JP2011071066A - 高周波加速空胴の製造方法 - Google Patents

高周波加速空胴の製造方法 Download PDF

Info

Publication number
JP2011071066A
JP2011071066A JP2009223345A JP2009223345A JP2011071066A JP 2011071066 A JP2011071066 A JP 2011071066A JP 2009223345 A JP2009223345 A JP 2009223345A JP 2009223345 A JP2009223345 A JP 2009223345A JP 2011071066 A JP2011071066 A JP 2011071066A
Authority
JP
Japan
Prior art keywords
welding
cavity
frequency
acceleration cavity
frequency acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009223345A
Other languages
English (en)
Inventor
Sumiichi Shibuya
純市 澁谷
Masahiro Takasaki
正浩 高崎
Tomoko Ota
智子 太田
Yujiro Tajima
裕二郎 田島
Ken Yoshiyuki
健 吉行
Yuuji Nobusada
裕二 信定
Koichi Nakayama
光一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Technology Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Technology Corp filed Critical Toshiba Corp
Priority to JP2009223345A priority Critical patent/JP2011071066A/ja
Publication of JP2011071066A publication Critical patent/JP2011071066A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】空胴の内周面を補修又は修整することのできる高周波加速空胴の製造方法を提供することにある。
【解決手段】赤道部28とアイリス部27とが設けられた複数の半セル20を製造し、複数の半セル20から超伝導高周波加速空胴1の空洞本体を組み立てるために電子ビーム溶接し、超伝導高周波加速空胴1の内側の溶接部W2をレーザ溶接して、電子ビーム溶接による裏波ビードを整形する超伝導高周波加速空胴1の製造方法。
【選択図】 図9

Description

本発明は、荷電粒子を高周波により加速する加速器に用いられる高周波加速空胴に関する。
一般に、電子、陽子、又はイオン等の荷電粒子を電磁力で数十億電子ボルト(数GeV)程度の高エネルギ状態に加速するための加速器が知られている。加速器は、元々は原子核や素粒子の研究のために開発されてきた。近年では、放射光(SOR(synchrotron orbital radiation)光と呼ばれる)を利用して、超LSI(large scale integrated circuit)、微細加工(リソグラフィ)、物質研究等、生命科学などの広範な科学技術分野にまで適用範囲を広げている。この放射光は、真空中をほぼ光速で伝搬する電子が偏向磁場によりその軌道が曲げられたときに、その軌道の接線方向に発生する。
このような加速器には、荷電粒子の加速やSOR光として失われたエネルギを補給するため、荷電粒子ビームのビームラインに高周波加速空胴が設けられている。
高周波加速空胴内に供給された高周波が、発振されることより、高電界が発生する。この高電界により、荷電粒子ビームは加速される。
高電界が発生すると高周波加速空胴の内表面に循環電流が流れる。この循環電流は、高周波電流であるため、高周波加速空胴の内面の材質に応じた表皮深さを流れる。これにより、循環電流は、ジュール損失を招く。無酸素銅やアルミニウムなどで作られた常伝導高周波加速空胴の場合、このジュール損失が極めて大きくなる。このため、常伝導高周波加速空胴を用いて、荷電粒子ビームの加速に必要な高電界を得るには、ジュール損失を補うために、大きな高周波電力を供給できる大出力の高周波発振器が必要である。しかしながら、このような高周波電力を賄えるだけの高周波発振器は現有していない。さらに、高周波加速空胴を冷却する上でも多くの問題があり、常伝導高周波加速空胴の適用には限界がある。
このため、高周波加速空胴の内面に電流が流れてもジュール損失が生じないように、電気抵抗がほぼゼロオームである超伝導材で高周波加速空胴(以下、「超伝導高周波加速空胴」という。)を製造することが知られている。
超伝導高周波加速空胴の使用分野は、多方面に亘っている。近年では、荷電粒子ビーム加速器に関しては、世界各地で大型電子蓄積リング用として超伝導高周波加速空胴の計画建設が進められている。このため、限られた電力及び限られた空間の範囲で、できるだけ高いエネルギを持った電子を得るための超伝導高周波加速空胴が実現しつつある。
一方、超伝導高周波加速空胴を溶接組立てする場合には、真空中で溶接を行う電子ビーム溶接が多く利用されている(例えば、特許文献1参照)。ここで、超伝導高周波加速空胴の溶接組立てにおける裏波ビードについて説明する。
超伝導高周波加速空胴は、複数のシングルセルを直列に接続された形状をしている。シングルセルは、2つの半セルで形成されている。半セルは、大径開口部(以下、「赤道部」という。)と小径開口部(以下、「アイリス部」という。)とが設けられた椀状の形状をしている。アイリス部の円周部分は、外側が突起状に突き出ている。シングルセルは、2つの半セルの赤道部同士を溶接したものである。超伝導高周波加速空胴は、複数のシングルセルのアイリス部同士をそれぞれ溶接したものである。
シングルセルを成形するには、2つの半セルの赤道部同士を溶接する。溶接するときは、溶接する状態で赤道部同士を合わせた2つの半セルを傾け、外側からアイリス部の開口部を通して、内側から溶接部に電子ビームを照射する。これにより、裏波ビードは、シングルセルの赤道部の外周面に生成される。これに対して、2つのシングルセルのアイリス部同士を溶接する場合は、外周面側からでなければ、溶接部に電子ビームを照射できない。よって、この場合は、裏波ビードは、アイリス部の内周面に生成される。
一方、2つの半セルのアイリス部同士を溶接した形状(以下、「ダンベル」という。)を先に成形する場合について説明する。2つの半セルのアイリス部同士を溶接するときは、内側から溶接部に電子ビームを照射する。これにより、裏波ビードは、ダンベルのアイリス部の外周面に生成される。これに対して、2つのダンベルの赤道部同士を溶接する場合は、外周面側からでなければ、溶接部に電子ビームを照射できない。よって、この場合は、裏波ビードは、赤道部の内周面に生成される。
なお、このような高周波加速空胴の溶接組立て方法としては、空胴の内面から接合面にYAGレーザ(yttrium-aluminum-garnet laser)ビームを照射して、溶接することが論理上考えられる(例えば、特許文献2参照)。しかし、現実問題として、光ファイバーから得られるYAGレーザビームだけでは、溶接は困難である。さらに、高融点金属材料であるニオブ材同士の突合せ溶接などにおいて、電子ビーム溶接のような健全な溶接部を得ることは困難である。特に、貫通溶接において平坦な表ビード又は裏波ビードを得るには、その施工条件及び条件の安定性についても不安要素や課題が多い。よって、現在において、レーザ溶接による貫通溶接は、現在の技術水準では困難である。
特開2009−135049号公報 特開平4−322100号公報
しかしながら、上述したように、電子ビーム溶接により高周波加速空胴を製造する場合、高周波加速空胴の内周面には、裏波ビードが生成される。
高周波加速空胴の内周面に生成された裏波ビードは、加速電界に影響を与える。理想的には、平坦でかつ突起がない裏波ビードが要求される。しかし、このような裏波ビードを生成するための施工条件を適正化することは困難である。また、このような施工条件は、再現性や安定性に欠ける。
また、高周波加速空胴の内周面に生成された裏波ビードに突起などの異常があった場合、空胴の内面側の処置が必要となる。しかし、空胴の内部に工具などを挿入して、研磨加工などの手直しをすることは困難である。
そこで、本発明の目的は、空胴の内周面を補修又は修整することのできる高周波加速空胴の製造方法を提供することにある。
本発明の観点に従った高周波加速空胴の製造方法は、大径開口部と小径開口部とが設けられた複数の半セルから高周波加速空胴の空洞本体を組み立てるために、第1の方式で溶接するステップと、前記高周波加速空胴の内側に形成された前記第1の方式による溶接の溶接ビードを整形するために、前記高周波加速空胴の内側を前記第1の方式と異なる第2の方式で溶接するステップとを含む。
本発明によれば、空胴の内周面を補修又は修整することのできる高周波加速空胴の製造方法を提供することができる。
本発明の第1の実施形態に係る超伝導高周波加速空胴の製造方法における半セルを成形するまでの第1段階の工程を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における半セルを成形するまでの第2段階の工程を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における半セルを示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における複数の半セルから超伝導高周波加速空胴が組み立てられるまでの第1段階の工程を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における複数の半セルから超伝導高周波加速空胴が組み立てられるまでの段階におけるダンベルを示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における複数の半セルから超伝導高周波加速空胴が組み立てられるまでの第2段階の工程を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における複数の半セルから超伝導高周波加速空胴が組み立てられるまでの段階における空洞を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における超伝導高周波加速空胴を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における超伝導高周波加速空胴の内周面にある溶接ビードを修整する工程を示す概略図。 本発明の第2の実施形態に係る超伝導高周波加速空胴の製造方法における超伝導高周波加速空胴の内周面にある溶接ビードを修整する工程を示す概略図。 本発明の第3の実施形態に係る超伝導高周波加速空胴の製造方法における複数のシングルセルが成形された工程を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における複数のシングルセルから超伝導高周波加速空胴が組み立てられるまでの段階における空洞を示す概略図。 本実施形態に係る超伝導高周波加速空胴の製造方法における超伝導高周波加速空胴の内周面にある溶接ビードを修整する工程を示す概略図。 本発明の第4の実施形態に係る超伝導高周波加速空胴の製造方法における超伝導高周波加速空胴の内周面にある溶接ビードを修整する工程を示す概略図。
以下図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
図8に示す超伝導高周波加速空胴1が電子ビーム溶接により組み立てられるまでの工程について説明する。超伝導高周波加速空胴1は、シングルセルが9つ連接された9セル空胴である。超伝導高周波加速空胴1は、各セルの赤道部及びアイリス部を貫くように、荷電粒子ビームが流れる。
まず、超伝導高周波加速空胴1の構成部品である半セル20を成形(製造)する方法について説明する。
図1から図3は、本発明の第1の実施形態に係る超伝導高周波加速空胴1の製造方法における半セル20を成形するまでの各段階における工程を示す概略図である。なお、各図における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複する説明を省略する。
図1を参照して、ニオブ板20aをプレス加工して、半セル20の原型となる成形品20bが成形される工程について説明する。
ニオブ板20aは、板厚2mmから3mmの平板状の超伝導材料であるニオブ材である。
上型51及び下型52は、ニオブ板20aをプレス加工するための型である。上型51は、頂点が下方に突き出た碗状の形状をしている。下型52は、上型51と嵌合する形状の窪みが上方に設けられている。
作業者は、ニオブ板20aを下型52の窪みを覆うように配置する。次に、作業者は、上型51を下型52の窪みに嵌合させるように、ニオブ板20aに対して、下方向F1に圧力を加える。これにより、プレス加工された成形品20bが成形される。成形品20bは、突起を持つ碗状になる。
図2を参照して、研削装置として旋盤を用いて、成形品20bを切削加工及びトリミング加工し、半セル20が成形される工程について説明する。
作業者は、成形品20bの大径開口部を旋盤の刃物53によりトリミング加工して、半セル20の赤道部28を形成する。作業者は、成形品20bの突起部分の先端を旋盤の刃物54によりトリミング加工して、半セル20のアイリス部27を形成する。
これらのトリミング量を決定するに当たっては、作業者は、その後の工程の溶接の際の溶接縮みを正確に予測し、見積もる。超伝導高周波加速空胴1は、空胴中に発生する電場分布を平坦化するため、加速器のビームポートに連接される両端のセルのアイリス部及び赤道部の直線部を短くする必要がある。このための調整が、このトリミング量の調整により行われる。
これらの工程を経て、図3に示す半セル20が成形される。これらの工程を繰り返して、複数の半セル20が生産される。半セル20の赤道部の直径は210mmである。半セル20のアイリス部の直径は70mmである。
図4から図8は、電子ビーム溶接により、複数の半セル20から超伝導高周波加速空胴1が組み立てられるまでの各段階の工程を示す概略図である。
図4を参照して、2つの半セル20から図5に示すダンベル21が成形される工程について説明する。
作業者は、2つの半セル20をアイリス部27同士で付き合わせる。作業者は、溶接治具である拘束治具31を用いて、この状態で2つの半セル20を拘束する。作業者は、拘束治具31で拘束された2つの半セル20を電子ビーム溶接装置のチャンバー32に入れる。
作業者は、拘束された2つの半セル20をチャンバー32に入れた後、2つの半セル20の接合部、拘束治具31、回転治具などを確認する。作業者は、これらの確認後、チャンバー32の内部の空気を排気する。作業者は、チャンバー32内を排気して、チャンバー32内を溶接に必要な所定の真空度にする。所定の真空度は、1.33×10−2Pa以下とする。
所定の真空度に到達後、作業者は、2つの半セル20のアイリス部27同士を電子ビーム溶接する。電子ビーム溶接は、チャンバー32の外に設けた電子銃33により発生させた電子ビームを溶接する部分(アイリス部27同士の接合部分)に照射することにより行われる。作業者は、アイリス部27同士の接合部分を内周面側から溶接をする。作業者は、拘束された2つの半セル20をアイリス部27の中心を回転軸とした回転方向R1で回転させながら、アイリス部27同士の接合部分の内周面の1周分あるいは1周分以上を溶接する。
これらの工程を経て、図5に示すダンベル21が成形される。ダンベル21は、半セル20のアイリス部27同士の接合部分が内周面から溶接された溶接部W1となる。これらの工程を繰り返して、多数のダンベル21が製造される。
図6を参照して、電子ビーム溶接により、2つのダンベル21が結合される工程について説明する。なお、本工程における電子ビーム溶接は、図4に示すダンベル21が成形される工程における電子ビーム溶接と同様に行われる。よって、ここでは、ダンベル21が成形される工程の場合と異なる部分について主に説明する。
作業者は、2つのダンベル21を赤道部28同士で突き合わせる。作業者は、拘束治具31を用いて、この状態で2つのダンベル21を拘束する。作業者は、拘束された2つのダンベル21を電子ビーム溶接装置のチャンバー32に入れる。
作業者は、拘束された2つのダンベル21をチャンバー32に入れた後、2つのダンベル21の接合部、拘束治具31、回転治具などを確認する。作業者は、これらの確認後、チャンバー32の内部の空気を排気する。作業者は、チャンバー32内を排気して、チャンバー32内を溶接に必要な所定の真空度にする。
所定の真空度に到達後、作業者は、2つのダンベル21の赤道部28同士を電子銃33により、電子ビーム溶接する。作業者は、赤道部28同士の接合部分を外周面側から溶接する。作業者は、拘束された2つのダンベル21をアイリス部27及び赤道部28の中心を回転軸とした回転方向R2で回転させながら、赤道部28同士の接合部分の外周面の1周分あるいは1周分以上を溶接する。
このような工程を繰り返して、複数のダンベル21を順次に電子ビーム溶接することで、図7に示す空胴29が成形される。これらの工程を、作業者は、空胴29が9セル空胴になるまで繰り返す。よって、空胴29の赤道部28の接合部分は、外周面側から溶接された溶接部W2となる。
その後、作業者は、空胴29から成形された9セル空胴の両端部に、それぞれビームポート25を電子ビーム溶接する。さらに、作業者は、この9セル空胴に、ビームパイプやフランジなどの超伝導高周波加速空胴1に必要な構成機器を電子ビーム溶接する。このようにして、図8に示す超伝導高周波加速空胴1の全体が成形される。
図9は、本実施形態に係る超伝導高周波加速空胴1の内周面にある溶接ビードを修整する工程を示す概略図である。
ガラス管2は、例えば石英ガラスで作られた長尺なガラス管である。ガラス管2の径は、例えば65mmである。このガラス管2の径は、アイリス部27の径である70mmよりも小さくなるように決められた値である。ガラス管2は、レーザビームLBの透過に影響しない透明なガラスである。本工程では、作業者は、被溶接部である溶接部W2にレーザビームLBを照射し、再溶融させる。ガラス管2は、この再溶融の際に、超伝導高周波加速空胴1の材質であるニオブ材の金属蒸気が、レーザビームLBを反射させるミラー5又はレーザビームLBを発射するレンズ6に付着することを防止する。
ミラー5又はレンズ6に金属蒸気が付着すると、再溶融に必要な所定のビームエネルギーが維持できない可能性がある。従って、ミラー5又はレンズ6の金属蒸気の付着は、レーザビームLBの連続照射により、レーザビームLBの能力を減衰させる大きな要因になる。このため、ガラス管2は、このようなレーザビームLBの能力が減衰することを防止するために設けられている。
レーザヘッド4は、溶接部W2にレーザビームLBを照射させるための機構を備えている。また、レーザヘッド4は、荷電粒子ビーム軸を回転軸として回転する回転機構を備えている。レーザヘッド4は、この回転機構による回転により、円周上に溶接された溶接部W2の全てに、レーザビームLBを照射できるように、レーザビームLBの方向を変えられる。
レーザヘッド4には、ミラー5及びレンズ6が設けられている。レーザヘッド4は、光ファイバケーブル3により、レーザビームLBの発信源である発信器と接続されている。
ミラー5は、光ファイバケーブル3を通って入射されたレーザビームLBを、溶接部W2に照射させる方向に角度を変えるために設けられている。
レンズ6は、レーザビームLBを溶接部W2に焦点を合わせるために設けられている。
溶接ビードの修整は、レーザ溶接により行う。
レーザ溶接の条件の一例としては、次の通りである。レーザビームLBは、ビームパワーが電子ビームと同等のエネルギ密度とする。超伝導高周波加速空胴1の内部は、図示しないが真空排気装置を用いて1.33×10-2Pa以下の真空に排気後、高純度の不活性ガスを封入して高純度アルゴンガス雰囲気とする。レーザはYAGレーザでもよいが高出力が得られるファイバーレーザを用いる。レーザの平均出力は、3〜6kWとする。デフォーカスは、+50〜+100mmとする。溶接速度は、0.1〜0.3m/分とする。
また、レーザヘッド(加工ヘッドとも言う)は、溶接部からの反射を考慮して(ビームの干渉など)レーザビームの入射角度を溶接部W2に垂直の直下を0度とすると、ここから所定の角度(例えば、5度から35度)設けることもある。特に溶接ビード幅を大きくするためにデフォーカスを大きくしているので、照射面からの反射も大きくなるし、また、ニオブ材の反射率の問題もあり、入射角度を設けるなどの対応・対策を講じる必要がある。
溶接ビードの修整の対象となる溶接部は、赤道部28の溶接部W2である。溶接部W2は、超伝導高周波加速空胴1の外周面から内周面に向けて溶接されているため、内周面に裏波ビードが形成されているからである。
次に、レーザ溶接による溶接ビードの修整方法について説明する。
溶接ビードを修整するための準備段階として、作業者は、ガラス管2を超伝導高周波加速空胴1に、荷電粒子ビームが流れる方向の軸(以下、「荷電粒子ビーム軸」という。)に沿って挿入する。
作業者は、超伝導高周波加速空胴1にガラス管2を挿入後、レーザ溶接するためのレーザヘッド4をガラス管2内に挿入する。作業者は、レーザビームLBが溶接部W2を照射可能な範囲に入るまで、レーザヘッド4を挿入する。その後、図示しないがフランジなど組立した後に、前記したように真空排気および高純度のアルゴンガスを封入する。
作業者は、レーザヘッド4を挿入後、回転機構又はミラー5を調整して、溶接部W2にレーザビームLBの焦点が合うように設定する。作業者は、設定後、レーザビームLBを溶接部W2に照射する。
超伝導高周波加速空胴1は、溶接部W2の内周面に裏波ビード(溶接ビード)が形成されている。裏波ビードは、突起のあるビード外観をしている。溶接ビードの溶け込み形状も不安定な外観である。作業者は、溶接ビードを、レーザ溶接により、ビードの表面のみを再溶融させて、補修又は修整する。作業者は、溶接ビードの外観を突起のないフラットな形状及び性状に仕上げる。本実施例で得られた溶接ビード幅は4〜6mmの範囲である。
レーザ溶接は、超伝導高周波加速空胴1を固定して、レーザヘッド4を回転させながら行う。レーザヘッド4の回転中、ガラス管2は、回転させない。即ち、ガラス管2が超伝導高周波加速空胴1に対して固定したまま、レーザヘッド4が回転する。これにより、ガラス管2の金属蒸気で汚れていない部分からレーザビームLBを溶接部W2に向けて発射することができる。または、超伝導高周波空胴1およびガラス管2を回転させることで、レーザヘッド4を固定することで、例えば下向き姿勢あるいは内面の周溶接した溶接ビードが安定するような適した姿勢を選択することも出来る。
以上のような方法で、作業者は1つの赤道部28(溶接部W2)に対して、内周面の1周分の溶接ビードを修整する。作業者は、これを繰り返し、超伝導高周波加速空胴1にある全ての赤道部28の溶接ビードを修整する。これにより、超伝導高周波加速空胴1の製造工程が全て完了する。
1つの超伝導高周波加速空胴1の全ての溶接ビードの修整作業を終えた時点で、作業者は、ガラス管2を超伝導高周波加速空胴1の空胴内部から取り出す。
金属蒸気で汚れたガラス管2は、酸などでその汚れを除去及び洗浄して、次の超伝導高周波加速空胴1のレーザビームによる溶接ビードの修整に再利用する。
本実施形態によれば、電子ビーム溶接を用いて空胴本体部分を製造した超伝導高周波加速空胴1を、レーザ溶接を用いて電子ビーム溶接部分の内周面の不健全な部分を補修又は修整することができる。
従って、外周面側から電子ビーム溶接を行った赤道部28の溶接部W2の内周面側の溶接部W2が凹凸のないフラットな溶接ビードの超伝導高周波加速空胴1を製造することができる。よって、この製造方法によれば、加速電界の低下が抑制された高性能な超伝導高周波加速空胴1を製造することができる。
(第2の実施形態)
図10は、本発明の第2の実施形態に係る超伝導高周波加速空胴1の内周面にある溶接ビードを修整する工程を示す概略図である。
本実施形態に係る製造方法は、第1の実施形態に係る製造方法において、図9に示す溶接ビードを修整する工程において、レーザ溶接の代わりに、図10に示すTIG(Tungsten Inert Gas)溶接を用いている。その他の点は、第1の実施形態に係る製造方法と同様である。なお、図示しないが超伝導高周波空胴1は1.33×10-2Pa以下の真空に排気後、高純度の不活性ガス雰囲気が封入できる溶接チャンバーあるいは超伝導高周波空胴1内を溶接チャンバーに見立てて、TIG溶接時に空胴材料であるニオブおよび溶接部が酸化や不純物を巻き込まないような施工法・環境において溶接するように配慮が必要である。
TIGアークトーチ8は、TIGアークARの周りからシールドガスGSを出力する。シールドガスGSは、電離度の高いヘリウムガスあるいはアルゴンガスあるいはアルゴンとヘリウムとの混合ガスである。シールドガスGSは、TIGアークを絞る役割を持つ。これにより、TIGアークは、約2500度の融点のニオブ材のような高融点材料でも溶融できる。
TIGケーブル7は、TIGアークトーチ8に接続されている。TIGケーブル7は、電源及びシールドガスGSをTIGアークトーチ8に供給する。
作業者は、TIG溶接するためのTIGアークトーチ8を超伝導高周波加速空胴1内に挿入する。作業者は、TIGアークARが溶接部W2を溶融可能な箇所まで、TIGアークトーチ8を挿入する。
作業者は、溶接部W2の内周面に形成されている溶接ビードを、TIGアーク溶接により、ビードの表面のみを再溶融させて、補修又は修整する。作業者は、溶接ビードの外観を突起のないフラットな形状及び性状に仕上げる。
TIGアーク溶接は、超伝導高周波加速空胴1を回転させながらあるいはTIGアークの電極を回転させながら行う。作業者は、超伝導高周波加速空胴1にある全ての赤道部28の溶接ビードを修整する。これにより、超伝導高周波加速空胴1の製造工程が全て完了する。
本実施形態によれば、レーザ溶接の代わりに、TIGアーク溶接を用いても、第1の実施形態と同様の作用効果を得ることができる。
また、TIGアーク溶接に用いる機器類は、レーザ溶接に用いる電源又は発信器よりも、安価であり、取り扱い易く、メンテナンスが容易であり、汎用性が高い。よって、TIGアーク溶接を採用することで、第1の実施形態による製造方法よりも、これらの利点を活かすことができる。
(第3の実施形態)
図11は、本発明の第2の実施形態に係る超伝導高周波加速空胴1Aの製造方法における複数のシングルセル22が成形された工程を示す概略図である。
本実施形態に係る製造方法は、第1の実施形態に係る製造方法において、図5に示すダンベル21を成形する代わりに、図11に示すシングルセル22を成形する製造方法である。その他の点は、第1の実施形態に係る製造方法と同様である。
シングルセル22を成形する方法は、図4に示す第1の実施形態に係るダンベル21を成形する方法と同様である。よって、ここでは、異なる部分について主に説明する。
作業者は、2つの半セル20を赤道部28同士で付き合わせる。作業者は、2つの半セル20の赤道部28同士を電子ビーム溶接する。作業者は、赤道部28同士の接合部分を内周面側から溶接をする。作業者は、赤道部28同士の接合部分の内周面の1周分あるいは1周分以上を溶接する。
シングルセル22は、半セル20の赤道部28同士の接合部分が内周面から溶接された溶接部W3となる。これらの工程を繰り返して、これらの工程を繰り返して、多数のシングルセル22が製造される。
図12を参照して、複数のシングルセル22から空胴29Aが成形される工程について説明する。
作業者は、2つのシングルセル22をアイリス部27同士で付き合わせる。作業者は、2つのシングルセル22のアイリス部27同士を電子ビーム溶接する。作業者は、アイリス部27同士の接合部分を外周面側から溶接する。作業者は、アイリス部27同士の接合部分の外周面の1周分を溶接する。
このような工程を繰り返して、複数のシングルセル22を順次に電子ビーム溶接することで、図12に示す空胴29Aが成形される。これらの工程を、作業者は、空胴29Aが9セル空胴になるまで繰り返す。よって、空胴29Aの接合部分は、外周面側から溶接された溶接部W4となる。
その後、作業者は、空胴29Aから成形された9セル空胴の両端部に、それぞれビームポート25を電子ビーム溶接する。さらに、作業者は、この9セル空胴に、ビームパイプやフランジなどの超伝導高周波加速空胴1Aに必要な構成機器を電子ビーム溶接する。このようにして、超伝導高周波加速空胴1Aの全体が成形される。
図13は、本実施形態に係る超伝導高周波加速空胴1Aの内周面にある溶接ビードを修整する工程を示す概略図である。なお、本工程におけるレーザ溶接による溶接ビードの修整は、第1の実施形態と同様である。よって、ここでは、異なる部分について主に説明する。
レーザヘッド4Aは、第1の実施形態に係るレーザヘッド4を、赤道部28の溶接部照射用からアイリス部27の溶接部照射用に変更したものである。超伝導高周波加速空胴1Aの中心からの距離が赤道部28よりもアイリス部27の方が近い。このため、レーザヘッド4Aは、第1の実施形態に係るレーザヘッド4のミラー5及びレンズ6を、アイリス部27の溶接部W4にレーザビームLBの焦点が合うように、ミラー5A及びレンズ6Aに代えている。その他の点は、第1の実施形態に係るレーザヘッド4と同様である。
次に、レーザ溶接による溶接ビードの修整について説明する。
溶接ビードの修整の対象となる溶接部は、アイリス部27の溶接部W4である。溶接部W4は、超伝導高周波加速空胴1Aの外周面から内周面に向けて溶接されているため、内周面に裏波ビードが形成されているからである。
溶接ビードを修整するための準備段階として、作業者は、ガラス管2を超伝導高周波加速空胴1Aに、荷電粒子ビーム軸に沿って挿入する。
作業者は、超伝導高周波加速空胴1Aにガラス管2を挿入後、レーザ溶接するためのレーザヘッド4Aをガラス管2内に挿入する。作業者は、レーザビームLBが溶接部W4を照射可能な範囲に入るまで、レーザヘッド4Aを挿入する。
超伝導高周波加速空胴1Aは、溶接部W4の内周面に溶接ビード(裏波ビード)が形成されている。作業者は、レーザ溶接により、溶接ビードの外観を突起のないフラットな形状及び性状に仕上げる。
作業者は、レーザヘッド4Aを回転させることで、1つのアイリス部27(溶接部W4)に対して、内周面の1周分あるいは1周分以上の溶接ビードを修整する。作業者は、これを繰り返し、超伝導高周波加速空胴1Aにある全てのアイリス部27の溶接ビードを修整する。これにより、超伝導高周波加速空胴1Aの製造工程が全て完了する。
本実施形態によれば、多数のシングルセル22を先に成形し、超伝導高周波加速空胴1Aを製造しても、第1の実施形態と同様の作用効果を得ることができる。
(第4の実施形態)
図14は、本発明の第4の実施形態に係る超伝導高周波加速空胴1Aの内周面にある溶接ビードを修整する工程を示す概略図である。
本実施形態に係る製造方法は、第3の実施形態に係る製造方法において、図13に示す溶接ビードを修整する工程において、レーザ溶接の代わりに、図14に示すTIG溶接を用いている。その他の点は、第3の実施形態に係る製造方法と同様である。また、本工程におけるTIG溶接による溶接ビードの修整は、第2の実施形態と同様である。よって、ここでは、従前の実施形態で説明した内容と異なる部分について主に説明する。
作業者は、TIG溶接するためのTIGアークトーチ8を超伝導高周波加速空胴1A内に挿入する。作業者は、TIGアークARが溶接部W4を溶融可能な箇所まで、TIGアークトーチ8を挿入する。
作業者は、溶接部W4の内周面に形成されている溶接ビードを、TIGアーク溶接により、ビードの表面のみを再溶融させて、補修又は修整する。作業者は、溶接ビードの外観を突起のないフラットな形状及び性状に仕上げる。
TIGアーク溶接は、超伝導高周波加速空胴1Aを回転させながら行う。作業者は、超伝導高周波加速空胴1Aにある全てのアイリス部27の溶接ビードを修整する。これにより、超伝導高周波加速空胴1Aの製造工程が全て完了する。
本実施形態によれば、レーザ溶接の代わりに、TIGアーク溶接を用いても、第3の実施形態と同様の作用効果を得ることができる。
また、TIGアーク溶接に用いる機器類は、レーザ溶接に用いる電源又は発信器よりも、安価であり、取り扱い易く、メンテナンスが容易であり、汎用性が高い。よって、TIGアーク溶接を採用することで、第3の実施形態による製造方法よりも、これらの利点を活かすことができる。
なお、各実施形態において、超伝導高周波加速空胴1,1Aは、9セル空胴としたが、セルの数はいくつでもよい。シングルセル、又は3セルや5セルなどのマルチセル(多連加速空胴)でも、同様の工程を経ることで、同様に製造することができる。
各実施形態では、溶接ビードを溶融及び修整するための溶接方式として、レーザ溶接又はTIGアーク溶接について説明したが、これに限らない。超伝導高周波加速空胴1,1Aの内部に器具類(レーザヘッドやトーチなど)を挿入でき、接合部を再溶融できる溶接方式あれば、採用することができる。例えば、TIGアーク溶接は、プラズマアーク溶接に置き換えて実施することができる。
各実施形態では、内周面側に溶接ビードができる溶接部が赤道部28又はアイリス部27のいずれか一方となる製造方法について説明したが、内周面側に溶接ビードができる溶接部が赤道部28とアイリス部27に混在する製造方法でもよい。
各実施形態では、超伝導高周波加速空胴1,1Aを外周面側からの溶接と内周面側からの溶接とを別々に行う製造方法について説明したが、外周面側と内周面側の両側から同時に溶接してもよい。
各実施形態では、超伝導高周波加速空胴1,1Aの内周面の修整を1箇所ずつ行う方法について説明したが、複数個所を同時にしてもよい。レーザビーム、プラズマアーク、又はティグアークなどの熱源を有する光学ヘッド(レーザヘッド4,4Aなど)又は電極ヘッド(トーチ8など)を複数台設けることで、複数個所の溶接ビードを同時に修整することができる。溶接ビードを同時に過熱し、修整することで、過熱時の溶接変形を小さくすることができる。このため、寸法精度に優れた超伝導高周波加速空胴1,1Aを製造することができる。従って、このように製造された超伝導高周波加速空胴1,1Aは、加速電界をさらに高くできる。
各実施形態において、複数のラインで、複数の超伝導高周波加速空胴1,1Aを同時に製造することもできる。この際、複数のラインで、溶接のための電源や発信器を共用させてもよい。これらの機器をフル稼働させるような最適な台数及び構成にすることで、超伝導高周波加速空胴1,1Aの生産性を向上させることができる。
第1の実施形態又は第3の実施形態では、超伝導高周波加速空胴1,1Aの内周面の溶接ビードを修整する方法として、超伝導高周波加速空胴1,1Aを固定して、レーザヘッド4,4Aを回転させる場合について説明したが、レーザヘッド4,4Aを固定して、超伝導高周波加速空胴1,1Aを回転させてもよい。この場合、ガラス管2も超伝導高周波加速空胴1,1Aと同時に回転させることにより、常に金属蒸気で汚れていない部分を使うことができる。
第1の実施形態又は第3の実施形態において、超伝導高周波加速空胴1,1Aの内周面の溶接ビードを修整する方法として、ガラス管2の金属蒸気で汚れていない部分からレーザビームLBを照射するために、ガラス管2を回転させずに、レーザヘッド4,4Aを回転させることについて説明したが、これに限らない。例えば、金属蒸気で汚れていない部分を避けるようにガラス管2を回転させてもよいし、ガラス管2を荷電粒子ビーム軸方向にずらしてもよい。これらの手順でも、各実施形態と同様に、金属蒸気で汚れていない部分からレーザビームLBを照射することができる。
第1の実施形態又は第3の実施形態では、溶接部に焦点を合わせるためのレンズ6,6Aをレーザヘッド4,4Aに取り付ける構成としたが、ガラス管2に取り付ける構成としてもよい。
第2の実施形態又は第4の実施形態では、TIGアークトーチ8を1トーチとしたがこれに限らない。アイリス部27と赤道部28では、超伝導高周波加速空胴1,1Aの空胴中心部からの距離が異なる。このため、TIGアークトーチ8を、アイリス部27用と赤道部28用のトーチの長さが異なる2トーチの構成としてもよい。また、長さが伸縮可能な1トーチの構成としてもよい。同様に、第1の実施形態又は第3の実施形態においても、複数の光学ヘッドを備えたマルチヘッドの構成としてもよい。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1…超伝導高周波加速空胴、2…ガラス管、3…光ファイバケーブル、4…レーザヘッド、5…ミラー、6…レンズ、7…TIGケーブル、8…TIGトーチ、20…半セル、21…ダンベル、22…シングルセル、27…アイリス部、28…赤道部、AR…アーク、LB…レーザビーム、GS…シールドガス、W1,W2…溶接部。

Claims (13)

  1. 大径開口部と小径開口部とが設けられた複数の半セルから高周波加速空胴の空洞本体を組み立てるために、第1の方式で溶接するステップと、
    前記高周波加速空胴の内側に形成された前記第1の方式による溶接の溶接ビードを整形するために、前記高周波加速空胴の内側を前記第1の方式と異なる第2の方式で溶接するステップと
    を含むことを特徴とする高周波加速空胴の製造方法。
  2. 前記第1の方式の溶接は、電子ビーム溶接であること
    を特徴とする請求項1に記載の高周波加速空胴の製造方法。
  3. 前記第2の方式の溶接は、アーク溶接であること
    を特徴とする請求項1又は請求項2に記載の高周波加速空胴の製造方法。
  4. 前記第2の方式の溶接は、レーザ溶接であること
    を特徴とする請求項1又は請求項2に記載の高周波加速空胴の製造方法。
  5. 前記レーザ溶接は、前記レーザ溶接に用いる光学ヘッドを回転させながら行うこと
    を特徴とする請求項4に記載の高周波加速空胴の製造方法。
  6. 前記第2の方式の溶接は、前記高周波加速空胴を回転させながら行うこと
    を特徴とする請求項1から請求項4のいずれか1項に記載の高周波加速空胴の製造方法。
  7. 前記高周波加速空胴の空洞本体を組み立てるために、第1の方式で溶接するステップと、前記第2の方式で溶接するステップとを同時に行うこと
    を特徴とする請求項1から請求項6のいずれか1項に記載の高周波加速空胴の製造方法。
  8. 大径開口部と小径開口部とが設けられた複数の半セルから高周波加速空胴の空洞本体を組み立てるために、レーザ溶接と異なる第1の方式で溶接するステップと、
    前記第1の方式による溶接後、レーザ溶接に用いるレンズを保護するためのガラス管を前記高周波加速空胴に挿入するステップと、
    前記ガラス管を前記高周波加速空胴に挿入後、前記高周波加速空胴の内側に形成された前記第1の方式による溶接の溶接ビードを整形するために、前記高周波加速空胴の内側を前記第1の方式と異なる第2の方式の溶接であるレーザ溶接をするステップと
    を含むことを特徴とする高周波加速空胴の製造方法。
  9. 前記レーザ溶接は、前記高周波加速空胴を回転させながら行うこと
    を特徴とする請求項8に記載の高周波加速空胴の製造方法。
  10. 前記レーザ溶接は、前記高周波加速空胴を回転させると共に、前記ガラス管を回転させながら若しくは前記高周波加速空胴の荷電粒子ビーム軸方向にずらしながら行うこと
    を特徴とする請求項8に記載の高周波加速空胴の製造方法。
  11. 前記レーザ溶接は、前記レーザ溶接に用いる光学ヘッドを回転させながら行うこと
    を特徴とする請求項8に記載の高周波加速空胴の製造方法。
  12. 前記レーザ溶接は、前記ガラス管を回転させずに、前記レーザ溶接に用いる光学ヘッドを回転させながら行うこと
    を特徴とする請求項8に記載の高周波加速空胴の製造方法。
  13. 前記レーザ溶接は、整形する前記溶接ビードに垂直の直下を0度として、所定の角度を設けてレーザビームを照射すること
    を特徴とする請求項8に記載の高周波加速空胴の製造方法。
JP2009223345A 2009-09-28 2009-09-28 高周波加速空胴の製造方法 Pending JP2011071066A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223345A JP2011071066A (ja) 2009-09-28 2009-09-28 高周波加速空胴の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223345A JP2011071066A (ja) 2009-09-28 2009-09-28 高周波加速空胴の製造方法

Publications (1)

Publication Number Publication Date
JP2011071066A true JP2011071066A (ja) 2011-04-07

Family

ID=44016141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223345A Pending JP2011071066A (ja) 2009-09-28 2009-09-28 高周波加速空胴の製造方法

Country Status (1)

Country Link
JP (1) JP2011071066A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143830A (zh) * 2013-03-27 2013-06-12 宁夏东方超导科技有限公司 一种真空电子束焊接铌材时获得超高真空的方法
CN108633161A (zh) * 2018-06-26 2018-10-09 中国科学院高能物理研究所 超导加速器、超导腔及其制造方法
CN110505748A (zh) * 2018-05-18 2019-11-26 Ii-Vi特拉华公司 带有激光焊缝的超导共振腔及其形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117583A (en) * 1979-03-05 1980-09-09 Hitachi Ltd High energy density beam welding method
JPS61232079A (ja) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> レ−ザ溶接方法
JPH0199789A (ja) * 1987-10-13 1989-04-18 Kawasaki Steel Corp 溶接管の製造方法
JPH01186296A (ja) * 1988-01-19 1989-07-25 Miyachi Electric Co レーザ出射口保護ガラス板の汚れ検出装置
JPH01231300A (ja) * 1988-03-09 1989-09-14 Kobe Steel Ltd 超電導キャビティの製造方法
JP2000260599A (ja) * 1999-03-09 2000-09-22 Toshiba Corp 超電導キャビティ、その製造方法、及び超電導加速器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117583A (en) * 1979-03-05 1980-09-09 Hitachi Ltd High energy density beam welding method
JPS61232079A (ja) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> レ−ザ溶接方法
JPH0199789A (ja) * 1987-10-13 1989-04-18 Kawasaki Steel Corp 溶接管の製造方法
JPH01186296A (ja) * 1988-01-19 1989-07-25 Miyachi Electric Co レーザ出射口保護ガラス板の汚れ検出装置
JPH01231300A (ja) * 1988-03-09 1989-09-14 Kobe Steel Ltd 超電導キャビティの製造方法
JP2000260599A (ja) * 1999-03-09 2000-09-22 Toshiba Corp 超電導キャビティ、その製造方法、及び超電導加速器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143830A (zh) * 2013-03-27 2013-06-12 宁夏东方超导科技有限公司 一种真空电子束焊接铌材时获得超高真空的方法
CN110505748A (zh) * 2018-05-18 2019-11-26 Ii-Vi特拉华公司 带有激光焊缝的超导共振腔及其形成方法
CN108633161A (zh) * 2018-06-26 2018-10-09 中国科学院高能物理研究所 超导加速器、超导腔及其制造方法

Similar Documents

Publication Publication Date Title
US5239157A (en) Superconducting accelerating tube and a method for manufacturing the same
CN105127755A (zh) 一种工件的成型与强化的复合加工装置及方法
EP2631030B1 (en) Laser cutting method
CN104985327A (zh) 一种双焦点激光与InFocus电弧复合焊接方法
KR102279691B1 (ko) 복수빔을 이용한 레이저 용접 장치 및 방법
CN104227242B (zh) 中心负压等离子弧激光同轴复合焊接装置及方法
US10967574B2 (en) Laser additive manufacturing apparatus and laser additive manufacturing method
WO2012050045A1 (ja) レーザ切断装置及びレーザ切断方法
JP2008502485A (ja) プラズマとレーザーを用いた連続的な突き合せ溶接方法及びこれを用いた金属管製造方法
JP2011071066A (ja) 高周波加速空胴の製造方法
JP5591048B2 (ja) X線管の製造方法、及びx線管
CN104985326A (zh) 一种T型接头双侧激光-InFocus电弧复合焊接方法
CN104475977A (zh) 一种ic装备超大型铝合金腔体的焊接方法
CN110773858A (zh) 一种电子束焊接装置及焊接方法
CN114247962B (zh) 一种多电极分时导通变极性交替电弧焊接和增材的方法
CN114083150B (zh) 一种激光复合切割管体的方法及切割系统
JP2004105981A (ja) 缶型電池の溶接装置
KR20100026828A (ko) 임펠러 제조방법
JP3768394B2 (ja) レ−ザ/プラズマ複合の加工装置
CN109954969B (zh) 激光深熔焊接和激光修饰焊接的柔性切换方法
US20200078863A1 (en) Metal additive manufacturing method
CN114787956A (zh) 采用等离子体阴极的电子束焊接系统
JP4828873B2 (ja) 超伝導コイルの製造方法、製造装置および超伝導コイル
JP3767359B2 (ja) 突合わせ溶接方法及び溶接結合薄鋼板
CN103252580B (zh) 汽车空调机铝空心活塞激光焊接方法及其专用装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212