JP5403802B2 - Expandable styrenic resin particles and foamed moldings thereof - Google Patents

Expandable styrenic resin particles and foamed moldings thereof Download PDF

Info

Publication number
JP5403802B2
JP5403802B2 JP2009194720A JP2009194720A JP5403802B2 JP 5403802 B2 JP5403802 B2 JP 5403802B2 JP 2009194720 A JP2009194720 A JP 2009194720A JP 2009194720 A JP2009194720 A JP 2009194720A JP 5403802 B2 JP5403802 B2 JP 5403802B2
Authority
JP
Japan
Prior art keywords
resin particles
polymerization
particles
styrene resin
expandable styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009194720A
Other languages
Japanese (ja)
Other versions
JP2011046790A (en
Inventor
一己 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2009194720A priority Critical patent/JP5403802B2/en
Publication of JP2011046790A publication Critical patent/JP2011046790A/en
Application granted granted Critical
Publication of JP5403802B2 publication Critical patent/JP5403802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、発泡性スチレン系樹脂粒子に関するものである。詳しくは懸濁重合法によって得られたポリスチレン系樹脂粒子を種粒子としてシード重合法によって得られる発泡性スチレン系樹脂粒子に関する。更に詳しくは、スチレン系モノマーの含有量が少なく融着性がよく、また外観が良好である発泡倍率5〜40倍に適した発泡性スチレン系樹脂粒子、発泡粒子および発泡成形体に関するものである。   The present invention relates to expandable styrene resin particles. Specifically, the present invention relates to expandable styrene resin particles obtained by seed polymerization using polystyrene resin particles obtained by suspension polymerization as seed particles. More specifically, the present invention relates to expandable styrene resin particles, expanded particles, and expanded molded articles suitable for an expansion ratio of 5 to 40 times, which have a low styrene monomer content, good fusion properties, and good appearance. .

一般に、発泡性スチレン系樹脂粒子から得られる発泡成形体は、軽量性、断熱性、強度、衛生性に優れ、食品容器、緩衝材、断熱材等に広く利用されている。本発明の発泡性スチレン系樹脂粒子は5〜40倍の発泡倍率に好適である。
近年の住宅建材分野では、建材に含まれる揮発性有機化合物(VOC)が原因であると一般にいわれているシックハウス症候群問題が大きく取り上げられ、原料の低VOC化が強く求めらてきている。
In general, a foam-molded product obtained from expandable styrene-based resin particles is excellent in lightness, heat insulation, strength, and hygiene, and is widely used for food containers, cushioning materials, heat insulation materials and the like. The expandable styrene resin particles of the present invention are suitable for an expansion ratio of 5 to 40 times.
In the field of residential building materials in recent years, the problem of sick house syndrome, which is generally said to be caused by volatile organic compounds (VOC) contained in building materials, has been greatly taken up, and there is a strong demand for low VOC raw materials.

一方、床暖房用パネルとして発泡性スチレン系樹脂粒子を使用する場合、粒子径が200〜600μm、残存スチレン系モノマーの含有量が1000ppm以下であって、発泡剤として2〜6重量%のブタンを含有した発泡性スチレン系樹脂粒子が、特許文献1で提案されている。この発泡性スチレン系樹脂粒子を、床暖房用パネルのような建材用途に使用した場合、予備発泡能力が小さく外観が不良となり、粒子同士の融着が悪く、また発泡成形体の経時による寸法変化率が大きかった。   On the other hand, when foamable styrene resin particles are used as a floor heating panel, the particle size is 200 to 600 μm, the content of residual styrene monomer is 1000 ppm or less, and 2 to 6% by weight of butane is used as a foaming agent. The foamable styrene resin particles contained are proposed in Patent Document 1. When this expandable styrenic resin particle is used for building materials such as a floor heating panel, the preliminary foaming capacity is small and the appearance is poor, the particles are not fused well, and the dimensional change of the foamed molded product over time The rate was great.

特開2004−155870JP 2004-155870 A

本発明は、残存スチレンモノマーが少なく低VOC化が可能で、シックハウス症候群への対応がなされた建材用途、また融着性がよく、外観が良好であり、経時による寸法変化率の小さい発泡倍率5〜40倍に適した発泡性スチレン系樹脂粒子を得ることを目的とする。   The present invention has a low residual styrene monomer and can be made into a low VOC, is a building material application that is compatible with sick house syndrome, has good fusion properties, has a good appearance, and has a small dimensional change rate with time. The object is to obtain expandable styrene resin particles suitable for up to 40 times.

本発明者は上記課題を解決するために鋭意検討した結果、懸濁重合法によって得られたポリスチレン系樹脂粒子を種粒子としてシード重合法によって得られ、粒子径が300〜800μm、残存スチレン系モノマーの含有量が800ppm以下の発泡性樹脂粒子であって、発泡剤として3〜7重量%のブタンを含有し、かつ溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有する発泡性スチレン系樹脂粒子を使用することで、発泡倍率5〜40倍の発泡成形体は、経時による寸法変化率が小さく寸法安定性に優れ、粒子間の融着が良好で、外観に優れ、十分な強度を有することを見出し、本発明を完成した。   As a result of diligent studies to solve the above problems, the present inventor obtained by seed polymerization using polystyrene resin particles obtained by suspension polymerization as seed particles, and having a particle size of 300 to 800 μm and a residual styrene monomer. Of expandable resin particles having a content of 800 ppm or less, 3 to 7% by weight of butane as a foaming agent, and a solubility parameter value (SP value) of 8.3 or more and 9.4 or less By using expandable styrenic resin particles containing 0.2 to 2.0% by weight of the agent, the expanded molded article having an expansion ratio of 5 to 40 times has a small rate of dimensional change over time and excellent dimensional stability. The present inventors have found that the fusion between the particles is good, the appearance is excellent, and the particles have sufficient strength.

また懸濁重合法によって得られたポリスチレン系樹脂粒子を種粒子として水性媒体中に懸濁させ、この水性懸濁液にスチレン系単量体を添加し、重合開始剤の存在下でシード重合を行うと共に、発泡剤を含浸させて発泡性スチレン系樹脂粒子を製造する方法において、スチレン系単量体の重合に要する重合開始剤の全量又は実質的全量を反応初期に添加するとともに、スチレン系単量体を水性懸濁液として添加し、スチレン系単量体の存在下で重合を開始させ、重合開始時の反応温度をA℃、残りのスチレン系単量体の供給終了後の反応温度をB℃としたときに、B℃≧A℃+20℃となるように昇温しながらスチレン系単量体を連続的または断続的に供給し、重合させることを特徴とする発泡性スチレン系樹脂粒子の製造方法である。   Also, polystyrene resin particles obtained by the suspension polymerization method are suspended as seed particles in an aqueous medium, a styrene monomer is added to the aqueous suspension, and seed polymerization is performed in the presence of a polymerization initiator. In the method for producing expandable styrene resin particles by impregnating with a foaming agent, all or substantially all of the polymerization initiator required for the polymerization of the styrene monomer is added at the initial stage of the reaction, and The monomer is added as an aqueous suspension, polymerization is started in the presence of a styrene monomer, the reaction temperature at the start of polymerization is A ° C., and the reaction temperature after the supply of the remaining styrene monomer is completed. Expandable styrene resin particles, characterized in that when B ° C., styrene monomer is continuously or intermittently supplied and polymerized while raising the temperature so that B ° C. ≧ A ° C. + 20 ° C. It is a manufacturing method.

本発明は、懸濁重合法によって得られたポリスチレン系樹脂粒子を種粒子としてシード重合法によって得られ、粒子径が300〜800μm、残存スチレン系モノマーの含有量が800ppm以下の発泡性樹脂粒子であって、発泡剤として3〜7重量%のブタンを含有し、かつ
溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有する発泡性スチレン系樹脂粒子を発泡倍率5〜40倍に予備発泡し、成形して得られる発泡成形体は、経時による寸法変化率が小さく寸法安定性に優れ、粒子間の融着が良好で、外観に優れ、十分な強度を有する発泡成形体を提供できる。
The present invention is an expandable resin particle obtained by seed polymerization using polystyrene resin particles obtained by suspension polymerization as seed particles, and having a particle size of 300 to 800 μm and a content of residual styrene monomer of 800 ppm or less. In addition, it contains 3 to 7% by weight of butane as a foaming agent and 0.2 to 2.0% by weight of a plasticizer having a solubility parameter value (SP value) of 8.3 or more and 9.4 or less. The foamed molded product obtained by pre-foaming the foamable styrene resin particles to be expanded to 5 to 40 times and molding has a small dimensional change rate with time and excellent dimensional stability and good fusion between the particles. Thus, it is possible to provide a foamed molded article having excellent appearance and sufficient strength.

本発明において用いられる種粒子としてのスチレン系樹脂粒子は、通常の懸濁重合法によって製造されたものが用いられる。スチレンを主成分とするものであり、スチレンを50%以上含む単量体の重合体または共重合体である。スチレンと共重合可能な単量体は、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレン等のスチレン誘導体、メチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレートなどのアクリル酸およびメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレートなどの各種単量体との共重合体でもよい。またジビニルベンゼン、アルキレングリコールジメタクリレートなどの2官能性単量体を併用してもよい。   As the styrene resin particles as seed particles used in the present invention, those produced by an ordinary suspension polymerization method are used. It is a monomer polymer or copolymer containing styrene as a main component and containing 50% or more of styrene. Monomers copolymerizable with styrene include styrene derivatives such as α-methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, acrylic acid such as methyl acrylate, butyl acrylate, methyl methacrylate, and ethyl methacrylate, and methacrylic acid. Or a copolymer with various monomers such as acrylonitrile, dimethyl fumarate and ethyl fumarate. Moreover, you may use together bifunctional monomers, such as divinylbenzene and alkylene glycol dimethacrylate.

本発明におけるスチレン系樹脂粒子は、水性懸濁液中に分散したスチレン系樹脂種粒子にスチレン系単量体を連続的もしくは断続的に添加して重合するシード重合法によって得られる。   The styrene resin particles in the present invention can be obtained by a seed polymerization method in which a styrene monomer is added continuously or intermittently to styrene resin seed particles dispersed in an aqueous suspension for polymerization.

本発明において、種粒子を水性媒体中に懸濁させるために用いられる懸濁安定剤としては、従来、懸濁重合において一般に使用されている公知の、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、リン酸三カルシウム、ピロリン酸マグネシウム等の難水溶性無機化合物等が挙げられる。難水溶性無機化合物を用いる場合には、通常ドデシルベンゼンスルホン酸ソーダ等のアニオン界面活性剤が併用される。   In the present invention, as a suspension stabilizer used for suspending seed particles in an aqueous medium, conventionally known polyvinyl alcohol, methyl cellulose, polyacrylamide, polyvinyl pyrrolidone, etc. that are generally used in suspension polymerization. Water-soluble polymers, and poorly water-soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. When using a poorly water-soluble inorganic compound, an anionic surfactant such as sodium dodecylbenzenesulfonate is usually used in combination.

本発明のシード重合法において、種粒子の粒子径はある狭い範囲内にあれば得られるスチレン系樹脂粒子の粒子径もよく揃ったものとなる。すなわち、予め粒子径の揃った種粒子を用いてシード重合法を行うことにより、所望とする粒子径の揃ったスチレン系樹脂粒子を、例えば0.3〜0.5mmの種粒子を全スチレン系樹脂粒子の50重量%使用すると0.35〜0.65mmの粒子径の揃ったスチレン系樹脂粒子を得ることができる。そこで、種粒子としては、懸濁重合法によって得られた重合体粒子を一旦篩で分級した重合体粒子が使用できる。   In the seed polymerization method of the present invention, if the particle diameter of the seed particles is within a narrow range, the particle diameters of the styrene resin particles obtained are well aligned. That is, by carrying out a seed polymerization method using seed particles having a uniform particle diameter in advance, a styrene resin particle having a desired uniform particle diameter, for example, 0.3-0.5 mm seed particles are all styrene-based. When 50% by weight of the resin particles are used, styrene resin particles having a particle diameter of 0.35 to 0.65 mm can be obtained. Therefore, as the seed particles, polymer particles obtained by classifying the polymer particles obtained by the suspension polymerization method once with a sieve can be used.

本発明における発泡性樹脂粒子の粒子径は、300〜800μmである。粒子径が300μmを下回ると、シード重合時に粒子同士の合着が多くなり好ましくなく、800μmを超えると建材用途などの薄い肉厚を持った金型への充填性が悪くなる傾向にあり好ましくない。300〜800μmの粒子を得る方法は、種粒子の粒子径範囲と、添加して重合する単量体の量を適宜選択したシード重合法により得られる。種粒子とシード重合して得られるポリスチレン重合体粒子の重量平均分子量は通常200000〜350000、好ましくは220000〜320000の範囲である。通常、種粒子とシード重合体粒子の重量平均分子量はほぼ同等とすることが望ましい。   The particle diameter of the expandable resin particles in the present invention is 300 to 800 μm. When the particle diameter is less than 300 μm, the coalescence of particles increases at the time of seed polymerization, which is not preferable. When the particle diameter exceeds 800 μm, the filling property into a mold having a thin wall thickness tends to deteriorate. . The method of obtaining particles of 300 to 800 μm is obtained by a seed polymerization method in which the particle size range of the seed particles and the amount of the monomer to be added and polymerized are appropriately selected. The weight average molecular weight of polystyrene polymer particles obtained by seed polymerization with seed particles is usually in the range of 200,000 to 350,000, preferably 220,000 to 320,000. Usually, it is desirable that the weight average molecular weights of the seed particles and the seed polymer particles are approximately equal.

本発明のシード重合では、種粒子の径が大きくなると重合開始剤の吸収効率及び内部拡散が小さくなり、分子量が高くなる傾向を示し、またシード重合終了後の重合体粒子に対して種粒子の割合が少なすぎるとスチレン系単量体供給の重合率の制御が困難となり、反応時間が延びてしまい、重合体粒子の分子量調整が困難となる。重合体粒子の重量平均分子量を、発泡成形に適合する範囲に調整するには、重合開始剤を効率よく働かせることが必要となり、シード重合全域で重合開始剤によるラジカルが発生するような重合開始剤の分配、重合温度プログラム、単量体供給速度、シード重合時の重合率の調整等の制御が必要である。また、シード重合時に重合開始剤は、重合体粒子の表層部だけではなく、内部にまで拡散していることが必要なことから、そのためには重合体粒子はスチレン単量体の割合が35重量%を超えないように単量体を供給して反応を進めればよい。単量体の割合が5重量%以下になると重合開始剤が無駄に消費されてしまい得られる重合体が高分子量化してしまい好ましくない。   In the seed polymerization of the present invention, when the seed particle diameter increases, the absorption efficiency and internal diffusion of the polymerization initiator decrease, and the molecular weight tends to increase. If the ratio is too small, it is difficult to control the polymerization rate of the styrene monomer supply, the reaction time is prolonged, and the molecular weight adjustment of the polymer particles becomes difficult. In order to adjust the weight average molecular weight of the polymer particles to a range suitable for foam molding, it is necessary to work the polymerization initiator efficiently, and a polymerization initiator that generates radicals by the polymerization initiator throughout the seed polymerization. It is necessary to control the distribution of the polymer, the polymerization temperature program, the monomer supply rate, the adjustment of the polymerization rate during seed polymerization, and the like. In addition, since the polymerization initiator needs to diffuse not only to the surface layer portion of the polymer particles but also to the inside during seed polymerization, the polymer particles have a styrene monomer ratio of 35 wt. The monomer may be supplied so that the reaction does not exceed%. When the ratio of the monomer is 5% by weight or less, the polymerization initiator is wasted and the resulting polymer has a high molecular weight, which is not preferable.

本発明では、シード重合の重合開始時の反応温度をA℃、残りのスチレン系単量体の供給終了時の反応温度をB℃としたときに、B℃≧A℃+20℃となるように昇温しながらスチレン系単量体を連続的または断続的に添加し重合させる。このようにすれば、得られた発泡性スチレン系樹脂粒子は、大半を占める内層の重量平均分子量が、前記の通常の範囲内にあり、表層部についてもその分子量は少なくとも同等であり、通常は高分子量化し優れた発泡成形性を有することとなる。単量体供給終了時の反応温度B℃がA℃+20℃に満たない場合には、得られた発泡性スチレン系樹脂粒子が成形時に発泡粒子間の間隙を埋め尽くす程の効果は得られない。つまり、発泡成形時の外観のよいものが得られないこととなる。   In the present invention, when the reaction temperature at the start of seed polymerization is A ° C. and the reaction temperature at the end of the supply of the remaining styrene monomer is B ° C., B ° C ≧ A ° C. + 20 ° C. While increasing the temperature, a styrene monomer is added continuously or intermittently for polymerization. In this way, the foamable styrenic resin particles obtained have the weight average molecular weight of the inner layer occupying the majority within the normal range described above, and the molecular weight of the surface layer portion is at least equivalent, usually It becomes high molecular weight and has excellent foam moldability. When the reaction temperature B ° C. at the end of the monomer supply is less than A ° C. + 20 ° C., the obtained expandable styrenic resin particles cannot obtain an effect that fills the gaps between the expanded particles at the time of molding. . That is, a product having a good appearance at the time of foam molding cannot be obtained.

本発明における重合開始剤としては、スチレンの懸濁重合において一般に使用されるラジカル発生型重合開始剤を用いることができ、例えばベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサイハイドロテレフタレート等の有機過酸化物やアゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。これらの重合開始剤は単独でまたは2種以上併用して使用できる。通常は分子量を調整し、残存単量体量を減少させるために、10時間の半減期を得るための分解温度が50〜80℃の範囲にある重合開始剤と、分解温度が80〜120℃の範囲にある異なる重合開始剤が併用される。上記の重合開始剤は、種粒子に均一に吸収させる必要があることから、液状物として添加することが好ましい。重合開始剤を直接水性懸濁液中に添加すると、種粒子に均一に吸収されにくくなるので、重合開始剤は水性媒体に懸濁または乳化させた状態で添加するか、あるいは少量のスチレン系単量体に溶解し、無機系懸濁安定剤および/またはアニオン界面活性剤とを加え水性懸濁液として添加することが望ましい。   As the polymerization initiator in the present invention, a radical generating polymerization initiator generally used in suspension polymerization of styrene can be used. For example, benzoyl peroxide, lauryl peroxide, t-butylperoxy-2-ethylhexa Noate, t-butyl peroxybenzoate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, 2,2-t-butyl peroxybutane, Examples thereof include organic peroxides such as t-butylperoxy-3,3,5-trimethylhexanoate and di-t-butylperoxyhexayl hydroterephthalate, and azo compounds such as azobisdimethylvaleronitrile. These polymerization initiators can be used alone or in combination of two or more. Usually, in order to adjust the molecular weight and reduce the amount of residual monomer, a polymerization initiator having a decomposition temperature in the range of 50 to 80 ° C. for obtaining a half-life of 10 hours, and a decomposition temperature of 80 to 120 ° C. Different polymerization initiators in the range are used in combination. The polymerization initiator is preferably added as a liquid since it is necessary to uniformly absorb the seed particles. When the polymerization initiator is added directly to the aqueous suspension, it becomes difficult to be uniformly absorbed by the seed particles. Therefore, the polymerization initiator is added in a state suspended or emulsified in an aqueous medium, or a small amount of styrene-based monomer is added. It is desirable to dissolve in a monomer, add an inorganic suspension stabilizer and / or an anionic surfactant and add as an aqueous suspension.

本発明においては、スチレン系単量体の供給終了時に10時間半減期を得るための分解温度が50〜80℃の重合開始剤がほとんどなくなるように設定し、重合温度を高温にして重合体粒子表層部の重量平均分子量を高くするのである。重合開始剤を反応の初期にスチレン系単量体の重合に要する全量を添加して重合を行い、重合開始剤の分解が有効に働くように重合初期温度を比較的低温に設定し、単量体の供給時に重合開始剤が逐次適度に発生していくように温度勾配を与えて昇温することが有効となる。   In the present invention, at the end of the supply of the styrenic monomer, the decomposition temperature for obtaining a 10-hour half-life is set so that there is almost no polymerization initiator having a temperature of 50 to 80 ° C. The weight average molecular weight of the surface layer is increased. The polymerization initiator is added at the initial stage of the reaction to add the total amount required for the polymerization of the styrenic monomer, the polymerization is performed, and the initial polymerization temperature is set at a relatively low temperature so that the decomposition of the polymerization initiator works effectively. It is effective to increase the temperature by applying a temperature gradient so that polymerization initiators are gradually generated appropriately at the time of supplying the body.

本発明における発泡性スチレン系樹脂粒子中に含有する残存スチレン量は800ppm以下である。好ましくは残存スチレン量は300ppm以下である。残存スチレン量が800ppmを超えると、予備発泡し、成形して得られる建材用成形品において室内に放散されるスチレン量が多くなるため好ましくない。発泡性スチレン系樹脂粒子中に含まれる残存スチレン量を800ppm以下に下げる方法としては分解温度が80〜120℃の範囲に重合開始剤を0.03重量部以上使用して、110℃以上の温度で1時間以上、残存スチレン低減の工程を確保することでなし得る。   The amount of residual styrene contained in the expandable styrene resin particles in the present invention is 800 ppm or less. Preferably, the amount of residual styrene is 300 ppm or less. If the amount of residual styrene exceeds 800 ppm, the amount of styrene diffused indoors in the molded article for building material obtained by prefoaming and molding is not preferable. As a method for reducing the amount of residual styrene contained in the expandable styrene-based resin particles to 800 ppm or less, a polymerization initiator is used in an amount of 0.03 parts by weight or more in the range of 80 to 120 ° C., and a temperature of 110 ° C. or more. Can be achieved by securing a process for reducing the residual styrene for 1 hour or longer.

本発明における発泡剤としては、ブタンが用いられるが、沸点が重合体の軟化点以下である揮発性を有する、プロパン、ペンタン、シクロヘキサン等の炭化水素を併用しても差し支えない。本発明における発泡性スチレン系樹脂粒子中のブタンの含有量は3〜7重量%、好ましくは3.5〜6重量%である。3重量%より少ないと、予備発泡時間が長くなるとともに成形時の融着が悪くなり、7重量%を超えると発泡時の粒子間の発泡ばらつきが大きくなるとともに成形時の冷却時間がのび生産性が損なわれるために好ましくない。また、ブタンの組成については、重量比でイソブタンの割合が10〜45重量%である。イソブタンの重量比が10重量%未満では、成形体の粒子間隙が多くまた成形時の融着が悪くなり、45重量%を超えると成形品の経時による寸法収縮率が大きくなるために好ましくない。   As the foaming agent in the present invention, butane is used, but hydrocarbons such as propane, pentane and cyclohexane having a volatility whose boiling point is lower than the softening point of the polymer may be used in combination. The butane content in the expandable styrene resin particles in the present invention is 3 to 7% by weight, preferably 3.5 to 6% by weight. If the amount is less than 3% by weight, the pre-foaming time becomes longer and the fusion at the time of molding becomes worse. If it exceeds 7% by weight, the variation in foaming between the particles at the time of foaming increases and the cooling time at the time of molding increases and the productivity is increased. Is unfavorable because it is damaged. Moreover, about the composition of butane, the ratio of isobutane is 10 to 45 weight% by weight ratio. If the weight ratio of isobutane is less than 10% by weight, there are many particle gaps in the molded body and the fusion during molding becomes worse, and if it exceeds 45% by weight, the dimensional shrinkage ratio over time of the molded product increases.

本発明においては、反応器として撹拌機のついた耐熱・耐圧のジャケット付きのオートクレーブを使用する。発泡剤についてのオートクレーブへの添加方法は、常温・常圧で気体であるブタンを、系内が20〜130℃の温度で、液体のまま添加する。気体のまま添加するとオートクレーブ系内の圧力上昇が大きく発泡剤がオートクレーブ内に添加しにくくなるため好ましくない。   In the present invention, a heat-resistant and pressure-resistant autoclave with a stirrer is used as a reactor. As a method for adding the blowing agent to the autoclave, butane which is a gas at normal temperature and normal pressure is added in a liquid state at a temperature of 20 to 130 ° C. in the system. If it is added as a gas, the pressure rise in the autoclave system is so large that it is difficult to add the foaming agent into the autoclave.

本発明においては、発泡性スチレン系樹脂粒子を5〜45倍に予備発泡した発泡粒子は、20℃で24時間経過した発泡粒子中の発泡剤として1〜6重量%のブタンを含有している。発泡粒子中のブタンの含有量が1重量%未満では成形体の粒子間隙が多くまた成形時の融着が悪くなり、6重量%を超えると成形品の経時による寸法収縮率が大きくなるとともに成形時の冷却時間がのび生産性が損なわれるために好ましくない。また、発泡粒子の粒子径は、500〜3000μmである。発泡粒子の粒子径が500μm未満では、成形時の融着が悪くなり、3000μmを超えると建材用の薄い金型への発泡粒子の充填性が悪くなるために好ましくない。   In the present invention, the expanded particles obtained by pre-expanding the expandable styrene resin particles 5 to 45 times contain 1 to 6% by weight of butane as a foaming agent in the expanded particles after 24 hours at 20 ° C. . When the content of butane in the expanded particles is less than 1% by weight, there are many particle gaps in the molded body and the fusion during molding becomes worse, and when it exceeds 6% by weight, the dimensional shrinkage ratio of the molded product with time increases and molding takes place. This is not preferable because the cooling time and the productivity are impaired. The particle diameter of the expanded particles is 500 to 3000 μm. If the particle diameter of the expanded particles is less than 500 μm, the fusion during molding is poor, and if it exceeds 3000 μm, the filling property of the expanded particles into a thin mold for building materials is not preferable.

本発明における可塑剤は、溶解性パラメーター値(SP値)が8.3以上9.4以下である可塑剤を0.2〜2.0重量%含有している。可塑剤については、例えば、アジピン酸エステル類ではアジピン酸ジイソブチル、アジピン酸ジイソノニル、フタル酸エステル類ではフタル酸ジオクチル、フタル酸ジブチル、セバシン酸エステル類ではセバシン酸ジブチル、などの1種又は2種以上が挙げられ、特にアジピン酸ジイソブチルが好ましい。
また上記可塑剤としては、SP値(Solubility parameter)が8.3以上9.4以下の有機物、好ましくはSP値が8.5以上9.2以下である、アジピン酸エステル類が挙げられ、特に好ましくはアジピン酸ジイソブチル(DIBA)(SP値=8.9)、アジピン酸イソノニル(DINA)が好ましい。本発明のSP値は1分子の単位体積あたりの蒸発エネルギーΔEおよびモル容積Vを次式に代入することにより算出される。
(SP)=ΔE/V
The plasticizer in the present invention contains 0.2 to 2.0% by weight of a plasticizer having a solubility parameter value (SP value) of 8.3 or more and 9.4 or less. As for the plasticizer, for example, diisobutyl adipate, diisononyl adipate for adipic acid esters, dioctyl phthalate, dibutyl phthalate for phthalic acid esters, dibutyl sebacate for sebacic acid esters, etc. In particular, diisobutyl adipate is preferred.
Examples of the plasticizer include organic substances having an SP value (Solubility parameter) of 8.3 or more and 9.4 or less, preferably adipic acid esters having an SP value of 8.5 or more and 9.2 or less. Diisobutyl adipate (DIBA) (SP value = 8.9) and isononyl adipate (DINA) are preferred. The SP value of the present invention is calculated by substituting evaporation energy ΔE and molar volume V per unit volume of one molecule into the following equation.
(SP) 2 = ΔE / V

可塑剤については、0.2〜2.0重量%含有している。好ましくは、0.5〜1.5重量%である。0.2重量%未満では、成形体の粒子間隙が多くまた成形時の融着が悪くなり、2.0重量%を超えると、予備発泡時に発泡粒子どおしの合着が多くなりまた成形時の冷却時間がのび生産性が損なわれるために好ましくない。   About a plasticizer, it contains 0.2 to 2.0 weight%. Preferably, it is 0.5 to 1.5% by weight. If it is less than 0.2% by weight, there will be many particle gaps in the molded product and the fusion during molding will be poor, and if it exceeds 2.0% by weight, there will be more coalescence of the expanded particles during pre-foaming and molding. This is not preferable because the cooling time and the productivity are impaired.

本発明において、発泡剤、可塑剤以外に発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤、架橋剤等の発泡性スチレン系樹脂粒子を製造する際に用いられる添加剤を、必要に応じ適宜添加してもよい。   In the present invention, in addition to the foaming agent and the plasticizer, it is used for producing foamable styrene resin particles such as a foamed cell nucleating agent, a filler, a flame retardant, a flame retardant aid, a lubricant, a colorant, and a crosslinking agent. You may add an additive suitably as needed.

なお、本発明における発泡性スチレン系樹脂粒子には、物性を損なわない範囲内において、表面被覆を行ってもよい。被覆剤は発泡性スチレン系樹脂粒子を製造する際に必要に応じてミキサー等で混合し付着させることができる。被覆剤としては、例えば、ジンクステアレート等の粉末状金属石けん類、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、アミド化合物、シリコン類、ポリエチレングリコール等が挙げられる。   The expandable styrene resin particles in the present invention may be surface-coated within a range that does not impair the physical properties. The coating agent can be mixed and adhered by a mixer or the like as necessary when producing expandable styrene resin particles. Examples of the coating agent include powdered metal soaps such as zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor oil, amide compounds, silicones, and polyethylene glycol.

以下、実施例を挙げて更に説明するが、本発明はこれに限定されるものではない。実施例に記載した各種測定法および製造条件を以下で説明する。   Hereinafter, although an example is given and explained further, the present invention is not limited to this. Various measurement methods and production conditions described in the examples will be described below.

(実施例1)
(種粒子の作成)
内容積100リットルの撹拌機付オートクレーブ(以下、反応器ともいう)にリン酸三カルシウム(太平化学社製)160gと、亜硫酸水素ナトリウム0.2g及び過硫酸カリウム0.2gを加え、更に過酸化ベンゾイル(純度75%)136g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレン40kgを投入した後、撹拌下で溶解および分散させて懸濁液を形成した。
次に200rpmの撹拌下でスチレンを90℃、6時間、更に120℃で2時間重合反応させた。反応終了後、25℃まで冷却し、オートクレーブから内容物を取り出し、脱水・乾燥・分級して、粒子径が0.212〜0.355mmで重量平均分子量が30万のスチレン系重合体種粒子を得た。
Example 1
(Creation of seed particles)
160 g of tricalcium phosphate (manufactured by Taihei Chemical Co., Ltd.), 0.2 g of sodium hydrogen sulfite and 0.2 g of potassium persulfate are added to an autoclave with a stirrer (hereinafter also referred to as a reactor) having an internal volume of 100 liters, and further peroxide After adding 136 g of benzoyl (purity 75%), 30 g of t-butylperoxy-2-ethylhexyl monocarbonate, 40 kg of ion exchange water and 40 kg of styrene, the mixture was dissolved and dispersed under stirring to form a suspension.
Next, styrene was polymerized at 90 ° C. for 6 hours under stirring at 200 rpm, and further at 120 ° C. for 2 hours. After completion of the reaction, the mixture is cooled to 25 ° C., the contents are taken out from the autoclave, dehydrated, dried and classified to obtain styrene polymer seed particles having a particle diameter of 0.212 to 0.355 mm and a weight average molecular weight of 300,000. Obtained.

(発泡性スチレン系樹脂粒子の作成)
次いで、内容積100リットルの撹拌機付オートクレーブに上記のスチレン系重合体種粒子11.1kg、蒸留水32kg、ピロリン酸マグネシウム220g、ドデシルベンゼンスルホン酸ナトリウム10gを入れ、140rpmで撹拌し懸濁させた。
次いで、予め用意した蒸留水3000g、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ナトリウム3g及びスチレン2662gをホモミキサーを撹拌して懸濁液を調整した。この懸濁液を72℃(重合開始時の温度:A)の保持した反応器に添加し、15分間種粒子にスチレンを吸収させた。
続いて、重合開始剤として純度75%の過酸化ベンゾイル118g及び残スチレン処理剤としてt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート12gをスチレン2028gに溶解した。得られた溶液を、蒸留水2000gと共にホモミキサーで撹拌して調整した懸濁液を72℃に保持した反応器に加えた。
重合開始剤を含む懸濁液を反応器に加え始めた時点から60分間、反応器を72℃に60分間保持し、種粒子にスチレンと重合開始剤を吸収させて重合を開始した。その後、スチレン28710gを反応器に9570g/hrの速度で連続的に3時間で添加した。スチレン添加終了時に105℃(スチレン系単量体の供給終了後の反応温度:B)となるように反応器内の温度を連続的に昇温した。
引き続き120℃まで昇温して90分間保持した。この後、蒸留水2000gにピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ナトリウム3gに可塑剤としてジイソブチルアジペート(DIBA)445gを加えてホモミキサーで撹拌することで調整し懸濁液を反応器内に圧入した。その後、100℃まで冷却して、発泡剤であるブタン(イソブタンの重量比35%)3293gを液の状態で反応器内に圧入した。その後反応器内部を100℃で2時間保持し、20℃まで冷却して粒子を取り出し、洗浄、脱水、乾燥した。得られた発泡性スチレン系樹脂粒子は、0.3〜0.7mmの粒度分布を持っていた。更に予備発泡後の発泡粒子の気泡径が完全に安定するまで15℃で3日間熟成させて、発泡性スチレン系樹脂粒子を得た。発泡性スチレン系樹脂粒子の発泡剤含有量については、発泡性スチレン系樹脂粒子の製造後、15℃で3日間熟成させた後に測定した。
(Creation of expandable styrene resin particles)
Next, 11.1 kg of the above styrene polymer seed particles, 32 kg of distilled water, 220 g of magnesium pyrophosphate, and 10 g of sodium dodecylbenzenesulfonate were placed in an autoclave with a stirrer having an internal volume of 100 liters, and suspended by stirring at 140 rpm. .
Subsequently, 3000 g of distilled water prepared in advance, 20 g of magnesium pyrophosphate, 3 g of sodium dodecylbenzenesulfonate and 2662 g of styrene were stirred to prepare a suspension. This suspension was added to a reactor maintained at 72 ° C. (temperature at the start of polymerization: A), and styrene was absorbed by the seed particles for 15 minutes.
Subsequently, 118 g of benzoyl peroxide having a purity of 75% as a polymerization initiator and 12 g of t-butylperoxy-2-ethylhexyl monocarbonate as a residual styrene treating agent were dissolved in 2028 g of styrene. The obtained solution was stirred with a homomixer together with 2000 g of distilled water and added to a reactor maintained at 72 ° C.
The reactor was kept at 72 ° C. for 60 minutes from the start of adding the suspension containing the polymerization initiator to the reactor, and the polymerization was started by absorbing the styrene and the polymerization initiator in the seed particles. Thereafter, 28710 g of styrene was continuously added to the reactor at a rate of 9570 g / hr in 3 hours. At the end of styrene addition, the temperature in the reactor was continuously raised to 105 ° C. (reaction temperature after completion of the supply of styrene monomer: B).
Subsequently, the temperature was raised to 120 ° C. and held for 90 minutes. Thereafter, 20 g of magnesium pyrophosphate was added to 2000 g of distilled water, 445 g of diisobutyl adipate (DIBA) as a plasticizer was added to 3 g of sodium dodecylbenzenesulfonate, and the suspension was press-fitted into the reactor by stirring with a homomixer. . Then, it cooled to 100 degreeC and 3293g of butane (35% of isobutane weight ratio) which is a foaming agent was press-fit in the reactor in the liquid state. Thereafter, the inside of the reactor was kept at 100 ° C. for 2 hours, cooled to 20 ° C., particles were taken out, washed, dehydrated and dried. The obtained expandable styrene resin particles had a particle size distribution of 0.3 to 0.7 mm. Furthermore, the foamed particles after the pre-expansion were aged at 15 ° C. for 3 days until the cell diameters were completely stabilized to obtain expandable styrene resin particles. The foaming agent content of the expandable styrene resin particles was measured after aging at 15 ° C. for 3 days after production of the expandable styrene resin particles.

(発泡性粒子の被覆)
この発泡性スチレン系樹脂粒子5kgを松坂貿易社製レーディゲミキサーM20型(内容量20リットル)に投入した。次いで、ステアリン酸マグネシウム4g、12−ヒドロキシステアリン酸トリグリセライド18g、炭酸カルシウム4g、ステアリン酸モノグリセライド2gを順次投入し、230rpmで3分間撹拌した。次いで重量平均分子量300であるポリエチレングリコール1.5g、100csであるジメチルポリシロキサン2gを投入し230rpmで5分間撹拌し、発泡性スチレン系樹脂粒子表面を被覆した。
(Coating of expandable particles)
5 kg of the expandable styrene resin particles were put into a radige mixer M20 type (with an internal volume of 20 liters) manufactured by Matsuzaka Trading Co., Ltd. Subsequently, 4 g of magnesium stearate, 18 g of 12-hydroxystearic acid triglyceride, 4 g of calcium carbonate, and 2 g of stearic acid monoglyceride were sequentially added, followed by stirring at 230 rpm for 3 minutes. Next, 1.5 g of polyethylene glycol having a weight average molecular weight of 300 and 2 g of dimethylpolysiloxane having a weight of 100 cs were added and stirred at 230 rpm for 5 minutes to coat the surface of the expandable styrene resin particles.

(発泡成形)
この被覆された発泡性スチレン系樹脂粒子を内容量40リットルの小型バッチ式予備発泡機を用いて、常圧下でゲージ圧力0.05MPaの水蒸気で加熱し嵩倍数20倍に予備発泡した。
得られた予備発泡粒子を20℃で24時間放置し、乾燥、熟成させた。この後、発泡剤量の測定を行った後に、発泡成形機(積水工機社製 商品名「ACE−3SP」)の金型内に充填し、水蒸気を用いて二次発泡させることによって、縦300mm×横400mm×高さ10mmの板状の発泡成形体を得た。
(Foam molding)
The coated expandable styrenic resin particles were pre-expanded to 20 times the bulk by heating with atmospheric steam at a gauge pressure of 0.05 MPa using a small batch type pre-foaming machine with a capacity of 40 liters.
The obtained pre-expanded particles were left at 20 ° C. for 24 hours, dried and aged. Then, after measuring the amount of the foaming agent, it was filled in the mold of a foam molding machine (trade name “ACE-3SP” manufactured by Sekisui Koki Co., Ltd.) and subjected to secondary foaming using water vapor, thereby A plate-like foamed molded product of 300 mm × width 400 mm × height 10 mm was obtained.

(発泡粒子の嵩倍数の測定)
1リットルのメスシリンダーを用意し、発泡粒子をメスシリンダーの1リットルの標線まで充填し、充填された発泡粒子の重量(g)を0.1gの位まで秤量した。得られた1リットルあたりの発泡粒子の重量より、発泡粒子の嵩倍数(リットル/g)を求めた。
(Measurement of the bulk multiple of expanded particles)
A 1 liter graduated cylinder was prepared, the expanded particles were filled to the 1 liter mark of the graduated cylinder, and the weight (g) of the filled expanded particles was weighed to the order of 0.1 g. From the obtained weight of the expanded particles per liter, the bulk multiple (liter / g) of the expanded particles was determined.

(発泡剤含有量の測定)
試料である発泡性スチレン系樹脂粒子、予備発泡粒子(製造後20℃にて24時間保管したもの)10〜20mgを20ml専用ガラスバイアルに精秤密封し、パーキンスエルマー社製ヘッドスペースサンプラーTurboMatrixHS40にセットし、160℃で30分間加熱後、パーキンスエルマー社製ガスクロマトグラフClarus500GC(検出器:FID)を用いて定量した。ヘッドスペースサンプラーにおける測定条件は、ニードル温度160℃、試料導入時間0.08分、トランスファーライン温度160℃、ガスクロマトグラフにおける測定条件は、カラムをJ&W社製DB−1(0.25mmφ×60m、膜厚1μm、カラム温度:50℃で10分間、20℃/分で270℃まで昇温、270℃で1分間)、キャリアガスをヘリウム(導入条件:18psiで10分間、0.5psi/分で24psiまで増量)、注入口温度(200℃)とした。測定値を樹脂重量100質量部に対する値に換算した。
(Measurement of foaming agent content)
Samples of expandable styrene resin particles and pre-expanded particles (stored for 24 hours at 20 ° C. after manufacture) 10-20 mg are precisely weighed and sealed in a 20 ml glass vial and set in a Perkins Elmer headspace sampler TurboMatrixHS40 Then, after heating at 160 ° C. for 30 minutes, quantification was performed using a gas chromatograph Clarus500GC (detector: FID) manufactured by Perkins Elmer. The measurement conditions in the headspace sampler are a needle temperature of 160 ° C., a sample introduction time of 0.08 minutes, a transfer line temperature of 160 ° C., and the measurement conditions in the gas chromatograph are DB-1 (0.25 mmφ × 60 m, membrane manufactured by J & W) Thickness 1 μm, column temperature: 50 ° C. for 10 minutes, heating up to 270 ° C. at 20 ° C./minute, 270 ° C. for 1 minute), carrier gas helium (introduction conditions: 18 psi for 10 minutes, 0.5 psi / minute at 24 psi) And the inlet temperature (200 ° C.). The measured value was converted into a value for 100 parts by mass of the resin.

(残存スチレン単量体の測定)
得られた発泡性スチレン系樹脂粒子1gを精秤し、この1gの発泡性スチレン系樹脂粒子に、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1ミリリットルを内部標準液として加えた後、更に、ジメチルホルムアミドを加えて25ミリリットルの測定溶液を作製した。そして、この測定溶液1.8マイクロリットルをガスクロマトグラフ(島津製作所製 商品名「GC−14A」)に供給して下記測定条件にて測定し、測定溶液中の化合物のチャートを得た。そして、予め測定しておいたスチレン単量体の検量線に基づいて、測定溶液中のスチレン単量体の量を算出することにより、発泡性スチレン系樹脂粒子の全重量に対する残存スチレン単量体(ppm)を算出し、その結果を表1に示した。
(Measurement of residual styrene monomer)
1 g of the obtained expandable styrene resin particles were precisely weighed, and 1 ml of a dimethylformamide solution containing 0.1% by volume of cyclopentanol was added as an internal standard solution to 1 g of the expandable styrene resin particles. Thereafter, dimethylformamide was further added to prepare a 25 ml measurement solution. And 1.8 microliters of this measurement solution was supplied to a gas chromatograph (trade name “GC-14A” manufactured by Shimadzu Corporation) and measured under the following measurement conditions to obtain a chart of the compounds in the measurement solution. And based on the calibration curve of the styrene monomer measured in advance, the amount of the styrene monomer in the measurement solution is calculated, whereby the residual styrene monomer with respect to the total weight of the expandable styrene resin particles (Ppm) was calculated and the results are shown in Table 1.

検出器 : FID
カラム : ジーエルサイエンス社製(内径3mm×2.5m)
液相(PEG−20M PT 25%)
担体(Chromosorb W AW−DWCS)
メッシュ:60/80
カラム温度 : 100℃
DET温度 : 230℃
検出器温度 : 230℃
キャリアーガス : 窒素
キャリアーガス流量 : 40ミリリットル/分
Detector: FID
Column: GL Sciences Inc. (inner diameter 3mm x 2.5m)
Liquid phase (PEG-20M PT 25%)
Carrier (Chromosorb W AW-DWCS)
Mesh: 60/80
Column temperature: 100 ° C
DET temperature: 230 ° C
Detector temperature: 230 ° C
Carrier gas: Nitrogen Carrier gas flow rate: 40ml / min

(アジピン酸エステル量の測定)
得られた発泡性スチレン系樹脂粒子2mgを精秤し、トルエン1ミリリットルに溶解させてトルエン溶液を作製する。更に、ピレン1000μg/ミリリットルを含有するメタノール溶液1マイクロリットルを上記トルエン溶液に添加して試験液を作製する。一方、アジピン酸エステル及びピレンを含有し且つアジピン酸エステル濃度を変化させた複数種類の標準溶液を用意し、この標準溶液をガスクロマトグラフに供給してアジピン酸エステルの検量線を作成する。
そして、上記試験液をガスクロマトグラフに供給してアジピン酸エステルのチャートを得、このチャートから上記検量線に基づいて、アジピン酸エステルの総量を算出する。このアジピン酸エステルの総量から、発泡性スチレン系樹脂粒子1g当たりに含有されているアジピン酸エステルの量を算出することができる。
なお、予備発泡粒子の表面部におけるアジピン酸エステルの量は、具体的には、島津製作所社から商品名「GCMS QP5000」で市販されているガスクロマトグラフを用いて、下記条件にて測定することができる。なお、カラムオーブンは、70℃から15℃/分の昇温速度で昇温され、260℃からは10℃/分の昇温速度で昇温され、300℃で3分間保持される。
分離カラム:J&W製 商品名「DB−1」(1μm ×0.25mmφ×60m)
キャリアーガス:ヘリウム
He流量:1ミリリットル/分
注入口温度:240℃
インターフェース温度:260℃
スプリット比:10
(Measurement of amount of adipic acid ester)
2 mg of the obtained expandable styrene resin particles are precisely weighed and dissolved in 1 ml of toluene to prepare a toluene solution. Furthermore, 1 microliter of methanol solution containing 1000 μg / ml of pyrene is added to the toluene solution to prepare a test solution. On the other hand, a plurality of types of standard solutions containing adipic acid ester and pyrene and having different adipic acid ester concentrations are prepared, and these standard solutions are supplied to a gas chromatograph to prepare a calibration curve of adipic acid ester.
And the said test liquid is supplied to a gas chromatograph, the chart of adipic acid ester is obtained, and the total amount of adipic acid ester is computed based on the said analytical curve from this chart. From the total amount of adipic acid ester, the amount of adipic acid ester contained per 1 g of expandable styrene resin particles can be calculated.
The amount of adipic acid ester on the surface portion of the pre-expanded particles can be specifically measured under the following conditions using a gas chromatograph commercially available from Shimadzu Corporation under the trade name “GCMS QP5000”. it can. The column oven is heated from 70 ° C. at a rate of 15 ° C./min, heated from 260 ° C. at a rate of 10 ° C./min, and held at 300 ° C. for 3 minutes.
Separation column: Product name “DB-1” (1 μm × 0.25 mmφ × 60 m) manufactured by J & W
Carrier gas: Helium He flow rate: 1 ml / min Inlet temperature: 240 ° C
Interface temperature: 260 ° C
Split ratio: 10

(発泡成形体の融着率の評価)
得られた板状発泡成形品を衝撃によって破断させ、その破断面の発泡粒子を100〜150個を含む任意の範囲について、全粒子数(A)と粒子内で破断している粒子数(B)を計数し、以下の式により融着率(%)を算出する。
融着率=(B)×100/(A)
融着率の評価は70%以上を良好、70重量%未満を不良とする。
(Evaluation of fusion rate of foamed molded product)
The obtained plate-like foamed molded article was broken by impact, and the total number of particles (A) and the number of particles broken within the particles (B) in an arbitrary range including 100 to 150 expanded particles of the fractured surface (B ) And the fusion rate (%) is calculated by the following formula.
Fusing rate = (B) × 100 / (A)
In the evaluation of the fusion rate, 70% or more is good and less than 70% by weight is bad.

(発泡成形体ののびの評価)
得られた板状発泡成形品の外観を目視にて評価する。具体的には、成形体表面の発泡粒子が接合した境界部分が平滑である場合を良好、境界部分に凹凸があり平滑性が劣る場合を不良とする。
(Evaluation of expansion of foamed molded product)
The appearance of the obtained plate-like foamed molded product is visually evaluated. Specifically, the case where the boundary portion where the foamed particles on the surface of the molded body are joined is smooth, and the case where the boundary portion is uneven and the smoothness is inferior are regarded as bad.

(発泡成形体の総合評価)
上記融着率とのびの評価において、70%以上かつ良好である場合を○とし、それ以外を×とする。
(Comprehensive evaluation of foamed molded products)
In the evaluation of the fusion rate and the spread, a case where it is 70% or more and good is evaluated as ◯, and other cases are evaluated as ×.

(発泡成形体の寸法変化率の測定)
発泡成形した縦300mm×横400mm×高さ10mmの板状の発泡成形体を、23℃で2日間放置後、縦120mm×横120mm×高さ10mmの直方体状の試験片を切り出し、この試験片について、23℃にて672時間に亘って放置した後の変化率をJIS K6767:1999に準拠して測定した。寸法変化率が±0.5%以内の場合を「○」とし、寸法変化率が−0.5%を下回るか或いは0.5%を上回っている場合を「×」とした。
(Measurement of dimensional change rate of foamed molded product)
This foam-molded plate-shaped foamed molded product having a length of 300 mm × width of 400 mm × height of 10 mm was left to stand at 23 ° C. for 2 days, and a rectangular parallelepiped test piece having a length of 120 mm × width of 120 mm × height of 10 mm was cut out. Was measured in accordance with JIS K6767: 1999 after standing at 23 ° C. for 672 hours. The case where the dimensional change rate was within ± 0.5% was indicated as “◯”, and the case where the dimensional change rate was below −0.5% or exceeded 0.5% was indicated as “X”.

各種測定結果を、表1及び表2に示す。   Various measurement results are shown in Tables 1 and 2.

Figure 0005403802
Figure 0005403802

Figure 0005403802
Figure 0005403802

(実施例2)
発泡剤であるブタン(イソブタンの重量比35%)を2136g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例3)
発泡剤であるブタン(イソブタンの重量比35%)を4361g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例4)
可塑剤であるジイソブチルアジペート(DIBA)を222gを加えたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例5)
可塑剤であるジイソブチルアジペート(DIBA)を668gを加えたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(実施例6)
重合開始時の温度(A)を80℃とし、スチレン系単量体の供給終了後の反応温度(B)を100℃となるように変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(Example 2)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 2136 g of butane (35% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
(Example 3)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 4361 g of butane (35% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
Example 4
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 222 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Example 5)
Expandable styrene resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 668 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Example 6)
Expandable styrene in the same manner as in Example 1, except that the temperature (A) at the start of polymerization was 80 ° C. and the reaction temperature (B) after the end of the supply of the styrene monomer was changed to 100 ° C. Resin particles, expanded particles, and plate-like expanded molded article were obtained. The evaluation results are shown in Tables 1 and 2.

(実施例7)
予備発泡粒子の嵩倍数を10倍にする以外は実施例1と全く同様にして板状の発泡成形体を得た。
(実施例8)
予備発泡粒子の嵩倍数を35倍にする以外は実施例1と全く同様にして板状の発泡成形体を得た。
(Example 7)
A plate-like foamed molded article was obtained in the same manner as in Example 1 except that the bulk expansion ratio of the pre-expanded particles was 10 times.
(Example 8)
A plate-like foamed molded article was obtained in the same manner as in Example 1 except that the bulk expansion ratio of the pre-expanded particles was 35 times.

(比較例1)
発泡剤であるブタン(イソブタンの重量比35%)を1271g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例2)
発泡剤であるブタン(イソブタンの重量比35%)を4778g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例3)
発泡剤であるブタン(イソブタンの重量比50%)を3293g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例4)
発泡剤であるノルマルブタン(イソブタンの重量比0%)を3293g使用した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例5)
ポリスチレン系樹脂種粒子の粒子径を0.50〜0.65mmに変更した以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(Comparative Example 1)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 1271 g of butane (35% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 2)
Expandable styrene resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 4778 g of butane (weight ratio of isobutane of 35%) was used as a foaming agent. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 3)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 3293 g of butane (50% by weight of isobutane) as a blowing agent was used. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 4)
Expandable styrene-based resin particles, expanded particles, and plate-like foamed molded articles were obtained in the same manner as in Example 1 except that 3293 g of normal butane (weight ratio of isobutane 0%) as a foaming agent was used. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 5)
Expandable styrene resin particles, expanded particles, and plate-like foamed molded articles were obtained in the same manner as in Example 1 except that the particle diameter of the polystyrene resin seed particles was changed to 0.50 to 0.65 mm. The evaluation results are shown in Tables 1 and 2.

(比較例6)
可塑剤であるジイソブチルアジペート(DIBA)を1113g加えたとしたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例7)
可塑剤であるジイソブチルアジペート(DIBA)を71g加えたとしたこと以外は実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例8)
可塑剤をアジピン酸ジイソブチルの代わりにフタル酸ジメチル(SP値=10.7)としたこと以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例9)
可塑剤をアジピン酸ジイソブチルの代わりに流動パラフィン(SP値=7.5)としたこと以外は、実施例1と同様にして発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例10)
重合開始時の温度(A)を72℃とし、スチレン系単量体の供給終了後の反応温度(B)を90℃となるように変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(比較例11)
残スチレン処理剤としてt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート4gとなるように変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子、発泡粒子、板状発泡成形体を得た。評価結果を表1及び表2に示す。
(Comparative Example 6)
Expandable styrene resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 1113 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 7)
Expandable styrenic resin particles, expanded particles, and a plate-like expanded molded article were obtained in the same manner as in Example 1 except that 71 g of diisobutyl adipate (DIBA) as a plasticizer was added. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 8)
Expandable styrenic resin particles, expanded particles, and plate-like foamed molded articles were obtained in the same manner as in Example 1 except that the plasticizer was dimethyl phthalate (SP value = 10.7) instead of diisobutyl adipate. It was. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 9)
Expandable styrenic resin particles, expanded particles, and plate-like expanded molded articles were obtained in the same manner as in Example 1 except that the plasticizer was liquid paraffin (SP value = 7.5) instead of diisobutyl adipate. . The evaluation results are shown in Tables 1 and 2.
(Comparative Example 10)
Expandable styrene in the same manner as in Example 1, except that the temperature (A) at the start of polymerization was 72 ° C. and the reaction temperature (B) after the end of the supply of the styrene monomer was changed to 90 ° C. Resin particles, expanded particles, and plate-like expanded molded article were obtained. The evaluation results are shown in Tables 1 and 2.
(Comparative Example 11)
Expandable styrene resin particles, expanded particles, and a plate-like foamed molded article were obtained in the same manner as in Example 1 except that the residual styrene treating agent was changed to 4 g of t-butylperoxy-2-ethylhexyl monocarbonate. It was. The evaluation results are shown in Tables 1 and 2.

(比較例12)
予備発泡粒子の嵩倍数を45倍にする以外は実施例1と全く同様にして板状の発泡成形体を得た。
(Comparative Example 12)
A plate-like foamed molded article was obtained in exactly the same manner as in Example 1 except that the bulk magnification of the pre-expanded particles was 45 times.

本発明は、床暖房用パネル等の住宅建材分野のほか、特に5〜40倍の発泡倍率に好適な食品容器、緩衝材、断熱材等に広く利用されている。   The present invention is widely used in the field of residential building materials such as floor heating panels, and particularly in food containers, cushioning materials, heat insulating materials and the like suitable for a foaming ratio of 5 to 40 times.

Claims (5)

懸濁重合法によって得られたポリスチレン系樹脂粒子を種粒子として水性媒体中に懸濁させ、この水性懸濁液にスチレン系単量体を添加し、重合開始剤の存在下でシード重合を行って、重合工程終了後に発泡剤を含浸させて発泡性スチレン系樹脂粒子を製造する方法において、The polystyrene resin particles obtained by the suspension polymerization method are suspended in an aqueous medium as seed particles, a styrene monomer is added to the aqueous suspension, and seed polymerization is performed in the presence of a polymerization initiator. In the method for producing expandable styrene resin particles by impregnating a foaming agent after the polymerization step is completed,
スチレン系単量体の重合に要する重合開始剤の全量を反応初期に添加するとともに、スチレン系単量体を水性懸濁液として添加し、スチレン系単量体の存在下で重合を開始させ、重合開始時の反応温度をA℃、残りのスチレン系単量体の供給終了後の反応温度をB℃としたときに、  While adding the total amount of polymerization initiator required for the polymerization of the styrenic monomer at the beginning of the reaction, adding the styrenic monomer as an aqueous suspension, starting the polymerization in the presence of the styrenic monomer, When the reaction temperature at the start of polymerization is A ° C and the reaction temperature after the supply of the remaining styrenic monomer is B ° C,
B℃≧A℃+20℃となるように昇温しながらスチレン系単量体を連続的または断続的に供給し、重合させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。A method for producing expandable styrene resin particles, characterized in that a styrene monomer is continuously or intermittently supplied and polymerized while raising the temperature so that B ° C. ≧ A ° C. + 20 ° C.
前記発泡性スチレン系樹脂粒子が建材用の発泡性スチレン系樹脂粒子である請求項1記載の発泡性スチレン系樹脂粒子の製造方法。The method for producing expandable styrene resin particles according to claim 1, wherein the expandable styrene resin particles are expandable styrene resin particles for building materials. 反応器として、攪拌機のついた耐熱・耐圧のジャケット付きオートクレーブを用い、常温・常圧で気体である発泡剤であるブタンを、系内が20〜130℃の温度で、液体のまま添加する請求項1又は2に記載の発泡性スチレン系樹脂粒子の製造方法。A heat-resistant and pressure-resistant jacketed autoclave with a stirrer is used as a reactor, and butane, which is a blowing agent that is a gas at normal temperature and normal pressure, is added as a liquid at a temperature of 20 to 130 ° C. Item 3. A method for producing expandable styrene resin particles according to Item 1 or 2. 請求項1〜3のいずれか一項に記載の製造方法で得られた発泡性スチレン系樹脂粒子を5〜45倍に予備発泡した発泡粒子の製造方法であって、20℃で24時間経過した発泡粒子中の発泡剤として1〜6重量%のブタンを含有し、かつ発泡粒子の粒子径が500〜3000μmである発泡粒子の製造方法。It is a manufacturing method of the foaming particle which pre-expanded the expandable styrene resin particle obtained by the manufacturing method as described in any one of Claims 1-3 5-45 times, Comprising: 24 hours passed at 20 degreeC. The manufacturing method of the expanded particle which contains 1-6 weight% butane as a foaming agent in an expanded particle, and the particle diameter of an expanded particle is 500-3000 micrometers. 請求項1〜3のうちいずれか一項に記載の製造方法で得られた発泡性スチレン系樹脂粒子を予備発泡し、成形して得られる発泡成形体の製造方法
The manufacturing method of the foaming molding obtained by pre-foaming and shape | molding the expandable styrene-type resin particle obtained by the manufacturing method as described in any one of Claims 1-3 .
JP2009194720A 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof Active JP5403802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194720A JP5403802B2 (en) 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194720A JP5403802B2 (en) 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof

Publications (2)

Publication Number Publication Date
JP2011046790A JP2011046790A (en) 2011-03-10
JP5403802B2 true JP5403802B2 (en) 2014-01-29

Family

ID=43833454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194720A Active JP5403802B2 (en) 2009-08-25 2009-08-25 Expandable styrenic resin particles and foamed moldings thereof

Country Status (1)

Country Link
JP (1) JP5403802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677974B2 (en) * 2015-03-26 2020-04-08 株式会社カネカ Method for producing expandable styrene resin particles
JP7422581B2 (en) 2020-03-26 2024-01-26 株式会社カネカ Expandable polystyrene resin particles, expanded polystyrene particles, and bead cushioning materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054016B2 (en) * 1993-12-27 2000-06-19 積水化成品工業株式会社 Method for producing expandable styrene polymer particles
JP3474995B2 (en) * 1996-02-15 2003-12-08 鐘淵化学工業株式会社 Method for producing expandable styrene polymer particles
JP3805209B2 (en) * 2001-03-23 2006-08-02 積水化成品工業株式会社 Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP3776038B2 (en) * 2001-12-26 2006-05-17 積水化成品工業株式会社 Styrenic resin particles and method for producing expandable styrene resin particles
JP4066337B2 (en) * 2002-11-05 2008-03-26 株式会社カネカ Expandable styrene resin particles for building materials and foamed molded articles thereof
JP4912583B2 (en) * 2004-11-25 2012-04-11 積水化成品工業株式会社 Method for producing expandable styrene resin particles
JP5188083B2 (en) * 2007-03-26 2013-04-24 積水化成品工業株式会社 Method for producing flame retardant expandable polystyrene resin particles

Also Published As

Publication number Publication date
JP2011046790A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5284987B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP2010270209A (en) Foamed particle of modified resin and molded article of the same
JPH073068A (en) Expandable styrene polymer bead
JP6082637B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP6205278B2 (en) Expandable styrene resin particles and method for producing the same
JP2011219711A (en) Foamable polystyrene-based resin particle, production method therefor, preliminary foamed particle, and foamed molded body
JP5403802B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP5576678B2 (en) Styrene polymer particles, process for producing the same, expandable styrene polymer particles, and foamed molded article
JP2008075051A (en) Method for producing self fire-extinguishing foamable polystyrene-based resin particle
JP2007246566A (en) Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP5403803B2 (en) Expandable styrenic resin particles and foamed moldings thereof
JP5913990B2 (en) Method for producing pre-expanded particles and method for producing foam molded article
JP5903395B2 (en) Styrene resin particles, expandable particles, expanded particles, and method for producing expanded molded body
JP5666796B2 (en) Method for producing styrenic polymer particles
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP2014062191A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product
JP6227955B2 (en) Foam molding
JP2013072040A (en) Low electrostatic charge expandable particle, foamed particle, and foam molded product
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP6294040B2 (en) Styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP6679390B2 (en) Expandable styrene resin particles
JP5216503B2 (en) Expandable styrene resin particles and method for producing the same
JP2014070150A (en) Polystyrene-based foamed molding, production method thereof, and foamed resin-made container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5403802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150