JP2011059459A - Image projection device and image display device - Google Patents

Image projection device and image display device Download PDF

Info

Publication number
JP2011059459A
JP2011059459A JP2009210025A JP2009210025A JP2011059459A JP 2011059459 A JP2011059459 A JP 2011059459A JP 2009210025 A JP2009210025 A JP 2009210025A JP 2009210025 A JP2009210025 A JP 2009210025A JP 2011059459 A JP2011059459 A JP 2011059459A
Authority
JP
Japan
Prior art keywords
holding member
optical element
image
projection
reflective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009210025A
Other languages
Japanese (ja)
Other versions
JP5531520B2 (en
Inventor
Kunihisa Yamaguchi
邦久 山口
Kazuhiro Fujita
和弘 藤田
Ikuo Maeda
育夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009210025A priority Critical patent/JP5531520B2/en
Publication of JP2011059459A publication Critical patent/JP2011059459A/en
Application granted granted Critical
Publication of JP5531520B2 publication Critical patent/JP5531520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image projection device equipped with a holding structure reduced in deviation of positional relation between a projection image and a reflection surface even when performing the tilt adjustment of a reflection type optical element. <P>SOLUTION: The image projection device has the holding structure for holding and fixing the reflection type optical element 6 so that an angle is adjustable. The reflection type optical element has guide shafts 11 and 12 having an axial center in a first direction orthogonal to a center optical axis of a projection image screen and parallel with one side of the projection image screen on an outer periphery part, the guide shafts rotatably held in groove parts 21 and 22 provided in a first holding member 20. The first holding member 20 has guide shafts 24 and 25 provided in a second direction orthogonal to the first direction and having an axial center orthogonal to the center optical axis of the projection image screen on an outer periphery part, the guide shafts rotatably held in groove parts 31 and 32 provided in a second holding member 30. The axial centers of the guide shafts of the reflection type optical element and the guide shafts of the first holding member are made to come into contact with a point where the reflection surface of the reflection type optical element and the center optical axis of the projection image screen cross each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、静止画や動画などの映像を被投影面に投影する画像投影装置と、その画像投影装置を備えた画像表示装置に関する。   The present invention relates to an image projection apparatus that projects a video such as a still image or a moving image on a projection surface, and an image display apparatus including the image projection apparatus.

光源と画像形成素子を有する画像生成部で生成され、投影レンズ等の投影光学系を通過した投影映像を、反射型光学素子の反射により、スクリーン等の被投影面に拡大して投影する画像投影装置が知られており、リアプロジェクション方式やフロントプロジェクション方式の画像表示装置に応用されている。   Image projection generated by an image generation unit having a light source and an image forming element, and projected and projected on a projection surface such as a screen by reflection of a reflective optical element, by passing through a projection optical system such as a projection lens The device is known, and is applied to a rear projection type or front projection type image display device.

このような画像投影装置において、画像生成部及び、それに連なる投影レンズに対する反射型光学素子の位置、傾きは映像の品質に大きく影響する。
また、関連する光学部材が多いことと、特に画像投影装置が映像拡大装置であることのため、装置には多くの調整がとられている。
このため、反射型光学素子を使った画像投影装置において、反射型光学素子には多くの調整が行なわれてきており、種々の提案がなされてきた。
In such an image projection apparatus, the position and inclination of the reflective optical element with respect to the image generation unit and the projection lens connected to the image generation unit greatly affect the quality of the image.
In addition, many adjustments have been made to the apparatus because of the large number of related optical members and the fact that the image projection apparatus is a video enlargement apparatus.
For this reason, in an image projection apparatus using a reflective optical element, many adjustments have been made to the reflective optical element, and various proposals have been made.

しかし、従来の反射型光学素子の調整は一つの方向の調整を行なうと、前に行なった調整が変化するといった傾向をもったものが多く、調整の時間を多く要するとともに、最適な調整を行なうのが難しいといった欠点があった。   However, the adjustment of the conventional reflection type optical element tends to change the adjustment performed in one direction when the adjustment is performed in one direction, which requires a lot of adjustment time and performs the optimal adjustment. There was a drawback that it was difficult.

例えば特許文献1(特開2008−139442号公報)には、反射型光学素子(ミラー)の取付構造と調整方法が開示されているが、ミラー回転軸がミラー反射面と離れており、最適な調整を行なうのが難しい。
すなわちミラー回転軸がミラー反射面と離れていると、軸廻りの回転調整により映像光のミラーに反射される位置が変化してしまうことになる。また、この従来技術にも記載されているように、ミラーの反射面が回転軸廻りの回転面である場合でしか調整として使えないこととなる。これではミラー面を非球面とした反射面設計が出来ないことになり、光学設計に大きな制約となる。
For example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-139442) discloses a reflection optical element (mirror) mounting structure and an adjustment method. However, the mirror rotation axis is separated from the mirror reflection surface, which is optimal. It is difficult to make adjustments.
That is, if the mirror rotation axis is separated from the mirror reflection surface, the position where the image light is reflected by the mirror changes due to the rotation adjustment around the axis. Further, as described in this prior art, it can be used as an adjustment only when the reflection surface of the mirror is a rotation surface around the rotation axis. This makes it impossible to design a reflecting surface with an aspherical mirror surface, which is a major limitation on optical design.

特許文献2(特開2006−18083号公報)や特許文献3(特開2007−65053号公報)には、反射型光学素子(非球面ミラー、樹脂ミラー等)の支持構造が開示されているが、特許文献2、3に記載の従来技術は、温度変化等によるミラー面の膨張によるゆがみを吸収するためのものであり、軸廻りの回転調整を行なうものではない。   Patent Document 2 (Japanese Patent Laid-Open No. 2006-18083) and Patent Document 3 (Japanese Patent Laid-Open No. 2007-65053) disclose support structures for reflective optical elements (aspherical mirrors, resin mirrors, etc.). The conventional techniques described in Patent Documents 2 and 3 are for absorbing distortion caused by expansion of the mirror surface due to temperature change or the like, and do not perform rotation adjustment around the axis.

特許文献4(特許第3913265号公報)には、反射体の支持機構と調整方法が開示されており、反射体の反射光軸を調整ポイントとしているが、厳密に言えばピポット先端位置と反射面との間には厚みがあり、調整中心がミラー中心ではない。
また、反射面の定義を、光軸を対象とする球面との制約をしている。さらにミラー中心を反射面から外すとか、ミラー面が光軸回転中心といったように、ミラー面形状に制約を入れている。
Patent Document 4 (Patent No. 3913265) discloses a support mechanism and an adjustment method for a reflector, and the reflection optical axis of the reflector is used as an adjustment point. The adjustment center is not the mirror center.
In addition, the definition of the reflecting surface is constrained by a spherical surface with the optical axis as a target. Further, the mirror surface shape is restricted such that the mirror center is removed from the reflection surface or the mirror surface is the optical axis rotation center.

特許文献5(特開2007−41544号公報)には、反射型光学素子の保持構造が開示されているが、これは温度変化等によるミラー面の膨張によるゆがみを吸収するためのものであり、軸廻りの回転調整を行なうものではない。   Patent Document 5 (Japanese Patent Laid-Open No. 2007-41544) discloses a holding structure for a reflective optical element, which is for absorbing distortion caused by expansion of a mirror surface due to a temperature change or the like. It does not adjust the rotation around the shaft.

本発明は、画像投影装置における反射型光学素子の保持構造において、反射型光学素子の複数の方向の調整においても、基準となる反射点が動くことがなく、それぞれの方向の調整が独立した画面項目の調整となるようにすることを課題としている。すなわち、本発明では、投影画面中心のミラー反射点位置は、軸廻りの回転による調整を行なっても変化せず、あくまでミラー面の軸廻り傾きの調整となるようにするものであり、これにより投影画面の中心位置とその反射ミラー位置を一致させる部品の精度出しと独立した調整とすることができるようにすることを課題としている。
また、反射型光学素子といった成型によって作成される部品と、保持部材などの構造部品との材質の違い(熱膨張率の違い)によって生じやすいミラー面の熱変化による映像のゆがみ、ボケといった問題を軽減することも課題としている。
The present invention provides a reflective optical element holding structure in an image projection apparatus, in which a reference reflection point does not move even when adjusting a plurality of directions of the reflective optical element, and the adjustment of each direction is independent. The task is to adjust the items. That is, in the present invention, the position of the mirror reflection point at the center of the projection screen does not change even if adjustment is performed by rotation around the axis, and only the inclination of the mirror surface about the axis is adjusted. It is an object of the present invention to make it possible to perform adjustment independent of the accuracy of components for matching the center position of the projection screen and the position of the reflection mirror.
In addition, problems such as distortion and blurring of the image due to thermal changes of the mirror surface, which are likely to occur due to differences in the material (difference in thermal expansion) between parts created by molding, such as reflective optical elements, and structural parts, such as holding members. Mitigation is also an issue.

さらに本発明は、反射型光学素子を使用した画像投影装置において必要となる、反射型光学素子の傾き調整構造、反射型光学素子の保持構造に関するものである。この画像投影装置の反射型光学素子は、画像生成部で作成され、それを処理する投影光学系からの映像光を被投影面上に反射投影するものであり、機能上、非球面等の反射面をもつものが多い。そのため、当然投影光と反射面との関係には、正確な位置、傾きの一致が必要となる。   Furthermore, the present invention relates to a tilt adjustment structure for a reflective optical element and a holding structure for a reflective optical element, which are required in an image projection apparatus using the reflective optical element. The reflection type optical element of this image projection device is created by the image generation unit and reflects and projects the image light from the projection optical system that processes it onto the projection surface. Many have a surface. For this reason, naturally, the relationship between the projection light and the reflecting surface needs to match the exact position and inclination.

ここで反射型光学素子の取り付けに関しては多くの項目で調整が必要となっており、前述したように従来多くの調整方法が提案されてはいるが、機構及び方法の簡便さ、及びコスト的課題を意識するあまり、調整作業間の相互の関連、他の調整要素に及ぼす二次的な影響に関しては、あまり深くは考慮されていなかった。   Here, it is necessary to make adjustments in many items regarding the attachment of the reflective optical element, and as described above, many adjustment methods have been proposed in the past, but the simplicity of the mechanism and method, and the cost problem. However, much attention was not paid to the interrelationships between coordination activities and secondary effects on other coordination factors.

本発明は上記の課題を解決するための手段を提供するものであり、詳しくは、反射型光学素子の傾き調整に関し、傾き調整を行なっても、投影映像と反射面の位置的関係のズレが少なく、温度等による反射面のズレ、ゆがみ等が最小となるような調整・保持構造を備えた画像投影装置を提供すること、及びその画像投影装置を備えた投射型の画像表示装置を提供することを目的としている。   The present invention provides a means for solving the above-described problems. Specifically, the present invention relates to tilt adjustment of a reflective optical element. Even if tilt adjustment is performed, the positional relationship between a projected image and a reflecting surface is not shifted. Provided is an image projection apparatus having an adjustment / holding structure that minimizes deviation of the reflection surface due to temperature or the like, distortion, and the like, and a projection-type image display apparatus including the image projection apparatus The purpose is that.

上記の目的を達成するため、本発明では以下のような解決手段を採っている。
本発明の第1の解決手段は、映像光を生成する画像生成部と、該画像生成部で生成された映像光を投影する投影光学系と、該投影光学系からの投影映像を反射型光学素子で被投影面に向かって反射する反射光学系とを備えた画像投影装置において、前記反射光学系は、前記反射型光学素子を第1保持部材と第2保持部材により角度調節可能に保持固定する保持構造を有し、前記反射型光学素子は、反射面外の外周部に、投影映像画面の中心光軸に直交し該投影映像画面の一辺に平行な第1の方向に軸芯を持つガイド軸を有し、該ガイド軸を前記第1保持部材に設けられた溝部に保持されるとともに、前記第1の方向の軸廻りには前記第1保持部材に対し回転自由度を有し、前記第1保持部材は、前記反射型光学素子を保持するとともに、その外周部に、前記第1の方向と直交する方向の第2の方向に設けられ、前記投影映像画面の中心光軸に直交する軸芯を持つガイド軸を有し、該ガイド軸を前記第2保持部材に設けられた溝部に保持されるとともに、前記第2の方向の軸廻りには前記第2保持部材に対し回転自由度を持つ構造であり、前記反射型光学素子のガイド軸と前記第1保持部材のガイド軸の軸芯は、前記反射型光学素子の反射面と前記投影映像画面の中心光軸とが交わる点に接するか若しくはその近傍に配置するように構成したことを特徴とする(請求項1)。
In order to achieve the above object, the present invention employs the following solutions.
According to a first aspect of the present invention, there is provided an image generation unit that generates video light, a projection optical system that projects the video light generated by the image generation unit, and a projection optical system that reflects the projection video from the projection optical system. In the image projection apparatus having a reflection optical system that reflects toward the projection surface by an element, the reflection optical system holds and fixes the reflection type optical element by a first holding member and a second holding member so that the angle can be adjusted. The reflective optical element has an axial center in a first direction that is orthogonal to the central optical axis of the projected video screen and parallel to one side of the projected video screen, on the outer periphery outside the reflecting surface. Having a guide shaft, the guide shaft being held in a groove provided in the first holding member, and having a degree of freedom of rotation with respect to the first holding member around the shaft in the first direction; The first holding member holds the reflective optical element, and A guide shaft provided in a second direction perpendicular to the first direction and having an axis that is perpendicular to a central optical axis of the projection video screen; It is held in a groove provided in the holding member and has a degree of freedom of rotation with respect to the second holding member around the axis in the second direction, and the guide shaft of the reflective optical element and the first The axis of the guide shaft of the one holding member is configured so as to be in contact with or near the point where the reflection surface of the reflective optical element and the central optical axis of the projection video screen intersect. (Claim 1).

本発明の第2の解決手段は、第1の解決手段の画像投影装置において、前記第1保持部材に設けられた溝部は、前記反射型光学素子のガイド軸を保持する構造を持ち、該ガイド軸は前記第1の方向に平行となるように設けられた溝内基準面に押圧部材により軸廻りの回転自由度を持った形で押え固定されており、前記第2保持部材に設けられた溝部は、前記第1保持部材のガイド軸を保持する構造を持ち、該ガイド軸は前記第2の方向に平行となるように設けられた溝内基準面に押圧部材により軸廻りの回転自由度を持った形で押え固定されていることを特徴とする(請求項2)。   According to a second solving means of the present invention, in the image projection apparatus according to the first solving means, the groove provided in the first holding member has a structure for holding the guide shaft of the reflective optical element, and the guide The shaft is fixed to the reference surface in the groove so as to be parallel to the first direction by a pressing member with a degree of freedom of rotation around the shaft, and is provided on the second holding member. The groove portion has a structure for holding the guide shaft of the first holding member, and the guide shaft has a degree of freedom of rotation around the shaft by a pressing member on a reference surface in the groove provided to be parallel to the second direction. The presser foot is fixed in a shape having a (claim 2).

本発明の第3の解決手段は、第1または第2の解決手段の画像投影装置において、前記反射型光学素子の反射面外には前記第1の方向に平行なリブ面が設けてあり、前記反射型光学素子のガイド軸廻りの回転調整後、前記リブ面を前記第1保持部材に対し固定することにより、前記反射型光学素子の前記第1保持部材に対する回転角度位置を規制するとともに、前記第1保持部材には前記第2の方向に平行なリブ面が設けてあり、前記第1保持部材のガイド軸廻りの回転調整後、前記リブ面を前記第2保持部材に対し固定することにより、前記第1保持部材の前記第2保持部材に対する回転角度位置を規制する構造であることを特徴とする(請求項3)。   According to a third solving means of the present invention, in the image projection apparatus of the first or second solving means, a rib surface parallel to the first direction is provided outside the reflecting surface of the reflective optical element, After adjusting the rotation of the reflective optical element around the guide shaft, by fixing the rib surface to the first holding member, the rotational angle position of the reflective optical element with respect to the first holding member is regulated, and The first holding member is provided with a rib surface parallel to the second direction, and the rib surface is fixed to the second holding member after adjusting the rotation of the first holding member around the guide shaft. Thus, the rotation angle position of the first holding member with respect to the second holding member is regulated (Claim 3).

本発明の第4の解決手段は、第1乃至第3のいずれか一つの解決手段の画像投影装置において、前記反射型光学素子の前記第1保持部材に対するガイド軸方向の位置は、前記反射型光学素子の外周部に設けた前記ガイド軸と直交する方向に設けたリブと、前記第1保持部材に設けた前記リブに勘合する溝部によって決定し、前記反射型光学素子と前記第1保持部材との前記第1の方向の取り付け余裕寸法は、それぞれの材質の線膨張係数の差と、画像投影装置の上限使用想定温度と常温との温度差と、前記反射型光学素子の第1の方向の巾と、を掛け合わせた値より大きくとり、前記反射型光学素子に設けた前記リブの中心から前記ガイド軸部までの前記第1の方向の寸法の比によって配分されるように設定されていることを特徴とする(請求項4)。   According to a fourth solving means of the present invention, in the image projection apparatus according to any one of the first to third solving means, the position of the reflective optical element in the guide axis direction with respect to the first holding member is the reflective type. The reflective optical element and the first holding member are determined by a rib provided in a direction orthogonal to the guide shaft provided on the outer peripheral portion of the optical element and a groove portion fitted to the rib provided on the first holding member. The mounting margin dimension in the first direction is the difference between the linear expansion coefficients of the respective materials, the temperature difference between the upper limit use temperature of the image projection apparatus and the normal temperature, and the first direction of the reflective optical element. Is set to be distributed according to the ratio of the dimension in the first direction from the center of the rib provided on the reflective optical element to the guide shaft portion. It is characterized by Section 4).

本発明の第5の解決手段は、第1乃至第4のいずれか一つの解決手段の画像投影装置において、前記第1保持部材及び前記第2保持部材の材質は同材質であり、前記第1保持部材の前記第2の方向の位置は、前記第2保持部材に設けた基準面位置に押圧部材により押し当てる形で決まる構造であることを特徴とする(請求項5)。   According to a fifth solving means of the present invention, in the image projection apparatus according to any one of the first to fourth solving means, the first holding member and the second holding member are made of the same material, and the first The position of the holding member in the second direction is a structure determined by pressing with a pressing member against a reference surface position provided on the second holding member (Claim 5).

本発明の第6の解決手段は、第1乃至第5のいずれか一つの解決手段の画像投影装置において、前記反射型光学素子は、回転位置の調整後、前記リブ部を前記第1保持部材の溝部に接着されて固定されることを特徴とする(請求項6)。   According to a sixth solving means of the present invention, in the image projection apparatus according to any one of the first to fifth solving means, the reflective optical element is configured such that, after the rotation position is adjusted, the rib portion is attached to the first holding member. It is adhered and fixed to the groove portion of the (claim 6).

本発明の第7の解決手段は、画像表示装置であって、第1乃至第6のいずれか一つの解決手段の画像投影装置と、被投影面であるスクリーンを備え、前記画像投影装置の前記画像生成部で生成された映像光を、前記投影光学系と前記反射光学系により前記スクリーンに拡大して投影することを特徴とする(請求項7)。   According to a seventh aspect of the present invention, there is provided an image display apparatus comprising: the image projection apparatus according to any one of the first to sixth aspects; and a screen as a projection surface. The image light generated by the image generation unit is enlarged and projected onto the screen by the projection optical system and the reflection optical system (claim 7).

本発明では、画像投影装置の反射型光学素子の傾き調整について、2方向の回転調整を想定し、その調整用の回転軸芯(反射型光学素子のガイド軸と第1保持部材のガイド軸の軸芯)を、反射型光学素子の反射面と投影映像画像の中心光軸とが交わる点(反射点)に接するか若しくはその近傍に配置するように構成したので、これにより調整は投影画面中心を基準とした傾き調整となり、調整の精度、及び調整時間の短縮につなげることが可能となる。従って、本発明では、反射型光学素子の傾き調整に関し、傾き調整を行なっても、光線と反射面の位置的関係のズレが少なく、温度等による反射面のズレ、ゆがみ等が最小となるような調整・保持構造を備えた画像投影装置と、それを備えた画像表示装置を実現することができる。   In the present invention, the tilt adjustment of the reflective optical element of the image projection apparatus is assumed to be rotational adjustment in two directions, and the rotation axis for the adjustment (the guide axis of the reflective optical element and the guide axis of the first holding member) Since the axial center) is arranged so as to be in contact with or near the point (reflection point) where the reflection surface of the reflective optical element and the center optical axis of the projected video image intersect, the adjustment is performed at the center of the projection screen. As a result, the inclination adjustment is performed, and the adjustment accuracy and the adjustment time can be shortened. Therefore, in the present invention, regarding the tilt adjustment of the reflective optical element, even if tilt adjustment is performed, the positional relationship between the light beam and the reflective surface is small, and the reflective surface is not misaligned or distorted due to temperature or the like. It is possible to realize an image projection apparatus having an appropriate adjustment / holding structure and an image display apparatus having the same.

本発明の一実施形態を示す画像投影装置を備えた投射型画像表示装置の構成説明図であり、(a)は投射型画像表示装置を側方から見た概略構成図、(b)は(a)の投射型画像表示装置の画像投影装置を鉛直上方向から見た概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram of a projection type image display apparatus provided with an image projection apparatus showing an embodiment of the present invention, wherein (a) is a schematic configuration diagram of the projection type image display apparatus viewed from the side, and (b) is ( It is the schematic block diagram which looked at the image projection apparatus of the projection type image display apparatus of a) from the vertically upward direction. 本発明の別の実施形態を示す画像投影装置を備えた投射型画像表示装置の構成説明図であり、(a)は投射型画像表示装置を側方から見た概略構成図、(b)は(a)の投射型画像表示装置の画像投影装置を鉛直上方向から見た概略構成図である。It is composition explanatory drawing of the projection type image display apparatus provided with the image projection apparatus which shows another embodiment of this invention, (a) is a schematic block diagram which looked at the projection type image display apparatus from the side, (b) is It is the schematic block diagram which looked at the image projection apparatus of the projection type image display apparatus of (a) from the vertically upward direction. 本発明の一実施例を示す図であって、反射型光学素子とそれを保持する保持部材の構成例を示す分解斜視図である。It is a figure which shows one Example of this invention, Comprising: It is a disassembled perspective view which shows the structural example of a reflection type optical element and a holding member holding it. 図3に示す反射型光学素子の保持構造の説明図であり、(a)は反射型光学素子のガイド軸の第1保持部材に対する取付部を示す概略要部断面図であり、(b)は反射型光学素子の規制リブの第1保持部材に対する取付部を示す概略要部断面図である。It is explanatory drawing of the holding structure of the reflective optical element shown in FIG. 3, (a) is a schematic principal part sectional drawing which shows the attachment part with respect to the 1st holding member of the guide shaft of a reflective optical element, (b) is It is a schematic principal part sectional drawing which shows the attachment part with respect to the 1st holding member of the control rib of a reflective optical element. 図3に示す反射型光学素子のミラー面とガイド軸の軸芯の関係を示す概略要部斜視図である。FIG. 4 is a schematic perspective view of a main part showing the relationship between the mirror surface of the reflective optical element shown in FIG. 3 and the axis of a guide shaft. 図3に示す反射型光学素子のガイド軸の軸芯と、第1保持部材ガイド軸の軸芯の関係を示す概略要部斜視図である。FIG. 4 is a schematic perspective view of a main part showing a relationship between an axis of a guide shaft of the reflective optical element shown in FIG. 3 and an axis of a first holding member guide shaft. 反射型光学素子を回転調整する場合の反射面と反射点の位置の変化を示す図であり、(a)は反射型光学素子の回転調整の中心位置が反射面から離れた位置にある場合の例、(b)は反射型光学素子の回転調整の中心位置が反射面上にある場合の例を示す図である。It is a figure which shows the change of the position of a reflective surface in the case of carrying out rotation adjustment of a reflection type optical element, and (a) is the case where the center position of rotation adjustment of a reflection type optical element exists in the position away from the reflection surface. (B) is a figure which shows an example in case the center position of the rotation adjustment of a reflective optical element exists on a reflective surface.

本発明は、DMD(デジタルマイクロミラーデバイス)等の反射型画像形成素子や、透過型液晶素子等の透過型画像形成素子を画像生成部に用い、画像生成部で生成された画像を前記投影光学系で被投射面に投影する画像投影装置の光学系に使用される反射型光学素子の保持構造、及びその調整構造に特徴を有するものである。そして本発明に係る画像投影装置は、リアプロジェクション方式やフロントプロジェクション方式等の投射型画像表示装置に具備されるものであり、上記反射型光学素子は、投射型画像表示装置を大画面化、薄型化する上で必要な構成要素となっており、特に表示スクリーンと画像投影装置との距離を短くしたいといった要求に関しては重要な部品となっている。   The present invention uses a reflective image forming element such as a DMD (digital micromirror device) or a transmissive image forming element such as a transmissive liquid crystal element for an image generating unit, and the image generated by the image generating unit is used as the projection optics. The present invention is characterized by a holding structure for a reflective optical element used in an optical system of an image projection apparatus that projects onto a projection surface by the system, and an adjustment structure thereof. The image projection apparatus according to the present invention is provided in a projection image display apparatus such as a rear projection system or a front projection system, and the reflective optical element has a large screen and is thin. This is a necessary component for realizing the image processing, and is an important component particularly for the requirement to shorten the distance between the display screen and the image projection apparatus.

以下、本発明の具体的な構成例について、図面を参照して詳細に説明する。
まず図1により、本発明に係る画像投影装置を備えた投射型画像表示装置の構成について説明する。
図1は本発明の一実施形態を示す画像投影装置を備えた投射型画像表示装置の構成説明図であり、(a)は投射型画像表示装置を側方から見た概略構成図、(b)は(a)の投射型画像表示装置の画像投影装置を鉛直上方向から見た概略構成図を示している。
図1に示す投射型画像表示装置は、画像投影装置1と、被投影面であるスクリーン8を備えており、画像投影装置1は、図示省略の光源と画像形成素子2と導光プリズム3で構成される画像生成部と、画像生成部で生成された映像光を投影するレンズ部4a,4bを有する投影光学系4と、投影光学系(レンズ部)4からの投影映像光をスクリーン8に向かって反射する反射型光学素子6を有する反射光学系5とを備えている。
Hereinafter, specific configuration examples of the present invention will be described in detail with reference to the drawings.
First, referring to FIG. 1, a configuration of a projection type image display apparatus including the image projection apparatus according to the present invention will be described.
FIG. 1 is an explanatory diagram of a configuration of a projection type image display apparatus provided with an image projection apparatus according to an embodiment of the present invention. FIG. 1A is a schematic configuration diagram of the projection type image display apparatus viewed from the side. ) Shows a schematic configuration diagram of the image projection apparatus of the projection type image display apparatus of FIG.
The projection type image display apparatus shown in FIG. 1 includes an image projection apparatus 1 and a screen 8 that is a projection surface. The image projection apparatus 1 includes a light source, an image forming element 2, and a light guide prism 3 that are not shown. The image generation unit configured, the projection optical system 4 having the lens units 4a and 4b for projecting the video light generated by the image generation unit, and the projection video light from the projection optical system (lens unit) 4 on the screen 8 And a reflective optical system 5 having a reflective optical element 6 that reflects toward the surface.

この画像投影装置1では、画像形成素子2は、その中心が投影光学系4の光軸と一致しないように設置されている。そして画像形成素子1は投影光学系4のレンズ部4a,4bの光軸O1に対して略直交する方向(図示の例では鉛直下方)にシフトして設置されている。このため投影光学系4の光軸O1と、投影映像画面の中心の光軸O2は一致せず、交差する構成となっている。
このように図1に示す投射型画像表示装置の画像投影装置1では、画像生成部で生成され、投影光学系4のレンズ部4a,4bを通過して反射光学系5の反射型光学素子6の反射面に入射する映像光の投影映像画面の中心光軸O2が、投影光学系4のレンズ部4a,4bの光軸O1と交差している構成となっているので、画像生成部で生成された映像光を投影光学系4のレンズ部4a,4bで拡大投影することができ、さらに投影映像光を凸面形状の反射面(例えば凸の非球面や二次曲面、あるいはその他の自由曲面)により反射してスクリーン8に斜め入射させることにより、スクリーン8上に効率よく拡大投影することができる。このため、画像投影装置1とスクリーン8の設置位置を近くでき、大画面で薄型のリアプロジェクション方式やフロントプロジェクション方式の画像表示装置を実現することができる。
In this image projection apparatus 1, the image forming element 2 is installed such that the center thereof does not coincide with the optical axis of the projection optical system 4. The image forming element 1 is installed shifted in a direction substantially perpendicular to the optical axis O1 of the lens portions 4a and 4b of the projection optical system 4 (vertically below in the illustrated example). For this reason, the optical axis O1 of the projection optical system 4 and the optical axis O2 at the center of the projection video screen do not coincide with each other and are configured to intersect.
As described above, in the image projection apparatus 1 of the projection type image display apparatus shown in FIG. 1, the reflection type optical element 6 of the reflection optical system 5 is generated by the image generation unit and passes through the lens units 4 a and 4 b of the projection optical system 4. Since the center optical axis O2 of the projection image screen of the image light incident on the reflecting surface of the lens intersects the optical axis O1 of the lens units 4a and 4b of the projection optical system 4, it is generated by the image generation unit. The projected image light can be enlarged and projected by the lens portions 4a and 4b of the projection optical system 4, and the projected image light can be projected onto a convex reflecting surface (for example, a convex aspherical surface, a quadric surface, or other free-form surface). Thus, the image is reflected on the screen 8 and obliquely incident on the screen 8 so that the image can be efficiently enlarged and projected on the screen 8. For this reason, the installation position of the image projection apparatus 1 and the screen 8 can be close, and a large-screen and thin rear projection type or front projection type image display apparatus can be realized.

次に画像投影装置1についてより具体的に説明する。画像形成素子2としては例えばDMDを用い、光源部(図示せず)からの照明光は、導光プリズム3を介して画像形成素子(DMD)2に照射し、画像形成素子(DMD)1による映像反射光は導光プリズム3を透過して映像光処理部である投影光学系4のレンズ部(複数の投影レンズ)4a,4bを通過後、反射光学系5の反射型光学素子6により投射方向を変え、被投影面であるスクリーン8上に斜め入射し結像される。
このように、反射型光学素子6により投射方向を変え、被投影面であるスクリーン8上に斜め入射させる構成では、画像投影装置1とスクリーン8との距離を短くするとか、スクリーン上の高い位置に結像させるため、投影光学系4のレンズ部4a,4bからの光線は反射型光学素子6の反射面により所定の補正を受けることとなる。このため、反射型光学素子6の反射面は、例えば凸状の非球面(例えば曲率半径と非球面係数を持つ面、2次曲面、その他の自由曲面等)となる。
当然のことながら反射型光学素子4の反射面形状は高度の精度を必要とし、その前にある投影光学系4のレンズ部4a,4bとの位置、傾き等の関係も精度が必要となる。
Next, the image projection apparatus 1 will be described more specifically. For example, a DMD is used as the image forming element 2, and illumination light from a light source unit (not shown) is applied to the image forming element (DMD) 2 through the light guide prism 3, and is generated by the image forming element (DMD) 1. The image reflected light passes through the light guide prism 3 and passes through the lens units (a plurality of projection lenses) 4a and 4b of the projection optical system 4 which is the image light processing unit, and then is projected by the reflective optical element 6 of the reflection optical system 5. The direction is changed, and the light is obliquely incident on the screen 8 as a projection surface to form an image.
As described above, in the configuration in which the projection direction is changed by the reflective optical element 6 and obliquely incident on the screen 8 that is the projection surface, the distance between the image projector 1 and the screen 8 is shortened or the position on the screen is high. Therefore, the light rays from the lens units 4 a and 4 b of the projection optical system 4 are subjected to a predetermined correction by the reflection surface of the reflective optical element 6. For this reason, the reflective surface of the reflective optical element 6 is, for example, a convex aspherical surface (for example, a surface having a radius of curvature and an aspherical coefficient, a quadric surface, other free-form surface, etc.).
As a matter of course, the shape of the reflecting surface of the reflective optical element 4 requires a high degree of accuracy, and the relationship between the position, inclination and the like with the lens units 4a and 4b of the projection optical system 4 in front of that requires accuracy.

次に図2は本発明の別の実施形態を示す画像投影装置を備えた投射型画像表示装置の構成説明図であり、(a)は投射型画像表示装置を側方から見た概略構成図、(b)は(a)の投射型画像表示装置の画像投影装置を鉛直上方向から見た概略構成図を示している。
図2に示す投射型画像表示装置は、画像投影装置1と、被投影面であるスクリーン8を備えており、画像投影装置1は、図示省略の光源と画像形成素子1と導光プリズム3で構成される画像生成部と、画像生成部で生成された映像光を投影するレンズ部4a,4bを有する投影光学系4と、投影光学系(レンズ部)4からの投影映像光をスクリーン8に向かって反射する2つの反射型光学素子6,7を有する反射光学系5とを備えている。
Next, FIG. 2 is a configuration explanatory view of a projection type image display apparatus provided with an image projection apparatus showing another embodiment of the present invention, and (a) is a schematic configuration diagram of the projection type image display apparatus viewed from the side. (B) has shown the schematic block diagram which looked at the image projection apparatus of the projection type image display apparatus of (a) from the vertically upward direction.
The projection type image display apparatus shown in FIG. 2 includes an image projection apparatus 1 and a screen 8 that is a projection surface. The image projection apparatus 1 includes a light source, an image forming element 1, and a light guide prism 3 that are not shown. The image generation unit configured, the projection optical system 4 having the lens units 4a and 4b for projecting the video light generated by the image generation unit, and the projection video light from the projection optical system (lens unit) 4 on the screen 8 And a reflective optical system 5 having two reflective optical elements 6 and 7 that reflect toward the surface.

図2に示す画像表示装置では、画像投影装置1の反射光学系5に2枚の反射型光学素子6,7を使用しており、例えば反射型光学素子6は、反射面が凹状の自由曲面等からなるミラーであり、反射型光学素子7は平面ミラー5である。なお、その他の構成は図1と同様である。   In the image display apparatus shown in FIG. 2, two reflective optical elements 6 and 7 are used for the reflective optical system 5 of the image projecting apparatus 1. For example, the reflective optical element 6 has a free-form surface having a concave reflective surface. The reflective optical element 7 is a plane mirror 5. Other configurations are the same as those in FIG.

図2に示す画像表示装置では、画像形成素子2として例えばDMDを用い、光源部(図示せず)からの照明光は、導光プリズム3を介して画像形成素子(DMD)2に照射し、画像形成素子(DMD)1による映像反射光は導光プリズム3を透過して映像光処理部である投影光学系4のレンズ部(複数の投影レンズ)4a,4bを通過後、反射光学系5の反射型光学素子(自由曲面ミラー)6により投射方向を変え、さらに平面ミラー7で折り返されて被投影面であるスクリーン8上に斜め入射し結像される。   In the image display device shown in FIG. 2, for example, a DMD is used as the image forming element 2, and illumination light from a light source unit (not shown) is applied to the image forming element (DMD) 2 through the light guide prism 3. The image reflected light from the image forming element (DMD) 1 passes through the light guide prism 3 and passes through the lens units (a plurality of projection lenses) 4a and 4b of the projection optical system 4 serving as the image light processing unit. The projection direction is changed by the reflection type optical element (free-form surface mirror) 6, and the image is further reflected by the plane mirror 7 and obliquely incident on the screen 8 as the projection surface.

以上、画像投影装置1を備えた画像表示装置の構成例について説明したが、画像投影装置1に用いる画像形成素子2としては、DMDの他、反射型液晶素子等の反射型画像形成素子を使用しても良く、また透過型液晶素子等の透過型画像形成素子を使用しても良い。   The configuration example of the image display apparatus provided with the image projection apparatus 1 has been described above. As the image forming element 2 used in the image projection apparatus 1, a reflective image forming element such as a reflective liquid crystal element is used in addition to the DMD. Alternatively, a transmissive image forming element such as a transmissive liquid crystal element may be used.

以上のような画像表示装置を構成する画像投影装置1において、本発明では、反射光学系5の非球面(例えば曲率半径と非球面係数を持つ面、2次曲面、その他の自由曲面等)のミラー面を有する反射型光学素子6の保持構造及びその調整構造に特徴を有するものである。
以下、本発明に係る反射型光学素子6の保持構造及び調整構造の実施例について説明する。
In the image projection apparatus 1 constituting the image display apparatus as described above, in the present invention, the aspherical surface (for example, a surface having a radius of curvature and an aspherical coefficient, a quadric surface, other free-form surface, etc.) of the reflection optical system 5 is used. This is characterized by the holding structure of the reflective optical element 6 having a mirror surface and its adjustment structure.
Examples of the holding structure and the adjustment structure for the reflective optical element 6 according to the present invention will be described below.

図3は本発明の一実施例を示す反射型光学素子とそれを保持する保持部材の構成例を示す分解斜視図である。また、図4は、図3に示す反射型光学素子の保持構造の説明図であり、(a)は反射型光学素子のガイド軸の第1保持部材に対する取付部を示す概略要部断面図であり、(b)は反射型光学素子の規制リブの第1保持部材に対する取付部を示す概略要部断面図である。   FIG. 3 is an exploded perspective view showing a configuration example of a reflection type optical element and a holding member for holding it, showing an embodiment of the present invention. FIG. 4 is an explanatory diagram of the reflection optical element holding structure shown in FIG. 3, and FIG. 4A is a schematic cross-sectional view of the main part showing the attachment portion of the guide shaft of the reflection optical element to the first holding member. FIG. 7B is a schematic cross-sectional view of the main part showing the attachment portion of the regulation rib of the reflective optical element to the first holding member.

図1または図2に示した画像投影装置1の反射光学系5は、図3に示すように、反射型光学素子6を第1保持部材20と第2保持部材30により角度調節可能に保持固定する保持構造を有している。
反射型光学素子6は、反射面外の外周部に、投影映像画面の中心光軸(具体的には設計上の投影映像画面の中心光軸)に直交し該投影映像画面の一辺に平行な第1の方向(図3においてY方向)に軸芯を持つガイド軸11,12を有し、該ガイド軸11,12を第1保持部材20に設けられた溝部21,22に保持されるとともに、第1の方向(Y方向)の軸廻りには第1保持部材20に対し回転自由度を有している。また、第1保持部材20は、反射型光学素子6を保持するとともに、その外周部に、第1の方向(Y方向)と直交する方向の第2の方向(図3においてZ方向)に設けられ、投影映像画面の中心光軸に直交する軸芯を持つガイド軸24,25を有し、該ガイド軸を第2保持部材30に設けられた溝部31,32に保持されるとともに、第2の方向(Z方向)の軸廻りには第2保持部材30に対し回転自由度を持つ構造である。さらに、反射型光学素子6のガイド軸11,12と第1保持部材20のガイド軸24,25の軸芯は、反射型光学素子6の反射面10と投影映像画像の中心光軸とが交わる点に接するか若しくはその近傍に配置するように構成している。
The reflective optical system 5 of the image projection apparatus 1 shown in FIG. 1 or FIG. 2 holds and fixes the reflective optical element 6 by the first holding member 20 and the second holding member 30 so that the angle can be adjusted, as shown in FIG. It has a holding structure.
The reflective optical element 6 is orthogonal to the central optical axis of the projection video screen (specifically, the central optical axis of the designed projection video screen) and is parallel to one side of the projection video screen on the outer periphery outside the reflective surface. Guide shafts 11 and 12 having an axial center in the first direction (Y direction in FIG. 3) are held by the groove portions 21 and 22 provided in the first holding member 20. The first holding member 20 has a degree of freedom of rotation around the axis in the first direction (Y direction). The first holding member 20 holds the reflective optical element 6 and is provided on the outer periphery of the first holding member 20 in a second direction (Z direction in FIG. 3) perpendicular to the first direction (Y direction). The guide shafts 24 and 25 each have an axis perpendicular to the central optical axis of the projected image screen. The guide shafts are held in the grooves 31 and 32 provided in the second holding member 30 and the second The second holding member 30 has a degree of freedom of rotation around the axis in the direction (Z direction). Furthermore, the axial centers of the guide shafts 11 and 12 of the reflective optical element 6 and the guide shafts 24 and 25 of the first holding member 20 intersect the reflective surface 10 of the reflective optical element 6 and the central optical axis of the projected video image. It is configured so as to be in contact with a point or in the vicinity thereof.

第1保持部材20に設けられた溝部21,22は、反射型光学素子6のガイド軸11,12を保持する構造(例えば図4(a)に示す保持構造)を持ち、該ガイド軸11,12は第1の方向(Y方向)に平行となるように設けられた溝内基準面に押圧部材(例えば保持バネ)15,16により軸廻りの回転自由度を持った形で押え固定されている。また、第2保持部材30に設けられた溝部31,32も、第1保持部材20のガイド軸24,25を保持する構造を持ち(図示を省略するが、図4(a)と同様な構造である)、該ガイド軸24,25は第2の方向(Z方向)に平行となるように設けられた溝内基準面に押圧部材(例えば保持バネ)34,35により軸廻りの回転自由度を持った形で押え固定されている。   The groove portions 21 and 22 provided in the first holding member 20 have a structure for holding the guide shafts 11 and 12 of the reflective optical element 6 (for example, the holding structure shown in FIG. 4A). 12 is pressed and fixed by a pressing member (for example, holding springs) 15 and 16 with a degree of freedom of rotation around the shaft on a reference surface in the groove provided so as to be parallel to the first direction (Y direction). Yes. Further, the grooves 31 and 32 provided in the second holding member 30 also have a structure for holding the guide shafts 24 and 25 of the first holding member 20 (not shown, but the same structure as FIG. 4A). The guide shafts 24 and 25 have a degree of freedom of rotation around the shaft by pressing members (for example, holding springs) 34 and 35 on a reference surface in the groove provided so as to be parallel to the second direction (Z direction). The presser foot is fixed in a shape with

反射型光学素子6の反射面外には第1の方向(Y方向)に平行なリブ面(リブ14のリブ面)が設けてあり、反射型光学素子6のガイド軸廻りの回転調整後、リブ14のリブ面を第1保持部材20に対し固定することにより、反射型光学素子6の第1保持部材20に対する回転角度位置を規制する。また、第1保持部材20には第2の方向(Z方向)に平行なリブ面(リブ27のリブ面)が設けてあり、第1保持部材20のガイド軸廻りの回転調整後、リブ27のリブ面を第2保持部材30の保持部33に対し固定することにより、第1保持部材20の第2保持部材30に対する回転角度位置を規制する。   A rib surface (rib surface of the rib 14) parallel to the first direction (Y direction) is provided outside the reflective surface of the reflective optical element 6, and after adjusting the rotation of the reflective optical element 6 around the guide axis, By fixing the rib surface of the rib 14 to the first holding member 20, the rotational angle position of the reflective optical element 6 with respect to the first holding member 20 is regulated. The first holding member 20 is provided with a rib surface (rib surface of the rib 27) parallel to the second direction (Z direction). After adjusting the rotation of the first holding member 20 around the guide shaft, the rib 27 By fixing the rib surface to the holding portion 33 of the second holding member 30, the rotational angle position of the first holding member 20 with respect to the second holding member 30 is regulated.

反射型光学素子6の第1保持部材20に対するガイド軸方向の位置は、反射型光学素子6の外周部に設けたガイド軸11,12と直交する方向に設けたリブ14と、このリブ14に勘合する第1保持部材20に設けた溝部によって決定し、反射型光学素子6と第1保持部材20との第1の方向(Y方向)の取り付け余裕寸法は、「それぞれの材質の線膨張係数の差」と、「画像投影装置の上限使用想定温度と常温との温度差」と、「反射型光学素子の第1の方向の巾」と、を掛け合わせた値より大きくとり、反射型光学素子6に設けたリブ14の中心からガイド軸部11,12までの第1の方向の寸法の比によって配分されるように設定されている。
また、第1保持部材20及び第2保持部材30の材質は同材質であり、第1保持部材20の第2の方向(Z方向)の位置は、第2保持部材30に設けた溝部32の基準面位置に押圧部材(例えば保持バネ)36により押し当てる形で決まる構造である。
The position of the reflective optical element 6 in the guide axis direction with respect to the first holding member 20 is a rib 14 provided in a direction orthogonal to the guide shafts 11 and 12 provided on the outer peripheral portion of the reflective optical element 6, and the rib 14. The margin of attachment in the first direction (Y direction) between the reflective optical element 6 and the first holding member 20 is determined by the groove provided in the first holding member 20 to be fitted, and “the linear expansion coefficient of each material” The difference between “the difference between the upper limit use temperature of the image projection apparatus and the room temperature” and “the width in the first direction of the reflective optical element” is multiplied by the reflection optical. It is set to be distributed according to a ratio of dimensions in the first direction from the center of the rib 14 provided in the element 6 to the guide shaft portions 11 and 12.
Further, the first holding member 20 and the second holding member 30 are made of the same material, and the position of the first holding member 20 in the second direction (Z direction) is the groove 32 provided in the second holding member 30. The structure is determined by pressing the reference surface position with a pressing member (for example, a holding spring) 36.

次に本実施例の保持構造についてより詳しく説明する。
図3に示す例では、反射型光学素子6は、例えば反射面10に自由曲面を有するミラー(自由曲面ミラー)からなり、例えばポリカーボネイト等の樹脂材料と金型を用いた樹脂成形により面精度良く形成されている。
この反射型光学素子6を保持する第1保持部材20と、該第1保持部材20を保持する第2保持部材30も、樹脂材料と金型を用いた樹脂成形により形成されており、第1保持部材20と第2保持部材30の樹脂材料の材質は同材質である。
Next, the holding structure of the present embodiment will be described in more detail.
In the example shown in FIG. 3, the reflective optical element 6 is composed of, for example, a mirror having a free curved surface (free curved surface mirror) on the reflective surface 10, and has high surface accuracy by resin molding using, for example, a resin material such as polycarbonate and a mold. Is formed.
The first holding member 20 that holds the reflective optical element 6 and the second holding member 30 that holds the first holding member 20 are also formed by resin molding using a resin material and a mold. The material of the resin material of the holding member 20 and the second holding member 30 is the same material.

反射型光学素子6は、その反射面外の第1の方向(図3においてY方向)に突出して設けられたガイド軸11,12を有しており、該ガイド軸11,12を第1保持部材20に設けた溝部21,22に係合し、押圧部材である保持バネ15,16により光軸方向(図3においてX方向)、及び垂直下方方向(図3においてZ方向)に押され、第1保持部材20に押し当てられ固定される。また、ここでガイド軸11,12の軸芯廻りの回転は自由な形となっている。なお、図3の例では、反射型光学素子6の第1の方向(Y方向)に軸芯を持つガイド軸11,12は、反射型光学素子6の外周部の両側に突出して設けられているが、片側だけに設けても保持することが可能である。   The reflective optical element 6 has guide shafts 11 and 12 provided so as to protrude in a first direction (Y direction in FIG. 3) outside the reflection surface, and the guide shafts 11 and 12 are first held. Engage with the groove portions 21 and 22 provided in the member 20, and are pushed in the optical axis direction (X direction in FIG. 3) and vertically downward direction (Z direction in FIG. 3) by the holding springs 15 and 16 which are pressing members. The first holding member 20 is pressed and fixed. Here, the rotation of the guide shafts 11 and 12 around the axis is free. In the example of FIG. 3, the guide shafts 11 and 12 having an axial center in the first direction (Y direction) of the reflective optical element 6 are provided so as to protrude on both sides of the outer peripheral portion of the reflective optical element 6. However, even if it is provided only on one side, it can be held.

反射型光学素子6のガイド軸11,12方向(図3においてY方向)の位置は、反射型光学素子6の反射面(自由曲面ミラー面)10の面外に設けた別のガイド軸13と第1保持部材20の溝部23との係合により、第1保持部材20に対するY方向の位置を規制されている。また、反射型光学素子6の外周部と第1保持部材20とのY方向の隙間は、両部品の熱膨張により反射型光学素子6と第1保持部材20が接触しないだけの隙間を持った係合となっている。   The position of the reflective optical element 6 in the directions of the guide shafts 11 and 12 (Y direction in FIG. 3) is different from that of another guide shaft 13 provided outside the reflective surface (free-form mirror surface) 10 of the reflective optical element 6. The position of the first holding member 20 in the Y direction is restricted by the engagement with the groove 23 of the first holding member 20. Further, the gap in the Y direction between the outer periphery of the reflective optical element 6 and the first holding member 20 has a gap that does not allow the reflective optical element 6 and the first holding member 20 to contact each other due to thermal expansion of both components. It is engaged.

一対のガイド軸11,12を軸とする反射型光学素子6の第1保持部材20に対する回転位置は、反射型光学素子6を第1保持部材20に対し回転し、反射型光学素子6の外周部に一体に取り付けられた規制リブ14を、図4(b)に示すように第1保持部材20に対し、X方向にネジ調整し固定する。なお、規制リブ14は、第1保持部材20に一端を受けた押えバネ19と第1保持部材20にねじ込まれた保持押え18との間に挟まれており、保持押え18を回転することにより、ガイド軸11,12の軸芯を中心とした反射型光学素子6の回転角を調整することが可能となっている。   The rotational position of the reflective optical element 6 about the pair of guide shafts 11 and 12 with respect to the first holding member 20 is such that the reflective optical element 6 rotates relative to the first holding member 20 and the outer periphery of the reflective optical element 6 is rotated. As shown in FIG. 4B, the regulating rib 14 attached integrally to the portion is screw-adjusted in the X direction and fixed to the first holding member 20. The regulating rib 14 is sandwiched between a presser spring 19 that receives one end of the first holding member 20 and a holding presser 18 that is screwed into the first holding member 20, and rotates the holding presser 18. The rotation angle of the reflective optical element 6 about the axis of the guide shafts 11 and 12 can be adjusted.

次に第1保持部材20の第2保持部材30に対する取り付けは、反射型光学素子6の取り付けと同様に、第1保持部材20のガイド軸24,25を第2保持部材30の溝部31,32に保持バネ34,35により、X方向に押し当てられることにより行われる。   Next, the attachment of the first holding member 20 to the second holding member 30 is similar to the attachment of the reflective optical element 6, and the guide shafts 24 and 25 of the first holding member 20 are connected to the grooves 31 and 32 of the second holding member 30. The holding springs 34 and 35 are pressed against each other in the X direction.

ここで、ガイド軸24,25の軸芯廻りの回転は、自由な形となっている。この回転位置も上記の反射型光学素子6の回転調整のときと同様に、第1保持部材20に設けた規制リブ27を、押さえ板37と保持押え38と押えバネ39を用いた構造(図4(b)と同様の構造)により、第2保持部材の保持部33に対し、X方向にネジ調整することにより調整可能な形であり、調整後固定される。   Here, the rotation of the guide shafts 24 and 25 around the axis is free. Similarly to the rotation adjustment of the reflection type optical element 6 described above, the rotation position is a structure in which the regulating rib 27 provided on the first holding member 20 is formed using a pressing plate 37, a holding presser 38, and a presser spring 39 (FIG. 4 (b), the holding portion 33 of the second holding member can be adjusted by adjusting the screw in the X direction, and is fixed after adjustment.

また、第1保持部材20のガイド軸24,25の軸芯方向(Z方向)の位置は、保持バネ36により第1保持部材20を第2保持部材30の溝部32の基準面位置に押し当てる形で決定される。
なお、反射型光学素子6及び第1保持部材20は、回転位置の調整後、規制リブ部14,27を接着材等で固定され、位置を決定する。
Further, the position of the first holding member 20 in the axial direction (Z direction) of the guide shafts 24 and 25 presses the first holding member 20 against the reference surface position of the groove portion 32 of the second holding member 30 by the holding spring 36. Determined by shape.
The reflective optical element 6 and the first holding member 20 are fixed to the regulating rib portions 14 and 27 with an adhesive or the like after the rotation position is adjusted, and the positions are determined.

ここで反射型光学素子6のガイド軸11,12と、第1保持部材20のガイド軸24,25のそれぞれの軸線は、反射型光学素子6の反射面(自由曲面ミラー面)10と、設計上の投影画面の中心光軸とが交わる点(反射点)に接する(またはそのごく近傍に位置する)関係にあり、上記2方向のガイド軸廻りのそれぞれの回転調整によっても、反射型光学素子(自由曲面ミラー)6の反射面10と設計上の投影画面の中心光軸とが交わる点は動かないようになっている。   Here, the respective axes of the guide shafts 11 and 12 of the reflective optical element 6 and the guide shafts 24 and 25 of the first holding member 20 are the reflection surface (free-form mirror surface) 10 of the reflective optical element 6 and the design. The reflective optical element is in contact with (or located in the vicinity of) the point (reflection point) where the central optical axis of the upper projection screen intersects, and by adjusting the rotation around the guide axis in the two directions. The point where the reflection surface 10 of the (free-form surface mirror) 6 and the central optical axis of the designed projection screen intersect is not moved.

次に反射型光学素子6の形状説明を図5により行なう。
図5は、図2の2枚の反射型光学素子6,7を使用して映像をスクリーンに投影する場合の例を示しており、反射面中央部の1点鎖線範囲内が投影光学系(レンズ部)4からの映像光の反射面であり、この反射面10は凹状の自由曲面ミラー面である。図においてA点は投影映像の中心主光線がミラー面10により反射される点である。
また、左右のガイド軸11,12はその軸芯が一直線上であり、投影映像画面の中心光軸(レンズ部4からの投影映像の中心主光線)と直角に、また投影映像画面枠の一辺と平行になるよう構成されている。
ここで前述したように、上記ガイド軸11,12の軸芯は上記A点に接するような関係で構成されている。
Next, the shape of the reflective optical element 6 will be described with reference to FIG.
FIG. 5 shows an example in which an image is projected onto a screen using the two reflective optical elements 6 and 7 in FIG. 2, and the area within the one-dot chain line at the center of the reflecting surface is within the projection optical system ( This is a reflection surface of the image light from the lens portion 4, and the reflection surface 10 is a concave free-form mirror surface. In the figure, point A is a point where the central principal ray of the projected image is reflected by the mirror surface 10.
The left and right guide shafts 11 and 12 have straight axes, and are perpendicular to the central optical axis of the projection video screen (the central principal ray of the projection video from the lens unit 4) and one side of the projection video screen frame. It is comprised so that it may become parallel.
Here, as described above, the axis of the guide shafts 11 and 12 is configured to be in contact with the point A.

次に第1保持部材20と第2保持部材30との関係を図6により説明する。
図6の第1保持部材20の上下部に設けたガイド軸24,25はその軸芯が一致し、投影映像画面の中心光軸(レンズ部4からの投影映像の中心主光線)と直角に、また投影映像画面枠の一辺(上記反射型光学素子6のガイド軸11,12に平行な一辺と直交する一辺)と平行になるよう構成されている。
また、このガイド軸24,25の軸芯と、反射型光学素子6のガイド軸11,12の軸芯とが交差する点Bは、第1保持部材20に反射型光学素子6が取り付けられたとき、前記Aの点に接するような関係で構成されている。
Next, the relationship between the first holding member 20 and the second holding member 30 will be described with reference to FIG.
The guide shafts 24 and 25 provided on the upper and lower portions of the first holding member 20 in FIG. 6 have the same axis, and are perpendicular to the central optical axis of the projection image screen (the central principal ray of the projection image from the lens unit 4). The projection image screen frame is configured to be parallel to one side (one side orthogonal to one side parallel to the guide shafts 11 and 12 of the reflective optical element 6).
Further, at the point B where the axis of the guide shafts 24 and 25 and the axis of the guide shafts 11 and 12 of the reflective optical element 6 intersect, the reflective optical element 6 is attached to the first holding member 20. In such a case, the contact point A is in contact with the point A.

本発明では、画像投影装置1の反射型光学素子6の傾き調整について、2方向の回転調整を想定し、その調整用の回転軸芯(反射型光学素子6のガイド軸11,12と第1保持部材20のガイド軸24,25の軸芯)を、反射型光学素子6の反射面10と設計上の投影映像画像の中心光軸とが交わる点(反射点)Aに接するか若しくはその近傍に配置するように構成したので、これにより調整は投影画面中心を基準とした傾き調整となり、調整の精度、及び調整時間の短縮につなげることができる。   In the present invention, the tilt adjustment of the reflective optical element 6 of the image projection apparatus 1 is assumed to be rotational adjustment in two directions, and the rotational axis for the adjustment (the guide shafts 11 and 12 of the reflective optical element 6 and the first The axis of the guide shafts 24 and 25 of the holding member 20 is in contact with or near the point (reflection point) A where the reflection surface 10 of the reflective optical element 6 and the central optical axis of the designed projected video image intersect. Therefore, the adjustment is an inclination adjustment based on the center of the projection screen, and the adjustment accuracy and the adjustment time can be shortened.

以下、本発明の作用効果についてより詳しく述べる。
反射型光学素子6を使用した画像投影装置(画像表示装置)における反射型光学素子6の反射面形状は、投影光学系4で使用されるレンズ、レンズと投射スクリーン8の関係等をもとに、面が決定されており、その取り付け位置出しには多くの調整を必要とする。それらの調整においても特に厄介なのは非球面(例えば曲率半径と非球面係数を持つ面、2次曲面、その他の自由曲面等)のミラー面を有する反射型光学素子6の傾き調整である。
そこで本発明では、上記のように、反射型光学素子6の傾き調整について、2方向の回転調整を想定し、その調整回転軸芯を投射映像光線の中心光軸が、反射型光学素子と交わる反射点に接する構造とした。
Hereinafter, the operational effects of the present invention will be described in more detail.
The reflective surface shape of the reflective optical element 6 in the image projection apparatus (image display apparatus) using the reflective optical element 6 is based on the lens used in the projection optical system 4, the relationship between the lens and the projection screen 8, and the like. The surface has been determined, and a lot of adjustment is required to determine its mounting position. Also particularly troublesome in these adjustments is the tilt adjustment of the reflective optical element 6 having an aspherical surface (for example, a surface having a radius of curvature and an aspherical coefficient, a quadric surface, other free-form surface, etc.).
Therefore, in the present invention, as described above, the tilt adjustment of the reflective optical element 6 is assumed to be rotationally adjusted in two directions, and the center axis of the projected image light beam intersects the reflective optical element at the adjustment rotation axis. The structure is in contact with the reflection point.

その一方で、前述の従来技術のように、調整用回転軸芯を反射型光学素子6の反射面10から離れた構造とすると、調整により投影画面に対応する反射面が、調整することにより全画面範囲にわたって移動することとなり、調整時間が多く必要となり、調整の精度も劣ることとなる。この説明を図7(a),(b)をもとに説明する   On the other hand, when the adjustment rotating shaft is separated from the reflecting surface 10 of the reflective optical element 6 as in the above-described prior art, the reflecting surface corresponding to the projection screen is adjusted to adjust the entire reflecting surface. It will move over the screen range, requiring a lot of adjustment time, and the accuracy of adjustment will be poor. This explanation will be made based on FIGS. 7 (a) and 7 (b).

図7(a)は、反射型光学素子6の反射面の調整の回転中心(軸芯)位置が反射面から離れた構造の場合の略図であり、反射面がa−a’、調整の回転中心がSの点と想定して設計されているとする。しかし、実際の部品では、製造時の誤差や、温度変化による部品の熱膨張等により、設計上の中心点Sに対してhなる寸法誤差が発生する場合があり、調整の回転中心がS1にずれることがある。   FIG. 7A is a schematic diagram in the case of a structure in which the rotation center (axial center) position for adjustment of the reflection surface of the reflective optical element 6 is away from the reflection surface. The reflection surface is aa ′, and the adjustment rotation is performed. It is assumed that the center is designed with an S point. However, in an actual part, there may be a dimensional error h with respect to the design center point S due to an error in manufacturing, thermal expansion of the part due to a temperature change, and the rotation center of adjustment is S1. It may shift.

ここで設計上の反射面a−a’に入射する光線がA点で反射されるとして、入射光線l−A、出射光線A−mとする。しかし、実際は上記のように寸法誤差hのズレが発生することがあるため、反射面a−a’はb−b’となり、設計上のA点はB点に移るとともに、実際の光線の反射点はA1となる。当然A1の反射面が設計値と違うため、出射光線はA1−nとなる。そこでS1を中心に反射面を回転調整し、設計の出射光線に近くなるように反時計方向に回転し、反射面をc−c’とし、反射点の傾きを設計想定値に近くすることとなる。ここで反射点はA2に移り、出射光線はA2−pとなリ、またBの点もCに移動することとなる。従って、この調整により、設計上のA点は最終的にC点に動いたことになる。このため、調整後も映像のゆがみ、ボケといった問題が発生する恐れがある。   Here, it is assumed that the light ray incident on the designed reflection surface a-a ′ is reflected at the point A, and is referred to as an incident light beam 1-A and an outgoing light beam Am. However, since the deviation of the dimensional error h may actually occur as described above, the reflecting surface aa ′ becomes bb ′, the design point A moves to the point B, and the actual light ray is reflected. The point is A1. Naturally, since the reflection surface of A1 is different from the design value, the outgoing light beam is A1-n. Therefore, the reflection surface is rotated and adjusted around S1, is rotated counterclockwise so as to be close to the designed light beam, the reflection surface is cc ', and the inclination of the reflection point is close to the design assumed value. Become. Here, the reflection point moves to A2, the emitted light becomes A2-p, and the point B also moves to C. Therefore, by this adjustment, the point A on the design has finally moved to the point C. This may cause problems such as image distortion and blurring even after adjustment.

次に図7(b)は、反射型光学素子6の反射面の調整の回転中心(軸芯)位置が反射面上に有る構造の場合の略図であり、反射面がa−a’調整の回転中心がAの点と想定して設計されているとする。そして設計上の反射面a−a’に入射する光線がA点で反射されるとして、入射光線l−A、出射光線A−mとする。
このように反射面の回転中心位置が反射面上にあるときの場合を想定すると、寸法誤差hのズレが発生した場合には、反射面は、a−a’→b−b’となり、設計上のA点はB点に移るとともに、実際の光線の反射点はA1となり、出射光線はA1−nとなる。そこでB点を中心に反射面を回転調整し、設計の出射光線に近くなるように反時計方向に回転し、反射面をc−c’とすると、反射点はA1→A2となる。
Next, FIG. 7B is a schematic diagram in the case of a structure in which the rotation center (axial center) position for adjustment of the reflection surface of the reflective optical element 6 is on the reflection surface, and the reflection surface is aa ′ adjustment. It is assumed that the center of rotation is designed assuming the point A. Then, assuming that the light ray incident on the designed reflection surface aa ′ is reflected at the point A, the light ray is assumed to be an incident light beam 1-A and an outgoing light beam Am.
Assuming the case where the rotational center position of the reflecting surface is on the reflecting surface as described above, when the deviation of the dimensional error h occurs, the reflecting surface changes from aa ′ to bb ′ and is designed. The upper point A moves to the point B, and the actual reflection point of the light ray is A1, and the outgoing light ray is A1-n. Therefore, when the reflection surface is rotated and adjusted around the point B, rotated counterclockwise so as to be close to the designed outgoing light beam, and the reflection surface is cc ′, the reflection point becomes A1 → A2.

このように、設計上のA点は寸法誤差等によりB点にずれることがあるが、反射面の調整の回転中心(軸芯)位置が反射面上に有る場合には、回転中心位置はB点となるので、回転調整してもB点の位置は動かず、調整後の反射面の位置のずれは小さくなる。
すなわち、図7(a)のように、調整用の回転中心(軸芯)が反射面から離れていると、調整作業により設計想定反射面の位置が大きくずれることがあるが、図7(b)のように、反射面の調整の回転中心(軸芯)位置が反射面上に有る場合には、調整作業を行っても設計想定反射面の位置が大きくずれることがないので、調整の精度、及び調整時間の短縮につなげることができ、調整後の映像のゆがみ、ボケといった問題も低減することができる。
As described above, the design point A may be shifted to the point B due to a dimensional error or the like, but when the rotation center (axial center) position of the reflection surface adjustment is on the reflection surface, the rotation center position is B. Therefore, even if the rotation is adjusted, the position of the point B does not move, and the deviation of the position of the reflecting surface after the adjustment becomes small.
That is, as shown in FIG. 7A, when the adjustment center of rotation (axial core) is away from the reflection surface, the position of the design assumed reflection surface may be greatly shifted by the adjustment operation. ), If the center of rotation (axial center) of the adjustment of the reflection surface is on the reflection surface, the position of the reflection surface to be designed will not be greatly shifted even if adjustment is performed. In addition, the adjustment time can be shortened, and problems such as distortion and blurring of the image after adjustment can be reduced.

また、熱変化により生ずる反射型光学素子6の反射面の膨張、これによって生ずる適正反射面の光線に対する反射点の移動といった面からみて、調整の基準点(本発明の場合は、反射型光学素子6のガイド軸11,12と第1保持部材20のガイド軸24,25の軸芯)を、反射型光学素子6の反射面10と設計上の投影映像画像の中心光軸とが交わる点に接するか若しくはその近傍に配置するように構成し、特に投影映像画像の上下、左右の中間位置に置くことは、投影画像の品質面から考えて有効である。   Further, in view of the expansion of the reflection surface of the reflection type optical element 6 caused by the thermal change and the movement of the reflection point with respect to the light beam of the appropriate reflection surface caused by this, the adjustment reference point (in the case of the present invention, the reflection type optical element). 6 and the guide axes 24 and 25 of the first holding member 20) at the point where the reflecting surface 10 of the reflective optical element 6 and the center optical axis of the designed projected video image intersect. It is effective in view of the quality of the projected image to be arranged in contact with or in the vicinity thereof, and particularly to be placed at an intermediate position between the top, bottom, left and right of the projected video image.

1:画像投影装置
2:画像形成素子
3:導光プリズム
4:投影光学系
4a,4b:レンズ部
5:反射光学系
6:反射型光学素子(自由曲面ミラー)
7:反射型光学素子(平面ミラー)
8:スクリーン(被投影面)
10:反射面(ミラー面)
11,12:反射型光学素子のガイド軸
14:反射型光学素子のリブ
15,16,34,35:保持バネ(押圧部材)
20:第1保持部材
21,22:第1保持部材の溝部
24,25:第1保持部材のガイド軸
27:第1保持部材のリブ
30:第2保持部材
31,32:第3保持部材の溝部
1: Image projector 2: Image forming element 3: Light guide prism 4: Projection optical system 4a, 4b: Lens unit 5: Reflective optical system 6: Reflective optical element (free curved mirror)
7: Reflective optical element (plane mirror)
8: Screen (projection surface)
10: Reflecting surface (mirror surface)
11, 12: Guide shaft of the reflective optical element 14: Ribs of the reflective optical element 15, 16, 34, 35: Holding spring (pressing member)
20: 1st holding member 21, 22: Groove part 24, 25 of 1st holding member 27: Guide shaft of 1st holding member 27: Rib of 1st holding member 30: 2nd holding member 31, 32: 3rd holding member Groove

特開2008−139442号公報JP 2008-139442 A 特開2006−18083号公報JP 2006-18083 A 特開2007−65053号公報JP 2007-65053 A 特許第3913265号公報Japanese Patent No. 3913265 特開2007−41544号公報JP 2007-41544 A

Claims (7)

映像光を生成する画像生成部と、該画像生成部で生成された映像光を投影する投影光学系と、該投影光学系からの投影映像を反射型光学素子で被投影面に向かって反射する反射光学系とを備えた画像投影装置において、
前記反射光学系は、前記反射型光学素子を第1保持部材と第2保持部材により角度調節可能に保持固定する保持構造を有し、
前記反射型光学素子は、反射面外の外周部に、投影映像画面の中心光軸に直交し該投影映像画面の一辺に平行な第1の方向に軸芯を持つガイド軸を有し、該ガイド軸を前記第1保持部材に設けられた溝部に保持されるとともに、前記第1の方向の軸廻りには前記第1保持部材に対し回転自由度を有し、
前記第1保持部材は、前記反射型光学素子を保持するとともに、その外周部に、前記第1の方向と直交する方向の第2の方向に設けられ、前記投影映像画面の中心光軸に直交する軸芯を持つガイド軸を有し、該ガイド軸を前記第2保持部材に設けられた溝部に保持されるとともに、前記第2の方向の軸廻りには前記第2保持部材に対し回転自由度を持つ構造であり、
前記反射型光学素子のガイド軸と前記第1保持部材のガイド軸の軸芯は、前記反射型光学素子の反射面と前記投影映像画面の中心光軸とが交わる点に接するか若しくはその近傍に配置するように構成したことを特徴とする画像投影装置。
An image generation unit that generates image light, a projection optical system that projects the image light generated by the image generation unit, and a projection image from the projection optical system is reflected toward a projection surface by a reflective optical element In an image projection apparatus comprising a reflective optical system,
The reflective optical system has a holding structure for holding and fixing the reflective optical element so that the angle can be adjusted by a first holding member and a second holding member,
The reflective optical element has a guide shaft having an axial center in a first direction that is orthogonal to the central optical axis of the projection video screen and parallel to one side of the projection video screen, on the outer peripheral portion outside the reflection surface, The guide shaft is held in a groove provided in the first holding member, and has a degree of freedom of rotation with respect to the first holding member around the shaft in the first direction,
The first holding member holds the reflective optical element, and is provided on the outer periphery of the first holding member in a second direction orthogonal to the first direction, and is orthogonal to the central optical axis of the projection video screen. A guide shaft having an axial center that is held by a groove provided in the second holding member, and freely rotatable with respect to the second holding member around the axis in the second direction. Is a structure with a degree,
The axial center of the guide shaft of the reflective optical element and the guide shaft of the first holding member is in contact with or near the point where the reflective surface of the reflective optical element and the central optical axis of the projection image screen intersect. An image projector characterized by being arranged.
請求項1に記載の画像投影装置において、
前記第1保持部材に設けられた溝部は、前記反射型光学素子のガイド軸を保持する構造を持ち、該ガイド軸は前記第1の方向に平行となるように設けられた溝内基準面に押圧部材により軸廻りの回転自由度を持った形で押え固定されており、
前記第2保持部材に設けられた溝部は、前記第1保持部材のガイド軸を保持する構造を持ち、該ガイド軸は前記第2の方向に平行となるように設けられた溝内基準面に押圧部材により軸廻りの回転自由度を持った形で押え固定されていることを特徴とする画像投影装置。
The image projector according to claim 1,
The groove portion provided in the first holding member has a structure for holding the guide shaft of the reflective optical element, and the guide shaft is formed on a reference surface in the groove provided to be parallel to the first direction. The presser is fixed to the presser with a degree of freedom of rotation around the shaft.
The groove portion provided in the second holding member has a structure for holding the guide shaft of the first holding member, and the guide shaft is formed on a reference surface in the groove provided to be parallel to the second direction. An image projection apparatus characterized in that the presser is fixed by a pressing member in a form having a degree of freedom of rotation about an axis.
請求項1または2に記載の画像投影装置において、
前記反射型光学素子の反射面外には前記第1の方向に平行なリブ面が設けてあり、前記反射型光学素子のガイド軸廻りの回転調整後、前記リブ面を前記第1保持部材に対し固定することにより、前記反射型光学素子の前記第1保持部材に対する回転角度位置を規制するとともに、
前記第1保持部材には前記第2の方向に平行なリブ面が設けてあり、前記第1保持部材のガイド軸廻りの回転調整後、前記リブ面を前記第2保持部材に対し固定することにより、前記第1保持部材の前記第2保持部材に対する回転角度位置を規制する構造であることを特徴とする画像投影装置。
The image projector according to claim 1 or 2,
A rib surface parallel to the first direction is provided outside the reflective surface of the reflective optical element, and after the rotation of the reflective optical element around the guide shaft is adjusted, the rib surface is used as the first holding member. In contrast, by restricting the rotational angle position of the reflective optical element with respect to the first holding member,
The first holding member is provided with a rib surface parallel to the second direction, and the rib surface is fixed to the second holding member after adjusting the rotation of the first holding member around the guide shaft. Thus, the image projecting device is characterized in that the rotational angle position of the first holding member with respect to the second holding member is regulated.
請求項1乃至3のいずれか一つに記載の画像投影装置において、
前記反射型光学素子の前記第1保持部材に対するガイド軸方向の位置は、前記反射型光学素子の外周部に設けた前記ガイド軸と直交する方向に設けたリブと、前記第1保持部材に設けた前記リブに勘合する溝部によって決定し、
前記反射型光学素子と前記第1保持部材との前記第1の方向の取り付け余裕寸法は、それぞれの材質の線膨張係数の差と、画像投影装置の上限使用想定温度と常温との温度差と、前記反射型光学素子の第1の方向の巾と、を掛け合わせた値より大きくとり、前記反射型光学素子に設けた前記リブの中心から前記ガイド軸部までの前記第1の方向の寸法の比によって配分されるように設定されていることを特徴とする画像投影装置。
In the image projection device according to any one of claims 1 to 3,
The position of the reflective optical element in the guide axis direction with respect to the first holding member is provided on the first holding member and a rib provided in a direction orthogonal to the guide axis provided on the outer periphery of the reflective optical element. Determined by the groove to be fitted to the rib,
The attachment margin dimension in the first direction between the reflective optical element and the first holding member includes a difference in linear expansion coefficient of each material, a temperature difference between an upper limit use temperature of the image projector and normal temperature. The dimension in the first direction from the center of the rib provided on the reflective optical element to the guide shaft is larger than the product of the width of the reflective optical element in the first direction. An image projector characterized by being set to be distributed according to the ratio.
請求項1乃至4のいずれか一つに記載の画像投影装置において、
前記第1保持部材及び前記第2保持部材の材質は同材質であり、前記第1保持部材の前記第2の方向の位置は、前記第2保持部材に設けた基準面位置に押圧部材により押し当てる形で決まる構造であることを特徴とする画像投影装置。
In the image projection device according to any one of claims 1 to 4,
The first holding member and the second holding member are made of the same material, and the position of the first holding member in the second direction is pushed by a pressing member to a reference surface position provided on the second holding member. An image projection apparatus characterized by having a structure determined by a hitting form.
請求項1乃至5のいずれか一つに記載の画像投影装置において、
前記反射型光学素子は、回転位置の調整後、前記リブ部を前記第1保持部材の溝部に接着されて固定されることを特徴とする画像投影装置。
In the image projection device according to any one of claims 1 to 5,
The reflection type optical element has the rib portion bonded and fixed to the groove portion of the first holding member after adjusting the rotational position.
請求項1乃至6のいずれか一つに記載の画像投影装置と、被投影面であるスクリーンを備え、前記画像投影装置の前記画像生成部で生成された映像光を、前記投影光学系と前記反射光学系により前記スクリーンに拡大して投影することを特徴とする画像表示装置。   An image projection apparatus according to any one of claims 1 to 6 and a screen which is a projection surface, and image light generated by the image generation unit of the image projection apparatus is transmitted to the projection optical system and the projection optical system. An image display apparatus, wherein the image is enlarged and projected onto the screen by a reflection optical system.
JP2009210025A 2009-09-11 2009-09-11 Image projection device and image display device Active JP5531520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210025A JP5531520B2 (en) 2009-09-11 2009-09-11 Image projection device and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210025A JP5531520B2 (en) 2009-09-11 2009-09-11 Image projection device and image display device

Publications (2)

Publication Number Publication Date
JP2011059459A true JP2011059459A (en) 2011-03-24
JP5531520B2 JP5531520B2 (en) 2014-06-25

Family

ID=43947149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210025A Active JP5531520B2 (en) 2009-09-11 2009-09-11 Image projection device and image display device

Country Status (1)

Country Link
JP (1) JP5531520B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190518A (en) * 2012-03-13 2013-09-26 Nitto Kogaku Kk Holder and projector with holder
JP2014137469A (en) * 2013-01-17 2014-07-28 Nitto Kogaku Kk Curved mirror adjustment device
JP2014139608A (en) * 2013-01-21 2014-07-31 Nitto Kogaku Kk Curved mirror attachment structure
US8922883B2 (en) 2012-11-05 2014-12-30 Ricoh Company, Ltd. Magnification optical system
US9069238B2 (en) 2011-10-31 2015-06-30 Ricoh Company, Ltd. Image displaying apparatus
US9158119B2 (en) 2012-10-31 2015-10-13 Ricoh Company, Ltd. Enlargement optical system
JP2015230324A (en) * 2014-06-03 2015-12-21 日東光学株式会社 Curved mirror adjusting device
JP2017199014A (en) * 2017-06-21 2017-11-02 株式会社nittoh Optical member
JP2018067001A (en) * 2017-11-29 2018-04-26 株式会社nittoh Structure for attaching projection optical system
US9964733B2 (en) 2015-07-30 2018-05-08 Ricoh Company, Ltd. Holding structure for holding reflecting mirror, projection optical system unit, optical engine, and image projecting apparatus
JP2018159945A (en) * 2018-06-19 2018-10-11 株式会社nittoh Adjusting device for curved mirror
JP2019003207A (en) * 2018-09-10 2019-01-10 株式会社nittoh Optical member
JP2019056926A (en) * 2018-12-17 2019-04-11 株式会社nittoh Curved surface mirror adjusting device
JP2019091073A (en) * 2019-02-07 2019-06-13 株式会社nittoh Curved surface mirror adjustment device, and projection optical system
US10451961B2 (en) 2011-11-04 2019-10-22 Ricoh Company, Ltd. Focus adjustment system for an image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224120A (en) * 2015-05-27 2016-12-28 リコーインダストリアルソリューションズ株式会社 Reflection type optical element and image projection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181938A (en) * 1990-11-16 1992-06-29 Mitsubishi Electric Corp Projection type display device
JP2002006398A (en) * 2000-05-24 2002-01-09 Acer Communications & Multimedia Inc Reflecting projection unit of projector
JP2005099680A (en) * 2003-03-26 2005-04-14 Matsushita Electric Ind Co Ltd Image display system
JP2007164007A (en) * 2005-12-16 2007-06-28 Hitachi Ltd Optical element having free curved surface, and projective optical unit including the optical element or projection type image display apparatus
JP2008139442A (en) * 2006-11-30 2008-06-19 Victor Co Of Japan Ltd Mirror attachment structure
JP2008203540A (en) * 2007-02-20 2008-09-04 Fujinon Corp Projection lens unit, and mirror fixing method and device of the same
JP2009058935A (en) * 2007-08-07 2009-03-19 Sanyo Electric Co Ltd Projection image display apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181938A (en) * 1990-11-16 1992-06-29 Mitsubishi Electric Corp Projection type display device
JP2002006398A (en) * 2000-05-24 2002-01-09 Acer Communications & Multimedia Inc Reflecting projection unit of projector
JP2005099680A (en) * 2003-03-26 2005-04-14 Matsushita Electric Ind Co Ltd Image display system
JP2007164007A (en) * 2005-12-16 2007-06-28 Hitachi Ltd Optical element having free curved surface, and projective optical unit including the optical element or projection type image display apparatus
JP2008139442A (en) * 2006-11-30 2008-06-19 Victor Co Of Japan Ltd Mirror attachment structure
JP2008203540A (en) * 2007-02-20 2008-09-04 Fujinon Corp Projection lens unit, and mirror fixing method and device of the same
JP2009058935A (en) * 2007-08-07 2009-03-19 Sanyo Electric Co Ltd Projection image display apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069238B2 (en) 2011-10-31 2015-06-30 Ricoh Company, Ltd. Image displaying apparatus
US10451961B2 (en) 2011-11-04 2019-10-22 Ricoh Company, Ltd. Focus adjustment system for an image display device
JP2013190518A (en) * 2012-03-13 2013-09-26 Nitto Kogaku Kk Holder and projector with holder
US9158119B2 (en) 2012-10-31 2015-10-13 Ricoh Company, Ltd. Enlargement optical system
US9841584B2 (en) 2012-11-05 2017-12-12 Ricoh Company, Ltd. Magnification optical system
US10310238B2 (en) 2012-11-05 2019-06-04 Ricoh Company, Ltd. Magnification optical system
US8922883B2 (en) 2012-11-05 2014-12-30 Ricoh Company, Ltd. Magnification optical system
US9348121B2 (en) 2012-11-05 2016-05-24 Ricoh Company, Ltd. Magnification optical system
US9046674B2 (en) 2012-11-05 2015-06-02 Ricoh Company, Ltd. Magnification optical system
US10606042B2 (en) 2012-11-05 2020-03-31 Ricoh Company, Ltd. Magnification optical system
JP2014137469A (en) * 2013-01-17 2014-07-28 Nitto Kogaku Kk Curved mirror adjustment device
JP2014139608A (en) * 2013-01-21 2014-07-31 Nitto Kogaku Kk Curved mirror attachment structure
JP2015230324A (en) * 2014-06-03 2015-12-21 日東光学株式会社 Curved mirror adjusting device
US9964733B2 (en) 2015-07-30 2018-05-08 Ricoh Company, Ltd. Holding structure for holding reflecting mirror, projection optical system unit, optical engine, and image projecting apparatus
JP2017199014A (en) * 2017-06-21 2017-11-02 株式会社nittoh Optical member
JP2018067001A (en) * 2017-11-29 2018-04-26 株式会社nittoh Structure for attaching projection optical system
JP2018159945A (en) * 2018-06-19 2018-10-11 株式会社nittoh Adjusting device for curved mirror
JP2019003207A (en) * 2018-09-10 2019-01-10 株式会社nittoh Optical member
JP2019056926A (en) * 2018-12-17 2019-04-11 株式会社nittoh Curved surface mirror adjusting device
JP2019091073A (en) * 2019-02-07 2019-06-13 株式会社nittoh Curved surface mirror adjustment device, and projection optical system

Also Published As

Publication number Publication date
JP5531520B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5531520B2 (en) Image projection device and image display device
JP5696644B2 (en) Image display device
US9348121B2 (en) Magnification optical system
EP1783527B1 (en) Projection type image display
US8128238B2 (en) Projection optical system and image displaying apparatus
JP5935131B2 (en) Image display device
JP2011186434A (en) Image projection device
US8226248B2 (en) Projection display device with shift mechanism for displacing an imager
JP5704443B2 (en) Projector device
JP2017129711A (en) Lens alignment device and projector including the same
JP6558093B2 (en) Projection optical system and projector
JP6056303B2 (en) Projection optics barrel
JP6064535B2 (en) Projection optical system and image display apparatus including the same
JP5544711B2 (en) projector
TWI481947B (en) Optical apparatus
JP6642672B2 (en) Method of manufacturing projection optical system and method of manufacturing image display device
JP6409839B2 (en) Projection optical system manufacturing method and image display device manufacturing method
JP2007328086A (en) Projection optical system and projector
JP5706746B2 (en) Projection optical unit and projection display apparatus using the same
KR20170057414A (en) Optical compensation element adjusting mechanism and projector
JP6623693B2 (en) Projection optics and projector
JP7067572B2 (en) Manufacturing method of projection optical system and manufacturing method of image display device
JP2005043653A (en) Projection apparatus
WO2020228755A1 (en) Laser projection apparatus
JP2006133655A (en) Projection type display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5531520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151