JP2011071838A - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
JP2011071838A
JP2011071838A JP2009222307A JP2009222307A JP2011071838A JP 2011071838 A JP2011071838 A JP 2011071838A JP 2009222307 A JP2009222307 A JP 2009222307A JP 2009222307 A JP2009222307 A JP 2009222307A JP 2011071838 A JP2011071838 A JP 2011071838A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
acoustic wave
surface acoustic
adhesive layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222307A
Other languages
Japanese (ja)
Inventor
Atsushi Abe
淳 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009222307A priority Critical patent/JP2011071838A/en
Publication of JP2011071838A publication Critical patent/JP2011071838A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave element which is excellent in long term reliability and has high temperature characteristic improvement effect. <P>SOLUTION: The surface acoustic wave element is provided at least with: a piezoelectric substrate 2; a support substrate 3 stuck to the piezoelectric substrate 2 via an adhesive layer 4; and an interdigital electrode 5 which excites surface acoustic waves formed on a surface opposite to the bonding surface of the piezoelectric substrate 2, wherein a glass transition point Tg of the adhesive layer 4 is ≤200°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複合圧電基板を使用した弾性表面波素子に関するものである。   The present invention relates to a surface acoustic wave device using a composite piezoelectric substrate.

携帯電話等の高周波通信において周波数選択用の部品として、例えば圧電基板上に弾性表面波を励起するための櫛形電極が形成された弾性表面波(Surface Acoustic Wave、SAW)素子が用いられる。これに用いられる圧電基板材料は、電気信号から機械的振動への変換効率(以下電気機械結合係数と記す)が大きいこと、また櫛形電極の電極間隔と弾性波の音速により決まるフィルタ等の中心周波数が温度により変動しないことが求められる(以下、温度特性と記す)。
すなわち、大きな電気機械結合係数と小さな周波数温度係数を兼ね備えた圧電基板が有れば好ましい。
A surface acoustic wave (SAW) element in which a comb-shaped electrode for exciting a surface acoustic wave is formed on a piezoelectric substrate is used as a frequency selection component in high-frequency communication such as a cellular phone. The piezoelectric substrate material used for this has high conversion efficiency (hereinafter referred to as electromechanical coupling coefficient) from electrical signals to mechanical vibrations, and the center frequency of filters, etc., determined by the electrode spacing of the comb electrodes and the acoustic velocity of the elastic waves. Is required not to vary with temperature (hereinafter referred to as temperature characteristics).
In other words, it is preferable to have a piezoelectric substrate having both a large electromechanical coupling coefficient and a small frequency temperature coefficient.

こうした特性を実現する圧電基板の一例として、圧電基板と他の基板を接合した複合圧電基板があり、このような複合圧電基板の一例として、圧電基板と支持基板とを接着層で接合し、前記圧電基板の表面に弾性波を励振・検出するための電極が設けられた弾性表面波素子が開示されている(特許文献1参照)。また、上記のような複合圧電基板を備えた弾性表面波素子において、電気機械結合係数等の諸特性を変化させることなく、良好な温度特性を有し、温度特性の設計自由度を高くするため、接着層のガラス転移点Tgを−30℃以上とすることを特徴とする弾性表面波素子が開示されている(特許文献2参照)。   As an example of a piezoelectric substrate that realizes such characteristics, there is a composite piezoelectric substrate in which a piezoelectric substrate and another substrate are bonded. As an example of such a composite piezoelectric substrate, the piezoelectric substrate and a support substrate are bonded with an adhesive layer, A surface acoustic wave element in which an electrode for exciting and detecting an acoustic wave is provided on the surface of a piezoelectric substrate is disclosed (see Patent Document 1). In addition, the surface acoustic wave device including the composite piezoelectric substrate as described above has a good temperature characteristic without changing various characteristics such as an electromechanical coupling coefficient, and increases the degree of freedom in designing the temperature characteristic. A surface acoustic wave element is disclosed in which the glass transition point Tg of the adhesive layer is set to −30 ° C. or more (see Patent Document 2).

しかし、上記のようにガラス転移点Tgが−30℃以上である接着剤を用いて複合圧電基板を作製した場合であっても、温度特性改善効果が十分に得られなかったり、また、接合面で剥離したり、圧電基板の表面でのクラックが発生することがあり、これにより、弾性表面波素子の信頼性が劣るという問題が起きていた。   However, even when a composite piezoelectric substrate is produced using an adhesive having a glass transition point Tg of −30 ° C. or higher as described above, the effect of improving the temperature characteristics cannot be sufficiently obtained, Peeling or cracks on the surface of the piezoelectric substrate may occur, which causes a problem that the reliability of the surface acoustic wave element is inferior.

特開2001−053579号公報JP 2001-053579 A 特開2002−026684号公報JP 2002-026684 A

本発明は、このような問題点に鑑みてなされたもので、長期信頼性に優れ、温度特性改善効果が高い弾性表面波素子を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a surface acoustic wave device that has excellent long-term reliability and a high effect of improving temperature characteristics.

上記課題を解決するため、本発明では、少なくとも、圧電基板と、該圧電基板に接着層を介して貼り合わされた支持基板と、前記圧電基板の接着面と反対側の面に形成された弾性表面波を励振する櫛形電極とを備え、前記接着層のガラス転移点Tgが200℃以下であることを特徴とする弾性表面波素子を提供する。   In order to solve the above problems, in the present invention, at least a piezoelectric substrate, a support substrate bonded to the piezoelectric substrate via an adhesive layer, and an elastic surface formed on a surface opposite to the adhesive surface of the piezoelectric substrate There is provided a surface acoustic wave device including a comb-shaped electrode for exciting a wave, wherein a glass transition point Tg of the adhesive layer is 200 ° C. or lower.

このように、接着層のガラス転移点Tgが200℃以下であれば、弾性表面波素子として、長期信頼性に優れたものとなり、接着層により貼り合わせた基板の温度特性も改善することができる。   As described above, when the glass transition point Tg of the adhesive layer is 200 ° C. or lower, the surface acoustic wave element has excellent long-term reliability, and the temperature characteristics of the substrates bonded by the adhesive layer can be improved. .

また、前記接着層のガラス転移点Tgが100℃以上200℃以下であることが好ましい。
このように、接着層のガラス転移点Tgが100℃以上200℃以下であれば、温度特性の改善効果を一段と安定させることができる。
Moreover, it is preferable that the glass transition point Tg of the said contact bonding layer is 100 degreeC or more and 200 degrees C or less.
As described above, when the glass transition point Tg of the adhesive layer is 100 ° C. or higher and 200 ° C. or lower, the effect of improving the temperature characteristics can be further stabilized.

また、前記接着層の室温における弾性率が1.5GPa以上であり、かつ85℃における弾性率が1GPa以上であることが好ましい。   Moreover, it is preferable that the elasticity modulus in the room temperature of the said contact bonding layer is 1.5 GPa or more, and the elasticity modulus in 85 degreeC is 1 GPa or more.

このように、室温における弾性率が1.5GPa以上であり、かつ85℃における弾性率が1GPa以上である接着層を用いれば、貼り合わせた異なる材料からなる基板のうち、熱膨張係数の大きい材料の熱膨張を抑制することが可能となり、温度特性を改善することができる。   Thus, if an adhesive layer having an elastic modulus at room temperature of 1.5 GPa or more and an elastic modulus at 85 ° C. of 1 GPa or more is used, a material having a large thermal expansion coefficient among substrates made of different materials bonded together. It is possible to suppress the thermal expansion of the film, and the temperature characteristics can be improved.

以上説明したように、本発明の弾性表面波素子は、長期信頼性に優れ、温度特性改善効果の高い弾性表面波素子とすることができる。   As described above, the surface acoustic wave device of the present invention can be a surface acoustic wave device having excellent long-term reliability and a high effect of improving temperature characteristics.

本発明に係る弾性表面波素子に用いられる複合圧電基板の一例を示した断面概略図である。It is the cross-sectional schematic which showed an example of the composite piezoelectric substrate used for the surface acoustic wave element which concerns on this invention.

以下、本発明についてより具体的に説明する。
前述のように、圧電基板と支持基板を接着層を介して接合した複合圧電基板を備えた弾性表面波素子において、接着層のガラス転移点Tgを従来技術に倣い−30℃以上とした場合であっても、現実には、例えばヒートサイクル試験等をした際に、接合面で剥離したり、圧電基板であるLT(タンタル酸リチウム)表面でのクラックが発生する等、様々な問題が起こっていた。
Hereinafter, the present invention will be described more specifically.
As described above, in a surface acoustic wave element including a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded via an adhesive layer, the glass transition point Tg of the adhesive layer is set to −30 ° C. or higher according to the prior art. In reality, however, various problems such as peeling at the bonding surface and cracking on the surface of LT (lithium tantalate), which is a piezoelectric substrate, occur, for example, when a heat cycle test or the like is performed. It was.

本発明者が、上記問題について鋭意実験及び検討したところ、ガラス転移点Tgの高い接着剤を用いた場合に、応力を逃がしきれずに上記のような問題が発生するという考えに到達した。この考えをもとに本発明者がさらに実験等を重ねた結果、接着剤のガラス転移点Tgが200℃以下であれば、上記のような問題が発生することなく、弾性表面波素子としての信頼性に優れ、かつ、温度特性も改善できるということを見出し、本発明を完成するに至った。   As a result of diligent experiments and examinations on the above problem, the present inventor has reached the idea that when the adhesive having a high glass transition point Tg is used, the above-described problem occurs without releasing the stress. As a result of further experiments and the like by the present inventor based on this idea, if the glass transition point Tg of the adhesive is 200 ° C. or less, the above-described problem does not occur, and the surface acoustic wave device is obtained. The inventors have found that it is excellent in reliability and can improve temperature characteristics, and have completed the present invention.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
図1は本発明に係る弾性表面波素子に用いられる複合圧電基板の一例を示した断面概略図である。
この弾性表面波素子1は、圧電基板2と支持基板3とを、接着層(接着剤)4を介して貼り合わせた複合圧電基板6と、圧電基板2の接着面と反対側に形成された弾性表面波を励振する櫛形電極5とを備える。
そして、本発明では、接着層4のガラス転移点Tgが200℃以下であることを特徴とする。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
FIG. 1 is a schematic cross-sectional view showing an example of a composite piezoelectric substrate used in a surface acoustic wave device according to the present invention.
The surface acoustic wave element 1 is formed on a side opposite to the adhesive surface of the piezoelectric substrate 2 and a composite piezoelectric substrate 6 in which the piezoelectric substrate 2 and the support substrate 3 are bonded together via an adhesive layer (adhesive) 4. And a comb-shaped electrode 5 for exciting a surface acoustic wave.
And in this invention, the glass transition point Tg of the contact bonding layer 4 is 200 degrees C or less, It is characterized by the above-mentioned.

本発明の弾性表面波素子1は、このような構成を有することにより、温度変化に応じて圧電基板に応力が発生し、温度特性を改善することができる。
また、接着層4を介して基板を張り合わせたものであるので、比較的安価なものとできる。
そして、上記の圧電基板2と支持基板3とを貼り合わせる接着層4のガラス転移点Tgが200℃以下であるので、熱膨張係数の大きな材料の熱膨張を抑え、かつ、適度に応力を逃がすことができ、長期信頼性に優れたものとなる。
Since the surface acoustic wave device 1 of the present invention has such a configuration, stress is generated in the piezoelectric substrate in accordance with a temperature change, and the temperature characteristics can be improved.
Further, since the substrates are bonded together via the adhesive layer 4, it can be made relatively inexpensive.
Since the glass transition point Tg of the adhesive layer 4 that bonds the piezoelectric substrate 2 and the support substrate 3 is 200 ° C. or less, the thermal expansion of a material having a large thermal expansion coefficient is suppressed and stress is appropriately released. And long-term reliability.

また、特に、弾性表面波素子の典型的な動作温度−40〜+85℃の範囲にガラス転移点が存在すると、このガラス転移点を超えた温度では圧電基板に加わる応力が接着層で緩和されるためガラス転移点をはさんで温度特性の改善効果が変化することがあるので、ガラス転移点Tgが100℃以上200℃以下のものを用いることがより好ましい。   In particular, when a glass transition point exists in the range of a typical operating temperature of −40 to + 85 ° C. of the surface acoustic wave element, the stress applied to the piezoelectric substrate is relaxed by the adhesive layer at a temperature exceeding the glass transition point. Therefore, since the effect of improving the temperature characteristics may change across the glass transition point, it is more preferable to use a glass transition point Tg of 100 ° C. or higher and 200 ° C. or lower.

次に、複合圧電基板6の構成要素について具体的に説明する。
図1で示した複合圧電基板6は、上記のように、圧電基板2と支持基板3とを接着層4を介して貼り合わせて作製したものである。
具体的には、例えば圧電基板2及び支持基板3の一方又は両方に接着剤を塗布し、真空下で貼り合わせて強固に接合することにより作製することができる。この際、接着面に異物が混入しないように貼り合わせ前に各基板の表面を洗浄することが好ましく、また、表面をアンモニア−過酸化水素水溶液等で親水化処理をしたり、またはプラズマ処理をして接着力を高めてもよい。
Next, the components of the composite piezoelectric substrate 6 will be specifically described.
The composite piezoelectric substrate 6 shown in FIG. 1 is manufactured by bonding the piezoelectric substrate 2 and the support substrate 3 through the adhesive layer 4 as described above.
Specifically, it can be produced by, for example, applying an adhesive to one or both of the piezoelectric substrate 2 and the support substrate 3, bonding them together under vacuum, and firmly bonding them. At this time, it is preferable to clean the surface of each substrate before bonding so that no foreign matter is mixed into the adhesive surface, and the surface is subjected to a hydrophilic treatment with an ammonia-hydrogen peroxide aqueous solution or a plasma treatment. Thus, the adhesive strength may be increased.

圧電基板2は、水晶等圧電性結晶材料からなるものであればいずれのものでもよいが、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか1つからなるものであれば、これらは電気機械結合係数が大きい結晶材料なので、周波数選択フィルタとしての帯域幅が広く、挿入損失が小さいSAWデバイスが製造可能な複合圧電基板とできる。これらの圧電結晶材料からなる圧電基板は、例えばチョクラルスキー法でこれらの単結晶棒を育成し、これを所望の厚さにスライスすることによって高品質なものが得られる。
また、基板方位についても、36°回転Yカット、41°回転Yカット、45°回転Yカット等、圧電性結晶材料の種類やSAWデバイスの用途、所望特性等に応じて適宜選択することができる。
The piezoelectric substrate 2 may be any material as long as it is made of a piezoelectric crystal material such as quartz, but if it is made of any one of lithium tantalate, lithium niobate, and lithium borate, these are electrically Since the crystal material has a large mechanical coupling coefficient, it can be a composite piezoelectric substrate capable of manufacturing a SAW device having a wide bandwidth as a frequency selective filter and a small insertion loss. A piezoelectric substrate made of these piezoelectric crystal materials can be obtained with a high quality by growing these single crystal rods by, for example, the Czochralski method and slicing them to a desired thickness.
The substrate orientation can also be appropriately selected according to the type of piezoelectric crystal material, the use of the SAW device, desired characteristics, etc., such as 36 ° rotation Y-cut, 41 ° rotation Y-cut, 45 ° rotation Y-cut, etc. .

支持基板3の材料としては、セラミックス等の鋼性があり耐久性の高いものであれば特に限定されないが、例えば主成分がアルミナであるとよい。アルミナを主成分とするものであれば、比較的安価であり、硬いため加熱しても反りが抑制される複合圧電基板6とすることができる。   The material of the support substrate 3 is not particularly limited as long as it has a steel property such as ceramics and has high durability. For example, the main component is preferably alumina. As long as the main component is alumina, the composite piezoelectric substrate 6 is relatively inexpensive and hard, so that warpage is suppressed even when heated.

尚、基板の大きさは特に限られず、例えば直径100mmのものとできるがそれ以上でもそれ以下でもよい。   The size of the substrate is not particularly limited. For example, the substrate can have a diameter of 100 mm, but may be larger or smaller.

接着層4は、ガラス転移点Tgが200℃以下であれば、長期信頼性に優れたものとなり、温度特性改善効果も得られるため好ましく、更にガラス転移点Tgが100℃以上200℃以下であれば、温度特性の改善効果を一段と安定させることができるのでより好ましい。   If the glass transition point Tg is 200 ° C. or less, the adhesive layer 4 is preferable because it has excellent long-term reliability and an effect of improving temperature characteristics is obtained. It is more preferable because the effect of improving the temperature characteristics can be further stabilized.

また、この接着層4は、弾性率が例えば室温においては1.5GPa以上であり、かつ85℃においては1GPa以上であるとより良い。接着層4がこのような弾性率を有していれば、貼り合わせた異なる材料の基板のうち、熱膨張係数の大きな基板の熱膨張を抑制することが可能となり、貼り合わせ基板の温度特性を改善することができる。   The adhesive layer 4 preferably has an elastic modulus of, for example, 1.5 GPa or more at room temperature and 1 GPa or more at 85 ° C. If the adhesive layer 4 has such an elastic modulus, it becomes possible to suppress thermal expansion of a substrate having a large thermal expansion coefficient among substrates of different materials bonded together, and the temperature characteristics of the bonded substrate can be reduced. Can be improved.

接着層4を構成する接着剤としては、上記のような規定を満たすものであれば特に限定されないが、例えばエポキシを主成分とする接着剤等が挙げられる。   Although it will not specifically limit as an adhesive agent which comprises the contact bonding layer 4, if the above prescriptions are satisfy | filled, For example, the adhesive agent etc. which have an epoxy as a main component are mentioned.

櫛形電極5は、複数の電極指と該電極指を共通に接続するバスバーとからなる1対の電極であり、従来のフォトリソグラフィ法等を用いて形成できる。
尚、図1には、櫛形電極5を用いた弾性表面波素子1の基本構成を示しているが、弾性表面波素子1の所望の機能・用途に応じて、櫛形電極5の数や構成を変更することももちろん可能である。
The comb-shaped electrode 5 is a pair of electrodes including a plurality of electrode fingers and a bus bar that commonly connects the electrode fingers, and can be formed using a conventional photolithography method or the like.
FIG. 1 shows the basic configuration of the surface acoustic wave element 1 using the comb-shaped electrode 5, but the number and configuration of the comb-shaped electrodes 5 may be changed according to the desired function and application of the surface acoustic wave element 1. Of course, it can be changed.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1〜5、比較例1〜2)
下記表1に示すように、ガラス転移点Tgが異なる市販のエポキシ系UV接着剤A〜Gを使用して、圧電基板であるタンタル酸リチウムと支持基板であるアルミナを各々の接着剤を介して接合し、複合圧電基板を作製した。
作製した各々の複合圧電基板を1mm角のチップに切断し、リフロー試験(260℃)を3回実施した。その後、ヒートサイクル試験(−40℃〜125℃)100サイクルを行って複合圧電基板の外観検査を実施した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Examples 1-5, Comparative Examples 1-2)
As shown in Table 1 below, commercially available epoxy UV adhesives A to G having different glass transition points Tg are used, and lithium tantalate as a piezoelectric substrate and alumina as a support substrate are passed through each adhesive. The composite piezoelectric substrate was manufactured by bonding.
Each produced composite piezoelectric substrate was cut into 1 mm square chips, and a reflow test (260 ° C.) was performed three times. Thereafter, 100 cycles of a heat cycle test (−40 ° C. to 125 ° C.) were performed to inspect the appearance of the composite piezoelectric substrate.

次に、上記の複合圧電基板上に櫛形電極を形成し、同様にチップ形状に加工して、反共振周波数の温度係数、及び基板内の温度係数のばらつきを調べた。   Next, comb electrodes were formed on the above composite piezoelectric substrate and processed into a chip shape in the same manner, and the temperature coefficient of the antiresonance frequency and the variation of the temperature coefficient in the substrate were examined.

上記の結果を表1に示す。

Figure 2011071838
The results are shown in Table 1.
Figure 2011071838

表1に示されるように、実施例1〜5(接着剤A〜E)は22個評価して不良はゼロ個であった。また、実施例1〜5は、温度特性改善効果も高く、良好な温度特性を備えた弾性表面波素子を得ることができた。特に、実施例3〜5では、温度係数も−25〜−18ppm/℃程度と小さく、基板面内の温度係数のばらつきもより小さくて安定性が高く、より良好な温度特性を有するものとなっている。
一方、比較例1〜2(接着剤F〜G)は、周波数温度係数や基板面内の温度係数のばらつきは小さいものの、22個中3〜10個程度LT表面にクラックが生じてしまった。
これらの結果から、接着層のガラス転移点Tgを200℃以下とする本発明には、十分に意義があることが実証されたといえる。
As shown in Table 1, 22 Examples 1 to 5 (adhesives A to E) were evaluated and the number of defects was zero. In Examples 1 to 5, a temperature characteristic improvement effect was high, and a surface acoustic wave device having good temperature characteristics could be obtained. In particular, in Examples 3 to 5, the temperature coefficient is as small as about −25 to −18 ppm / ° C., the variation of the temperature coefficient in the substrate surface is smaller, the stability is higher, and the temperature characteristics are better. ing.
On the other hand, in Comparative Examples 1 and 2 (adhesives F to G), although the variation of the frequency temperature coefficient and the temperature coefficient within the substrate surface was small, about 3 to 10 out of 22 LT surfaces were cracked.
From these results, it can be said that the present invention in which the glass transition point Tg of the adhesive layer is 200 ° C. or less has been proved to be sufficiently significant.

(実施例6〜9)
ガラス転移点Tgが132℃で、下記表2に示すように、弾性率の異なる接着剤H〜Kを用いて複合圧電基板を作製し、櫛形電極を形成した後チップ形状に加工して、反共振周波数の温度係数、及び基板内の温度係数のばらつきを調べた。
結果を表2に示す。

Figure 2011071838
(Examples 6 to 9)
As shown in Table 2 below, a glass transition point Tg of 132 ° C. is used to fabricate a composite piezoelectric substrate using adhesives H to K having different elastic moduli, and after forming a comb-shaped electrode, it is processed into a chip shape. The temperature coefficient of the resonance frequency and the variation of the temperature coefficient in the substrate were examined.
The results are shown in Table 2.
Figure 2011071838

表2に示すように、実施例7〜9に比べて、実施例6では、周波数温度係数も特に小さく、温度特性改善効果がより高いものであることがわかった。
即ち、ガラス転移点Tgが200℃以下の接着剤の室温における弾性率が1.5GPa以上であり、かつ85℃における弾性率が1GPa以上であれば、温度特性がより改善されるということが確認できた。
As shown in Table 2, it was found that in Example 6, the frequency temperature coefficient was particularly small as compared with Examples 7 to 9, and the temperature characteristic improving effect was higher.
That is, it is confirmed that the temperature characteristics are further improved when the elastic modulus at room temperature of the adhesive having a glass transition point Tg of 200 ° C. or lower is 1.5 GPa or more and the elastic modulus at 85 ° C. is 1 GPa or more. did it.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

1…弾性表面波素子、 2…圧電基板、 3…支持基板、 4…接着層(接着剤)、 5…櫛形電極、 6…複合圧電基板。 DESCRIPTION OF SYMBOLS 1 ... Surface acoustic wave element, 2 ... Piezoelectric substrate, 3 ... Support substrate, 4 ... Adhesive layer (adhesive), 5 ... Comb-shaped electrode, 6 ... Composite piezoelectric substrate.

Claims (3)

少なくとも、圧電基板と、該圧電基板に接着層を介して貼り合わされた支持基板と、前記圧電基板の接着面と反対側の面に形成された弾性表面波を励振する櫛形電極とを備え、前記接着層のガラス転移点Tgが200℃以下であることを特徴とする弾性表面波素子。   At least a piezoelectric substrate, a support substrate bonded to the piezoelectric substrate via an adhesive layer, and a comb-shaped electrode for exciting a surface acoustic wave formed on a surface opposite to the adhesive surface of the piezoelectric substrate, A surface acoustic wave device having a glass transition point Tg of an adhesive layer of 200 ° C. or lower. 前記接着層のガラス転移点Tgが100℃以上200℃以下であることを特徴とする請求項1に記載の弾性表面波素子。   The surface acoustic wave device according to claim 1, wherein a glass transition point Tg of the adhesive layer is 100 ° C. or higher and 200 ° C. or lower. 前記接着層の室温における弾性率が1.5GPa以上であり、かつ85℃における弾性率が1GPa以上であることを特徴とする請求項1又は請求項2に記載の弾性表面波素子。   3. The surface acoustic wave device according to claim 1, wherein the adhesive layer has an elastic modulus at room temperature of 1.5 GPa or more and an elastic modulus at 85 ° C. of 1 GPa or more.
JP2009222307A 2009-09-28 2009-09-28 Surface acoustic wave element Pending JP2011071838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222307A JP2011071838A (en) 2009-09-28 2009-09-28 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222307A JP2011071838A (en) 2009-09-28 2009-09-28 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JP2011071838A true JP2011071838A (en) 2011-04-07

Family

ID=44016656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222307A Pending JP2011071838A (en) 2009-09-28 2009-09-28 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JP2011071838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030994A (en) * 2011-07-28 2013-02-07 Seiko Epson Corp Saw device, saw oscillator and electronic apparatus
JP2013066032A (en) * 2011-09-16 2013-04-11 Shin Etsu Chem Co Ltd Piezoelectric substrate for surface acoustic wave device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026684A (en) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
WO2009019308A2 (en) * 2007-08-08 2009-02-12 Epcos Ag Component having a reduced temperature gradient and method for the production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026684A (en) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
WO2009019308A2 (en) * 2007-08-08 2009-02-12 Epcos Ag Component having a reduced temperature gradient and method for the production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030994A (en) * 2011-07-28 2013-02-07 Seiko Epson Corp Saw device, saw oscillator and electronic apparatus
US9252706B2 (en) 2011-07-28 2016-02-02 Seiko Epson Corporation Saw device, saw oscillator, and electronic apparatus
JP2013066032A (en) * 2011-09-16 2013-04-11 Shin Etsu Chem Co Ltd Piezoelectric substrate for surface acoustic wave device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4657002B2 (en) Composite piezoelectric substrate
WO2017043427A1 (en) Elastic wave device, high-frequency front-end circuit and communication device
JP3929983B2 (en) Bonding substrate, surface acoustic wave element, surface acoustic wave device, and manufacturing method thereof
CN107615653B (en) Elastic wave device
JP6481687B2 (en) Elastic wave device
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP3774782B2 (en) Manufacturing method of surface acoustic wave device
JP2007214902A (en) Surface acoustic wave device
JP2010187373A (en) Composite substrate and elastic wave device using the same
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
KR101636220B1 (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
JP4723207B2 (en) Composite piezoelectric substrate
JP3184763U (en) Composite board
JP2007134889A (en) Composite piezoelectric substrate
JP2005229455A (en) Compound piezoelectric substrate
JP2004336503A (en) Surface acoustic wave element and manufacturing method therefor
JP2011087079A (en) Surface acoustic wave device
WO2014034326A1 (en) Elastic wave apparatus
WO2014188842A1 (en) Method for manufacturing piezoelectric device, piezoelectric device, and piezoelectric free-standing substrate
JP2019165283A (en) Elastic wave device
JP4956569B2 (en) Surface acoustic wave device
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP5458651B2 (en) Surface acoustic wave element substrate and surface acoustic wave element manufacturing method
JP2011071838A (en) Surface acoustic wave element
JP2010200197A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130213