の接着強さは、平均値で0.096hPaである。なお、上述した4種類の第1の低密着性材料に関する窒素イオン濃度は、Yのバルク材に注入された窒素イオンの濃度に大きく支配されていると考えられる。 Next, among the first low adhesion materials, the material indicated by white squares (□) in FIG. 1 has a nitrogen ion concentration of 6.50 × 10 −1 mol%. Moreover, the adhesive strength between this material and the epoxy resin X is 0.096 hPa on average. Note that the nitrogen ion concentrations of the four types of first low adhesion materials described above are considered to be largely governed by the concentration of nitrogen ions implanted into the bulk material of Y 2 O 3 .

ここまで説明した結果から、Yのバルク材に注入された窒素イオンの濃度が高いほど、窒素イオンが注入されたその材料とエポキシ樹脂Xとの間の接着強さが低下するということがいえる。したがって、Yのバルク材に窒素イオンが注入されて製作された材料を、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料として使用することができる。 From the results described so far, it can be seen that the higher the concentration of nitrogen ions implanted into the bulk material of Y 2 O 3 , the lower the adhesion strength between the material into which nitrogen ions are implanted and the epoxy resin X is reduced. I can say. Therefore, a material manufactured by implanting nitrogen ions into a bulk material of Y 2 O 3 has a low adhesion with low adhesion to an object made of a basic substance, a thermosetting resin, or a substance containing moisture. It can be used as an adhesive material.

ここで、注入された窒素イオン濃度は0.01mol%以上でかつ10mol%以下であることが好ましい。窒素イオン濃度が0.01mol%以上であることが好ましい理由は、窒素イオン濃度が0.01mol%を下回る場合にはYにおける窒素の置換量が少なすぎて密着性を低下させる効果が認められないからである。また、窒素イオン濃度が10mol%以下であることが好ましい理由は、窒素イオン濃度が10mol%を上回る場合には、Yの結晶構造が不安定になるので、低密着性材料としての構造を長期間安定的に維持することができないからである。 Here, the implanted nitrogen ion concentration is preferably 0.01 mol% or more and 10 mol% or less. The reason why the nitrogen ion concentration is preferably 0.01 mol% or more is that when the nitrogen ion concentration is less than 0.01 mol%, the amount of substitution of nitrogen in Y 2 O 3 is too small and the effect of lowering the adhesion is obtained. Because it is not allowed. The reason why the nitrogen ion concentration is preferably 10 mol% or less is that when the nitrogen ion concentration exceeds 10 mol%, the crystal structure of Y 2 O 3 becomes unstable. This is because it cannot be stably maintained for a long time.

また、いっそう低い密着性といっそう安定的な結晶構造の維持とのバランスを考慮すると、注入された窒素イオン濃度は0.05mol%以上でかつ5mol%以下であることがより好ましい。   In consideration of the balance between lower adhesion and maintenance of a more stable crystal structure, the concentration of implanted nitrogen ions is more preferably 0.05 mol% or more and 5 mol% or less.

さて、Yのバルク材と第1の低密着性材料のうちの1種類とについて水に対する接触角をそれぞれ測定したところ、次の結果が得られた。まず、Yの場合には、接触角は65°であった。次に、第1の低密着性材料のうち図1において白い円(○)によって示されている材料の場合には、接触角は80°であった。この結果は、Yに比較して第1の低密着性材料が高い撥水性を有することを示す。また、この結果は、水分を含む物質からなる対象物に対して、Yに比較して第1の低密着性材料が低い密着性を有することを示す。 When the contact angle with respect to water was measured for each of the Y 2 O 3 bulk material and one of the first low adhesion materials, the following results were obtained. First, in the case of Y 2 O 3 , the contact angle was 65 °. Next, in the case of the material indicated by the white circle (◯) in FIG. 1 among the first low adhesion materials, the contact angle was 80 °. This result indicates that the first low adhesion material has higher water repellency than Y 2 O 3 . Moreover, this result shows that the first low-adhesion material has lower adhesion than Y 2 O 3 for an object made of a substance containing moisture.

ここまで、第1の低密着性材料とエポキシ樹脂Xとの間の接着強さが、Yとエポキシ樹脂Xとの間の接着強さよりも小さいことを説明した。また、第1の低密着性材料の水に対する接触角が、Yの水に対する接触角よりも大きいことを説明した。これらのことによって、「塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性材料として、第1の低密着性材料が使用可能である」といえる。 So far, it has been explained that the adhesive strength between the first low adhesion material and the epoxy resin X is smaller than the adhesive strength between the Y 2 O 3 and the epoxy resin X. The contact angle to water of the first low adhesion material, has been described is larger than the contact angle to water of Y 2 O 3. As a result, “the first low-adhesion material is used as a low-adhesion material for an object composed of at least one of a basic substance, a thermosetting resin, or a substance containing moisture. It can be used. "

なお、本実施例に係る第1の低密着性材料の製造方法は、次の通りである。まず、Yのバルク材、すなわちYを主たる成分とする材料を準備する。次に、周知の方法を使用して、この材料の表面に窒素イオンを注入する。言い換えれば、周知の方法を使用して、Yのバルク材の表面に窒素を含ませる。これによって、第1の低密着性材料を製造することができる。 In addition, the manufacturing method of the 1st low-adhesion material which concerns on a present Example is as follows. First, the bulk material of Y 2 O 3, i.e. to prepare the material for the Y 2 O 3 as a main component. Next, nitrogen ions are implanted into the surface of the material using well-known methods. In other words, nitrogen is included in the surface of the Y 2 O 3 bulk material using known methods. As a result, the first low adhesion material can be manufactured.

ここで、Yのバルク材の表面に窒素を含ませる方法としては次のような方法を使用することができる。例えば、窒素雰囲気処理、PVD(Physical Vapor Deposition;物理気相成長法)、CVD(Chemical Vapor Deposition;化学気相成長法)、ゾルゲル法等である。PVDには、真空蒸着法、電子ビーム蒸着法、スパッタリング法、プラズマ溶射法、イオン注入法、プラズマイオン注入法、イオンプレーティング法等が含まれる。 Here, the following method can be used as a method of including nitrogen in the surface of the bulk material of Y 2 O 3 . Examples thereof include nitrogen atmosphere treatment, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), and sol-gel method. PVD includes vacuum deposition, electron beam deposition, sputtering, plasma spraying, ion implantation, plasma ion implantation, ion plating, and the like.

また、適当な基材の上にYを主たる成分とする層を設けて、その層の表面に窒素を含ませることもできる。この場合には、基材として、優れた機械的特性、すなわち高い靱性と耐摩耗性とを有する材料(例えば、ZrO基セラミックス)を使用することが好ましい。また、Yを主たる成分とする層の表面に窒素を含ませる工程では、上述した様々な方法のうち好適な方法を使用することができる。この場合には、基材の表面に第1の低密着性材料からなる層が形成される。そして、「塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性材料として、第1の低密着性材料からなる層を有する材料が使用可能である」といえる。 Further, a layer containing Y 2 O 3 as a main component may be provided on a suitable base material, and nitrogen may be included in the surface of the layer. In this case, it is preferable to use a material having excellent mechanical properties, that is, high toughness and wear resistance (for example, ZrO 2 -based ceramics) as the substrate. Moreover, in the process of including nitrogen on the surface of the layer containing Y 2 O 3 as a main component, a suitable method among the various methods described above can be used. In this case, a layer made of the first low adhesion material is formed on the surface of the substrate. And “a layer made of the first low-adhesion material as a low-adhesion material for an object consisting of at least one of a basic substance, a thermosetting resin, or a substance containing moisture. It can be said that a material having the same is usable.

以下、実施例2として、本発明に係る低密着性材料である第2の低密着性材料について図2を参照して説明する。図2は、3種類の材料と、それぞれの材料とエポキシ樹脂Yとの間の175℃における接着強さ(Adhesion Strength)との関係を示す説明図である。ここで、エポキシ樹脂Yは、熱硬化性樹脂であるとともに塩基性を有する物質及び水分を含む物質でもある。   Hereinafter, as Example 2, a second low adhesion material which is a low adhesion material according to the present invention will be described with reference to FIG. FIG. 2 is an explanatory diagram showing the relationship between three types of materials and the adhesion strength (Adhesion Strength) at 175 ° C. between the respective materials and the epoxy resin Y. Here, the epoxy resin Y is not only a thermosetting resin but also a basic substance and a substance containing moisture.

第2の低密着性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性を有しており、少なくとも表面に酸化イットリウムと4A族元素のカチオン(陽イオン)とが含まれていることを特徴とする。第2の低密着性材料として、焼結材料であるYの表面に4A族元素のカチオンが導入された材料が挙げられる。図2においては、Y(材料A)の表面にZr4+が導入された例が材料Bとして示されている。そして、結果的に、第2の低密着性材料である材料Bの表面には5mol%のZrOが存在している。 The second low adhesion material has low adhesion to an object composed of at least one of a basic substance, a thermosetting resin, or a substance containing moisture, and at least the surface Is characterized by containing yttrium oxide and a cation (cation) of a group 4A element. Examples of the second low adhesion material include a material in which a cation of a group 4A element is introduced into the surface of Y 2 O 3 which is a sintered material. In FIG. 2, an example in which Zr 4+ is introduced into the surface of Y 2 O 3 (material A) is shown as material B. As a result, 5 mol% of ZrO 2 is present on the surface of the material B which is the second low adhesion material.

ここで、第2の低密着性材料の表面に含まれるZrOの量、言い換えればZr4+の量は、0mol%を超えかつ20mol%以下であることが好ましい。そして、低密着性材料の表面に含まれる4A族元素のカチオンの量が0mol%を超えかつ20mol%以下であることが好ましい点については、以下の各実施例においても同様である。 Here, the amount of ZrO 2 contained in the surface of the second low adhesion material, in other words, the amount of Zr 4+ is preferably more than 0 mol% and not more than 20 mol%. And it is the same also in each of the following Examples that the amount of the cation of the group 4A element contained on the surface of the low adhesion material is preferably more than 0 mol% and 20 mol% or less.

また、4A族元素のカチオンはZr4+(イオン半径:0.83Å=83pm)、Hf4+(イオン半径:0.83Å=83pm)のうちの少なくとも1つであることが好ましい。そして、4A族元素のカチオンがZr4+、Hf4+のうちの少なくとも1つであることが好ましい点については、以下の各実施例においても同様である。 The cation of the group 4A element is preferably at least one of Zr 4+ (ion radius: 0.83 Å = 83 pm) and Hf 4+ (ion radius: 0.83 Å = 83 pm). In addition, the same applies to the following examples in that the cation of the group 4A element is preferably at least one of Zr 4+ and Hf 4+ .

図2に示されているように、希土類酸化物であるY(材料A)とエポキシ樹脂Yとの間の接着強さが0.54MPaであることに対して、第2の低密着性材料(材料B)とエポキシ樹脂Yとの間の接着強さは0.45MPaである。このことは、Y(材料A)の表面に4A族元素のカチオンが導入されることによって、カチオンが導入された材料である第2の低密着性材料(材料B)とエポキシ樹脂Yとの間の接着強さが低下することを示す。 As shown in FIG. 2, the adhesion strength between the rare earth oxide Y 2 O 3 (material A) and the epoxy resin Y is 0.54 MPa, whereas the second low adhesion The adhesive strength between the conductive material (material B) and the epoxy resin Y is 0.45 MPa. This is because the cation of the group 4A element is introduced into the surface of Y 2 O 3 (material A), whereby the second low-adhesion material (material B), which is the material into which the cation is introduced, and the epoxy resin Y It shows that the adhesive strength between the two decreases.

更に、水に対する接触角を測定したところ、Yの場合には65°であったのに比較して、第2の低密着性材料の場合には90°であった。この結果は、Yに比較して第2の低密着性材料が高い撥水性を有することを示す。また、この結果は、水分を含む物質からなる対象物に対して、Yに比較して第2の低密着性材料が低い密着性を有することを示す。 Furthermore, when the contact angle with respect to water was measured, it was 90 ° in the case of the second low adhesion material, compared with 65 ° in the case of Y 2 O 3 . This result indicates that the second low adhesion material has higher water repellency than Y 2 O 3 . Moreover, this result shows that the second low-adhesion material has lower adhesion than Y 2 O 3 for an object made of a substance containing moisture.

これらのことによって、「塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性材料として、第2の低密着性材料が使用可能である」といえる。   As a result, the second low-adhesion material is used as a low-adhesion material for an object composed of at least one of a basic substance, a thermosetting resin, or a substance containing moisture. It can be used. "

以下、実施例3として、本発明に係る低密着性材料である第3の低密着性材料について図2を参照して説明する。第3の低密着性材料は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性を有しており、少なくとも表面に酸化イットリウムと4A族元素のカチオンと窒素とが含まれていることを特徴とする。   Hereinafter, as Example 3, a third low adhesion material which is a low adhesion material according to the present invention will be described with reference to FIG. The third low-adhesion material has low adhesion to an object composed of at least one of a basic substance, a thermosetting resin, or a substance containing moisture, and has at least a surface. Is characterized by containing yttrium oxide, a cation of a group 4A element, and nitrogen.

図2に示されているように、第3の低密着性材料として、希土類酸化物であるY(材料A)の表面に4A族元素のカチオンであるZr4+と窒素とが導入された材料(材料C)が挙げられる。結果的に、第3の低密着性材料である材料Cの表面には5mol%のZrOが存在している。 As shown in FIG. 2, as a third low-adhesion material, Zr 4+ that is a cation of a group 4A element and nitrogen are introduced on the surface of a rare earth oxide Y 2 O 3 (material A). Material (material C). As a result, 5 mol% of ZrO 2 is present on the surface of the material C which is the third low adhesion material.

また、図2に示されているように、Y(材料A)とエポキシ樹脂Yとの間の接着強さが0.54MPaであることに対して、第3の低密着性材料とエポキシ樹脂Yとの間の接着強さは0.32MPaである。このことは、Y(材料A)の表面に4A族元素のカチオンと窒素とが導入されることによって、カチオンと窒素とが導入された材料である第3の低密着性材料(材料C)とエポキシ樹脂Yとの間の接着強さが低下することを示す。 Further, as shown in FIG. 2, the bonding strength between Y 2 O 3 (material A) and the epoxy resin Y is 0.54 MPa, whereas the third low adhesion material and The adhesive strength between the epoxy resin Y is 0.32 MPa. This is because the 4A group element cation and nitrogen are introduced into the surface of Y 2 O 3 (material A), whereby the third low adhesion material (material). It shows that the adhesive strength between C) and the epoxy resin Y decreases.

更に、水に対する接触角を測定したところ、Yの場合には65°であったのに比較して、第3の低密着性材料の場合には107°であった。この結果は、Yに比較して第3の低密着性材料が高い撥水性(第2の低密着性材料よりも高い撥水性)を有することを示す。また、この結果は、水分を含む物質からなる対象物に対して、Yに比較して第3の低密着性材料がいっそう低い密着性(第2の低密着性材料よりも低い密着性)を有することを示す。 Furthermore, when the contact angle with respect to water was measured, it was 107 ° in the case of the third low adhesion material, compared with 65 ° in the case of Y 2 O 3 . This result shows that the third low adhesion material has higher water repellency (higher water repellency than the second low adhesion material) compared to Y 2 O 3 . In addition, this result shows that the third low-adhesion material has a lower adhesion to an object made of a substance containing moisture than Y 2 O 3 (adhesion lower than that of the second low-adhesion material). ).

これらのことによって、「塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低密着性材料として、第3の低密着性材料が使用可能である」といえる。   As a result, the third low-adhesion material is used as a low-adhesion material for an object consisting of at least one of a basic substance, a thermosetting resin, or a substance containing moisture. It can be used. "

ところで、Yの表面に窒素が導入された材料(第1の低密着性材料)とエポキシ樹脂との間の接着強さが低下する機構について、本発明の発明者らは以下のように推察した。また、接着強さが低下する効果について、Yの表面にZr4+と窒素とが導入された材料(第3の低密着性材料)よりも第1の低密着性材料のほうが小さい理由についても、本発明の発明者らは以下のように推察した。 By the way, the inventors of the present invention are as follows about the mechanism in which the adhesive strength between the material in which nitrogen is introduced into the surface of Y 2 O 3 (first low adhesion material) and the epoxy resin is lowered. I guessed. The reason why the first low-adhesion material is smaller than the material (third low-adhesion material) in which Zr 4+ and nitrogen are introduced on the surface of Y 2 O 3 is about the effect of reducing the adhesive strength. Also, the inventors of the present invention inferred as follows.

に対して単に窒素置換(02−→N3−)を行った場合に接着強さが低下する原因は、Y−O結合に比して共有結合性が増大し分極緩和されることから、有機物の吸着が抑制されるからであると考えられる。言い換えれば、Yの表面における有機物の吸着活性能が低減するといえる。その結果、第1の低密着性材料については、接着強さ、すなわち密着性を低下させる効果が生ずるものと推察される。 When Y 2 O 3 is simply nitrogen-substituted (0 2 →→ N 3− ), the cause of the decrease in adhesion strength is that the covalent bond is increased and the polarization is relaxed compared to the Y—O bond. This is considered to be because the adsorption of organic substances is suppressed. In other words, it can be said that the adsorption activity of organic substances on the surface of Y 2 O 3 is reduced. As a result, the first low adhesion material is presumed to have an effect of reducing the adhesive strength, that is, the adhesion.

しかし、Yに対して単に窒素置換(02−→N3−)を行った場合には、結晶構造の電気的中性を維持するためにアニオン空孔(陰イオンの空孔;格子欠陥)が形成される。そして、アニオン空孔が存在する場合には、この空孔を介して有機物吸着を促進する酸性点が新たに発現するものと考えられる。 However, when nitrogen substitution (0 2- > N 3- ) is simply performed on Y 2 O 3 , anion vacancies (anionic vacancies; anion vacancies; Lattice defects) are formed. And when an anion vacancy exists, it is thought that the acidic point which accelerates | stimulates organic substance adsorption | suction through this vacancy newly develops.

ここで、低密着性材料の表面とエポキシ樹脂との間の接着強さを更に低下させるためには、Yに対して窒素を導入するとともにアニオン空孔の生成を抑制すればよい。そして、アニオン空孔の生成を抑制するためには、02−よりも価数の1つ大きいN3−を打ち消すために、Y3+よりも価数が1つ大きくかつYに固溶する4A族元素のカチオンをYに添加すればよい。そして、4A族元素のカチオンとして、Zr4+(イオン半径:0.83Å=83pm)、Hf4+(イオン半径:0.83Å=83pm)のうちの1つ又は複数を使用することができる。以上説明したことから、第1の低密着性材料については、接着強さ、すなわち密着性を低下させる効果が生ずるけれども、その効果が第3の低密着性材料よりも小さいものと推察される。 Here, in order to further reduce the adhesion strength between the surface of the low adhesion material and the epoxy resin, nitrogen may be introduced into Y 2 O 3 and the formation of anion vacancies may be suppressed. In order to suppress the formation of anion vacancies, the valence is one larger than Y 3+ and fixed to Y 2 O 3 in order to cancel N 3, which is one valence larger than 0 2−. cations group 4A elements soluble may be added to Y 2 O 3. One or more of Zr 4+ (ion radius: 0.83 Å = 83 pm) and Hf 4+ (ion radius: 0.83 Å = 83 pm) can be used as the cation of the group 4A element. From the above description, the first low-adhesion material is presumed to have an effect of lowering the adhesive strength, that is, the adhesion, but the effect is smaller than that of the third low-adhesion material.

なお、Yにおける4A族元素のカチオンの置換量は、MeOに換算して(MeはZr又はHf)、0mol%を超えかつ20mol%以下であることが好ましい。その理由は、カチオンの置換量が20mol%を上回る場合には、酸化イットリウムマトリックスに対してZr又はHfが固溶限界以上となるため、複合酸化物(酸化イットリウムと酸化ジルコニウムからなる)や酸化ハフニウムが析出しやすく、これらによって密着性の低下が抑制されるからである。また、カチオンの置換量は、0mol%を超えかつ10mol%以下であることがより好ましい。 The substitution amount of the cation of the group 4A element in Y 2 O 3 is preferably more than 0 mol% and 20 mol% or less in terms of MeO 2 (Me is Zr or Hf). The reason is that when the substitution amount of the cation exceeds 20 mol%, Zr or Hf exceeds the solid solution limit with respect to the yttrium oxide matrix, so that a composite oxide (consisting of yttrium oxide and zirconium oxide) or hafnium oxide is used. This is because it is easy to precipitate, and the deterioration of adhesion is suppressed by these. Further, the cation substitution amount is more preferably more than 0 mol% and not more than 10 mol%.

また、第3の低密着性材料の少なくとも表面に含まれる窒素の量は0.01mol%以上かつ20mol%以下であることが好ましい。その理由は、第1に、0.01mol%を下回る場合には、Yにおける窒素の置換量が少なすぎて密着性を低下させる効果が認められないからである。第2に、窒素イオン濃度が20mol%を上回る場合には、Yの結晶構造が不安定になるので、低密着性材料としての構造を長期間安定的に維持することができないからである。なお、電気的中性条件を維持するために、置換可能な最大の窒素量は同じ材料に添加されるカチオン量と等しくなる。 Further, the amount of nitrogen contained in at least the surface of the third low adhesion material is preferably 0.01 mol% or more and 20 mol% or less. The reason for this is that, firstly, if it is less than 0.01 mol%, the substitution amount of nitrogen in Y 2 O 3 is too small, and the effect of reducing the adhesion is not recognized. Second, when the nitrogen ion concentration exceeds 20 mol%, the crystal structure of Y 2 O 3 becomes unstable, so that the structure as a low adhesion material cannot be stably maintained for a long period of time. is there. In order to maintain the electrical neutral condition, the maximum nitrogen amount that can be substituted is equal to the cation amount added to the same material.

また、低い密着性といっそう安定的な結晶構造の維持とのバランスを考慮すると、注入された窒素イオン濃度は0.01mol%以上でかつ10mol%以下であることがより好ましい。   In consideration of the balance between low adhesion and the maintenance of a more stable crystal structure, the concentration of implanted nitrogen ions is more preferably 0.01 mol% or more and 10 mol% or less.

以下、実施例4として、本発明に係る低密着性材料の製造方法を説明する。ここでは、基材の表面に、実施例2に記載された第2の低密着性材料又は実施例3に記載された第3の低密着性材料のいずれかを形成することによって、基材全体からなる低密着性材料を製造する方法について説明する。この場合には、第2の低密着性材料又は第3の低密着性材料のいずれかが表面に形成された状態の基材が、基材全体として低密着性材料を構成することになる。   Hereinafter, as Example 4, a method for producing a low adhesion material according to the present invention will be described. Here, by forming either the second low adhesion material described in Example 2 or the third low adhesion material described in Example 3 on the surface of the substrate, the entire substrate A method for producing a low adhesion material made of In this case, the base material in a state where either the second low adhesion material or the third low adhesion material is formed on the surface constitutes the low adhesion material as the whole base material.

まず、適当な基材を準備する。基材としては、優れた機械的特性、すなわち高い靱性と耐摩耗性とを有する材料が好ましい。例えば、基材としてジルコニウム基セラミックス(ZrO基セラミックス)を使用することができる。 First, a suitable base material is prepared. The substrate is preferably a material having excellent mechanical properties, that is, high toughness and wear resistance. For example, zirconium-based ceramics (ZrO 2 -based ceramics) can be used as the base material.

次に、Yを含む塩と4A族元素を含む塩とを含む液体を撹拌する。これにより、錯体重合によって有機−無機プレカーサーを含むコーティング材料を生成することができる。したがって、このコーティング材料が、第2の低密着性材料の原材料の少なくとも一部に相当する。   Next, the liquid containing the salt containing Y and the salt containing a 4A group element is stirred. Thereby, the coating material containing an organic-inorganic precursor can be produced | generated by complex polymerization. Therefore, this coating material corresponds to at least a part of the raw material of the second low adhesion material.

次に、基材であるZrO基セラミックスを、そのコーティング材料に浸漬する。これにより、基材の表面にコーティング材料を塗布する(ディップコート法)。なお、スプレーコート法を使用して、基材の表面にコーティング材料を塗布することもできる。 Next, the ZrO 2 -based ceramic as the base material is immersed in the coating material. As a result, the coating material is applied to the surface of the substrate (dip coating method). In addition, a coating material can also be apply | coated to the surface of a base material using a spray coat method.

次に、コーティング材料が塗布された基材を加熱して、熱処理を行う。これによって、基材の表面上に設けられた層状の部分からなる、YとOとZrとを含む機能層が形成される。ここでいう「機能層」という用語は、ある特定の機能を担う層を意味する。特定の機能とは、ある種の物質に対する低密着性、成形型として使用した場合における高離型性、及び、ある種の物質に関する防汚性である。また、「防汚性」という用語は、表面に汚れが付着することを防止する性質、又は、表面に汚れが付着した場合にその汚れが容易に落ちる(除去される)性質を意味する。   Next, the base material coated with the coating material is heated to perform heat treatment. As a result, a functional layer including Y, O, and Zr, which is composed of a layered portion provided on the surface of the substrate, is formed. As used herein, the term “functional layer” means a layer having a specific function. The specific functions are low adhesion to certain substances, high releasability when used as a mold, and antifouling properties for certain substances. Further, the term “antifouling property” means a property of preventing dirt from adhering to the surface, or a property of easily removing (removing) the dirt when the surface adheres to the surface.

ここまでの工程によって、実施例2で説明した第2の低密着性材料が得られる。第2の低密着性材料とは、少なくとも表面にYと4A族元素のカチオンであるZr4+とが含まれている低密着性材料である。 Through the steps up to here, the second low adhesion material described in Example 2 is obtained. The second low adhesion material is a low adhesion material containing at least Y 2 O 3 and Zr 4+ which is a cation of a 4A group element on the surface.

更に、第2の低密着性材料を窒化処理することによって、実施例3で説明した第3の低密着性材料が得られる。第3の低密着性材料とは、少なくとも表面にYと4A族元素のカチオンであるZr4+と窒素とが含まれている低密着性材料である。 Furthermore, the third low adhesion material described in Example 3 is obtained by nitriding the second low adhesion material. The third low adhesion material is a low adhesion material containing at least Y 2 O 3 , Zr 4+ which is a cation of a 4A group element, and nitrogen on the surface.

なお、窒化処理として、次の方法を使用することができる。それは、窒素雰囲気処理、PVD(Physical Vapor Deposition;物理気相成長法)、CVD(Chemical Vapor Deposition;化学気相成長法)、ゾルゲル法等である。PVDには、真空蒸着法、電子ビーム蒸着法、スパッタリング法、プラズマ溶射法、イオン注入法、プラズマイオン注入法、イオンプレーティング法等が含まれる。   As the nitriding treatment, the following method can be used. These include nitrogen atmosphere treatment, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), sol-gel method and the like. PVD includes vacuum deposition, electron beam deposition, sputtering, plasma spraying, ion implantation, plasma ion implantation, ion plating, and the like.

以上説明したように、本実施例に係る製造方法よれば、優れた機械的特性を有する基材の表面上に設けられた層状の部分に、Yと4A族元素のカチオンであるZr4+とを導入する(含ませる)ことができる。また、優れた機械的特性を有する基材の表面上に設けられた層状の部分に、Yと4A族元素のカチオンであるZr4+と窒素とを導入する(含ませる)ことができる。そして、これらの製造方法によれば、低密着性材料を製造する際に、希少元素であるYの使用量を削減することができる。また、低密着性材料の価格を抑制することができる。 As described above, according to the manufacturing method according to this example, Zr, which is a cation of Y 2 O 3 and a group 4A element, is formed on the layered portion provided on the surface of the substrate having excellent mechanical properties. 4+ can be introduced (included). In addition, Y 2 O 3 , Zr 4+ which is a cation of a 4A group element, and nitrogen can be introduced (included) into a layered portion provided on the surface of a substrate having excellent mechanical properties. . And according to these manufacturing methods, when manufacturing a low-adhesion material, the usage-amount of Y which is a rare element can be reduced. Further, the price of the low adhesion material can be suppressed.

また、本実施例に係る製造方法よれば、基材と機能層との界面に拡散固溶層(組成傾斜層)が形成される。これにより、基材と機能層との間の密着性が向上する。   Moreover, according to the manufacturing method which concerns on a present Example, a diffusion solid solution layer (composition gradient layer) is formed in the interface of a base material and a functional layer. Thereby, the adhesiveness between a base material and a functional layer improves.

また、本実施例に係る製造方法によれば、基材の熱膨張係数と機能層の熱膨張係数とが異なることにより、低密着性材料の表面付近において通常の使用温度下で圧縮残留応力が存在する。これにより、低密着性材料の表面付近において破壊靱性値が増大する。したがって、優れた耐摩耗性と耐衝撃性とを有する低密着性材料を製造することができる。   In addition, according to the manufacturing method according to the present example, the compressive residual stress is near the surface of the low-adhesive material under normal use temperature because the thermal expansion coefficient of the base material and the thermal expansion coefficient of the functional layer are different. Exists. This increases the fracture toughness value near the surface of the low adhesion material. Therefore, it is possible to produce a low adhesion material having excellent wear resistance and impact resistance.

なお、ここまで、次の3種類の低密着性材料について説明した。まず、Yのバルク材の表面に窒素イオンが注入された第1の低密着性材料である。次に、少なくとも基材の表面上に設けられた層状の部分にYと4A族元素のカチオンとが含まれている第2の低密着性材料である。次に、少なくとも基材の表面上に設けられた層状の部分にYと4A族元素のカチオンと窒素とが含まれている第3の低密着性材料である。これらに限らず、低密着性材料としては、全体にYと窒素とが含まれている材料(いわゆるバルク材)であってもよい。また、低密着性材料としては、全体にYと4A族元素のカチオンとが含まれている材料(いわゆるバルク材)であってもよい。また、低密着性材料としては、全体にYと4A族元素のカチオンと窒素とが含まれている材料(いわゆるバルク材)であってもよい。 Heretofore, the following three types of low adhesion materials have been described. First, it is a first low-adhesion material in which nitrogen ions are implanted into the surface of a Y 2 O 3 bulk material. Next, it is a second low-adhesion material in which Y 2 O 3 and a cation of a 4A group element are contained at least in a layered portion provided on the surface of the substrate. Next, it is a third low adhesion material in which Y 2 O 3 , a cation of a 4A group element and nitrogen are contained in at least a layered portion provided on the surface of the substrate. Not limited to these, the low adhesion material may be a material (so-called bulk material) containing Y 2 O 3 and nitrogen as a whole. The low adhesion material may be a material (so-called bulk material) containing Y 2 O 3 and 4A group element cations as a whole. Further, the low adhesion material may be a material (so-called bulk material) containing Y 2 O 3 , a cation of a 4A group element, and nitrogen as a whole.

第2の低密着性材料のバルク材を製造する場合には、次のような工程を行う。まず、Yを含む塩と4A族元素を含む塩とを含む液体を撹拌する。これにより、錯体重合によって有機−無機プレカーサーを含む液状の材料を生成する。   When manufacturing the bulk material of the second low adhesion material, the following steps are performed. First, a liquid containing a salt containing Y and a salt containing a 4A group element is stirred. Thereby, the liquid material containing an organic-inorganic precursor is produced | generated by complex polymerization.

次に、その液状の材料を乾燥させて粉体化する。その後に、粉体化された材料を焼結することによって、第2の低密着性材料のバルク材を製造することができる。なお、第3の低密着性材料のバルク材の製造方法としては、第2の低密着性材料のバルク材を窒化処理する製造方法を使用することができる。   Next, the liquid material is dried to be powdered. After that, the bulk material of the second low adhesion material can be manufactured by sintering the powdered material. In addition, as a manufacturing method of the bulk material of the third low adhesion material, a manufacturing method of nitriding the bulk material of the second low adhesion material can be used.

以下、実施例5として、本発明に係る防汚性材料について説明する。実施例5は、実施例1に記載された第1の低密着性材料、実施例2に記載された第2の低密着性材料、又は実施例3に記載された第3の低密着性材料のいずれかを、防汚性材料として使用するものである。   Hereinafter, the antifouling material according to the present invention will be described as Example 5. Example 5 is the first low adhesion material described in Example 1, the second low adhesion material described in Example 2, or the third low adhesion material described in Example 3. Any one of these is used as an antifouling material.

第1〜第3の低密着性材料は、それらが層状の材料又はバルク材のいずれであったとしても、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物に対する低い密着性を有する。したがって、そのような対象物を含む汚れの付着を防止する機能を有する材料として、第1〜第3の低密着性材料のいずれかを使用することができる。また、そのような対象物を含む汚れが付着した場合にそれらの汚れが容易に落ちる(除去される)材料として、第1〜第3の低密着性材料のいずれかを使用することができる。   The first to third low-adhesion materials are at least one of a basic substance, a thermosetting resin, and a substance containing moisture, regardless of whether they are a layered material or a bulk material. It has low adhesion to a single object. Therefore, any of the first to third low adhesion materials can be used as a material having a function of preventing the adhesion of dirt including such an object. Moreover, when dirt including such an object adheres, any of the first to third low adhesion materials can be used as a material that easily removes (removes) the dirt.

具体的には、建物の外壁等に使用される建材、浴槽、衛生陶器やこれに類する機器等の材料として、第1〜第3の低密着性材料のいずれかを使用することができる。また、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つからなる対象物が接触する配管類、タンク類の材料として、第1〜第3の低密着性材料のいずれかを使用することができる。更に、これらの用途に使用される部材の表面をコーティングする材料として、第1〜第3の低密着性材料のいずれかを使用してもよい。   Specifically, any of the first to third low-adhesion materials can be used as a material for building materials, bathtubs, sanitary ware, and similar devices used for building outer walls and the like. In addition, as materials for pipes and tanks that come into contact with an object consisting of at least one of a basic substance, a thermosetting resin, or a substance containing moisture, first to third low Any of the adhesive materials can be used. Furthermore, any of the first to third low adhesion materials may be used as a material for coating the surface of a member used for these applications.

以下、実施例6として、本発明に係る成形型について図3を参照して説明する。図3(1)、(2)は、それぞれ本発明に係る成形型であって、コーティングされた成形型とバルク材からなる成形型との概略を示す部分断面図である。   Hereinafter, as Example 6, a mold according to the present invention will be described with reference to FIG. 3 (1) and 3 (2) are partial cross-sectional views showing the outline of a coated mold and a mold made of a bulk material, respectively, according to the present invention.

実施例6は、実施例1に記載された第1の低密着性材料、実施例2に記載された第2の低密着性材料、又は、実施例3に記載された第3の低密着性材料のいずれかを、成形型として使用するものである。図3(1)に示されているように、上型1と上型1に対向する下型2とが設けられている。上型1の表面である型面3には、実施例2に記載された第2の低密着性材料からなる離型層4が形成されている。したがって、上型1が本実施例に係る成形型に相当する。なお、離型層4は、成形型として使用した場合における高離型性という特定の機能を担う層である。   Example 6 is the first low adhesion material described in Example 1, the second low adhesion material described in Example 2, or the third low adhesion material described in Example 3. Any of the materials is used as a mold. As shown in FIG. 3A, an upper mold 1 and a lower mold 2 facing the upper mold 1 are provided. A mold release layer 4 made of the second low adhesion material described in Example 2 is formed on the mold surface 3 which is the surface of the upper mold 1. Therefore, the upper mold 1 corresponds to the mold according to the present embodiment. In addition, the mold release layer 4 is a layer which bears the specific function of high mold release property when used as a mold.

図3(1)に示された基材5は、ZrO基セラミックスによって構成されている。基材5には、成形型が完成した後に流動性樹脂(図示なし)が流動する空間である樹脂通路6が形成されている。また、基材5には、成形型が完成した後に流動性樹脂が充填される空間であるキャビティ7が形成されている。樹脂通路6とキャビティ7とは、機械加工、焼結前の成形等の方法によって形成される。また、基材5の表面8には、成形型が完成した後に樹脂通路6とキャビティ7とにおける型面3に重なる面が含まれている。ここで、樹脂通路6とキャビティ7との型面3に接触する流動性樹脂は、例えば、熱硬化性樹脂であるエポキシ樹脂等のような塩基性を有する物質であって水分を含む物質である。 The substrate 5 shown in FIG. 3 (1) is made of ZrO 2 based ceramics. The base material 5 is formed with a resin passage 6 which is a space in which a flowable resin (not shown) flows after the mold is completed. Further, the base material 5 is formed with a cavity 7 which is a space filled with the fluid resin after the mold is completed. The resin passage 6 and the cavity 7 are formed by a method such as machining or molding before sintering. Further, the surface 8 of the substrate 5 includes a surface that overlaps the mold surface 3 in the resin passage 6 and the cavity 7 after the molding die is completed. Here, the fluid resin in contact with the mold surface 3 of the resin passage 6 and the cavity 7 is a basic substance such as an epoxy resin that is a thermosetting resin and contains moisture. .

図3(1)に示されているように、上型1における少なくとも型面3を含む型面3の付近にYと4A族元素のカチオンであるZr4+とを含ませることによって、離型層4が形成される。このことは、離型層4が実施例2で説明した第2の低密着性材料によって構成されていることを意味する。 As shown in FIG. 3 (1), by including Y 2 O 3 and Zr 4+ which is a cation of a group 4A element in the vicinity of the mold surface 3 including at least the mold surface 3 in the upper mold 1, A release layer 4 is formed. This means that the release layer 4 is composed of the second low adhesion material described in Example 2.

本実施例によれば、第2の低密着性材料によって構成される離型層4が、基材表面8に形成される。これにより、成形型である上型1の型面3が、離型層4の表面によって構成される。したがって、型面3と熱硬化性樹脂との間の離型性に関して、高い離型性を有する成形型が得られる。   According to the present embodiment, the release layer 4 composed of the second low adhesion material is formed on the substrate surface 8. Thereby, the mold surface 3 of the upper mold 1 which is a mold is constituted by the surface of the release layer 4. Therefore, a mold having high releasability is obtained with respect to releasability between the mold surface 3 and the thermosetting resin.

なお、実施例1で説明した第1の低密着性材料によって離型層4が構成されていることとしてもよい。更に、実施例3で説明した第3の低密着性材料によって離型層4が構成されていることとしてもよい。この場合においては、型面3と熱硬化性樹脂との間の離型性に関して、いっそう高い離型性を有する成形型が得られる。   In addition, it is good also as the mold release layer 4 being comprised with the 1st low-adhesion material demonstrated in Example 1. FIG. Further, the release layer 4 may be constituted by the third low adhesion material described in the third embodiment. In this case, a mold having a higher mold release property can be obtained with respect to the mold release property between the mold surface 3 and the thermosetting resin.

以下、図3(1)に示された成形型が使用される態様を説明する。この成形型は、半導体チップ等のチップ状部品を樹脂封止する際に使用される。   Hereinafter, a mode in which the mold shown in FIG. 3 (1) is used will be described. This mold is used when resin-sealing chip-shaped parts such as semiconductor chips.

図3(1)に示されるように、まず、下型2の上に、リードフレーム、プリント基板、セラミックス基板等の基板9を配置する。基板9の上に装着されたチップ10が有する電極と基板9が有する電極とは(いずれも図示なし)、ワイヤ11によって電気的に接続される。下型2の上において基板9は、チップ10とワイヤ11とがキャビティ7に収容され得るような位置に位置決めされて配置される。   As shown in FIG. 3A, first, a substrate 9 such as a lead frame, a printed circuit board, or a ceramic substrate is disposed on the lower mold 2. The electrodes of the chip 10 mounted on the substrate 9 and the electrodes of the substrate 9 (both not shown) are electrically connected by wires 11. On the lower mold 2, the substrate 9 is positioned and arranged at a position where the chip 10 and the wire 11 can be accommodated in the cavity 7.

次に、それぞれ加熱された上型1と下型2とを型締めする。その後に、熱硬化性樹脂であるエポキシ樹脂からなる流動性樹脂(図示なし)を、樹脂通路6を経由してキャビティ7に充填する。   Next, the heated upper mold 1 and lower mold 2 are clamped. Thereafter, a fluid resin (not shown) made of an epoxy resin, which is a thermosetting resin, is filled into the cavity 7 via the resin passage 6.

次に、引き続き流動性樹脂13を加熱する。このことによって、樹脂通路6とキャビティ7とにおいてそれぞれ硬化樹脂(図示なし)を形成する。   Next, the fluid resin 13 is continuously heated. As a result, a cured resin (not shown) is formed in each of the resin passage 6 and the cavity 7.

次に、上型1と下型2とを型開きした後に、基板9上におけるチップ10が樹脂封止された樹脂封止体(図示なし)を取り出す。ここで、上型1の型面3を含む型面3の近傍に設けられた離型層4は、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質に対する低い密着性を有する。したがって、離型層4は、塩基性を有する熱硬化性樹脂であって水分を含む物質であるエポキシ樹脂からなる硬化樹脂(図示なし)に対する低い密着性を有する。これにより、硬化樹脂は、離型層4から、言い換えれば上型1の型面3から離型する。   Next, after the upper mold 1 and the lower mold 2 are opened, a resin sealing body (not shown) in which the chip 10 on the substrate 9 is resin-sealed is taken out. Here, the release layer 4 provided in the vicinity of the mold surface 3 including the mold surface 3 of the upper mold 1 has low adhesion to a basic substance, a thermosetting resin, or a substance containing moisture. . Therefore, the release layer 4 has low adhesion to a cured resin (not shown) made of an epoxy resin that is a basic thermosetting resin and contains moisture. As a result, the cured resin is released from the release layer 4, in other words, from the mold surface 3 of the upper mold 1.

次に、適当な手段を使用して、樹脂封止体から、樹脂通路6において硬化した硬化樹脂(図示なし)からなる不要樹脂を分離する。ここまでの工程によって、基板9とチップ10と硬化樹脂とを含む、電子部品の完成品(パッケージ)が完成する。   Next, using an appropriate means, an unnecessary resin made of a cured resin (not shown) cured in the resin passage 6 is separated from the resin sealing body. Through the steps so far, a finished product (package) of the electronic component including the substrate 9, the chip 10, and the cured resin is completed.

なお、図3(2)に示されているように、成形型である上型12の全体をバルク材13によって構成してもよい。この場合には、まず、粉体化された材料を、成形型の形状に合わせて成形する。その後に、成形された材料を焼結すればよい。また、直方体状に成形した後に焼結してバルク材を作成し、そのバルク材に対して切削等の機械加工を施してもよい。   As shown in FIG. 3 (2), the entire upper mold 12, which is a mold, may be constituted by the bulk material 13. In this case, first, the powdered material is molded according to the shape of the mold. Thereafter, the molded material may be sintered. Moreover, after forming in a rectangular parallelepiped shape, you may sinter and create a bulk material, and you may perform machining, such as cutting, with respect to the bulk material.

また、成形型(上型1、上型12)の型面3に離型層4を形成する場合には、ブロック状(直方体状)の低密着性材料を、キャビティ7の底面又は天面を構成するキャビティブロックとして使用してもよい。この場合には、成形型のうち、流動性樹脂13が接触する型面3の一部、例えば、キャビティ7における内底面(図3では上面)が低密着性材料によって構成される。   When the release layer 4 is formed on the mold surface 3 of the mold (upper mold 1, upper mold 12), a block-like (cuboid) low-adhesion material is applied to the bottom surface or the top surface of the cavity 7. You may use as a cavity block to comprise. In this case, of the mold, a part of the mold surface 3 with which the fluid resin 13 contacts, for example, the inner bottom surface (upper surface in FIG. 3) of the cavity 7 is made of a low adhesion material.

また、本実施例(実施例6)においては、トランスファー成形を使用して、基板9に装着されたチップ10を樹脂封止する際に使用される成形型(上型1、上型12)を例に挙げて説明した。これに限らず、一般的な圧縮成形、射出成形等において使用される成形型に対して本発明を適用することができる。言い換えれば、キャビティ7に流動性樹脂が充填された状態でその流動性樹脂を硬化させて成形体を製造する際に使用される成形型に対して、本発明を適用することができる。   In this example (Example 6), the molding die (upper die 1 and upper die 12) used when resin-sealing the chip 10 mounted on the substrate 9 using transfer molding is used. Explained with an example. The present invention is not limited to this and can be applied to a mold used in general compression molding, injection molding, and the like. In other words, the present invention can be applied to a mold used when a molded body is manufactured by curing the fluid resin in a state where the cavity 7 is filled with the fluid resin.

また、本実施例において説明した成形型には、抜き型も含まれる。すなわち、材料を打ち抜いて成形品を製造する際に使用される成形型であって、塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質のうちの少なくともいずれか1つに接触する可能性がある成形型に、本発明に係る低密着性材料を使用することができる。   Further, the mold described in this embodiment includes a punching mold. That is, it is a mold used when manufacturing a molded product by punching a material, and is in contact with at least one of a basic substance, a thermosetting resin, or a substance containing moisture. The low adhesion material according to the present invention can be used for a mold having a possibility.

なお、ここまでの説明では、低密着性材料等の表面に含まれる4A族元素のカチオンの量について、0mol%を超えかつ20mol%以下であることとした。その理由は、4A族元素のカチオンの量が20mol%を超えると生成物が複合酸化物になるので、生成物において低密着性という特性を得ることが困難になると予想されるからである。なお、上述した「20mol%」という上限の比率は、添加剤の種類、組合せ、添加率等によって変動する。この変動を考慮すると、4A族元素のカチオンの量は0mol%を超えかつ15mol%以下であることが好ましい。   In the description so far, the amount of the cation of the group 4A element contained on the surface of the low adhesion material or the like is more than 0 mol% and not more than 20 mol%. The reason is that if the amount of the cation of the group 4A element exceeds 20 mol%, the product becomes a composite oxide, and it is expected that it will be difficult to obtain the characteristic of low adhesion in the product. The upper limit ratio of “20 mol%” described above varies depending on the type, combination, addition rate, and the like of the additive. Considering this variation, the amount of the cation of the group 4A element is preferably more than 0 mol% and not more than 15 mol%.

また、実施例4において説明した低密着性材料の製造方法によって製造された低密着性材料は、防汚性材料又は成形型としても使用される。したがって、実施例4において説明した低密着性材料の製造方法を、防汚性材料の製造方法又は成形型の製造方法としても適用することができる。   Further, the low adhesion material produced by the method for producing a low adhesion material described in Example 4 is also used as an antifouling material or a mold. Therefore, the method for producing a low adhesion material described in Example 4 can be applied as a method for producing an antifouling material or a method for producing a mold.

また、本発明は、上述の各実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、必要に応じて、任意にかつ適宜に組み合わせ、変更し、又は選択して採用できるものである。   In addition, the present invention is not limited to the above-described embodiments, and may be arbitrarily combined, changed, or selected as necessary without departing from the spirit of the present invention. It can be done.

1、12 上型
2 下型
3 型面
4 離型層
5 基材
6 樹脂通路
7 キャビティ
8 表面
9 基板
10 チップ
11 ワイヤ
13 バルク材
DESCRIPTION OF SYMBOLS 1, 12 Upper mold | type 2 Lower mold | type 3 Mold surface 4 Release layer 5 Base material 6 Resin passage 7 Cavity 8 Surface 9 Substrate 10 Chip 11 Wire 13 Bulk material

Claims (28)

塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料であって、
前記低密着性材料の少なくとも表面には酸化イットリウムと窒素とが含まれていることを特徴とする低密着性材料。
A low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture,
A low adhesion material, wherein at least a surface of the low adhesion material contains yttrium oxide and nitrogen.
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料であって、
前記低密着性材料の少なくとも表面には酸化イットリウムと4A族元素のカチオンとが含まれていることを特徴とする低密着性材料。
A low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture,
A low-adhesion material comprising at least a surface of the low-adhesion material containing yttrium oxide and a cation of a group 4A element.
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料であって、
前記低密着性材料の少なくとも表面には酸化イットリウムと窒素と4A族元素のカチオンとが含まれていることを特徴とする低密着性材料。
A low-adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture,
A low-adhesion material comprising at least a surface of the low-adhesion material containing yttrium oxide, nitrogen, and a cation of a group 4A element.
請求項1又は3に記載された低密着性材料において、
前記低密着性材料の少なくとも表面に含まれる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする低密着性材料。
In the low adhesion material according to claim 1 or 3,
The low adhesion material characterized in that the amount of nitrogen contained in at least the surface of the low adhesion material is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atom.
請求項2又は3に記載された低密着性材料において、
前記低密着性材料の少なくとも表面に含まれる前記4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする低密着性材料。
In the low adhesion material according to claim 2 or 3,
The low adhesion material, wherein the amount of the cation of the group 4A element contained in at least the surface of the low adhesion material is more than 0 mol% and 20 mol% or less.
請求項2、3、又は、5のいずれか1つに記載された低密着性材料において、
前記4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする低密着性材料。
In the low adhesion material according to any one of claims 2, 3, or 5,
The low adhesion material, wherein the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .
請求項1〜6のいずれか1つに記載された低密着性材料において、
前記低密着性材料は母材を有し、
前記母材は酸化ジルコニウムを主たる成分として含むとともに、
酸化イットリウムと窒素とは、酸化イットリウムと前記4A族元素のカチオンとは、又は、酸化イットリウムと窒素と前記4A族元素のカチオンとは、前記母材の表面上に設けられた層状の部分に含まれていることを特徴とする低密着性材料。
In the low adhesion material according to any one of claims 1 to 6,
The low adhesion material has a base material;
The base material contains zirconium oxide as a main component,
Yttrium oxide and nitrogen are yttrium oxide and the cation of the group 4A element, or yttrium oxide, nitrogen and cation of the group 4A element are included in the layered portion provided on the surface of the base material. Low adhesion material characterized by
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物を含む汚れに関する防汚性を有する防汚性材料であって、
前記防汚性材料の少なくとも表面には酸化イットリウムと窒素とが含まれていることを特徴とする防汚性材料。
An antifouling material having antifouling properties with respect to dirt containing an object composed of a substance having basicity, a thermosetting resin, or a substance containing moisture,
An antifouling material characterized in that at least the surface of the antifouling material contains yttrium oxide and nitrogen.
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物を含む汚れに関する防汚性を有する防汚性材料であって、
前記防汚性材料の少なくとも表面には酸化イットリウムと4A族元素のカチオンとが含まれていることを特徴とする防汚性材料。
An antifouling material having antifouling properties with respect to dirt containing an object composed of a substance having basicity, a thermosetting resin, or a substance containing moisture,
An antifouling material comprising at least a surface of the antifouling material containing yttrium oxide and a cation of a group 4A element.
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物を含む汚れに関する防汚性を有する防汚性材料であって、
前記防汚性材料の少なくとも表面には酸化イットリウムと窒素と4A族元素のカチオンとが含まれていることを特徴とする防汚性材料。
An antifouling material having antifouling properties with respect to dirt containing an object composed of a substance having basicity, a thermosetting resin, or a substance containing moisture,
An antifouling material comprising at least a surface of the antifouling material containing yttrium oxide, nitrogen, and a cation of a group 4A element.
請求項8又は10に記載された防汚性材料において、
前記防汚性材料の少なくとも表面に含まれる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする防汚性材料。
In the antifouling material according to claim 8 or 10,
The antifouling material, wherein the amount of nitrogen contained in at least the surface of the antifouling material is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atoms.
請求項9又は10に記載された防汚性材料において、
前記防汚性材料の少なくとも表面に含まれる前記4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする防汚性材料。
In the antifouling material according to claim 9 or 10,
The antifouling material, wherein the amount of the cation of the group 4A element contained in at least the surface of the antifouling material is more than 0 mol% and not more than 20 mol%.
請求項9、10、又は、12のいずれか1つに記載された防汚性材料において、
前記4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする防汚性材料。
In the antifouling material according to any one of claims 9, 10, or 12,
The antifouling material, wherein the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .
請求項8〜13のいずれか1つに記載された防汚性材料において、
前記防汚性材料は母材を有し、
前記母材は酸化ジルコニウムを主たる成分として含むとともに、
酸化イットリウムと窒素とは、酸化イットリウムと前記4A族元素のカチオンとは、又は、酸化イットリウムと窒素と前記4A族元素のカチオンとは、前記母材の表面上に設けられた層状の部分に含まれていることを特徴とする防汚性材料。
In the antifouling material according to any one of claims 8 to 13,
The antifouling material has a base material,
The base material contains zirconium oxide as a main component,
Yttrium oxide and nitrogen are yttrium oxide and the cation of the group 4A element, or yttrium oxide, nitrogen and cation of the group 4A element are included in the layered portion provided on the surface of the base material. Antifouling material characterized by
成形品を成形する際に使用される成形型であって、
前記成形型の少なくとも表面には酸化イットリウムと窒素とが含まれていることを特徴とする成形型。
A mold used when molding a molded article,
A molding die characterized in that at least the surface of the molding die contains yttrium oxide and nitrogen.
成形品を成形する際に使用される成形型であって、
前記成形型の少なくとも表面には酸化イットリウムと4A族元素のカチオンとが含まれていることを特徴とする成形型。
A mold used when molding a molded article,
A molding die characterized in that at least the surface of the molding die contains yttrium oxide and a cation of a group 4A element.
成形品を成形する際に使用される成形型であって、
前記成形型の少なくとも表面には酸化イットリウムと窒素と4A族元素のカチオンとが含まれていることを特徴とする成形型。
A mold used when molding a molded article,
The mold according to claim 1, wherein at least a surface of the mold contains yttrium oxide, nitrogen, and a cation of a group 4A element.
請求項15又は17に記載された成形型において、
前記成形型の少なくとも表面に含まれる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする成形型。
The mold according to claim 15 or 17,
The mold according to claim 1, wherein the amount of nitrogen contained in at least the surface of the mold is 0.01 mol% or more and 10 mol% or less in terms of nitrogen atoms.
請求項16又は17に記載された成形型において、
前記成形型の少なくとも表面に含まれる前記4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする成形型。
The mold according to claim 16 or 17,
The mold according to claim 1, wherein the amount of the cation of the group 4A element contained in at least the surface of the mold exceeds 0 mol% and is 20 mol% or less.
請求項16、17、又は、19のいずれか1つに記載された成形型において、
前記4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする成形型。
The mold according to any one of claims 16, 17 or 19,
The mold according to claim 4, wherein the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .
請求項15〜20のいずれか1つに記載された成形型において、
前記成形型は母材を有し、
前記母材は酸化ジルコニウムを主たる成分として含むとともに、
酸化イットリウムと窒素とは、酸化イットリウムと前記4A族元素のカチオンとは、又は、酸化イットリウムと窒素と前記4A族元素のカチオンとは、前記母材の表面上に設けられた層状の部分に含まれていることを特徴とする成形型。
In the shaping | molding die described in any one of Claims 15-20,
The mold has a base material,
The base material contains zirconium oxide as a main component,
Yttrium oxide and nitrogen are yttrium oxide and the cation of the group 4A element, or yttrium oxide, nitrogen and cation of the group 4A element are included in the layered portion provided on the surface of the base material. Mold that is characterized by being.
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、前記対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法であって、
酸化イットリウムと4A族元素とを含む第1の原材料を準備する工程と、
前記第1の原材料を使用して、前記低密着性材料、前記防汚性材料、又は、前記成形型のいずれかの少なくとも表面が酸化イットリウムと前記4A族元素のカチオンとを含んでいる状態にする工程とを備えることを特徴とする製造方法。
A method for producing a low adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and an antifouling property having antifouling properties related to dirt containing the object A method for manufacturing a material, or a method for manufacturing a mold used when molding a molded article,
Providing a first raw material containing yttrium oxide and a group 4A element;
Using the first raw material, at least the surface of any one of the low adhesion material, the antifouling material, or the mold contains yttrium oxide and a cation of the group 4A element. The manufacturing method characterized by including the process to do.
請求項22に記載された製造方法において、
酸化ジルコニウムを主たる成分として含む母材を準備する工程を備えるとともに、
前記低密着性材料、前記防汚性材料、又は、前記成形型のいずれかの少なくとも表面が酸化イットリウムと前記4A族元素のカチオンとを含んでいる状態にする工程では、前記母材の表面上に設けられた層状の部分が酸化イットリウムと前記4A族元素のカチオンとを含んでいる状態にすることを特徴とする製造方法。
The manufacturing method according to claim 22, wherein
While preparing a step of preparing a base material containing zirconium oxide as a main component,
In the step of setting at least the surface of any one of the low adhesion material, the antifouling material, or the mold to contain yttrium oxide and a cation of the group 4A element, the surface of the base material A layered portion provided in the substrate is in a state containing yttrium oxide and a cation of the group 4A element.
請求項22又は23に記載された製造方法において、
前記低密着性材料、前記防汚性材料、若しくは、前記成形型のいずれかの少なくとも表面に窒素を更に含ませる工程を備えることを特徴とする製造方法。
The manufacturing method according to claim 22 or 23,
A manufacturing method comprising the step of further including nitrogen on at least the surface of any of the low adhesion material, the antifouling material, or the mold.
請求項22〜24に記載された製造方法において、
前記低密着性材料、前記防汚性材料、又は、前記成形型のいずれかの少なくとも表面に含ませる前記4A族元素のカチオンの量は0mol%を超えかつ20mol%以下であることを特徴とする製造方法。
In the manufacturing method as described in Claim 22-24,
The amount of the cation of the group 4A element included in at least the surface of any of the low adhesion material, the antifouling material, or the mold is more than 0 mol% and not more than 20 mol%. Production method.
請求項22〜25のいずれか1つに記載された製造方法において、
前記4A族元素のカチオンはZr4+又はHf4+のうちの少なくとも1つであることを特徴とする製造方法。
In the manufacturing method as described in any one of Claims 22-25,
4. The production method according to claim 1, wherein the cation of the group 4A element is at least one of Zr 4+ or Hf 4+ .
塩基性を有する物質、熱硬化性樹脂、又は、水分を含む物質からなる対象物に対する低密着性を有する低密着性材料の製造方法、前記対象物を含む汚れに関する防汚性を有する防汚性材料の製造方法、又は、成形品を成形する際に使用される成形型の製造方法であって、
酸化イットリウムを主たる成分として含む第2の原材料を準備する工程と、
前記第2の原材料の表面に窒素を含ませる工程を備えることを特徴とする製造方法。
A method for producing a low adhesion material having low adhesion to an object composed of a basic substance, a thermosetting resin, or a substance containing moisture, and an antifouling property having antifouling properties related to dirt containing the object A method for manufacturing a material, or a method for manufacturing a mold used when molding a molded article,
Preparing a second raw material containing yttrium oxide as a main component;
A manufacturing method comprising the step of including nitrogen in the surface of the second raw material.
請求項24又は27に記載された製造方法において、
前記低密着性材料、前記防汚性材料、若しくは、前記成形型のいずれかの少なくとも表面に、又は、前記第2の原材料の表面に含ませる窒素の量は窒素原子換算で0.01mol%以上かつ10mol%以下であることを特徴とする製造方法。
The manufacturing method according to claim 24 or 27,
The amount of nitrogen contained in at least the surface of any of the low adhesion material, the antifouling material, or the molding die or the surface of the second raw material is 0.01 mol% or more in terms of nitrogen atoms. And the manufacturing method characterized by being 10 mol% or less.
JP2009234794A 2009-10-09 2009-10-09 Low adhesion material, antifouling material, mold, and production method thereof Active JP5561992B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009234794A JP5561992B2 (en) 2009-10-09 2009-10-09 Low adhesion material, antifouling material, mold, and production method thereof
TW99134375A TW201117939A (en) 2009-10-09 2010-10-08 Low-adhesion material, stain-proof material, molding die, and processes for production thereof
PCT/JP2010/067742 WO2011043461A1 (en) 2009-10-09 2010-10-08 Low-adhesion material, stain-proof material, molding die, and processes for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234794A JP5561992B2 (en) 2009-10-09 2009-10-09 Low adhesion material, antifouling material, mold, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011079261A true JP2011079261A (en) 2011-04-21
JP5561992B2 JP5561992B2 (en) 2014-07-30

Family

ID=43856910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234794A Active JP5561992B2 (en) 2009-10-09 2009-10-09 Low adhesion material, antifouling material, mold, and production method thereof

Country Status (3)

Country Link
JP (1) JP5561992B2 (en)
TW (1) TW201117939A (en)
WO (1) WO2011043461A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015214070A (en) * 2014-05-09 2015-12-03 Towa株式会社 Molding tool
KR20160117286A (en) 2015-03-30 2016-10-10 토와 가부시기가이샤 Molding die and low-adhesion material
JP2017165612A (en) * 2016-03-16 2017-09-21 Towa株式会社 Translucent material, low adhesion material and molding member
KR20180136965A (en) * 2016-04-15 2018-12-26 토와 가부시기가이샤 Other hole or mortar and tableting devices containing it
JP2020100562A (en) * 2020-04-03 2020-07-02 Towa株式会社 Translucent material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092587A1 (en) * 2004-03-26 2005-10-06 Towa Corporation Method of evaluating adherence, material of low adherence and resin shaping die
JP2006131429A (en) * 2004-11-02 2006-05-25 Towa Corp Low-adhesion material and resin mold
JP2007197251A (en) * 2006-01-26 2007-08-09 Towa Corp Low-adhesion material, resin molding mold, and stainproofing material
WO2007116571A1 (en) * 2006-04-11 2007-10-18 Towa Corporation Low-adhesion material, mold for shaping resin and stainproof material
JP2009226775A (en) * 2008-03-24 2009-10-08 Towa Corp Low-adhesive material and its manufacturing method, molding mold and its manufacturing method, antifouling material and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092587A1 (en) * 2004-03-26 2005-10-06 Towa Corporation Method of evaluating adherence, material of low adherence and resin shaping die
JP2006131429A (en) * 2004-11-02 2006-05-25 Towa Corp Low-adhesion material and resin mold
JP2007197251A (en) * 2006-01-26 2007-08-09 Towa Corp Low-adhesion material, resin molding mold, and stainproofing material
WO2007116571A1 (en) * 2006-04-11 2007-10-18 Towa Corporation Low-adhesion material, mold for shaping resin and stainproof material
JP2007276402A (en) * 2006-04-11 2007-10-25 Towa Corp Low-adhesive material, resin molding mold, and antifouling material
JP2009226775A (en) * 2008-03-24 2009-10-08 Towa Corp Low-adhesive material and its manufacturing method, molding mold and its manufacturing method, antifouling material and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014021060; 北岡諭 他: 'エポキシ樹脂に対して離型性に優れるセラミックス材料の設計' 日本材料学会東海支部第2回学術講演会講演論文集 , 20080409, 第46頁, 日本材料学会 *
JPN6014021061; '研究成果2 高離型性を有するセラミック型材料の設計' JFCCニュース 第86号, 20070320, 第6-7頁, (株)ファインセラミックスセンター *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015214070A (en) * 2014-05-09 2015-12-03 Towa株式会社 Molding tool
KR20170040152A (en) 2014-05-09 2017-04-12 토와 가부시기가이샤 Mold
KR102009074B1 (en) * 2014-05-09 2019-08-08 토와 가부시기가이샤 Mold
KR20160117286A (en) 2015-03-30 2016-10-10 토와 가부시기가이샤 Molding die and low-adhesion material
JP2016187941A (en) * 2015-03-30 2016-11-04 Towa株式会社 Molding die and low adhesion material
JP2017165612A (en) * 2016-03-16 2017-09-21 Towa株式会社 Translucent material, low adhesion material and molding member
WO2017159584A1 (en) * 2016-03-16 2017-09-21 Towa株式会社 Light-transmitting material, low-adhesion material and molding member
US20190077123A1 (en) * 2016-03-16 2019-03-14 Towa Corporation Translucent material, low-adhesion material, and molding member
KR20180136965A (en) * 2016-04-15 2018-12-26 토와 가부시기가이샤 Other hole or mortar and tableting devices containing it
KR102252310B1 (en) * 2016-04-15 2021-05-14 토와 가부시기가이샤 Tableting machine or mortar and tableting device including the same
JP2020100562A (en) * 2020-04-03 2020-07-02 Towa株式会社 Translucent material

Also Published As

Publication number Publication date
JP5561992B2 (en) 2014-07-30
TW201117939A (en) 2011-06-01
WO2011043461A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5561992B2 (en) Low adhesion material, antifouling material, mold, and production method thereof
JP4230492B2 (en) Low adhesion materials, resin molds and antifouling materials
US7800241B2 (en) Semiconductor device with semiconductor device components embedded in a plastics composition
TWI366574B (en) Process for producing semiconductor device
TWI308517B (en)
JP6141197B2 (en) Method for manufacturing a three-dimensional structure
JP6902857B2 (en) Electrical equipment with encapsulant
TW200921713A (en) Stacked electronic part and method of manufacturing the same
CN104105332B (en) Electronic component built-in substrate
JP2010506389A (en) Method for manufacturing a sensor component and sensor component
WO2013045345A3 (en) Layer composite for connecting electronic components, comprising a compensation layer, bonding layers and connection layers, method for making same, and circuit arrangement containing same
CN106373893B (en) Semiconductor device and its manufacturing method
JP2010109069A (en) Wiring board and method for manufacturing the same
JP3969438B2 (en) Ceramic substrate and method for manufacturing ceramic substrate
JP5554898B2 (en) Low adhesion material and manufacturing method thereof, mold and manufacturing method thereof, and antifouling material and manufacturing method thereof
CN109565939A (en) Ceramic substrate and module having built-in electronic parts
CN101238081A (en) Low-adhesion material, molding reins die, and stainproof material
CN205752140U (en) A kind of aluminising silicon carbide substrate
KR102518646B1 (en) Ceramic Board Manufacturing Method and Ceramic Board manufactured by thereof
JP2012501065A5 (en)
JP5837010B2 (en) Resin sealing method for electronic parts
CN103346145B (en) A kind of flexible substrate package structure
JP2007187678A (en) Evaluation method of adhesion
KR101393699B1 (en) A carrier for manufacturing of fan-out wafer level packaging and a process for their production
US20220310576A1 (en) Semiconductor package structure and methods of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5561992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250