JP2011074144A - Styrene polymer particle, manufacturing method for the same, expandable styrene polymer particle and foam-molded product - Google Patents

Styrene polymer particle, manufacturing method for the same, expandable styrene polymer particle and foam-molded product Download PDF

Info

Publication number
JP2011074144A
JP2011074144A JP2009224980A JP2009224980A JP2011074144A JP 2011074144 A JP2011074144 A JP 2011074144A JP 2009224980 A JP2009224980 A JP 2009224980A JP 2009224980 A JP2009224980 A JP 2009224980A JP 2011074144 A JP2011074144 A JP 2011074144A
Authority
JP
Japan
Prior art keywords
polymer particles
styrene
styrene polymer
polymerization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009224980A
Other languages
Japanese (ja)
Other versions
JP5666796B2 (en
Inventor
Saburo Fujii
三朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009224980A priority Critical patent/JP5666796B2/en
Publication of JP2011074144A publication Critical patent/JP2011074144A/en
Application granted granted Critical
Publication of JP5666796B2 publication Critical patent/JP5666796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foam-molded product having a smooth cut surface after cut by a hot nichrome wire, and a method of manufacturing styrene polymer particle giving the foam-molded product, styrene polymer particles, expandable styrene polymer particles, and the like. <P>SOLUTION: The method of manufacturing the styrene polymer particles comprises effecting polymerization by previously causing a molecular weight modifier to be present in an aqueous medium and adding a styrene monomer continuously or stepwise to the system, where the temperature, A°C, at the time of the initiation of polymerization and the temperature, B°C, at the time of finish of the addition of the predetermined amount of the styrene monomer, are caused to satisfy A≤B≤A+15 and the temperature is kept at A°C over a period of at least 50% of the total polymerization time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スチレン系重合体粒子、その製造方法、発泡性スチレン系重合体粒子及び発泡成形体に関する。更に詳しくは、本発明は、ニクロムカット後のカット面が平滑な発泡成形体を得るためのスチレン系重合体粒子、その製造方法及び発泡性スチレン系重合体粒子、ニクロムカット後のカット面が平滑な発泡成形体に関する。   The present invention relates to a styrene polymer particle, a method for producing the same, an expandable styrene polymer particle, and a foamed molded product. More specifically, the present invention relates to a styrene polymer particle for obtaining a foamed molded article having a smooth cut surface after nichrome cutting, its production method and expandable styrene polymer particle, and a cut surface after nichrome cutting is smooth. The present invention relates to a foamed molded article.

スチレン系重合体粒子にプロパン、ブタン、ペンタン等の揮発性発泡剤を含浸することにより、発泡性能が付与された発泡性スチレン系重合体粒子を型内発泡成形したブロック状のスチレン系樹脂発泡成形体(発泡成形体とも称する)が、その成形性の観点から、建材用のパネル、包装材等として幅広く使用されている。
一般に、ニクロム線でカット(ニクロムカットとも称する)する方法は、発泡成形体を所望の大きさ、形状に、極めて容易に加工できるため、発泡成形体の加工方法として多用されている。しかし、この加工方法では、発泡成形体がニクロム線による高熱下にさらされるため、発泡成形体のカット面(加工面)に大きな凹凸が確認されることがある。この場合、凹凸が確認されたカット面を有する発泡成形体は美麗でなく、また、カット面において接着不良等を引き起こすこともある。
従って、カット面が平滑な発泡成形体の加工品の提供が求められている。
Block-shaped styrene resin foam molding in which foamable styrene polymer particles imparted with foaming performance are impregnated with styrene polymer particles by impregnating volatile foaming agents such as propane, butane and pentane. A body (also referred to as a foam molded body) is widely used as a building material panel, packaging material, and the like from the viewpoint of moldability.
In general, the method of cutting with nichrome wire (also referred to as nichrome cutting) is widely used as a method for processing a foamed molded product because the foamed molded product can be processed very easily into a desired size and shape. However, in this processing method, since the foamed molded product is exposed to high heat by the nichrome wire, large unevenness may be confirmed on the cut surface (processed surface) of the foamed molded product. In this case, the foamed molded article having a cut surface on which irregularities have been confirmed is not beautiful and may cause poor adhesion on the cut surface.
Therefore, provision of a processed product of a foamed molded article having a smooth cut surface is demanded.

カット面が平滑な加工品を提供する技術が、特開平7−188453号公報(特許文献1)や特開2007−246606号公報(特許文献2)で報告されている。
特開平7−188453号公報には、スチレン系単量体の重合開始時の反応温度をA℃、重合終了時の反応温度をB℃としたときに、B℃≧A℃+15℃となるように昇温しながらスチレン系単量体を供給する発泡性スチレン系重合体粒子の製造方法が記載されている。得られた発泡性スチレン系重合体粒子に由来する発泡成形体は、発泡粒子相互の融着がよく、粒子間の間隙がよく埋められ、外観が良好であるとされている。
A technique for providing a processed product having a smooth cut surface is reported in Japanese Patent Application Laid-Open No. 7-188453 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2007-246606 (Patent Document 2).
In JP-A-7-188453, when the reaction temperature at the start of polymerization of the styrene monomer is A ° C. and the reaction temperature at the end of the polymerization is B ° C., B ° C ≧ A ° C. + 15 ° C. Describes a process for producing expandable styrenic polymer particles in which a styrene monomer is supplied while raising the temperature. The foamed molded article derived from the obtained expandable styrenic polymer particles is said to have good fusion between the foamed particles, well filled gaps between the particles, and good appearance.

また、特開2007−246606号公報では、スチレン系重合体粒子全体の重量平均分子量が33万〜50万の範囲にあり、かつスチレン系重合体粒子表層部の重量平均分子量を(X)とし、粒子全体の重量平均分子量を(Y)とした時、次式(1)で求められる分子量低下率(%):
分子量低下率(%)=(Y−X)/Y×100 (1)
が0.5〜5%の範囲内である発泡性ポリスチレン系樹脂粒子が記載されている。この公報では、上記分子量低下率を有する発泡性ポリスチレン系樹脂粒子を使用することで、凹凸が少なく平滑なカット面を有する加工品を得られるとされている。
In JP 2007-246606 A, the weight average molecular weight of the entire styrene polymer particles is in the range of 330,000 to 500,000, and the weight average molecular weight of the styrene polymer particle surface layer is (X). When the weight average molecular weight of the whole particle is (Y), the molecular weight reduction rate (%) obtained by the following formula (1):
Molecular weight reduction rate (%) = (Y−X) / Y × 100 (1)
Expandable polystyrene-based resin particles are described in the range of 0.5 to 5%. In this publication, it is said that by using the expandable polystyrene resin particles having the above-described molecular weight reduction rate, a processed product having a smooth cut surface with few irregularities can be obtained.

特開平7−188453号公報JP-A-7-188453 特開2007−246606号公報JP 2007-246606 A

特開平7−188453号公報の技術により得られた発泡成形体は、カット面の凹凸が確認されることがある。
また、特開2007−246606号公報では、カット面の平滑性を示す指標として、亀甲高さを挙げている。この公報の実施例3では、18μmと最も小さい亀甲高さが得られている。しかし、更に亀甲高さが小さい、言い換えると平滑性の更に高いカット面を与えうる発泡成形体が求められている
As for the foaming molding obtained by the technique of Unexamined-Japanese-Patent No. 7-188453, the unevenness | corrugation of a cut surface may be confirmed.
In Japanese Patent Application Laid-Open No. 2007-246606, the turtle shell height is cited as an index indicating the smoothness of the cut surface. In Example 3 of this publication, the smallest turtle shell height of 18 μm is obtained. However, there is a need for a foam molded body that has a smaller turtle shell height, in other words, that can provide a cut surface with higher smoothness.

かくして本発明によれば、水性媒体に予め分子量調整剤を存在させ、その系にスチレン系単量体を連続的又は段階的に添加して重合を行うに当り、重合開始時の温度A℃と所定量の前記スチレン系単量体を添加し終わったときの温度B℃を、A≦B≦A+15を満たす温度とし、全重合時間の内50%以上の時間をA℃で保持することを特徴とするスチレン系重合体粒子の製造方法が提供される。
また、本発明によれば、上記方法により得られるスチレン系重合体粒子が提供される。
更に、上記スチレン系重合体粒子から得られる発泡性スチレン系重合体粒子が提供される。
また、上記発泡性スチレン系重合体粒子を型内発泡成形して得られる発泡成形体が提供される。
Thus, according to the present invention, the molecular weight regulator is preliminarily present in the aqueous medium, and the styrene monomer is continuously or stepwise added to the system to carry out the polymerization. The temperature B ° C. when the predetermined amount of the styrenic monomer has been added is set to a temperature satisfying A ≦ B ≦ A + 15, and 50% or more of the total polymerization time is maintained at A ° C. A method for producing styrenic polymer particles is provided.
Moreover, according to this invention, the styrene-type polymer particle obtained by the said method is provided.
Furthermore, expandable styrene polymer particles obtained from the styrene polymer particles are provided.
Moreover, the foaming molding obtained by carrying out in-mold foaming molding of the said expandable styrene-type polymer particle is provided.

本発明の製造方法によれば、ニクロムカット後のカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。また、平滑なカット面を与えうる発泡性スチレン系重合体粒子及び発泡成形体を提供できる。更に、平滑なカット面を有する発泡成形体を提供できる。
また、温度A℃が、分子量調整剤の10時間半減期温度の±15℃の範囲内である場合、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
According to the production method of the present invention, it is possible to provide styrene polymer particles capable of giving a foamed molded article having a smooth cut surface after nichrome cutting. Moreover, the expandable styrene-type polymer particle and foaming molding which can give a smooth cut surface can be provided. Furthermore, the foaming molding which has a smooth cut surface can be provided.
Further, when the temperature A ° C. is within the range of ± 15 ° C. of the 10-hour half-life temperature of the molecular weight modifier, it is possible to provide styrene polymer particles that can give a foamed molded product with a smoother cut surface.

更に、懸濁重合が、全重合時間の内、50〜80%の時間、A℃で保持される場合、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
また、スチレン系単量体が、1〜10時間以内に水性媒体にその全量添加される場合、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
更に、発泡性スチレン系重合体粒子が、600〜1500μmの平均粒子径を有する場合、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
Furthermore, when suspension polymerization is maintained at A ° C. for 50 to 80% of the total polymerization time, it is possible to provide styrene polymer particles that can give a foamed molded product with a smoother cut surface.
In addition, when the styrene monomer is added to the aqueous medium in an amount of 1 to 10 hours, styrene polymer particles that can give a foamed molded article with a smoother cut surface can be provided.
Furthermore, when the expandable styrene polymer particles have an average particle diameter of 600 to 1500 μm, styrene polymer particles that can give a foam molded product with a smoother cut surface can be provided.

また、懸濁重合が、スチレン系重合体からなる種粒子を使用するシード重合法である場合、スチレン系重合体粒子の粒子径を均一にできるので、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
更に、種粒子が、難水溶性リン酸塩と、水溶性亜硫酸塩及び水溶性過硫酸塩から選択される塩の存在下、水性媒体中での種粒子用スチレン系単量体の懸濁重合により得られる場合、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
また、本発明によれば、カット面が平滑な発泡成形体を製造可能なスチレン系重合体粒子を提供できる。
In addition, when the suspension polymerization is a seed polymerization method using seed particles made of a styrene polymer, since the particle diameter of the styrene polymer particles can be made uniform, a foam molded product with a smoother cut surface can be obtained. Styrenic polymer particles can be provided.
Further, suspension polymerization of styrene monomer for seed particles in an aqueous medium in the presence of a salt particle selected from water-soluble phosphate, water-soluble sulfite and water-soluble persulfate. Can provide a styrenic polymer particle capable of giving a foamed molded article having a smoother cut surface.
Moreover, according to this invention, the styrene-type polymer particle which can manufacture the foaming molding with a smooth cut surface can be provided.

発泡成形体の亀甲高さの測定法の概略説明図である。It is a schematic explanatory drawing of the measuring method of the turtle shell height of a foaming molding. 実施例1及び比較例2の亀甲高さを測定した発泡成形体の一部分の拡大写真である。It is an enlarged photograph of a part of foaming molding which measured the turtle shell height of Example 1 and comparative example 2.

本発明のスチレン系重合体粒子の製造方法は、水性媒体に予め分子量調整剤を存在させ、その系にスチレン系単量体を連続的又は段階的に添加して重合を行うに当り、重合開始時の温度A℃と所定量の前記スチレン系単量体を添加し終わったときの温度B℃を、A≦B≦A+15を満たす温度とし、全重合時間の内50%以上の時間をA℃で保持する方法である。   In the method for producing styrene polymer particles of the present invention, when a molecular weight modifier is present in an aqueous medium in advance and a styrene monomer is continuously or stepwise added to the system, polymerization is started. The temperature A ° C. and the temperature B ° C. when the predetermined amount of the styrenic monomer has been added are set to a temperature satisfying A ≦ B ≦ A + 15, and 50% or more of the total polymerization time is A ° C. It is a method to hold in.

(スチレン系単量体)
スチレン系単量体は、スチレン及び置換スチレン(置換基には、低級アルキル、ハロゲン原子(特に塩素原子)等が含まれる)のいずれも使用できる。置換スチレンとしては、例えば、クロロスチレン類、p−メチルスチレン、α−メチルスチレン等が挙げられる。この内、スチレンが一般に好ましい。また、スチレン系単量体は、スチレンと共重合可能な他の単量体との混合物が使用できる。他の単量体としては、例えば、アクリロニトリル、メタクリル酸アルキルエステル(アルキル部分の炭素数1〜8程度)、マレイン酸モノないしジアルキル(アルキル部分の炭素数1〜4程度)、無水マレイン酸、N−フェニルマレイド、(メタ)アクリル酸アリル、ジビニルベンゼン、アルキレングリコールジメタクリレート(アルキレンは炭素数2〜4の範囲が好ましい)が挙げられる。これら混合物中、スチレン系単量体が優位量(例えば、50重量%以上)を占めることが好ましい。
(Styrene monomer)
As the styrene monomer, any of styrene and substituted styrene (substituent includes lower alkyl, halogen atom (especially chlorine atom) and the like) can be used. Examples of the substituted styrene include chlorostyrenes, p-methylstyrene, α-methylstyrene, and the like. Of these, styrene is generally preferred. The styrene monomer can be a mixture of other monomers copolymerizable with styrene. Other monomers include, for example, acrylonitrile, methacrylic acid alkyl ester (alkyl moiety having about 1 to 8 carbon atoms), maleic acid mono to dialkyl (alkyl moiety having about 1 to 4 carbon atoms), maleic anhydride, N -Phenylmaleide, allyl (meth) acrylate, divinylbenzene, alkylene glycol dimethacrylate (alkylene preferably has 2 to 4 carbon atoms). In these mixtures, the styrene monomer preferably occupies a dominant amount (for example, 50% by weight or more).

(分子量調整剤)
分子量調整剤としては、スチレン系樹脂粒子を構成するスチレン系樹脂の分子量を調整できさえすれば、特に限定されない。例えば、ベンゾイルパーオキサイド(73.6℃)、ラウリルパーオキサイド(61.6℃)、t−ブチルパーオキシ−2−エチルヘキサノエート(72.1℃)、t−ブチルパーオキシベンゾエート(104.3℃)、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(99℃)、t−ブチルパーオキシピバレート(54.6℃)、t−ブチルパーオキシイソプロピルカーボネート(98.7℃)、t−ブチルパーオキシアセテート(101.9℃)、2,2−t−ブチルパーオキシブタン(103.1℃)、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート(97.1℃)等の有機過酸化物やアゾビスイソブチロニトリル(65℃)、アゾビスジメチルバレロニトリル(51℃)等のアゾ化合物が挙げられる。上記例示中( )内の温度は、分子量調整剤の10時間半減期を得るための分解温度(以下、10時間半減期温度とする)を意味する。
(Molecular weight regulator)
The molecular weight modifier is not particularly limited as long as the molecular weight of the styrene resin constituting the styrene resin particles can be adjusted. For example, benzoyl peroxide (73.6 ° C), lauryl peroxide (61.6 ° C), t-butylperoxy-2-ethylhexanoate (72.1 ° C), t-butylperoxybenzoate (104. 3 ° C), t-butylperoxy-2-ethylhexyl monocarbonate (99 ° C), t-butylperoxypivalate (54.6 ° C), t-butylperoxyisopropyl carbonate (98.7 ° C), t- Butyl peroxyacetate (101.9 ° C), 2,2-t-butylperoxybutane (103.1 ° C), t-butylperoxy-3,3,5-trimethylhexanoate (97.1 ° C) And azo compounds such as azobisisobutyronitrile (65 ° C.) and azobisdimethylvaleronitrile (51 ° C.). In the above examples, the temperature in () means the decomposition temperature for obtaining the 10-hour half-life of the molecular weight modifier (hereinafter referred to as 10-hour half-life temperature).

上記分子量調整剤は、単独で又は2種以上併用して使用できる。2種以上併用する場合は、最も低い10時間半減期温度を基準とする。分子量調整剤は、水性媒体に予め添加されるが、分子量調整剤を直接水性懸濁液中に添加すると、スチレン系単量体からなる液滴に均一に吸収されにくくなることがあるので、分子量調整剤は別の水性媒体に懸濁又は乳化させた状態で添加するか、あるいは少量のスチレン系単量体に溶解し添加するか、少量のスチレン系単量体に溶解し、かつ無機系懸濁安定剤及び/又はアニオン界面活性剤とを加えた水性懸濁液として添加してもよい。   The said molecular weight modifier can be used individually or in combination of 2 or more types. When using 2 or more types together, it is based on the lowest 10-hour half-life temperature. The molecular weight modifier is added in advance to the aqueous medium. However, if the molecular weight modifier is added directly to the aqueous suspension, the molecular weight modifier may be difficult to be uniformly absorbed by the styrene monomer droplets. The modifier is added in a state suspended or emulsified in another aqueous medium, or dissolved and added in a small amount of styrenic monomer, or dissolved in a small amount of styrenic monomer, and an inorganic suspension is added. You may add as an aqueous suspension which added the turbid stabilizer and / or the anionic surfactant.

(スチレン系重合体粒子の製造)
分子量調整剤を含む水性媒体に、スチレン系単量体を連続的又は段階的に添加して、スチレン系単量体の重合を行う。水性媒体は、水、水と水溶性有機溶媒(メタノール、エタノール等の低級アルコール)との混合媒体が挙げられる。ここで、連続的とは、スチレン系単量体を切れ目なく水性媒体に添加することを意味し、段階的とは、添加されるスチレン系単量体を複数の区分に分け、区分と区分の間に、スチレン系単量体を添加しない時間を設けて添加することを意味する。
(Production of styrene polymer particles)
The styrene monomer is polymerized by adding the styrene monomer continuously or stepwise to the aqueous medium containing the molecular weight modifier. Examples of the aqueous medium include water and a mixed medium of water and a water-soluble organic solvent (lower alcohol such as methanol and ethanol). Here, continuous means that the styrenic monomer is added to the aqueous medium seamlessly, and stepwise means that the added styrenic monomer is divided into a plurality of categories. It means that the styrenic monomer is added at a time during which no styrenic monomer is added.

ここで、本発明では、重合開始時の温度A℃と所定量のスチレン系単量体を添加し終わったときの温度B℃を、A≦B≦A+15を満たす温度とする。
温度B℃が温度A℃より低い場合、反応器を冷却や加温することが必要となるため重合時間が延長したり、分子量の調整が困難となることがある。温度B℃が温度(A+15)℃より高い場合、ニクロムカット後の凹凸が大きくなることがある。より好ましくは、温度A℃とB℃が、A≦B≦A+10を満たす温度である。
Here, in the present invention, the temperature A ° C. at the start of polymerization and the temperature B ° C. when the addition of a predetermined amount of the styrenic monomer are completed are set to satisfy the temperature A ≦ B ≦ A + 15.
When the temperature B ° C. is lower than the temperature A ° C., it is necessary to cool or warm the reactor, so that the polymerization time may be extended or it may be difficult to adjust the molecular weight. When the temperature B ° C. is higher than the temperature (A + 15) ° C., the unevenness after the nichrome cut may become large. More preferably, the temperatures A ° C. and B ° C. satisfy A ≦ B ≦ A + 10.

更に、温度A℃は、10時間半減期温度の±15℃の範囲内であることが好ましい。温度A℃が(10時間半減期温度−15℃)を超えて低い場合、スチレン系単量体の重合が不十分となることで、分子量の調整が困難となることがある。温度A℃が(10時間半減期温度+15℃)を超えて高い場合、重合速度が速いため得られるスチレン系重合体粒子の分子量の再現性が悪くなることがある。   Furthermore, the temperature A ° C is preferably within a range of ± 15 ° C of the 10-hour half-life temperature. When the temperature A ° C. is low exceeding (10-hour half-life temperature −15 ° C.), the adjustment of the molecular weight may be difficult due to insufficient polymerization of the styrenic monomer. When the temperature A ° C is higher than (10-hour half-life temperature + 15 ° C), the reproducibility of the molecular weight of the resulting styrene polymer particles may be deteriorated due to the high polymerization rate.

更に、本発明では、全重合時間の内50%以上の時間がA℃で保持される。保持することで、効率よく所望の分子量に調整できる。また、懸濁重合が、全重合時間の内、50〜80%の時間、A℃で保持されることが好ましい。このように一定時間A℃で保持することで、より効率よく所望の分子量に調整できる。一定時間A℃で保持した後、A℃から0〜15℃程度高い温度に通常加温される。   In the present invention, more than 50% of the total polymerization time is maintained at A ° C. By holding, it can be adjusted to a desired molecular weight efficiently. Moreover, it is preferable that suspension polymerization is hold | maintained at A degreeC for 50 to 80% of time in all the polymerization time. Thus, it can adjust to desired molecular weight more efficiently by hold | maintaining at A degreeC for a fixed time. After being held at A ° C for a certain time, it is usually heated to a temperature about 0 to 15 ° C higher than A ° C.

また、スチレン系単量体は、1〜10時間内に水性媒体にその全量添加されることが好ましい。この時間内に添加されることで、安定した発泡性が得られる効果がある。より好ましい添加時間は、1〜3時間である。
ところで、重合の終点は、スチレン系単量体の添加終了時とすることもできるが、通常、添加終了時から1〜8時間程度後になる。
Moreover, it is preferable that the whole quantity of a styrenic monomer is added to an aqueous medium within 1 to 10 hours. By adding within this time, there is an effect that a stable foaming property can be obtained. A more preferable addition time is 1 to 3 hours.
By the way, although the end point of superposition | polymerization can also be made at the time of completion | finish of addition of a styrene-type monomer, it is usually about 1 to 8 hours after the completion of addition.

(シード重合法)
上記のように本発明の方法は、通常の懸濁重合法に適用できる。しかし、粒度分布のシャープなスチレン系重合体粒子を得ることを望む場合には、シード重合法に本発明の方法を適用できる。粒度分布をシャープにすることで、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。シード重合法は、水性媒体中の種粒子にスチレン系単量体を吸収させ、吸収させつつ又は吸収後、スチレン系単量体を重合させることによりスチレン系重合体粒子を得る方法である。
(Seed polymerization method)
As described above, the method of the present invention can be applied to an ordinary suspension polymerization method. However, when it is desired to obtain styrenic polymer particles having a sharp particle size distribution, the method of the present invention can be applied to the seed polymerization method. By sharpening the particle size distribution, it is possible to provide styrene polymer particles that can give a foamed molded product with a smoother cut surface. The seed polymerization method is a method of obtaining styrene polymer particles by absorbing styrene monomers in seed particles in an aqueous medium and polymerizing the styrene monomers while or after absorption.

(1)種粒子
種粒子としては、スチレンの単独重合体、スチレンと他の共重合可能な単量体との共重合体等が用いられる。上記共重合可能な単量体としては、α−メチルスチレン、アクリロニトリル、アクリル又はメタクリル酸と1〜8個の炭素数を有するアルコールとのエステル、無水マレイン酸、N−ビニルカルバゾール等が挙げられる。共重合体の場合、ポリスチレン成分を50重量%以上含むことが好ましく、80重量%以上含むことがより好ましい。
(1) Seed particles As seed particles, a homopolymer of styrene, a copolymer of styrene and another copolymerizable monomer, or the like is used. Examples of the copolymerizable monomer include α-methylstyrene, acrylonitrile, acrylic or methacrylic acid and an ester having 1 to 8 carbon atoms, maleic anhydride, N-vinylcarbazole and the like. In the case of a copolymer, the polystyrene component is preferably contained at 50% by weight or more, more preferably 80% by weight or more.

シード重合法において、種粒子の粒子径が、ある狭い範囲内にあれば得られるスチレン系重合体粒子の粒子径もよく揃ったものとなる。すなわち、予め粒子径の揃った種粒子を用いてシード重合を行うことにより、用途に応じた所望とする粒子径のスチレン系重合体粒子を、例えば300〜500μm、500〜700μm、700〜1200μm、1200〜1500μm、1500〜2500μmのように狭い範囲に区分して、しかも各区分毎にほぼ100%の収率で得ることができる。そこで、種粒子としては、懸濁重合法によって得られた重合体粒子を一旦ふるい分級し、粒子径が平均粒子径の±20%の範囲になるように調整した重合体粒子が使用できる。塊状重合法により得る場合には、所望の粒子径にペレット化したものを使用できる。   In the seed polymerization method, if the particle diameter of the seed particles is within a narrow range, the particle diameters of the styrene polymer particles obtained are well aligned. That is, by performing seed polymerization using seed particles having a uniform particle diameter, styrenic polymer particles having a desired particle diameter according to the application are obtained, for example, 300 to 500 μm, 500 to 700 μm, 700 to 1200 μm, It can be divided into narrow ranges such as 1200-1500 μm and 1500-2500 μm, and each segment can be obtained with a yield of almost 100%. Therefore, as the seed particles, polymer particles obtained by once classifying the polymer particles obtained by the suspension polymerization method and adjusting the particle diameter to be within a range of ± 20% of the average particle diameter can be used. When obtained by a bulk polymerization method, pellets having a desired particle diameter can be used.

懸濁重合法によって種粒子を得る場合は、水性媒体中で、界面活性剤を使用せずに、難水溶性リン酸塩と、水溶性亜硫酸塩及び/又は水溶性過硫酸塩との存在下、スチレン系単量体を重合させる方法(いわゆるソープフリー重合法)が好ましい。
難水溶性リン酸塩としては、リン酸三カルシウム、ヒドロキシアパタイト、リン酸マグネシウム等がある。この内、リン酸三カルシウムが好ましい。また、難水溶性リン酸塩は、粉末又は水性スラリーの状態で使用できる。難水溶性リン酸塩の使用量は、種粒子形成用のスチレン系単量体に対して、固形分換算で0.03重量%以上であることが好ましい。0.03重量%より少ない場合、スチレン系単量体からなる液滴の分散状態を維持できないことがある。また、使用量が1重量%より多い場合でも懸濁重合は可能であるが、使用量を増やしたことによる効果がなく、加えて経済的ではないため、使用量の上限は1重量%であることが好ましい。
When seed particles are obtained by the suspension polymerization method, in the presence of a poorly water-soluble phosphate and water-soluble sulfite and / or water-soluble persulfate in an aqueous medium without using a surfactant. A method of polymerizing styrene monomers (so-called soap-free polymerization method) is preferred.
Examples of the poorly water-soluble phosphate include tricalcium phosphate, hydroxyapatite, and magnesium phosphate. Of these, tricalcium phosphate is preferred. Further, the poorly water-soluble phosphate can be used in the form of a powder or an aqueous slurry. The amount of the hardly water-soluble phosphate is preferably 0.03% by weight or more in terms of solid content with respect to the styrene monomer for forming seed particles. When the amount is less than 0.03% by weight, the dispersion state of droplets made of styrene monomer may not be maintained. In addition, suspension polymerization is possible even when the amount used is more than 1% by weight, but there is no effect due to the increased amount used, and in addition, it is not economical, so the upper limit of the amount used is 1% by weight. It is preferable.

水溶性亜硫酸塩としては、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム等が挙げられる。これら塩以外に、水に溶解し及び重合反応系内で反応して亜硫酸塩となる前駆物質も使用できる。このような前駆物質としては、水溶性のピロ亜硫酸塩、ピロ硫酸塩、亜二チオン酸塩、チオ硫酸塩、スルホキシル酸塩、硫酸塩等が挙げられる。これら水溶性亜硫酸塩及び前駆物質の中で、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、亜二チオン酸ナトリウム、ホルムアルデヒドナトリウムスルホキシラートが好ましい。
水溶性過硫酸塩としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等が挙げられる。これら塩の中で、過硫酸カリウムが特に好ましい。
また、種粒子の重量平均分子量は、200000〜350000が好ましく、より好ましくは220000〜300000の範囲である。
Examples of water-soluble sulfites include sodium bisulfite, potassium bisulfite, and ammonium bisulfite. In addition to these salts, precursors that dissolve in water and react in the polymerization reaction system to become sulfites can also be used. Examples of such precursors include water-soluble pyrosulfites, pyrosulfates, dithionites, thiosulfates, sulfoxylates, sulfates, and the like. Of these water-soluble sulfites and precursors, sodium hydrogen sulfite, sodium pyrosulfite, sodium dithionite, and sodium formaldehyde sulfoxylate are preferred.
Examples of the water-soluble persulfate include sodium persulfate, potassium persulfate, and ammonium persulfate. Of these salts, potassium persulfate is particularly preferred.
Further, the weight average molecular weight of the seed particles is preferably 200000-350,000, more preferably 220,000-300000.

(シード重合条件)
種粒子を水性媒体中に懸濁させるために懸濁安定剤をもちいてもよい。懸濁安定剤としては、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、リン酸三カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。難溶性無機化合物を用いる場合には、通常ドデシルベンゼンスルホン酸ソーダ等のアニオン界面活性剤を併用してもよい。
シード重合法におけるスチレン系単量体の重合開始時の温度、所定量の前記スチレン系単量体を添加し終わったときの温度等の各種条件は、上記「スチレン系重合体粒子の製造」の欄に記載した条件を採用できる。
(Seed polymerization conditions)
A suspension stabilizer may be used to suspend the seed particles in the aqueous medium. Examples of the suspension stabilizer include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. When using a hardly soluble inorganic compound, an anionic surfactant such as sodium dodecylbenzenesulfonate may be used in combination.
Various conditions such as the temperature at the start of polymerization of the styrenic monomer in the seed polymerization method, the temperature at the end of the addition of the predetermined amount of the styrenic monomer, are as described in “Manufacturing styrene polymer particles” above. The conditions described in the column can be adopted.

ところで、種粒子を使用する場合、分子量調整剤は、予めスチレン系単量体に溶解又は分散させて得られた混合液を、水系媒体に添加することで、種粒子に吸収させておいてもよい。吸収させることで、分子量調整剤によるスチレン系重合体粒子の分子量を効率よく調整できる。なお、この場合、重合の始点は、分子量調整剤を溶解又は分散するスチレン系単量体を添加し始めた時点を意味する。   By the way, when using seed particles, the molecular weight modifier may be absorbed in the seed particles by adding a mixed solution obtained by dissolving or dispersing in the styrene monomer in advance to the aqueous medium. Good. By making it absorb, the molecular weight of the styrene-type polymer particle by a molecular weight modifier can be adjusted efficiently. In this case, the starting point of the polymerization means the point at which the addition of a styrene monomer that dissolves or disperses the molecular weight modifier is started.

このシード重合法に用いる種粒子の使用割合は、重合終了時のスチレン系重合体全量に対して、10〜75重量%が好ましく、より好ましくは15〜50重量%である。種粒子の使用量が10重量%未満ではスチレン系単量体を添加する際に、スチレン系重合体粒子の重合率を適正範囲に制御することが困難となり、得られる重合体が高分子量化すること、微粉末状重合体が多量に発生することで製造効率が低下すること等、工業的に不利となることがある。逆に75重量%を越えると優れた発泡成形性が得難くなる。   The use ratio of the seed particles used in the seed polymerization method is preferably 10 to 75% by weight, more preferably 15 to 50% by weight, based on the total amount of the styrene polymer at the end of the polymerization. When the amount of seed particles used is less than 10% by weight, it is difficult to control the polymerization rate of the styrene polymer particles within an appropriate range when adding the styrene monomer, and the resulting polymer has a high molecular weight. In addition, the production efficiency may be reduced due to the generation of a large amount of fine powder polymer, which may be industrially disadvantageous. Conversely, when it exceeds 75% by weight, it is difficult to obtain excellent foam moldability.

(スチレン系重合体粒子)
上記方法により得られたスチレン系重合体粒子は、600〜1500μmの平均粒子径を有していることが好ましい。この範囲内の平均粒子径を有することで、よりカット面が平滑な発泡成形体を与えうるスチレン系重合体粒子を提供できる。
更に、本発明をシード重合法に適用すれば、スチレン系重合体粒子の粒子径の範囲を、メジアン径に対して、例えば±20%以下とすることができる。
(Styrene polymer particles)
The styrene polymer particles obtained by the above method preferably have an average particle diameter of 600 to 1500 μm. By having an average particle diameter within this range, it is possible to provide styrenic polymer particles that can give a foamed molded product with a smoother cut surface.
Furthermore, when the present invention is applied to the seed polymerization method, the range of the particle diameter of the styrene polymer particles can be, for example, ± 20% or less with respect to the median diameter.

(発泡性スチレン系重合体粒子)
発泡性スチレン系重合体粒子は、上記スチレン系重合体粒子に発泡剤を含浸させることにより得られる。スチレン系重合体粒子には、スチレン系重合体粒子を水性媒体から取り出した後に発泡剤を含浸してもよく、取り出さずに水性媒体に発泡剤を圧入することで発泡剤を含浸してもよい。
(Expandable styrene polymer particles)
The expandable styrenic polymer particles can be obtained by impregnating the above styrene polymer particles with a foaming agent. The styrene polymer particles may be impregnated with a foaming agent after the styrene polymer particles are taken out from the aqueous medium, or may be impregnated with the foaming agent by press-fitting the foaming agent into the aqueous medium without taking out the styrene polymer particles. .

発泡剤としては、沸点が重合体の軟化点以下である易揮発性を有する、例えばプロパン、ブタン、ペンタン、シクロペンタン、ヘキサン、HCFC−141b、HCFC−142b、HCFC−124、HFC−134a、HFC−152a等が挙げられ、これらの発泡剤は、単独もしくは2種以上を併用してもよい。発泡剤の使用量は、得られる重合体粒子に対して、好ましくは1〜10重量%、より好ましくは2〜7重量%である。また、上記発泡剤の添加は、重合前、重合中、重合後のいずれの時点でもよいが、通常重合後期あるいは重合後に圧入して添加し、スチレン系重合体粒子に含浸できる。   As the blowing agent, the boiling point is easily volatile with a polymer softening point or less, for example, propane, butane, pentane, cyclopentane, hexane, HCFC-141b, HCFC-142b, HCFC-124, HFC-134a, HFC -152a etc., and these foaming agents may be used alone or in combination of two or more. The amount of the blowing agent used is preferably 1 to 10% by weight, more preferably 2 to 7% by weight, based on the polymer particles obtained. The blowing agent may be added at any time before, during or after the polymerization, but it is usually added by press-fitting after the latter stage or after the polymerization to impregnate the styrenic polymer particles.

発泡剤と共に、発泡助剤を用いることができる。この発泡助剤としては、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の1気圧下における沸点が200℃以下の溶剤が挙げられる。   A foaming aid can be used together with the foaming agent. Examples of the foaming aid include aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene, cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, ethyl acetate, butyl acetate and the like having a boiling point of 200 at 1 atm. A solvent having a temperature of 0 ° C. or lower is exemplified.

更に、発泡性スチレン系重合体粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、1気圧下における沸点が200℃を超える可塑剤、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が2.0重量%未満含有されていてもよい。   Further, in the expandable styrene polymer particles, a plasticizer having a boiling point of more than 200 ° C. under 1 atm, in order to maintain good foam moldability even when the pressure of water vapor used at the time of heat foaming is low, for example, Contains less than 2.0% by weight of plasticizers such as phthalic acid esters, glycerin diacetomonolaurate, glycerin tristearate, glycerin fatty acid esters such as glycerin diacetomonostearate, adipic acid esters such as diisobutyl adipate, and palm oil. May be.

本発明において、溶剤、可塑剤以外に発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤、架橋剤等の発泡性スチレン系重合体粒子を製造する際に用いられる添加剤を、必要に応じて適宜使用してもよい。
なお、本発明における発泡性スチレン系重合体粒子には、物性を損なわない範囲内において、表面被覆されていてもよい。被覆剤としては、例えば、ジンクステアレート等の粉末状金属石鹸類、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、アミド化合物、シリコン類、ポリエチレングリコール等が挙げられる。
In the present invention, in addition to a solvent and a plasticizer, it is used for producing expandable styrene polymer particles such as a foamed cell nucleating agent, a filler, a flame retardant, a flame retardant aid, a lubricant, a colorant, and a crosslinking agent. You may use an additive suitably as needed.
The expandable styrenic polymer particles in the present invention may be surface-coated as long as the physical properties are not impaired. Examples of the coating agent include powdered metal soaps such as zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor oil, amide compound, silicones, and polyethylene glycol.

(発泡成形体)
発泡成形体は、発泡性スチレン系重合体粒子を水蒸気のような加熱媒体を用いて加熱することにより予備発泡させて予備発泡粒子を得、予備発泡粒子を成形機の型内に充填し、加熱して2次発泡させ、予備発泡粒子同士を融着一体化させることにより、所望の形状で得ることができる。成形機としては、予備発泡粒子から発泡成形体を製造する際に用いられるEPS成形機等を用いることができる。
(Foamed molded product)
The foamed molded body is obtained by pre-foaming the expandable styrene polymer particles by using a heating medium such as water vapor to obtain pre-foamed particles, filling the pre-foamed particles in the mold of the molding machine, and heating. Then, secondary foaming is performed, and the pre-foamed particles are fused and integrated to obtain a desired shape. As the molding machine, there can be used an EPS molding machine or the like used when producing a foam molded body from pre-expanded particles.

本発明で得られる発泡成形体をニクロムカットにより加工した場合、そのカット面の平滑性は極めて優れたものである。ここで、前記の平滑性は亀甲高さにより評価でき、本発明で得られる発泡成形体は、亀甲高さを好ましくは30μm以下、より好ましくは20μm以下にすることができる。本発明で得られる発泡成形体は平滑なカット面を有するため、表面の平滑性が求められる建材用のパネル等の分野で好適に使用し得る。なお、加工は、ニクロム線による加工に限定されず、公知の電気抵抗加熱線を用いる加工であればよい。   When the foamed molded product obtained by the present invention is processed by nichrome cutting, the smoothness of the cut surface is extremely excellent. Here, the smoothness can be evaluated by the height of the turtle shell, and the foam molded body obtained by the present invention can have a turtle shell height of preferably 30 μm or less, more preferably 20 μm or less. Since the foam-molded article obtained by the present invention has a smooth cut surface, it can be suitably used in the field of panels for building materials and the like that require smoothness of the surface. In addition, a process is not limited to the process by a nichrome wire, What is necessary is just a process using a well-known electrical resistance heating wire.

以下実施例を挙げて更に説明するが、本発明は、これら実施例により限定されるものではない。各種製造条件及び測定方法について以下に説明する。
<スチレン系重合体粒子及び発泡性スチレン系重合体粒子の平均粒子径>
平均粒子径は次の方法で測定する。すなわち、JIS標準ふるい目開き2360μm(7.5メッシュ)、目開き2000μm(8.6メッシュ)、目開き1700μm(10メッシュ)、目開き1400μm(12メッシュ)、目開き1180μm(14メッシュ)、目開き1000μm(16メッシュ)、目開き850μm(18メッシュ)、目開き710μm(22メッシュ)、目開き600μm(26メッシュ)、目開き500μm(30メッシュ)、目開き425μm(36メッシュ)、目開き355μm(42メッシュ)、目開き300μm(50メッシュ)、目開き250μm(60メッシュ)、目開き212μm(70メッシュ)、目開き180μm(83メッシュ)のふるいで分級し、累積重量分布曲線を基にして、累積重量が50%となる粒径(メジアン系)を平均粒子径とする。
Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited to these examples. Various manufacturing conditions and measurement methods will be described below.
<Average particle diameter of styrene polymer particles and expandable styrene polymer particles>
The average particle size is measured by the following method. That is, JIS standard sieve opening 2360 μm (7.5 mesh), opening 2000 μm (8.6 mesh), opening 1700 μm (10 mesh), opening 1400 μm (12 mesh), opening 1180 μm (14 mesh), opening Opening 1000 μm (16 mesh), opening 850 μm (18 mesh), opening 710 μm (22 mesh), opening 600 μm (26 mesh), opening 500 μm (30 mesh), opening 425 μm (36 mesh), opening 355 μm (42 mesh), mesh opening 300 μm (50 mesh), mesh opening 250 μm (60 mesh), mesh opening 212 μm (70 mesh), mesh opening 180 μm (83 mesh) and classification based on cumulative weight distribution curve , Average particle size (median) with a cumulative weight of 50% And child size.

<予備発泡粒子の嵩倍数>
予備発泡粒子の嵩密度は下記の要領で測定する。
まず、予備発泡粒子を500cm3、メスシリンダ内に500cm3の目盛りまで充填する。なお、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達しているものがあれば、その時点で予備発泡粒子のメスシリンダ内への充填を終了する。
次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。
そして、下記の式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
嵩発泡倍数は嵩密度の逆数である。
<Bulk multiple of pre-expanded particles>
The bulk density of the pre-expanded particles is measured as follows.
First, the pre-expanded particles 500 cm 3, filled into the graduated cylinder to the scale of 500 cm 3. When the graduated cylinder is visually observed from the horizontal direction and any pre-expanded particles reach a scale of 500 cm 3 , the filling of the pre-expanded particles into the graduated cylinder is terminated at that point.
Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g).
Then, the bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
The bulk foaming factor is the reciprocal of the bulk density.

<発泡成形体の亀甲高さ>
得られた発泡成形体のニクロムカット面の亀甲高さを以下の方法で測定し、評価する。
走査型電子顕微鏡(日本電子社製JEOL JSM−6360LV)にて、ニクロムカット面を垂直方向に20〜30倍に拡大し、図1に示すように、粒子のくぼみ深さを10粒子について測定し、その平均値を亀甲高さとする。
評価:
○:亀甲高さが30μm以下であり、凹凸がなく表面が平滑で良好である。
×:亀甲高さが30μmを超えており、凹凸がやや見られ表面の平滑がやや劣る。
<Turtle shell height of foam molding>
The turtle shell height of the Nichrome cut surface of the obtained foamed molded product is measured and evaluated by the following method.
Using a scanning electron microscope (JEOL JSM-6360LV, manufactured by JEOL Ltd.), the Nichrome cut surface was magnified 20 to 30 times in the vertical direction, and the indentation depth of the particles was measured for 10 particles as shown in FIG. The average value is defined as the turtle shell height.
Rating:
○: Tortoise shell height is 30 μm or less, there is no unevenness, and the surface is smooth and good.
X: Tortoise shell height exceeds 30 μm, unevenness is slightly seen, and surface smoothness is slightly inferior.

<スチレン系重合体粒子及び発泡性スチレン系重合体粒子の重量平均分子量>
ゲルパーミエーションクロマトグラフィ(以下、「GPC」という)により、スチレン系重合体粒子及び発泡性スチレン系重合体粒子の重量平均分子量の測定を行う。
GPCの測定条件
機種:HLC−8320GPC(東ソー社製)
ガードカラム:TSK guardcolum Super HZ−H 4.6mml.D.×2cmL 1本(東ソー社製)
カラム:TSK gel Super HZM−H 4.6mml.D.×15cmL 2本(東ソー社製)
カラム温度:40℃
検出器:RI
溶媒:試薬1級テトラヒドロフラン
流速:0.175ml/min.
試料濃度:0.03重量%
注入量:50μl
<Weight average molecular weight of styrene polymer particles and expandable styrene polymer particles>
The weight average molecular weight of the styrene polymer particles and the expandable styrene polymer particles is measured by gel permeation chromatography (hereinafter referred to as “GPC”).
GPC measurement condition model: HLC-8320GPC (manufactured by Tosoh Corporation)
Guard column: TSK guardcolumn Super HZ-H 4.6 ml. D. × 2cmL 1 (Tosoh Corporation)
Column: TSK gel Super HZM-H 4.6 ml. D. × 15cmL 2 (Tosoh Corporation)
Column temperature: 40 ° C
Detector: RI
Solvent: Reagent primary tetrahydrofuran flow rate: 0.175 ml / min.
Sample concentration: 0.03% by weight
Injection volume: 50 μl

実施例1
<スチレン系重合体種粒子の作製>
内容積100リットルの攪拌機付オートクレーブ(以下、反応器という)にリン酸三カルシウム(大平化学社製)120gと亜硫酸水素ナトリウム0.2g及び過硫酸カリウム0.2gを加え、更に過酸化ベンゾイル(純度75%)140g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレン単量体40kgを投入した後、撹拌下で溶解及び分散させ懸濁液を形成した。
Example 1
<Preparation of styrene polymer seed particles>
120 g of tricalcium phosphate (manufactured by Ohira Chemical Co., Ltd.), 0.2 g of sodium hydrogen sulfite and 0.2 g of potassium persulfate are added to an autoclave with a stirrer (hereinafter referred to as a reactor) having an internal volume of 100 liters. 75%) 140 g, 30 g of t-butylperoxy-2-ethylhexyl monocarbonate, 40 kg of ion-exchanged water, and 40 kg of styrene monomer were added and dissolved and dispersed with stirring to form a suspension.

次に、200rpmの撹拌下でスチレン単量体を90℃で6時間、更に120℃で2時間重合反応させた。反応終了後、25℃まで冷却し、オートクレーブから内容物を取り出し、脱水・乾燥・分級して平均粒子径が550μm(425〜600μmの分布)、660μm(500〜710μmの分布)であるスチレン系重合体種粒子を得た。それぞれの重量平均分子量は30万であった。   Next, the styrene monomer was polymerized at 90 ° C. for 6 hours and further at 120 ° C. for 2 hours under stirring at 200 rpm. After completion of the reaction, the reaction mixture is cooled to 25 ° C., the contents are taken out from the autoclave, dehydrated, dried and classified, and the styrene weight having an average particle size of 550 μm (distribution of 425-600 μm) and 660 μm (distribution of 500-710 μm) Combined seed particles were obtained. Each weight average molecular weight was 300,000.

<スチレン系重合体粒子の作製>
次いで、内容積100リットルの攪拌機付オートクレーブに上記平均粒子径550μmのスチレン系重合体種粒子11kg、蒸留水32kg、ピロリン酸マグネシウム128g、ドデシルベンゼンスルホン酸ナトリウム8.3g(純度25%、以下同じ)を入れ、撹拌し懸濁させた後、反応器内温を80℃まで昇温した。
<Preparation of styrene polymer particles>
Next, 11 kg of styrene polymer seed particles having an average particle diameter of 550 μm, 32 kg of distilled water, 128 g of magnesium pyrophosphate, 8.3 g of sodium dodecylbenzenesulfonate (25% purity, the same applies hereinafter) to an autoclave with a stirrer having an internal volume of 100 liters. The mixture was stirred and suspended, and the temperature inside the reactor was raised to 80 ° C.

次いで予め用意した蒸留水3000g、ピロリン酸マグネシウム13g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン1540gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を80℃に保持した反応器に添加し、次いでスチレン1140gを228g/分で反応器へ供給し、供給終了時点から15分間、スチレン系重合体種粒子にスチレンを吸収させた。   Next, 3000 g of distilled water, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate, and 1540 g of styrene were stirred with a homomixer to prepare a suspension, and this suspension was added to a reactor maintained at 80 ° C. Then, 1140 g of styrene was fed to the reactor at 228 g / min, and styrene was absorbed by the styrenic polymer seed particles for 15 minutes from the end of the feeding.

続いて、分子量調整剤として純度75%のベンゾイルパーオキサイド220g(10時間半減期温度は73.6℃)をスチレン1890gに溶解し、蒸留水2000g、ドデシルベンゼンスルホン酸ナトリウム3gと共にホモミキサーで攪拌して調製した懸濁液を80℃に保持した反応器に供給した。   Subsequently, 220 g of benzoyl peroxide with a purity of 75% (10-hour half-life temperature: 73.6 ° C.) as a molecular weight modifier was dissolved in 1890 g of styrene and stirred with a homomixer with 2000 g of distilled water and 3 g of sodium dodecylbenzenesulfonate. The suspension prepared above was fed to a reactor maintained at 80 ° C.

分子量調整剤を含む懸濁液の反応器への供給終了時点から10分間、スチレン系重合体種粒子にスチレンと分子量調整剤を吸収させた後、スチレン28.43kgを反応器内に9.48kg/hrの速度で連続的に3時間供給するとともに、スチレン供給開始時点から2時間後に反応器内温度を5℃/hrのスピードで1時間、連続的に昇温し、反応器内温度を85℃とした。
引き続き85℃で1時間保持することでスチレン系重合体粒子を得た。
After 10 minutes from the end of the supply of the suspension containing the molecular weight modifier to the reactor, the styrene polymer seed particles absorb styrene and the molecular weight modifier, and then 28.43 kg of styrene is 9.48 kg in the reactor. The reactor temperature was continuously increased at a rate of 5 hr / hr for 3 hours, and the reactor temperature was continuously increased at a rate of 5 ° C./hr for 1 hour 2 hours after the start of the styrene feed. C.
Subsequently, styrene polymer particles were obtained by maintaining at 85 ° C. for 1 hour.

<発泡性スチレン系重合体粒子の作製>
上記スチレン系重合体粒子を含む反応器内に、蒸留水2000gにピロリン酸マグネシウム13g、ドデシルベゼンスルホン酸ナトリウム3g、エチレンビスステアロアマイド13.2gを加えてホモミキサーで攪拌して分散液を調製し、この分散液を加えた。その後、発泡剤であるノルマルブタン(小池化学社製商品名ノルマルブタン)880g、ペンタン1088gを圧入し、100℃まで昇温した。100℃で3時間保持した後、20℃まで冷却して、反応器から発泡性スチレン系重合体粒子を取り出し、洗浄、脱水、乾燥して発泡性スチレン系重合体粒子を得た。この発泡性スチレン系重合体粒子の平均粒子径は850μmであり、600〜1000μmの分布があった。また、重量平均分子量は21万であった。
<Preparation of expandable styrene polymer particles>
In a reactor containing the styrene polymer particles, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbezene sulfonate, and 13.2 g of ethylene bisstearamide are added to 2000 g of distilled water, and the mixture is stirred with a homomixer. Prepared and added this dispersion. Then, 880 g of normal butane (trade name normal butane manufactured by Koike Chemical Co., Ltd.) and 1088 g of pentane as the foaming agent were injected and heated to 100 ° C. After maintaining at 100 ° C. for 3 hours, the mixture was cooled to 20 ° C., and the expandable styrene polymer particles were taken out from the reactor, washed, dehydrated and dried to obtain expandable styrene polymer particles. The average particle size of the expandable styrene polymer particles was 850 μm and had a distribution of 600 to 1000 μm. The weight average molecular weight was 210,000.

<予備発泡粒子の作製>
発泡性スチレン系重合体粒子40kgをタンブラーミキサーに投入し、続けて重量平均分子量が300であるポリエチレングリコール20g、平均分子量378の流動パラフィン12g、100csであるジメチルポリシロキサン8gを投入し、15分間タンブラーミキサーを回転させた。次にステアリン酸亜鉛32g、ステアリン酸トリグリセライド12g、ステアリン酸モノグリセライド20g、12ヒドロキシステアリン酸トリグリセライド28gをタンブラーミキサーに投入し、15分間回転させ、発泡性スチレン系重合体粒子の表面を被覆した。
<Preparation of pre-expanded particles>
40 kg of expandable styrene polymer particles are charged into a tumbler mixer, followed by 20 g of polyethylene glycol having a weight average molecular weight of 300, 12 g of liquid paraffin having an average molecular weight of 378, and 8 g of dimethylpolysiloxane having a 100 cs, and a tumbler for 15 minutes. The mixer was rotated. Next, 32 g of zinc stearate, 12 g of stearic acid triglyceride, 20 g of stearic acid monoglyceride, and 28 g of 12 hydroxystearic acid triglyceride were put into a tumbler mixer and rotated for 15 minutes to coat the surface of the expandable styrene polymer particles.

この表面被覆された発泡性スチレン系重合体粒子を15℃で3日間熟成させた後、特許庁公報57(1982)−133〔3347〕周知・慣用技術集(発泡成形)P.39記載の発泡層上面検出器までの容積量が350リットルである円筒型バッチ式加圧予備発泡機に投入し、蒸気により加熱することにより予備発泡粒子を得た。この予備発泡粒子の嵩発泡倍数は60倍であった。   After the surface-coated expandable styrenic polymer particles were aged at 15 ° C. for 3 days, JPO Gazette 57 (1982) -133 [3347] Known and Conventional Techniques (Foam Molding) The pre-expanded particles were obtained by charging into a cylindrical batch type pressure pre-foaming machine having a volume of 350 liters up to the foam layer upper surface detector described in 39 and heating with steam. The pre-expanded particles had a bulk expansion ratio of 60 times.

<発泡成形体の作製>
予備発泡粒子を室温雰囲気下で24時間放置後、キャビティのサイズ:高さ1840mm、幅930mm、奥行530mmの成形型を有するブロック成形機(笠原工業社製PEONY‐205DS)を用い、成形型のキャビティ内に前記予備発泡粒子を充填し、0.06MPa(ゲージ圧)の蒸気圧で20秒間加熱し、次いで成形型内圧力が−0.01MPaになるまで冷却し、成形型から離型し、ブロック状の発泡成形体を製造し、60℃乾燥室に3日間保管した。
<Preparation of foam molded article>
After leaving the pre-expanded particles in a room temperature atmosphere for 24 hours, using a block molding machine (PEONY-205DS manufactured by Kasahara Kogyo Co., Ltd.) having a mold of cavity size: height 1840 mm, width 930 mm, depth 530 mm, the mold cavity The pre-expanded particles are filled in, heated at a vapor pressure of 0.06 MPa (gauge pressure) for 20 seconds, then cooled until the internal pressure of the mold becomes −0.01 MPa, released from the mold, and blocked. A foamed molded product was produced and stored in a 60 ° C. drying room for 3 days.

この発泡成形体の長さ1840mm×幅930mmの平面を下にしてニクロムカット機の台に置き、0.4mm径のニクロム線を50mm間隔で平行に10本張設し、発泡成形体の送り速度600mm/分、電流3A/本の条件にてニクロムカットを行い、平板形状のスライス品を得た。   The foam molded body is placed on the base of a nichrome cutting machine with the plane of length 1840 mm x width 930 mm down, and ten 0.4 mm diameter nichrome wires are stretched in parallel at intervals of 50 mm to feed the foam molded body. Nichrome cutting was performed under the conditions of 600 mm / min and current of 3 A / line to obtain a flat sliced product.

実施例2
反応器に実施例1で得た平均粒子径660μmのスチレン系重合体種粒子11kg、蒸留水32kg、ピロリン酸マグネシウム128g、ドデシルベンゼンスルホン酸ナトリウム8.3gを入れ、撹拌し懸濁させた後、反応器内温を82℃まで昇温した。
Example 2
The reactor was charged with 11 kg of styrene polymer seed particles having an average particle diameter of 660 μm obtained in Example 1, 32 kg of distilled water, 128 g of magnesium pyrophosphate, and 8.3 g of sodium dodecylbenzenesulfonate, and the mixture was stirred and suspended. The reactor internal temperature was raised to 82 ° C.

次いで予め用意した蒸留水3000g、ピロリン酸マグネシウム13g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン1540gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を82℃に保持した反応器に添加し、次いでスチレン1140gを228g/分で反応器へ供給し、供給終了時点から15分間、スチレン系重合体種粒子にスチレンを吸収させた。   Next, 3000 g of distilled water, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate, and 1540 g of styrene were stirred with a homomixer to prepare a suspension, and this suspension was added to a reactor maintained at 82 ° C. Then, 1140 g of styrene was fed to the reactor at 228 g / min, and styrene was absorbed by the styrenic polymer seed particles for 15 minutes from the end of the feeding.

続いて、分子量調整剤として純度75%のベンゾイルパーオキサイド220gをスチレン1890gに溶解し、蒸留水2000g、ドデシルベンゼンスルホン酸ナトリウム3gと共にホモミキサーで攪拌して調製した懸濁液を82℃に保持した反応器に供給した。   Subsequently, 220 g of benzoyl peroxide having a purity of 75% as a molecular weight regulator was dissolved in 1890 g of styrene, and a suspension prepared by stirring with a homomixer with 2000 g of distilled water and 3 g of sodium dodecylbenzenesulfonate was maintained at 82 ° C. Feeded to the reactor.

分子量調整剤を含む懸濁液の反応器への供給終了時点から10分間、スチレン系重合体種粒子にスチレンと分子量調整剤を吸収させた後、スチレン28.43kgを反応器内に9.48kg/hrの速度で連続的に3時間供給するとともに、スチレン供給開始時点から2時間後に反応器内温度を5℃/hrのスピードで1時間、連続的に昇温し、反応器内温度を87℃とした。
引き続き87℃で1時間保持することでスチレン系重合体粒子を得た。
After 10 minutes from the end of the supply of the suspension containing the molecular weight modifier to the reactor, the styrene polymer seed particles absorb styrene and the molecular weight modifier, and then 28.43 kg of styrene is 9.48 kg in the reactor. The reactor internal temperature was continuously increased at a rate of 5 ° C./hr for 2 hours, and the reactor internal temperature was increased to 87 hours. C.
Subsequently, styrene polymer particles were obtained by maintaining at 87 ° C. for 1 hour.

上記スチレン系重合体粒子を含む反応器内に、蒸留水2000gにピロリン酸マグネシウム13g、ドデシルベゼンスルホン酸ナトリウム3g、エチレンビスステアロアマイド6.6g、トルエン13.2g、シクロヘキサン6.6gを加えてホモミキサーで攪拌して分散液を調製し、この分散液を反応器内に加えた。その後、発泡剤であるノルマルブタン(小池化学社製、商品名ノルマルブタン)3696g、ペンタン1320gを圧入し、100℃まで昇温した。100℃で3時間保持した後、20℃まで冷却して、反応器から発泡性スチレン系重合体粒子を取り出し、洗浄、脱水、乾燥した。この発泡性スチレン系重合体粒子の平均粒子径は1100μmであり、710〜1180μmの分布があった。また、重量平均分子量は24万であった。
以降の工程は実施例1と同様に実施することで平板状のスライス品を得た。
In a reactor containing the styrenic polymer particles, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbezene sulfonate, 6.6 g of ethylene bisstearamide, 13.2 g of toluene and 6.6 g of cyclohexane are added to 2000 g of distilled water. The mixture was stirred with a homomixer to prepare a dispersion, and this dispersion was added to the reactor. Thereafter, 3696 g of normal butane (trade name normal butane, manufactured by Koike Chemical Co., Ltd.) and 1320 g of pentane as a foaming agent were injected and heated to 100 ° C. After maintaining at 100 ° C. for 3 hours, the mixture was cooled to 20 ° C., and the expandable styrene polymer particles were taken out from the reactor, washed, dehydrated and dried. The average particle size of the expandable styrene polymer particles was 1100 μm, and there was a distribution of 710 to 1180 μm. The weight average molecular weight was 240,000.
Subsequent steps were performed in the same manner as in Example 1 to obtain a flat slice product.

実施例3
反応器に実施例1で得た平均粒子径660μmのスチレン系重合体種粒子22kg、蒸留水32kg、ピロリン酸マグネシウム128g、ドデシルベンゼンスルホン酸ナトリウム8.3gを入れ、撹拌し懸濁させた後、反応器内温を80℃まで昇温した。
Example 3
The reactor was charged with 22 kg of styrene polymer seed particles having an average particle diameter of 660 μm obtained in Example 1, 32 kg of distilled water, 128 g of magnesium pyrophosphate, and 8.3 g of sodium dodecylbenzenesulfonate, and the mixture was stirred and suspended. The reactor internal temperature was raised to 80 ° C.

次いで予め用意した蒸留水3000g、ピロリン酸マグネシウム13g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン858gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を80℃に保持した反応器に添加し、次いでスチレン5500gを275g/分で反応器へ供給し、供給終了時点から15分間、スチレン系重合体種粒子にスチレンを吸収させた。   Next, 3000 g of distilled water, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate, and 858 g of styrene were stirred with a homomixer to prepare a suspension, and this suspension was added to a reactor maintained at 80 ° C. Then, 5500 g of styrene was supplied to the reactor at 275 g / min, and styrene was absorbed by the styrene polymer seed particles for 15 minutes from the end of the supply.

続いて、分子量調整剤として純度75%のベンゾイルパーオキサイド77gをスチレン2000gに溶解し、蒸留水2000g、ドデシルベンゼンスルホン酸ナトリウム3gと共にホモミキサーで攪拌して調製した懸濁液を80℃に保持した反応器に供給した。   Subsequently, 77 g of benzoyl peroxide having a purity of 75% as a molecular weight modifier was dissolved in 2000 g of styrene, and the suspension prepared by stirring with a homomixer with 2000 g of distilled water and 3 g of sodium dodecylbenzenesulfonate was maintained at 80 ° C. Feeded to the reactor.

分子量調整剤を含む懸濁液の反応器への供給開始時点から55分間、スチレン系重合体種粒子にスチレンと分子量調整剤を吸収させた後、スチレン13.64kgを反応器内へ連続的に1時間で供給した。
引き続き80℃で40分間保持することでスチレン系重合体粒子を得た。
The styrene polymer seed particles are allowed to absorb styrene and the molecular weight modifier for 55 minutes from the start of supply of the suspension containing the molecular weight modifier to the reactor, and then 13.64 kg of styrene is continuously fed into the reactor. Feeded in 1 hour.
Subsequently, styrene polymer particles were obtained by holding at 80 ° C. for 40 minutes.

上記スチレン系重合体粒子を含む反応器内に、蒸留水2000gにピロリン酸マグネシウム13g、ドデシルベゼンスルホン酸ナトリウム3g、エチレンビスステアロアマイド13.2g、トルエン176gを加えてホモミキサーで攪拌して分散液を調製し、この分散液を反応器内に加えた。その後、発泡剤であるノルマルブタン(小池化学社製、商品名ノルマルブタン)1276g、ペンタン2948gを圧入し、100℃まで昇温した。100℃で3時間保持した後、20℃まで冷却して、反応器から発泡性スチレン系重合体粒子を取り出し、洗浄、脱水、乾燥した。この発泡性スチレン系重合体粒子の平均粒子径は850μmであり、600〜1000μmの分布があった。重量平均分子量は29万であった。
以降の工程は実施例1と同様に実施することで平板状のスライス品を得た。
In a reactor containing the styrenic polymer particles, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbezene sulfonate, 13.2 g of ethylene bisstearamide, and 176 g of toluene are added to 2000 g of distilled water, and the mixture is stirred with a homomixer. A dispersion was prepared and this dispersion was added into the reactor. Then, 1276 g of normal butane (trade name normal butane manufactured by Koike Chemical Co., Ltd.) and 2948 g of pentane as the foaming agent were injected and heated to 100 ° C. After maintaining at 100 ° C. for 3 hours, the mixture was cooled to 20 ° C., and the expandable styrene polymer particles were taken out from the reactor, washed, dehydrated and dried. The average particle size of the expandable styrene polymer particles was 850 μm and had a distribution of 600 to 1000 μm. The weight average molecular weight was 290,000.
Subsequent steps were performed in the same manner as in Example 1 to obtain a flat slice product.

実施例4
反応器に実施例1で得た平均粒子径550μmのスチレン系重合体種粒子11kg、蒸留水32kg、ピロリン酸マグネシウム128g、ドデシルベンゼンスルホン酸ナトリウム8.3gを入れ、撹拌し懸濁させた後、反応器内温を75℃まで昇温した。
Example 4
The reactor was charged with 11 kg of styrene polymer seed particles having an average particle diameter of 550 μm obtained in Example 1, 32 kg of distilled water, 128 g of magnesium pyrophosphate, and 8.3 g of sodium dodecylbenzenesulfonate, and the mixture was stirred and suspended. The reactor internal temperature was raised to 75 ° C.

次いで予め用意した蒸留水3000g、ピロリン酸マグネシウム13g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン1540gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を75℃に保持した反応器に添加し、次いでスチレン1140gを228g/分で反応器へ供給し、供給終了時点から15分間、スチレン系重合体種粒子にスチレンを吸収させた。   Next, 3000 g of distilled water, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate, and 1540 g of styrene were stirred with a homomixer to prepare a suspension, and this suspension was added to a reactor maintained at 75 ° C. Then, 1140 g of styrene was fed to the reactor at 228 g / min, and styrene was absorbed by the styrenic polymer seed particles for 15 minutes from the end of the feeding.

続いて、分子量調整剤として純度75%のベンゾイルパーオキサイド220g及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート40gをスチレン1890gに溶解し、蒸留水2000g、ドデシルベンゼンスルホン酸ナトリウム3gと共にホモミキサーで攪拌して調製した懸濁液を75℃に保持した反応器に供給した。   Subsequently, 220 g of benzoyl peroxide having a purity of 75% and 40 g of t-butylperoxy-2-ethylhexyl monocarbonate were dissolved in 1890 g of styrene as a molecular weight modifier and stirred with a homomixer together with 2000 g of distilled water and 3 g of sodium dodecylbenzenesulfonate. The suspension thus prepared was fed to a reactor maintained at 75 ° C.

分子量調整剤を含む懸濁液の反応器への供給終了時点から10分間、スチレン系重合体種粒子にスチレンと分子量調整剤を吸収させた後、スチレン28.43kgを反応器内に9.48kg/hrの速度で連続的に3時間供給するとともに、スチレン供給開始時点から2時間後に反応器内温度を13℃/hrのスピードで1時間、連続的に昇温し、反応器内温度を88℃とした。
引き続き88℃で1時間保持することでスチレン系重合体粒子を得た。
After 10 minutes from the end of the supply of the suspension containing the molecular weight modifier to the reactor, the styrene polymer seed particles absorb styrene and the molecular weight modifier, and then 28.43 kg of styrene is 9.48 kg in the reactor. The reactor internal temperature was continuously increased at a rate of 13 ° C./hr for 1 hour at a rate of 13 ° C./hr. C.
Subsequently, styrene polymer particles were obtained by maintaining at 88 ° C. for 1 hour.

上記スチレン系重合体粒子を含む反応器内に、蒸留水2000gにピロリン酸マグネシウム13g、ドデシルベゼンスルホン酸ナトリウム3g、エチレンビスステアロアマイド13.2g、トルエン13.2g、シクロヘキサン6.6gを加えてホモミキサーで攪拌して分散液を調製し、この分散液を反応器内に加えた。その後、発泡剤であるノルマルブタン(小池化学社製、商品名ノルマルブタン)880g、ペンタン1088gを圧入し、100℃まで昇温した。100℃で3時間保持した後、20℃まで冷却して、反応器から発泡性スチレン系重合体粒子を取り出し、洗浄、脱水、乾燥した。この発泡性スチレン系重合体粒子の平均粒子径は850μmであり、600〜1000μmの分布があった。また、重量平均分子量は28万であった。
以降の工程は実施例1と同様に実施することで平板状のスライス品を得た。
In a reactor containing the styrenic polymer particles, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbezene sulfonate, 13.2 g of ethylene bisstearamide, 13.2 g of toluene, and 6.6 g of cyclohexane are added to 2000 g of distilled water. The mixture was stirred with a homomixer to prepare a dispersion, and this dispersion was added to the reactor. Then, 880 g of normal butane (trade name normal butane manufactured by Koike Chemical Co., Ltd.) and 1088 g of pentane as the foaming agent were injected and heated to 100 ° C. After maintaining at 100 ° C. for 3 hours, the mixture was cooled to 20 ° C., and the expandable styrene polymer particles were taken out from the reactor, washed, dehydrated and dried. The average particle size of the expandable styrene polymer particles was 850 μm and had a distribution of 600 to 1000 μm. The weight average molecular weight was 280,000.
Subsequent steps were performed in the same manner as in Example 1 to obtain a flat slice product.

比較例1
反応器に実施例1で得た平均粒子径550μmのスチレン系重合体種粒子11kg、蒸留水32kg、ピロリン酸マグネシウム128g、ドデシルベンゼンスルホン酸ナトリウム8.3gを入れ、撹拌し懸濁させた後、反応器内温を75℃まで昇温した。
Comparative Example 1
The reactor was charged with 11 kg of styrene polymer seed particles having an average particle diameter of 550 μm obtained in Example 1, 32 kg of distilled water, 128 g of magnesium pyrophosphate, and 8.3 g of sodium dodecylbenzenesulfonate, and the mixture was stirred and suspended. The reactor internal temperature was raised to 75 ° C.

次いで予め用意した蒸留水3000g、ピロリン酸マグネシウム13g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン1540gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を75℃に保持した反応器に添加し、次いでスチレン1140gを228g/分で反応器へ供給し、供給終了時点から15分間、スチレン系重合体種粒子にスチレンを吸収させた。   Next, 3000 g of distilled water, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate, and 1540 g of styrene were stirred with a homomixer to prepare a suspension, and this suspension was added to a reactor maintained at 75 ° C. Then, 1140 g of styrene was fed to the reactor at 228 g / min, and styrene was absorbed by the styrenic polymer seed particles for 15 minutes from the end of the feeding.

続いて、分子量調整剤として純度75%のベンゾイルパーオキサイド220gをスチレン1890gに溶解し、蒸留水2000g、ドデシルベンゼンスルホン酸ナトリウム3gと共にホモミキサーで攪拌して調製した懸濁液を75℃に保持した反応器に供給した。   Subsequently, 220 g of benzoyl peroxide having a purity of 75% as a molecular weight regulator was dissolved in 1890 g of styrene, and a suspension prepared by stirring with a homomixer with 2000 g of distilled water and 3 g of sodium dodecylbenzenesulfonate was maintained at 75 ° C. Feeded to the reactor.

分子量調整剤を含む懸濁液の反応器への供給終了時点から10分間、スチレン系重合体種粒子にスチレンと分子量調整剤を吸収させた後、スチレン28.43kgを反応器内に9.48kg/hrの速度で連続的に3時間供給するとともに、スチレン供給開始時点から2時間後に反応器内温度を17℃/hrのスピードで1時間、連続的に昇温し、反応器内温度を92℃とした。
引き続き92℃で1時間保持することでスチレン系重合体粒子を得た。
After 10 minutes from the end of the supply of the suspension containing the molecular weight modifier to the reactor, the styrene polymer seed particles absorb styrene and the molecular weight modifier, and then 28.43 kg of styrene is 9.48 kg in the reactor. The reactor internal temperature was continuously increased at a rate of 17 ° C./hr for 1 hour at a rate of 17 ° C./hr. C.
Subsequently, styrene polymer particles were obtained by maintaining at 92 ° C. for 1 hour.

上記スチレン系重合体粒子を含む反応器内に、蒸留水2000gにピロリン酸マグネシウム13g、ドデシルベゼンスルホン酸ナトリウム3g、エチレンビスステアロアマイド13.2g、トルエン13.2g、シクロヘキサン6.6gを加えてホモミキサーで攪拌して分散液を調製し、この分散液を反応器内に加えた。その後、発泡剤であるノルマルブタン(小池化学社製、商品名ノルマルブタン)880g、ペンタン1088gを圧入し、100℃まで昇温した。100℃で3時間保持した後、20℃まで冷却して、反応器から発泡性スチレン系重合体粒子を取り出し、洗浄、脱水、乾燥した。この発泡性スチレン系重合体粒子の平均粒子径は850μmであり、600〜1000μmの分布があった。また、重量平均分子量は29万であった。
以降の工程は実施例1と同様に実施することで平板状のスライス品を得た。
In a reactor containing the styrenic polymer particles, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbezene sulfonate, 13.2 g of ethylene bisstearamide, 13.2 g of toluene, and 6.6 g of cyclohexane are added to 2000 g of distilled water. The mixture was stirred with a homomixer to prepare a dispersion, and this dispersion was added to the reactor. Then, 880 g of normal butane (trade name normal butane manufactured by Koike Chemical Co., Ltd.) and 1088 g of pentane as the foaming agent were injected and heated to 100 ° C. After maintaining at 100 ° C. for 3 hours, the mixture was cooled to 20 ° C., and the expandable styrene polymer particles were taken out from the reactor, washed, dehydrated and dried. The average particle size of the expandable styrene polymer particles was 850 μm and had a distribution of 600 to 1000 μm. The weight average molecular weight was 290,000.
Subsequent steps were performed in the same manner as in Example 1 to obtain a flat slice product.

比較例2
反応器に実施例1で得た平均粒子径550μmのスチレン系重合体種粒子11kg、蒸留水32kg、ピロリン酸マグネシウム128g、ドデシルベンゼンスルホン酸ナトリウム8.3gを入れ、撹拌し懸濁させた後、反応器内温を75℃まで昇温した。
Comparative Example 2
The reactor was charged with 11 kg of styrene polymer seed particles having an average particle diameter of 550 μm obtained in Example 1, 32 kg of distilled water, 128 g of magnesium pyrophosphate, and 8.3 g of sodium dodecylbenzenesulfonate, and the mixture was stirred and suspended. The reactor internal temperature was raised to 75 ° C.

次いで予め用意した蒸留水3000g、ピロリン酸マグネシウム13g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン220gをホモミキサーで攪拌して懸濁液を調製し、この懸濁液を75℃に保持した反応器に添加し、15分間スチレン系重合体種粒子にスチレンを吸収させた。   Next, 3000 g of distilled water, 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate and 220 g of styrene were stirred with a homomixer to prepare a suspension, and this suspension was added to a reactor maintained at 75 ° C. The styrene polymer seed particles were allowed to absorb styrene for 15 minutes.

続いて、分子量調整剤として純度75%のベンゾイルパーオキサイド160gをスチレン1860gに溶解し、蒸留水2000g、ドデシルベンゼンスルホン酸ナトリウム3gと共にホモミキサーで攪拌して調製した懸濁液を75℃に保持した反応器に供給した。   Subsequently, 160 g of benzoyl peroxide having a purity of 75% as a molecular weight modifier was dissolved in 1860 g of styrene, and a suspension prepared by stirring with a homomixer with 2000 g of distilled water and 3 g of sodium dodecylbenzenesulfonate was maintained at 75 ° C. Feeded to the reactor.

分子量調整剤を含む懸濁液の反応器への供給終了時点から10分間、スチレン系重合体種粒子にスチレンと分子量調整剤を吸収させた後、スチレン31.42kgを反応器内に11.8kg/hrの速度で連続的に2時間40分で供給するとともに、スチレン供給開始時点から17℃/hrのスピードで連続的に昇温し、スチレン供給終了時点の反応器内温度を108℃とした。
引き続き108℃で1時間保持することでスチレン系重合体粒子を得た。
After the styrene polymer seed particles have absorbed styrene and the molecular weight modifier for 10 minutes from the end of the supply of the suspension containing the molecular weight modifier to the reactor, 31.42 kg of styrene is 11.8 kg in the reactor. Was continuously supplied at a rate of 2 hours and 40 minutes at a rate of / hr, and the temperature was continuously increased at a rate of 17 ° C / hr from the start of styrene supply, and the temperature in the reactor at the end of the styrene supply was set to 108 ° C. .
Subsequently, styrene polymer particles were obtained by maintaining at 108 ° C. for 1 hour.

上記スチレン系重合体粒子を含む反応器内に、反応器内温度を100℃まで冷却し、蒸留水2000gにピロリン酸マグネシウム13g、ドデシルベゼンスルホン酸ナトリウム3g、エチレンビスステアロアマイド13.2g、トルエン13.2g、シクロヘキサン6.6gを加えてホモミキサーで攪拌して分散液を調製し、この分散液を反応器内に圧入した。その後、発泡剤であるノルマルブタン(小池化学社製商品名ノルマルブタン)880g、ペンタン1088gを圧入した。100℃で3時間保持した後、20℃まで冷却して、反応器から発泡性スチレン系重合体粒子を取り出し、洗浄、脱水、乾燥した。この発泡性スチレン系重合体粒子の平均粒子径は850μmであり、600〜1000μmの分布があった。また、重量平均分子量は31万であった。
以降の工程は実施例1と同様に実施することで平板状のスライス品を得た。
In the reactor containing the styrenic polymer particles, the temperature in the reactor is cooled to 100 ° C., 13 g of magnesium pyrophosphate, 3 g of sodium dodecylbezene sulfonate, 13.2 g of ethylene bisstearamide, 2000 g of distilled water, 13.2 g of toluene and 6.6 g of cyclohexane were added and stirred with a homomixer to prepare a dispersion. The dispersion was press-fitted into the reactor. Then, 880 g of normal butane (trade name normal butane manufactured by Koike Chemical Co., Ltd.) and 1088 g of pentane as the foaming agent were injected. After maintaining at 100 ° C. for 3 hours, the mixture was cooled to 20 ° C., and the expandable styrene polymer particles were taken out from the reactor, washed, dehydrated and dried. The average particle size of the expandable styrene polymer particles was 850 μm and had a distribution of 600 to 1000 μm. The weight average molecular weight was 310,000.
Subsequent steps were performed in the same manner as in Example 1 to obtain a flat slice product.

表1に、実施例及び比較例で得られた発泡成形体のスライス品の評価結果を示す。また、実施例1及び比較例2の発泡成形体の亀甲高さを測定した一部分の拡大写真を図2に示す。図2(a)が実施例1の、図2(b)が実施例2の拡大写真である。図2(a)では18μmの亀甲高さの部分が、図2(b)では76μmの亀甲高さの部分が、それぞれ写されている。   In Table 1, the evaluation result of the sliced product of the foaming molding obtained by the Example and the comparative example is shown. Moreover, the one part enlarged photograph which measured the turtle shell height of the foaming molding of Example 1 and Comparative Example 2 is shown in FIG. 2A is an enlarged photograph of the first embodiment, and FIG. 2B is an enlarged photograph of the second embodiment. In FIG. 2A, a turtle shell height portion of 18 μm is shown, and in FIG. 2B, a turtle shell height portion of 76 μm is shown.

表1より、実施例と比較例とから、スチレンの添加終了時の温度B℃を重合開始時の温度A℃〜(A+15)℃の範囲とすることで、カット面の平滑性が極めて高い発泡成形体を得ることができることがわかる。   From Table 1, from the example and the comparative example, by setting the temperature B ° C. at the end of the addition of styrene to the temperature A ° C. to (A + 15) ° C. at the start of polymerization, foaming with extremely high cut surface smoothness. It turns out that a molded object can be obtained.

Claims (11)

水性媒体に予め分子量調整剤を存在させ、その系にスチレン系単量体を連続的又は段階的に添加して重合を行うに当り、重合開始時の温度A℃と所定量の前記スチレン系単量体を添加し終わったときの温度B℃を、A≦B≦A+15を満たす温度とし、全重合時間の内50%以上の時間をA℃で保持することを特徴とするスチレン系重合体粒子の製造方法。   In carrying out the polymerization by adding a molecular weight modifier to the aqueous medium in advance and adding a styrenic monomer continuously or stepwise to the system, a temperature A ° C. at the start of polymerization and a predetermined amount of the styrenic monomer are used. Styrenic polymer particles characterized in that the temperature B ° C. at the end of addition of the monomer is set to a temperature satisfying A ≦ B ≦ A + 15, and a time of 50% or more of the total polymerization time is maintained at A ° C. Manufacturing method. 前記重合開始時の温度A℃が、前記分子量調整剤の10時間半減期を得るための分解温度の±15℃の範囲内である請求項1に記載のスチレン系重合体粒子の製造方法。   The method for producing styrene-based polymer particles according to claim 1, wherein the temperature A ° C at the start of the polymerization is within a range of ± 15 ° C of a decomposition temperature for obtaining a 10-hour half-life of the molecular weight modifier. 前記懸濁重合が、全重合時間の内、50〜80%の時間、A℃で保持される請求項1又は2に記載のスチレン系重合体粒子の製造方法。   The method for producing styrene polymer particles according to claim 1 or 2, wherein the suspension polymerization is maintained at A ° C for 50 to 80% of the total polymerization time. 前記スチレン系単量体が、1〜10時間内に前記水性媒体にその全量添加される請求項1〜3のいずれか1つに記載のスチレン系重合体粒子の製造方法。   The method for producing styrene polymer particles according to any one of claims 1 to 3, wherein the styrene monomer is added to the aqueous medium in an amount of 1 to 10 hours. 前記スチレン系重合体粒子が、600〜1500μmの平均粒子径を有する請求項1〜4のいずれか1つに記載のスチレン系重合体粒子の製造方法。   The method for producing styrene polymer particles according to any one of claims 1 to 4, wherein the styrene polymer particles have an average particle size of 600 to 1500 µm. 前記懸濁重合が、スチレン系重合体からなる種粒子を使用するシード重合法である請求項1〜5のいずれか1つに記載のスチレン系重合体粒子の製造方法。   The method for producing styrene polymer particles according to any one of claims 1 to 5, wherein the suspension polymerization is a seed polymerization method using seed particles made of a styrene polymer. 前記種粒子が、難水溶性リン酸塩と、水溶性亜硫酸塩及び水溶性過硫酸塩から選択される塩の存在下、水性媒体中での種粒子用スチレン系単量体の懸濁重合により得られる請求項6に記載にスチレン系重合体粒子の製造方法。   The seed particles are obtained by suspension polymerization of a styrene monomer for seed particles in an aqueous medium in the presence of a poorly water-soluble phosphate and a salt selected from a water-soluble sulfite and a water-soluble persulfate. The method for producing styrenic polymer particles according to claim 6 obtained. 請求項1〜7のいずれか1つに記載の方法により得られたスチレン系重合体粒子。   Styrenic polymer particles obtained by the method according to any one of claims 1 to 7. 請求項8に記載のスチレン系重合体粒子に発泡剤を含浸することにより得られた発泡性スチレン系重合体粒子。   Expandable styrene polymer particles obtained by impregnating the styrene polymer particles according to claim 8 with a foaming agent. 請求項9に記載の発泡性スチレン系重合体粒子を型内発泡成形して得られる発泡成形体。   A foam molded article obtained by in-mold foam molding of the expandable styrenic polymer particles according to claim 9. 前記発泡成形体が、電気抵抗加熱線でカットされた断面を有する請求項10に記載の発泡成形体。   The foamed molded product according to claim 10, wherein the foamed molded product has a cross section cut by an electric resistance heating wire.
JP2009224980A 2009-09-29 2009-09-29 Method for producing styrenic polymer particles Active JP5666796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224980A JP5666796B2 (en) 2009-09-29 2009-09-29 Method for producing styrenic polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224980A JP5666796B2 (en) 2009-09-29 2009-09-29 Method for producing styrenic polymer particles

Publications (2)

Publication Number Publication Date
JP2011074144A true JP2011074144A (en) 2011-04-14
JP5666796B2 JP5666796B2 (en) 2015-02-12

Family

ID=44018475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224980A Active JP5666796B2 (en) 2009-09-29 2009-09-29 Method for producing styrenic polymer particles

Country Status (1)

Country Link
JP (1) JP5666796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183254A (en) * 2015-03-26 2016-10-20 株式会社カネカ Method for producing expandable styrenic resin particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313504A (en) * 1988-06-10 1989-12-19 Hitachi Chem Co Ltd Production of vinyl polymer particle and expandable vinyl polymer particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313504A (en) * 1988-06-10 1989-12-19 Hitachi Chem Co Ltd Production of vinyl polymer particle and expandable vinyl polymer particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183254A (en) * 2015-03-26 2016-10-20 株式会社カネカ Method for producing expandable styrenic resin particle

Also Published As

Publication number Publication date
JP5666796B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5284987B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP4653405B2 (en) Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article
JP3732418B2 (en) Expandable styrene resin particles
JP5641785B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5576678B2 (en) Styrene polymer particles, process for producing the same, expandable styrene polymer particles, and foamed molded article
JP2008075051A (en) Method for producing self fire-extinguishing foamable polystyrene-based resin particle
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP5666796B2 (en) Method for producing styrenic polymer particles
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
JP3054017B2 (en) Expandable styrene polymer particles
JP5913990B2 (en) Method for producing pre-expanded particles and method for producing foam molded article
JP5403802B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP2012153826A (en) Polystyrene resin foam, foaming polystyrene resin particle, and method for manufacturing the polystyrene resin foam and the foaming polystyrene resin particle
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP6600541B2 (en) Method for producing expandable polystyrene resin particles
JP5592731B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP6679390B2 (en) Expandable styrene resin particles
JP5721337B2 (en) A method for producing expandable polystyrene resin particles, a method for producing pre-expanded polystyrene resin particles, and a method for producing a polystyrene resin foam molded article.
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP5552399B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5126971B2 (en) Expandable polystyrene resin particles, method for producing the same, pre-expanded particles and foam-molded article
JP5403803B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP2014070150A (en) Polystyrene-based foamed molding, production method thereof, and foamed resin-made container
JP5518510B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5666796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150