JP5403803B2 - Expandable styrenic resin particles and foamed moldings thereof - Google Patents

Expandable styrenic resin particles and foamed moldings thereof Download PDF

Info

Publication number
JP5403803B2
JP5403803B2 JP2009194723A JP2009194723A JP5403803B2 JP 5403803 B2 JP5403803 B2 JP 5403803B2 JP 2009194723 A JP2009194723 A JP 2009194723A JP 2009194723 A JP2009194723 A JP 2009194723A JP 5403803 B2 JP5403803 B2 JP 5403803B2
Authority
JP
Japan
Prior art keywords
resin particles
weight
expandable
expanded
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009194723A
Other languages
Japanese (ja)
Other versions
JP2011046791A (en
Inventor
一己 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2009194723A priority Critical patent/JP5403803B2/en
Publication of JP2011046791A publication Critical patent/JP2011046791A/en
Application granted granted Critical
Publication of JP5403803B2 publication Critical patent/JP5403803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発泡性スチレン系樹脂粒子に関するものである。詳しくは懸濁重合法によって得られたポリスチレン系樹脂粒子を分級して、発泡剤を含浸して得られる発泡性スチレン系樹脂粒子に関する。更に詳しくは、スチレン系モノマーの含有量が少なく融着性がよく、また外観が良好である発泡倍率5〜40倍に適した発泡性スチレン系樹脂粒子、発泡粒子および発泡成形体に関するものである。   The present invention relates to expandable styrene resin particles. Specifically, the present invention relates to expandable styrene resin particles obtained by classifying polystyrene resin particles obtained by suspension polymerization and impregnating with a foaming agent. More specifically, the present invention relates to expandable styrene resin particles, expanded particles, and expanded molded articles suitable for an expansion ratio of 5 to 40 times, which have a low styrene monomer content, good fusion properties, and good appearance. .

一般に、発泡性スチレン系樹脂粒子から得られる発泡成形体は、軽量性、断熱性、強度、衛生性に優れ、食品容器、緩衝材、断熱材等に広く利用されている。本発明の発泡性スチレン系樹脂粒子は5〜40倍の発泡倍率に好適である。
近年の住宅建材分野では、建材に含まれる揮発性有機化合物(VOC)が原因であると一般にいわれているシックハウス症候群問題が大きく取り上げられ、原料の低VOC化が強く求めらてきている。
一方、床暖房用パネルとして発泡性スチレン系樹脂粒子を使用する場合、粒子径が200〜600μm、残存スチレン系モノマーの含有量が1000ppm以下であって、発泡剤として2〜6重量%のブタンを含有した発泡性スチレン系樹脂粒子が、特許文献1で提案されている。この発泡性スチレン系樹脂粒子を、床暖房用パネルのような建材用途に使用した場合、予備発泡能力が小さく外観が不良となり、粒子同士の融着が悪く、また発泡成形体の経時による寸法変化率が大きかった。
一方、低中倍率発泡可能な発泡性スチレン系樹脂粒子として、発泡助剤に沸点50℃以上の炭化水素類を使用することが特許文献2において提案されている。しかし、分子量が大きい炭化水素類はVOCの発生物質にも挙げられているために好ましくない。
In general, a foam-molded product obtained from expandable styrene-based resin particles is excellent in lightness, heat insulation, strength, and hygiene, and is widely used for food containers, cushioning materials, heat insulation materials and the like. The expandable styrene resin particles of the present invention are suitable for an expansion ratio of 5 to 40 times.
In the field of residential building materials in recent years, the problem of sick house syndrome, which is generally said to be caused by volatile organic compounds (VOC) contained in building materials, has been greatly taken up, and there is a strong demand for low VOC raw materials.
On the other hand, when foamable styrene resin particles are used as a floor heating panel, the particle size is 200 to 600 μm, the content of residual styrene monomer is 1000 ppm or less, and 2 to 6% by weight of butane is used as a foaming agent. The foamable styrene resin particles contained are proposed in Patent Document 1. When this expandable styrenic resin particle is used for building materials such as a floor heating panel, the preliminary foaming capacity is small and the appearance is poor, the particles are not fused well, and the dimensional change of the foamed molded product over time The rate was great.
On the other hand, Patent Document 2 proposes to use hydrocarbons having a boiling point of 50 ° C. or higher as foaming aids as expandable styrene-based resin particles that can be foamed at low and medium magnifications. However, hydrocarbons having a large molecular weight are not preferred because they are listed as substances that generate VOCs.

特開2004−155870JP 2004-155870 A 特開平11−286571JP-A-11-286571

本発明は、残存スチレンモノマーが少なく低VOC化が可能で、シックハウス症候群への対応がなされた建材用途に適し、また融着性がよく、外観が良好であり、経時による寸法変化率の小さい発泡倍率5〜40倍に適した発泡性スチレン系樹脂粒子を得ることを目的とする。   The present invention is a foam that has a low residual styrene monomer and can be reduced in VOC, is suitable for building materials that are compatible with sick house syndrome, has good fusion properties, has a good appearance, and has a small rate of dimensional change over time. An object is to obtain expandable styrene resin particles suitable for a magnification of 5 to 40 times.

本発明者は上記課題を解決するために鋭意検討した結果、懸濁重合法によって得られたポリスチレン樹脂粒子に発泡剤を含浸して得られ、粒子径が300〜800μm、残存スチレン系モノマーの含有量が500ppm以下の発泡性樹脂粒子であって、発泡剤として3〜7重量%のブタンを含有し、かつ溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有する発泡性スチレン系樹脂粒子を使用することで、発泡倍率5〜40倍の発泡成形体は、経時による寸法変化率が小さく寸法安定性に優れ、粒子間の融着が良好で、外観に優れ、十分な強度を有することを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor obtained by impregnating polystyrene resin particles obtained by suspension polymerization with a foaming agent, having a particle diameter of 300 to 800 μm and containing a residual styrene monomer. A plasticizer having an expandable resin particle amount of 500 ppm or less, containing 3 to 7% by weight of butane as a foaming agent, and having a solubility parameter value (SP value) of 8.3 or more and 9.4 or less. By using expandable styrenic resin particles containing 0.2 to 2.0% by weight, a foamed molded article having an expansion ratio of 5 to 40 times has a small dimensional change rate with time and excellent dimensional stability. The present invention was completed by finding that the fusion of the resin was good, excellent in appearance, and sufficient in strength.

なかでも特に本発明は、懸濁重合法によって得られたポリスチレン系樹脂粒子を300〜800μmの間の篩で分級し、発泡剤の沸点以上の温度で含浸させた発泡性スチレン系樹脂粒子であって、JIS標準篩による粒子径分布が、0.425〜0.71mmの範囲で80%以上であり且つ平均粒子径が0.45〜0.65mmである場合、成形品の寸法変化率が小さく、建材用途などの薄い肉厚を持った金型への充填性が良好である。   In particular, the present invention relates to expandable styrene resin particles obtained by classifying polystyrene resin particles obtained by a suspension polymerization method with a sieve of 300 to 800 μm and impregnating at a temperature equal to or higher than the boiling point of the foaming agent. When the particle size distribution by the JIS standard sieve is 80% or more in the range of 0.425 to 0.71 mm and the average particle size is 0.45 to 0.65 mm, the dimensional change rate of the molded product is small. Good filling properties for molds with thin wall thickness for building materials.

本発明は、懸濁重合法によって得られたポリスチレン系樹脂粒子に発泡剤を含浸して得られ、粒子径が300〜800μm、残存スチレン系モノマーの含有量が500ppm以下の発泡性樹脂粒子であって、発泡剤として3〜7重量%のブタンを含有し、かつ溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有する発泡性スチレン系樹脂粒子を発泡倍率5〜40倍に予備発泡し、成形して得られる発泡成形体は、経時による寸法変化率が小さく寸法安定性に優れ、粒子間の融着が良好で、外観に優れ、十分な強度を有する発泡成形体を提供できる。   The present invention is an expandable resin particle obtained by impregnating a polystyrene resin particle obtained by a suspension polymerization method with a foaming agent and having a particle size of 300 to 800 μm and a residual styrene monomer content of 500 ppm or less. Further, it contains 3 to 7% by weight of butane as a foaming agent and 0.2 to 2.0% by weight of a plasticizer having a solubility parameter value (SP value) of 8.3 or more and 9.4 or less. The foamed molded product obtained by pre-foaming the foamable styrene resin particles at a foaming ratio of 5 to 40 times and molding has a small dimensional change rate over time, excellent dimensional stability, and good fusion between the particles, A foamed molded article having excellent appearance and sufficient strength can be provided.

本発明において用いられるスチレン系樹脂粒子は、通常の懸濁重合法によって製造されたものが用いられる。スチレンを主成分とするものであり、スチレンを50%以上含む単量体の重合体または共重合体である。スチレンと共重合可能な単量体は、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレン等のスチレン誘導体、メチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレートなどのアクリル酸およびメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレートなどの各種単量体との共重合体でもよい。またジビニルベンゼン、アルキレングリコールジメタクリレートなどの2官能性単量体を併用してもよい。   As the styrenic resin particles used in the present invention, those produced by a usual suspension polymerization method are used. It is a monomer polymer or copolymer containing styrene as a main component and containing 50% or more of styrene. Monomers copolymerizable with styrene include styrene derivatives such as α-methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, acrylic acid such as methyl acrylate, butyl acrylate, methyl methacrylate, and ethyl methacrylate, and methacrylic acid. Or a copolymer with various monomers such as acrylonitrile, dimethyl fumarate and ethyl fumarate. Moreover, you may use together bifunctional monomers, such as divinylbenzene and alkylene glycol dimethacrylate.

本発明において、単量体を水性媒体中に懸濁させるために用いられる懸濁安定剤としては、従来、懸濁重合において一般に使用されている公知の、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、リン酸三カルシウム、ピロリン酸マグネシウム等の難水溶性無機化合物等が挙げられる。難水溶性無機化合物を用いる場合には、通常ドデシルベンゼンスルホン酸ソーダ等のアニオン界面活性剤が併用される。   In the present invention, as a suspension stabilizer used for suspending a monomer in an aqueous medium, conventionally known polyvinyl alcohol, methyl cellulose, polyacrylamide, polyvinyl pyrrolidone generally used in suspension polymerization are used. And water-soluble polymers such as tricalcium phosphate and poorly water-soluble inorganic compounds such as magnesium pyrophosphate. When using a poorly water-soluble inorganic compound, an anionic surfactant such as sodium dodecylbenzenesulfonate is usually used in combination.

本発明において、粒子径を揃えたポリスチレン系樹脂粒子を得るには、例えば0.475〜0.63mmの篩において懸濁重合で得られたポリスチレン系樹脂粒子を分級して使用する。その篩い分けられたポリスチレン系樹脂粒子に発泡剤を含浸することにより、目的とする発泡性ポリスチレン系樹脂粒子が得られる。   In the present invention, in order to obtain polystyrene resin particles having a uniform particle diameter, for example, polystyrene resin particles obtained by suspension polymerization on a 0.475 to 0.63 mm sieve are classified and used. The foamable polystyrene resin particles of interest are obtained by impregnating the sieved polystyrene resin particles with a foaming agent.

本発明における発泡性スチレン系樹脂粒子の粒子径は、300〜800μmである。粒子径が300μmを下回ると、含浸時の合着が多くなり好ましくなく、800μmを超えると建材用途などの薄い肉厚を持った金型への充填性が悪くなる傾向にあり好ましくない。   The particle diameter of the expandable styrene resin particles in the present invention is 300 to 800 μm. When the particle diameter is less than 300 μm, the coalescence during impregnation increases, which is not preferable. When the particle diameter exceeds 800 μm, the filling property into a thin mold having a thin wall thickness for building materials and the like tends to be deteriorated.

また、JISの標準篩による粒度分布が、0.425〜0.71mmが80%以上である。好ましくは95%以上、より好適には100%である。JISの標準篩による粒度分布が、80%未満となると、発泡性スチレン系樹脂粒子の粒度分布が広くなるために、予備発泡時に発泡倍数の変動が大きくなり好ましくない。また、発泡性スチレン系樹脂粒子の平均粒子径は0.45〜0.65mmである。平均粒子径が0.45mmよりも小さいと、発泡剤の使用量が多くなるために、成形品の寸法変化率が大きくなる。0.65mmよりも平均粒子径が大きいと建材用途などの薄い肉厚を持った金型への充填性が悪くなる傾向にあり好ましくない。   Moreover, 0.425-0.71mm is 80% or more of the particle size distribution by the standard sieve of JIS. Preferably it is 95% or more, More preferably, it is 100%. When the particle size distribution by the JIS standard sieve is less than 80%, the particle size distribution of the expandable styrenic resin particles becomes wide. The average particle diameter of the expandable styrene resin particles is 0.45 to 0.65 mm. When the average particle diameter is smaller than 0.45 mm, the amount of foaming agent used is increased, and the dimensional change rate of the molded product is increased. If the average particle diameter is larger than 0.65 mm, the filling property into a mold having a thin wall thickness for building materials and the like tends to deteriorate, which is not preferable.

ポリスチレン系樹脂粒子の重量平均分子量は通常200000〜350000、好ましくは220000〜320000の範囲である。   The weight-average molecular weight of the polystyrene resin particles is usually in the range of 200000-350,000, preferably 220,000-320,000.

本発明における重合開始剤としては、スチレンの懸濁重合において一般に使用されるラジカル発生型重合開始剤を用いることができ、例えばベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサイハイドロテレフタレート等の有機過酸化物やアゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。これらの重合開始剤は単独でまたは2種以上併用して使用できる。通常は分子量を調整し、残存単量体量を減少させるために、10時間の半減期を得るための分解温度が50〜80℃の範囲にある重合開始剤と、分解温度が80〜120℃の範囲にある異なる重合開始剤が併用される。   As the polymerization initiator in the present invention, a radical generating polymerization initiator generally used in suspension polymerization of styrene can be used. For example, benzoyl peroxide, lauryl peroxide, t-butylperoxy-2-ethylhexa Noate, t-butyl peroxybenzoate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, 2,2-t-butyl peroxybutane, Examples thereof include organic peroxides such as t-butylperoxy-3,3,5-trimethylhexanoate and di-t-butylperoxyhexayl hydroterephthalate, and azo compounds such as azobisdimethylvaleronitrile. These polymerization initiators can be used alone or in combination of two or more. Usually, in order to adjust the molecular weight and reduce the amount of residual monomer, a polymerization initiator having a decomposition temperature in the range of 50 to 80 ° C. for obtaining a half-life of 10 hours, and a decomposition temperature of 80 to 120 ° C. Different polymerization initiators in the range are used in combination.

本発明における発泡性スチレン系樹脂粒子中に含有する残存スチレン量は500ppm以下である。好ましくは残存スチレン量は200ppm以下、最適には160ppm以下である。残存スチレン量が500ppmを超えると、予備発泡し、成形して得られる建材用成形品において室内に放散されるスチレン量が多くなるため好ましくない。発泡性スチレン系樹脂粒子中に含まれる残存スチレン量を500ppm以下に下げる方法としては分解温度が80〜120℃の範囲に重合開始剤を0.03重量部以上使用して、110℃以上の温度で1時間以上、残存スチレン低減の工程を確保することでなし得る。   The amount of residual styrene contained in the expandable styrene resin particles in the present invention is 500 ppm or less. Preferably the amount of residual styrene is 200 ppm or less, optimally 160 ppm or less. If the amount of residual styrene exceeds 500 ppm, the amount of styrene diffused indoors in the molded article for building material obtained by prefoaming and molding is not preferable. As a method for lowering the amount of residual styrene contained in the expandable styrene resin particles to 500 ppm or less, a polymerization initiator is used at a decomposition temperature of 80 to 120 ° C. in a range of 0.03 parts by weight or more, and a temperature of 110 ° C. or more. Can be achieved by securing a process for reducing the residual styrene for 1 hour or longer.

本発明における発泡剤としては、ブタンが用いられるが、沸点が重合体の軟化点以下である揮発性を有する、プロパン、ペンタン等の炭化水素を併用しても差し支えない。本発明における発泡性スチレン系樹脂粒子中のブタンの含有量は3〜7重量%、好ましくは3.5〜6重量%である。3重量%より少ないと、予備発泡時間が長くなるとともに成形時の融着が悪くなり、7重量%を超えると発泡時の粒子間の発泡ばらつきが大きくなるとともに成形時の冷却時間がのび生産性が損なわれるために好ましくない。また、ブタンの組成については、重量比でイソブタンの割合が10〜45重量%である。イソブタンの重量比が10重量%未満では、成形体の粒子間隙が多くまた成形時の融着が悪くなり、45重量%を超えると成形品の経時による寸法収縮率が大きくなるために好ましくない。   As the blowing agent in the present invention, butane is used, but hydrocarbons such as propane and pentane having a volatility whose boiling point is lower than the softening point of the polymer may be used together. The butane content in the expandable styrene resin particles in the present invention is 3 to 7% by weight, preferably 3.5 to 6% by weight. If the amount is less than 3% by weight, the pre-foaming time becomes longer and the fusion at the time of molding becomes worse. If it exceeds 7% by weight, the variation in foaming between the particles at the time of foaming increases and the cooling time at the time of molding increases and the productivity is increased. Is unfavorable because it is damaged. Moreover, about the composition of butane, the ratio of isobutane is 10 to 45 weight% by weight ratio. If the weight ratio of isobutane is less than 10% by weight, there are many particle gaps in the molded body and the fusion during molding becomes worse, and if it exceeds 45% by weight, the dimensional shrinkage ratio over time of the molded product increases.

本発明においては、反応器として撹拌機のついた耐熱・耐圧のジャケット付きのオートクレーブを使用する。発泡剤についてのオートクレーブへの添加方法は、常温・常圧で気体であるブタンを、系内が20〜130℃の温度で、液体のまま添加する。気体のまま添加するとオートクレーブ系内の圧力上昇が大きく発泡剤がオートクレーブ内に添加しにくくなるため好ましくない。   In the present invention, a heat-resistant and pressure-resistant autoclave with a stirrer is used as a reactor. As a method for adding the blowing agent to the autoclave, butane which is a gas at normal temperature and normal pressure is added in a liquid state at a temperature of 20 to 130 ° C. in the system. If it is added as a gas, the pressure rise in the autoclave system is so large that it is difficult to add the foaming agent into the autoclave.

本発明においては、発泡性スチレン系樹脂粒子を5〜45倍に予備発泡した発泡粒子は、20℃で24時間経過した発泡粒子中の発泡剤として1〜6重量%のブタンを含有している。発泡粒子中のブタンの含有量が1重量%未満では成形体の粒子間隙が多くまた成形時の融着が悪くなり、6重量%を超えると成形品の経時による寸法収縮率が大きくなるとともに成形時の冷却時間がのび生産性が損なわれるために好ましくない。また、発泡粒子の粒子径は、500〜3000μmである。発泡粒子の粒子径が500μm未満では、成形時の融着が悪くなり、3000μmを超えると建材用の薄い金型への発泡粒子の充填性が悪くなるために好ましくない。   In the present invention, the expanded particles obtained by pre-expanding the expandable styrene resin particles 5 to 45 times contain 1 to 6% by weight of butane as a foaming agent in the expanded particles after 24 hours at 20 ° C. . When the content of butane in the expanded particles is less than 1% by weight, there are many particle gaps in the molded body and the fusion during molding becomes worse, and when it exceeds 6% by weight, the dimensional shrinkage ratio of the molded product with time increases and molding takes place. This is not preferable because the cooling time and the productivity are impaired. The particle diameter of the expanded particles is 500 to 3000 μm. If the particle diameter of the expanded particles is less than 500 μm, the fusion during molding is poor, and if it exceeds 3000 μm, the filling property of the expanded particles into a thin mold for building materials is not preferable.

本発明における可塑剤は、溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有している。可塑剤については、例えば、アジピン酸エステル類ではアジピン酸ジイソブチル、アジピン酸ジイソノニル、フタル酸エステル類ではフタル酸ジオクチル、フタル酸ジブチル、セバシン酸エステル類ではセバシン酸ジブチル、などの1種又は2種以上が挙げられ、特にアジピン酸ジイソブチルが好ましい。
また上記可塑剤としては、SP値(Solubility parameter)が8.3以上9.4以下の有機物、好ましくはSP値が8.5以上9.2以下である、アジピン酸エステル類が挙げられ、特に好ましくはアジピン酸ジイソブチル(DIBA)(SP値=8.9)、アジピン酸イソノニル(DINA)が好ましい。本発明のSP値は1分子の単位体積あたりの蒸発エネルギーΔEおよびモル容積Vを次式に代入することにより算出される。
(SP)=ΔE/V
The plasticizer in the present invention contains 0.2 to 2.0% by weight of a plasticizer having a solubility parameter value (SP value) of 8.3 or more and 9.4 or less. As for the plasticizer, for example, diisobutyl adipate, diisononyl adipate for adipic acid esters, dioctyl phthalate, dibutyl phthalate for phthalic acid esters, dibutyl sebacate for sebacic acid esters, etc. In particular, diisobutyl adipate is preferred.
Examples of the plasticizer include organic substances having an SP value (Solubility parameter) of 8.3 or more and 9.4 or less, preferably adipic acid esters having an SP value of 8.5 or more and 9.2 or less. Diisobutyl adipate (DIBA) (SP value = 8.9) and isononyl adipate (DINA) are preferred. The SP value of the present invention is calculated by substituting evaporation energy ΔE and molar volume V per unit volume of one molecule into the following equation.
(SP) 2 = ΔE / V

可塑剤については、0.2〜2.0重量%含有している。好ましくは、0.5〜1.5重量%である。0.2重量%未満では、成形体の粒子間隙が多くまた成形時の融着が悪くなり、2.0重量%を超えると、予備発泡時に発泡粒子どおしの合着が多くなりまた成形時の冷却時間がのび生産性が損なわれるために好ましくない。
また、可塑剤については、1気圧の沸点が150℃以上を使用する。好ましくは、1気圧の沸点が200℃以上である。1気圧の沸点が150℃未満では、発泡成形後の成形体よりその可塑成分が逸散するのでVOC物質として捉えられるために好ましくない。
About a plasticizer, it contains 0.2 to 2.0 weight%. Preferably, it is 0.5 to 1.5% by weight. If it is less than 0.2% by weight, there will be many particle gaps in the molded product and the fusion during molding will be poor, and if it exceeds 2.0% by weight, there will be more coalescence of the expanded particles during pre-foaming and molding. This is not preferable because the cooling time and the productivity are impaired.
For the plasticizer, a boiling point of 1 atm is 150 ° C. or higher. Preferably, the boiling point at 1 atm is 200 ° C. or higher. If the boiling point at 1 atm is less than 150 ° C., the plastic component is dissipated from the molded article after foam molding, and therefore it is not preferable because it is regarded as a VOC substance.

本発明において、発泡剤、可塑剤以外に発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤、架橋剤等の発泡性スチレン系樹脂粒子を製造する際に用いられる添加剤を、必要に応じ適宜添加してもよい。   In the present invention, in addition to the foaming agent and the plasticizer, it is used for producing foamable styrene resin particles such as a foamed cell nucleating agent, a filler, a flame retardant, a flame retardant aid, a lubricant, a colorant, and a crosslinking agent. You may add an additive suitably as needed.

なお、本発明における発泡性スチレン系樹脂粒子には、物性を損なわない範囲内において、表面被覆を行ってもよい。被覆剤は発泡性スチレン系樹脂粒子を製造する際に必要に応じてミキサー等で混合し付着させることができる。被覆剤としては、例えば、ジンクステアレート等の粉末状金属石けん類、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、アミド化合物、シリコン類、ポリエチレングリコール等が挙げられる。   The expandable styrene resin particles in the present invention may be surface-coated within a range that does not impair the physical properties. The coating agent can be mixed and adhered by a mixer or the like as necessary when producing expandable styrene resin particles. Examples of the coating agent include powdered metal soaps such as zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor oil, amide compounds, silicones, and polyethylene glycol.

以下、実施例を挙げて更に説明するが、本発明はこれら実施例によって限定されるものではない。実施例に記載した各種測定法および製造条件を以下で説明する。   Hereinafter, although an example is given and explained further, the present invention is not limited by these examples. Various measurement methods and production conditions described in the examples will be described below.

(実施例1)
(ポリスチレン系樹脂粒子の作成)
内容積100リットルの撹拌機付オートクレーブ(以下、反応器ともいう)にリン酸三カルシウム(太平化学社製)120gと、亜硫酸水素ナトリウム0.2g及び過硫酸カリウム0.2gを加え、更に過酸化ベンゾイル(純度75%)136g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレン40kgを投入した後、撹拌下で溶解および分散させて懸濁液を形成した。
次に200rpmの撹拌下でスチレンを90℃、6時間、更に125℃で2時間重合反応させた。反応終了後、25℃まで冷却し、オートクレーブから内容物を取り出し、脱水・乾燥を行い、その後、0.475〜0.63mmにて分級して、粒子径が0.355〜0.71mmで重量平均分子量が30万のスチレン系重合体種粒子を得た。
Example 1
(Preparation of polystyrene resin particles)
Add 120 g of tricalcium phosphate (manufactured by Taihei Chemical Co., Ltd.), 0.2 g of sodium bisulfite and 0.2 g of potassium persulfate to an autoclave with a stirrer (hereinafter also referred to as “reactor”) having an internal volume of 100 liters. After adding 136 g of benzoyl (purity 75%), 30 g of t-butylperoxy-2-ethylhexyl monocarbonate, 40 kg of ion exchange water and 40 kg of styrene, the mixture was dissolved and dispersed under stirring to form a suspension.
Next, styrene was subjected to a polymerization reaction at 90 ° C. for 6 hours and further at 125 ° C. for 2 hours under stirring at 200 rpm. After completion of the reaction, it is cooled to 25 ° C., the contents are taken out from the autoclave, dehydrated and dried, and then classified at 0.475 to 0.63 mm, and the particle size is 0.355 to 0.71 mm and weight. Styrene polymer seed particles having an average molecular weight of 300,000 were obtained.

(発泡性スチレン系樹脂粒子の作成)
次いで、内容積100リットルの撹拌機付オートクレーブに上記のスチレン系樹脂粒子42kg、蒸留水36kg、ピロリン酸マグネシウム168g、ドデシルベンゼンスルホン酸ナトリウム8gを入れ、140rpmで撹拌し懸濁させ、その後100℃まで昇温した。
この後、蒸留水2000gにピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ナトリウム2gに可塑剤としてジイソブチルアジペート(DIBA)420gを加えてホモミキサーで撹拌することで調整し懸濁液を反応器内に圧入した。その後、発泡剤であるブタン(イソブタンの重量比35%)3108gを液の状態で反応器内に圧入した。その後反応器内部を100℃で2時間保持し、20℃まで冷却して粒子を取り出し、洗浄、脱水、乾燥した。得られた発泡性スチレン系樹脂粒子は、0.355〜0.71mmの粒度分布を持っていた。更に予備発泡後の発泡粒子の気泡径が完全に安定するまで15℃で3日間熟成させて、発泡性スチレン系樹脂粒子を得た。発泡性スチレン系樹脂粒子の発泡剤含有量については、発泡性スチレン系樹脂粒子の製造後、15℃で3日間熟成させた後に測定した。
(Creation of expandable styrene resin particles)
Next, 42 kg of the above styrene resin particles, 36 kg of distilled water, 168 g of magnesium pyrophosphate, and 8 g of sodium dodecylbenzenesulfonate are placed in an autoclave equipped with a stirrer with an internal volume of 100 liters, stirred and suspended at 140 rpm, and then up to 100 ° C. The temperature rose.
Thereafter, 20 g of magnesium pyrophosphate was added to 2000 g of distilled water, and 420 g of diisobutyl adipate (DIBA) as a plasticizer was added to 2 g of sodium dodecylbenzenesulfonate, and the suspension was press-fitted into the reactor by stirring with a homomixer. . Thereafter, 3108 g of butane (35% by weight of isobutane) as a blowing agent was injected into the reactor in a liquid state. Thereafter, the inside of the reactor was kept at 100 ° C. for 2 hours, cooled to 20 ° C., particles were taken out, washed, dehydrated and dried. The obtained expandable styrene resin particles had a particle size distribution of 0.355 to 0.71 mm. Furthermore, the foamed particles after the pre-expansion were aged at 15 ° C. for 3 days until the cell diameters were completely stabilized to obtain expandable styrene resin particles. The foaming agent content of the expandable styrene resin particles was measured after aging at 15 ° C. for 3 days after production of the expandable styrene resin particles.

(発泡性粒子の被覆)
この発泡性スチレン系樹脂粒子5kgを松坂貿易社製レーディゲミキサーM20型(内容量20リットル)に投入した。次いで、ステアリン酸マグネシウム4g、12−ヒドロキシステアリン酸トリグリセライド18g、炭酸カルシウム4g、ステアリン酸モノグリセライド2gを順次投入し、230rpmで3分間撹拌した。次いで重量平均分子量300であるポリエチレングリコール1.5g、100csであるジメチルポリシロキサン2gを投入し230rpmで5分間撹拌し、発泡性スチレン系樹脂粒子表面を被覆した。
(Coating of expandable particles)
5 kg of the expandable styrene resin particles were put into a radige mixer M20 type (with an internal volume of 20 liters) manufactured by Matsuzaka Trading Co., Ltd. Subsequently, 4 g of magnesium stearate, 18 g of 12-hydroxystearic acid triglyceride, 4 g of calcium carbonate, and 2 g of stearic acid monoglyceride were sequentially added, followed by stirring at 230 rpm for 3 minutes. Next, 1.5 g of polyethylene glycol having a weight average molecular weight of 300 and 2 g of dimethylpolysiloxane having a weight of 100 cs were added and stirred at 230 rpm for 5 minutes to coat the surface of the expandable styrene resin particles.

(発泡成形)
この被覆された発泡性スチレン系樹脂粒子を内容量40リットルの小型バッチ式予備発泡機を用いて、常圧下でゲージ圧力0.05MPaの水蒸気で加熱し嵩倍数20倍に予備発泡した。
得られた予備発泡粒子を20℃で24時間放置し、乾燥、熟成させた。この後、発泡剤量の測定を行った後に、発泡成形機(積水工機社製 商品名「ACE−3SP」)の金型内に充填し、水蒸気を用いて二次発泡させることによって、縦300mm×横400mm×高さ10mmの板状の発泡成形体を得た。
(Foam molding)
The coated expandable styrenic resin particles were pre-expanded to 20 times the bulk by heating with atmospheric steam at a gauge pressure of 0.05 MPa using a small batch type pre-foaming machine with a capacity of 40 liters.
The obtained pre-expanded particles were left at 20 ° C. for 24 hours, dried and aged. Then, after measuring the amount of the foaming agent, it was filled in the mold of a foam molding machine (trade name “ACE-3SP” manufactured by Sekisui Koki Co., Ltd.) and subjected to secondary foaming using water vapor, thereby A plate-like foamed molded product of 300 mm × width 400 mm × height 10 mm was obtained.

(発泡粒子の嵩倍数の測定)
1リットルのメスシリンダーを用意し、発泡粒子をメスシリンダーの1リットルの標線まで充填し、充填された発泡粒子の重量(g)を0.1gの位まで秤量した。得られた1リットルあたりの発泡粒子の重量より、発泡粒子の嵩倍数(リットル/g)を求めた。
(Measurement of the bulk multiple of expanded particles)
A 1 liter graduated cylinder was prepared, the expanded particles were filled to the 1 liter mark of the graduated cylinder, and the weight (g) of the filled expanded particles was weighed to the order of 0.1 g. From the obtained weight of the expanded particles per liter, the bulk multiple (liter / g) of the expanded particles was determined.

(発泡剤含有量の測定)
試料である発泡性スチレン系樹脂粒子、予備発泡粒子(製造後20℃にて24時間保管したもの)10〜20mgを20ml専用ガラスバイアルに精秤密封し、パーキンスエルマー社製ヘッドスペースサンプラーTurboMatrixHS40にセットし、160℃で30分間加熱後、パーキンスエルマー社製ガスクロマトグラフClarus500GC(検出器:FID)を用いて定量した。ヘッドスペースサンプラーにおける測定条件は、ニードル温度160℃、試料導入時間0.08分、トランスファーライン温度160℃、ガスクロマトグラフにおける測定条件は、カラムをJ&W社製DB−1(0.25mmφ×60m、膜厚1μm、カラム温度:50℃で10分間、20℃/分で270℃まで昇温、270℃で1分間)、キャリアガスをヘリウム(導入条件:18psiで10分間、0.5psi/分で24psiまで増量)、注入口温度(200℃)とした。測定値を樹脂重量100質量部に対する値に換算した。
(Measurement of foaming agent content)
Samples of expandable styrene resin particles and pre-expanded particles (stored for 24 hours at 20 ° C. after manufacture) 10-20 mg are precisely weighed and sealed in a 20 ml glass vial and set in a Perkins Elmer headspace sampler TurboMatrixHS40 Then, after heating at 160 ° C. for 30 minutes, quantification was performed using a gas chromatograph Clarus500GC (detector: FID) manufactured by Perkins Elmer. The measurement conditions in the headspace sampler are a needle temperature of 160 ° C., a sample introduction time of 0.08 minutes, a transfer line temperature of 160 ° C., and the measurement conditions in the gas chromatograph are DB-1 (0.25 mmφ × 60 m, membrane manufactured by J & W) Thickness 1 μm, column temperature: 50 ° C. for 10 minutes, heating up to 270 ° C. at 20 ° C./minute, 270 ° C. for 1 minute), carrier gas helium (introduction conditions: 18 psi for 10 minutes, 0.5 psi / minute at 24 psi) And the inlet temperature (200 ° C.). The measured value was converted into a value for 100 parts by mass of the resin.

(残存スチレン単量体の測定)
得られた発泡性スチレン系樹脂粒子1gを精秤し、この1gの発泡性スチレン系樹脂粒子に、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1ミリリットルを内部標準液として加えた後、更に、ジメチルホルムアミドを加えて25ミリリットルの測定溶液を作製した。そして、この測定溶液1.8マイクロリットルをガスクロマトグラフ(島津製作所製 商品名「GC−14A」)に供給して下記測定条件にて測定し、測定溶液中の化合物のチャートを得た。そして、予め測定しておいたスチレン単量体の検量線に基づいて、測定溶液中のスチレン単量体の量を算出することにより、発泡性スチレン系樹脂粒子の全重量に対する残存スチレン単量体(ppm)を算出し、その結果を表1に示した。
(Measurement of residual styrene monomer)
1 g of the obtained expandable styrene resin particles were precisely weighed, and 1 ml of a dimethylformamide solution containing 0.1% by volume of cyclopentanol was added as an internal standard solution to 1 g of the expandable styrene resin particles. Thereafter, dimethylformamide was further added to prepare a 25 ml measurement solution. And 1.8 microliters of this measurement solution was supplied to a gas chromatograph (trade name “GC-14A” manufactured by Shimadzu Corporation) and measured under the following measurement conditions to obtain a chart of the compounds in the measurement solution. And based on the calibration curve of the styrene monomer measured in advance, the amount of the styrene monomer in the measurement solution is calculated, whereby the residual styrene monomer with respect to the total weight of the expandable styrene resin particles (Ppm) was calculated and the results are shown in Table 1.

検出器 : FID
カラム : ジーエルサイエンス社製(内径3mm×2.5m)
液相(PEG−20M PT 25%)
担体(Chromosorb W AW−DWCS)
メッシュ:60/80
カラム温度 : 100℃
DET温度 : 230℃
検出器温度 : 230℃
キャリアーガス : 窒素
キャリアーガス流量 : 40ミリリットル/分
Detector: FID
Column: GL Sciences Inc. (inner diameter 3mm x 2.5m)
Liquid phase (PEG-20M PT 25%)
Carrier (Chromosorb W AW-DWCS)
Mesh: 60/80
Column temperature: 100 ° C
DET temperature: 230 ° C
Detector temperature: 230 ° C
Carrier gas: Nitrogen Carrier gas flow rate: 40ml / min

(アジピン酸エステル量の測定)
得られた発泡性スチレン系樹脂粒子2mgを精秤し、トルエン1ミリリットルに溶解させてトルエン溶液を作製する。更に、ピレン1000μg/ミリリットルを含有するメタノール溶液1マイクロリットルを上記トルエン溶液に添加して試験液を作製する。一方、アジピン酸エステル及びピレンを含有し且つアジピン酸エステル濃度を変化させた複数種類の標準溶液を用意し、この標準溶液をガスクロマトグラフに供給してアジピン酸エステルの検量線を作成する。
そして、上記試験液をガスクロマトグラフに供給してアジピン酸エステルのチャートを得、このチャートから上記検量線に基づいて、アジピン酸エステルの総量を算出する。このアジピン酸エステルの総量から、発泡性スチレン系樹脂粒子1g当たりに含有されているアジピン酸エステルの量を算出することができる。
なお、予備発泡粒子の表面部におけるアジピン酸エステルの量は、具体的には、島津製作所社から商品名「GCMS QP5000」で市販されているガスクロマトグラフを用いて、下記条件にて測定することができる。なお、カラムオーブンは、70℃から15℃/分の昇温速度で昇温され、260℃からは10℃/分の昇温速度で昇温され、300℃で3分間保持される。
分離カラム:J&W製 商品名「DB−1」(1μm ×0.25mmφ×60m)
キャリアーガス:ヘリウム
He流量:1ミリリットル/分
注入口温度:240℃
インターフェース温度:260℃
スプリット比:10
(Measurement of amount of adipic acid ester)
2 mg of the obtained expandable styrene resin particles are precisely weighed and dissolved in 1 ml of toluene to prepare a toluene solution. Furthermore, 1 microliter of methanol solution containing 1000 μg / ml of pyrene is added to the toluene solution to prepare a test solution. On the other hand, a plurality of types of standard solutions containing adipic acid ester and pyrene and having different adipic acid ester concentrations are prepared, and these standard solutions are supplied to a gas chromatograph to prepare a calibration curve of adipic acid ester.
And the said test liquid is supplied to a gas chromatograph, the chart of adipic acid ester is obtained, and the total amount of adipic acid ester is computed based on the said analytical curve from this chart. From the total amount of adipic acid ester, the amount of adipic acid ester contained per 1 g of expandable styrene resin particles can be calculated.
The amount of adipic acid ester on the surface portion of the pre-expanded particles can be specifically measured under the following conditions using a gas chromatograph commercially available from Shimadzu Corporation under the trade name “GCMS QP5000”. it can. The column oven is heated from 70 ° C. at a rate of 15 ° C./min, heated from 260 ° C. at a rate of 10 ° C./min, and held at 300 ° C. for 3 minutes.
Separation column: Product name “DB-1” (1 μm × 0.25 mmφ × 60 m) manufactured by J & W
Carrier gas: Helium He flow rate: 1 ml / min Inlet temperature: 240 ° C
Interface temperature: 260 ° C
Split ratio: 10

(発泡性スチレン系樹脂粒子の平均粒子径の測定)
得られた発泡性スチレン系樹脂粒子をJISの標準篩に基づき各粒度に篩分けを行った。表1において平均粒子径とは、累積重量パーセントで50%に相当する点での粒子径である。0.425〜0.71mmの重量%は、0.425〜0.500mm、0.500〜0.600mm、0.600〜0.710mm各々の重量%を合計した値である。
(Measurement of average particle diameter of expandable styrene resin particles)
The obtained expandable styrene resin particles were sieved to each particle size based on a JIS standard sieve. In Table 1, the average particle diameter is a particle diameter at a point corresponding to 50% in cumulative weight percent. The weight% of 0.425 to 0.71 mm is a total value of the weight percentages of 0.425 to 0.500 mm, 0.500 to 0.600 mm, and 0.600 to 0.710 mm.

(発泡成形体の融着率の評価)
得られた板状発泡成形品を衝撃によって破断させ、その破断面の発泡粒子を100〜150個を含む任意の範囲について、全粒子数(A)と粒子内で破断している粒子数(B)を計数し、以下の式により融着率(%)を算出する。
融着率=(B)×100/(A)
融着率の評価は70%以上を良好、70重量%未満を不良とする。
(Evaluation of fusion rate of foamed molded product)
The obtained plate-like foamed molded article was broken by impact, and the total number of particles (A) and the number of particles broken within the particles (B) in an arbitrary range including 100 to 150 expanded particles of the fractured surface (B ) And the fusion rate (%) is calculated by the following formula.
Fusing rate = (B) × 100 / (A)
In the evaluation of the fusion rate, 70% or more is good and less than 70% by weight is bad.

(発泡成形体ののびの評価)
得られた板状発泡成形品の外観を目視にて評価する。具体的には、成形体表面の発泡粒子が接合した境界部分が平滑である場合を良好、境界部分に凹凸があり平滑性が劣る場合を不良とする。
(Evaluation of expansion of foamed molded product)
The appearance of the obtained plate-like foamed molded product is visually evaluated. Specifically, the case where the boundary portion where the foamed particles on the surface of the molded body are joined is smooth, and the case where the boundary portion is uneven and the smoothness is inferior are regarded as bad.

(発泡成形体の総合評価)
上記融着率とのびの評価において、70%以上かつ良好である場合を○とし、それ以外を×とする。
(Comprehensive evaluation of foamed molded products)
In the evaluation of the fusion rate and the spread, a case where it is 70% or more and good is evaluated as ◯, and other cases are evaluated as ×.

(発泡成形体の寸法変化率の測定)
発泡成形した縦300mm×横400mm×高さ10mmの板状の発泡成形体を、23℃で2日間放置後、縦120mm×横120mm×高さ10mmの直方体状の試験片を切り出し、この試験片について、23℃にて672時間に亘って放置した後の変化率をJIS K6767:1999に準拠して測定した。寸法変化率が±0.5%以内の場合を「○」とし、寸法変化率が−0.5%を下回るか或いは0.5%を上回っている場合を「×」とした。
(Measurement of dimensional change rate of foamed molded product)
This foam-molded plate-shaped foamed molded product having a length of 300 mm × width of 400 mm × height of 10 mm was left to stand at 23 ° C. for 2 days, and a rectangular parallelepiped test piece having a length of 120 mm × width of 120 mm × height of 10 mm was cut out. Was measured in accordance with JIS K6767: 1999 after standing at 23 ° C. for 672 hours. The case where the dimensional change rate was within ± 0.5% was indicated as “◯”, and the case where the dimensional change rate was below −0.5% or exceeded 0.5% was indicated as “X”.

各種測定結果を、表1及び表2に示す。   Various measurement results are shown in Tables 1 and 2.

Figure 0005403803
Figure 0005403803

Figure 0005403803
Figure 0005403803

(実施例2)
発泡剤であるブタン(イソブタンの重量比35%)を2016g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例3)
発泡剤であるブタン(イソブタンの重量比35%)を4116g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例4)
可塑剤であるジイソブチルアジペート(DIBA)を210gを加えたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例5)
可塑剤であるジイソブチルアジペート(DIBA)を630gを加えたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(Example 2)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 2016 g of butane (35% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
(Example 3)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 4116 g of butane (35% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
Example 4
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 210 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Example 5)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 630 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.

(実施例6)
予備発泡粒子の嵩倍数を10倍にする以外は実施例1と全く同様にして板状の発泡成形体を得た。
(実施例7)
予備発泡粒子の嵩倍数を35倍にする以外は実施例1と全く同様にして板状の発泡成形体を得た。
(Example 6)
A plate-like foamed molded article was obtained in the same manner as in Example 1 except that the bulk expansion ratio of the pre-expanded particles was 10 times.
(Example 7)
A plate-like foamed molded article was obtained in the same manner as in Example 1 except that the bulk expansion ratio of the pre-expanded particles was 35 times.

(比較例1)
発泡剤であるブタン(イソブタンの重量比35%)を1200g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例2)
発泡剤であるブタン(イソブタンの重量比35%)を4510g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例3)
発泡剤であるブタン(イソブタンの重量比50%)を3108g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例4)
発泡剤であるノルマルブタン(イソブタンの重量比0%)を3108g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(Comparative Example 1)
Expandable styrenic resin particles, expanded particles, and a plate-like foamed molded article were obtained in the same manner as in Example 1 except that 1200 g of butane (35% by weight of isobutane) as a foaming agent was used. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 2)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 4510 g of butane (35% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 3)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 3108 g of butane (50% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 4)
Expandable styrene resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 3108 g of normal butane (weight ratio of isobutane of 0%) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.

(比較例5)
懸濁重合で得られたポリスチレン系樹脂粒子を篩い分ける網サイズを0.355〜0.475mmに変更し、平均粒子径を0.40mmに変更した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例6)
懸濁重合で得られたポリスチレン系樹脂粒子を篩い分ける網サイズを0.63〜0.85mmに変更し、平均粒子径を0.68mmに変更した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例7)
可塑剤であるジイソブチルアジペート(DIBA)を1050gを加えてのとしたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例8)
可塑剤であるジイソブチルアジペート(DIBA)を67gを加えてのとしたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例9)
可塑剤をアジピン酸ジイソブチルの代わりにフタル酸ジメチル(SP値=10.7)と
したこと以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例10)
可塑剤をアジピン酸ジイソブチルの代わりに流動パラフィン(SP値=7.5)と
したこと以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例11)
残スチレン処理剤としてt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート4gとなるように変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(Comparative Example 5)
The foaming property is the same as in Example 1 except that the mesh size for sieving the polystyrene resin particles obtained by suspension polymerization is changed to 0.355 to 0.475 mm and the average particle size is changed to 0.40 mm. Styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 6)
The foaming property is the same as in Example 1 except that the mesh size for screening the polystyrene resin particles obtained by suspension polymerization is changed to 0.63 to 0.85 mm and the average particle size is changed to 0.68 mm. Styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 7)
Expandable styrene resin particles, expanded particles, and a plate-like foamed molded article were obtained in the same manner as in Example 1 except that 1050 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 8)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 67 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 9)
Expandable styrenic resin particles, expanded particles, and plate-like foamed molded articles were obtained in the same manner as in Example 1 except that the plasticizer was dimethyl phthalate (SP value = 10.7) instead of diisobutyl adipate. It was. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 10)
Expandable styrenic resin particles, expanded particles, and plate-like expanded molded articles were obtained in the same manner as in Example 1 except that the plasticizer was liquid paraffin (SP value = 7.5) instead of diisobutyl adipate. . The evaluation results are shown in Tables 1 and 2.
(Comparative Example 11)
Expandable styrene resin particles, expanded particles, and a plate-like foamed molded article were obtained in the same manner as in Example 1 except that the residual styrene treating agent was changed to 4 g of t-butylperoxy-2-ethylhexyl monocarbonate. It was. The evaluation results are shown in Tables 1 and 2.

(比較例12)
予備発泡粒子の嵩倍数を45倍にする以外は実施例1と全く同様にして板状の発泡成形体を得た。
(Comparative Example 12)
A plate-like foamed molded article was obtained in exactly the same manner as in Example 1 except that the bulk magnification of the pre-expanded particles was 45 times.

本発明は、床暖房用パネル等の住宅建材分野のほか、特に5〜40倍の発泡倍率に好適な食品容器、緩衝材、断熱材等に広く利用されている。   The present invention is widely used in the field of residential building materials such as floor heating panels, and particularly in food containers, cushioning materials, heat insulating materials and the like suitable for a foaming ratio of 5 to 40 times.

Claims (4)

懸濁重合法によって得られたポリスチレン樹脂粒子に発泡剤を含浸して得られ、
粒子径が355〜710μmかつ平均粒子径が0.45〜0.65mm、
残存スチレン系モノマーの含有量が160ppm以下
の発泡性樹脂粒子であって、
発泡剤として3〜7重量%のブタンを含有し、かつ発泡剤としてのブタンは重量比でイソブタンが10〜45重量%であり、
溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有し、かつ、
該発泡性スチレン系樹脂粒子を予備発泡および成形して得られる発泡成形体の発泡倍率が5〜40倍である
ことを特徴とする発泡性スチレン系樹脂粒子。
Obtained by impregnating polystyrene resin particles obtained by suspension polymerization with a foaming agent,
A particle size of 355 to 710 μm and an average particle size of 0.45 to 0.65 mm,
Expandable resin particles having a residual styrene monomer content of 160 ppm or less,
3 to 7% by weight of butane as a blowing agent , and butane as a blowing agent is 10 to 45% by weight of isobutane by weight ratio,
0.2 to 2.0% by weight of a plasticizer having a solubility parameter value (SP value) of 8.3 or more and 9.4 or less, and
An expandable styrene resin particle, wherein the expansion ratio of the expanded molded article obtained by pre-expanding and molding the expandable styrene resin particle is 5 to 40 times.
JIS標準篩による粒子径分布が、0.425〜0.71mmの範囲で80%以上である請求項1記載の発泡性スチレン系樹脂粒子。 The expandable styrene resin particles according to claim 1, wherein the particle size distribution by a JIS standard sieve is 80% or more in a range of 0.425 to 0.71 mm . 請求項1記載の発泡性スチレン系樹脂粒子を5〜45倍に予備発泡した発泡粒子であって、20℃で24時間経過した発泡粒子中の発泡剤として1〜6重量%のブタンを含有し、かつ発泡粒子の粒子径が500〜3000μmである発泡粒子。A foamed particle obtained by pre-expanding the expandable styrenic resin particles according to claim 1 5 to 45 times, and containing 1 to 6% by weight of butane as a foaming agent in the expanded particles after 24 hours at 20 ° C. And the expanded particle whose particle diameter is 500-3000 micrometers. 請求項1記載の発泡性スチレン系樹脂粒子を予備発泡し、成形して得られる発泡成形体。A foam-molded product obtained by pre-foaming and molding the expandable styrenic resin particles according to claim 1.
JP2009194723A 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof Active JP5403803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194723A JP5403803B2 (en) 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194723A JP5403803B2 (en) 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof

Publications (2)

Publication Number Publication Date
JP2011046791A JP2011046791A (en) 2011-03-10
JP5403803B2 true JP5403803B2 (en) 2014-01-29

Family

ID=43833455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194723A Active JP5403803B2 (en) 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof

Country Status (1)

Country Link
JP (1) JP5403803B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474995B2 (en) * 1996-02-15 2003-12-08 鐘淵化学工業株式会社 Method for producing expandable styrene polymer particles
JP3805209B2 (en) * 2001-03-23 2006-08-02 積水化成品工業株式会社 Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP3776038B2 (en) * 2001-12-26 2006-05-17 積水化成品工業株式会社 Styrenic resin particles and method for producing expandable styrene resin particles
JP4066337B2 (en) * 2002-11-05 2008-03-26 株式会社カネカ Expandable styrene resin particles for building materials and foamed molded articles thereof
JP4912583B2 (en) * 2004-11-25 2012-04-11 積水化成品工業株式会社 Method for producing expandable styrene resin particles
JP5188083B2 (en) * 2007-03-26 2013-04-24 積水化成品工業株式会社 Method for producing flame retardant expandable polystyrene resin particles

Also Published As

Publication number Publication date
JP2011046791A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2009096327A1 (en) Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP2015189912A (en) High density polyethylene resin particle, compound resin particle, foam particle, and foam molded body
JPH073068A (en) Expandable styrene polymer bead
JP6082637B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP2002284917A (en) Expandable styrene-based resin particle
JP2011219711A (en) Foamable polystyrene-based resin particle, production method therefor, preliminary foamed particle, and foamed molded body
JP2008075051A (en) Method for producing self fire-extinguishing foamable polystyrene-based resin particle
JP5403802B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP5576678B2 (en) Styrene polymer particles, process for producing the same, expandable styrene polymer particles, and foamed molded article
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP5403803B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP2011026506A (en) Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP5348973B2 (en) Polystyrene resin foam molding
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP5903395B2 (en) Styrene resin particles, expandable particles, expanded particles, and method for producing expanded molded body
JP5732358B2 (en) Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP2011026505A (en) Expandable polystyrene-based resin particle for low density expansion molding, manufacturing method therefor, low density polystyrene-based resin pre-expanded particle, and low density polystyrene-based resin expansion molded article
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP5666796B2 (en) Method for producing styrenic polymer particles
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP5713726B2 (en) Expandable polystyrene resin particles, expanded particles and expanded molded articles
JP6227955B2 (en) Foam molding
JP6294040B2 (en) Styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP6677974B2 (en) Method for producing expandable styrene resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5403803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150